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Abstract

Low-Density Parity-Check Codes: Construction and
Implementation

by

Gabofetswe A. Malema

Low-density parity-check (LDPC) codes have been shown to have good error cor-

recting performance approaching Shannon’s limit. Good error correcting performance

enables efficient and reliable communication. However, a LDPC code decoding algorithm

needs to be executed efficiently to meet cost, time, power and bandwidth requirements

of target applications. The constructed codes should also meet error rate performance

requirements of those applications. Since their rediscovery, there has been much research

work on LDPC code construction and implementation. LDPC codes can be designed over

a wide space with parameters such as girth, rate and length. There is no unique method

of constructing LDPC codes. Existing construction methods are limited in some way in

producing good error correcting performing and easily implementable codes for a given

rate and length. There is a need to develop methods of constructing codes over a wide

range of rates and lengths with good performance and ease of hardware implementabil-

ity. LDPC code hardware design and implementation depend on the structure of target

LDPC code and is also as varied as LDPC matrix designs and constructions. There are

several factors to be considered including decoding algorithm computations,processing

nodes interconnection network, number of processing nodes, amount of memory, number

of quantization bits and decoding delay. All of these issues can be handled in several

different ways.

This thesis is about construction of LDPC codes and their hardware implementation.

LDPC code construction and implementation issues mentioned above are too many to be

addressed in one thesis. The main contribution of this thesis is the development of LDPC

code construction methods for some classes of structured LDPC codes and techniques

for reducing decoding time. We introduce two main methods for constructing structured

codes. In the first method, column-weight two LDPC codes are derived from distance

graphs. A wide range of girths, rates and lengths are obtained compared to existing
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methods. The performance and implementation complexity of obtained codes depends

on the structure of their corresponding distance graphs. In the second method, a search

algorithm based on bit-filing and progressive-edge growth algorithms is introduced for

constructing quasi-cyclic LDPC codes. The algorithm can be used to form a distance

or Tanner graph of a code. This method could also obtain codes over a wide range of

parameters. Cycles of length four are avoided by observing the row-column constraint.

Row-column connections observing this condition are searched sequentially or randomly.

Although the girth conditions are not sufficient beyond six, larger girths codes were eas-

ily obtained especially at low rates. The advantage of this algorithm compared to other

methods is its flexibility. It could be used to construct codes for a given rate and length

with girths of at least six for any sub-matrix configuration or rearrangement. The code

size is also easily varied by increasing or decreasing sub-matrix size. Codes obtained using

a sequential search criteria show poor performance at low girths (6 and 8) while random

searches result in good performing codes.

Quasi-cyclic codes could be implemented in a variety of decoder architectures. One of the

many options is the choice of processing nodes interconnect. We show how quasi-cyclic

codes processing could be scheduled through a multistage network. Although these net-

works have more delay than other modes of communication, they offer more flexibility

at a reasonable cost. Banyan and Benes networks are suggested as the most suitable

networks.

Decoding delay is also one of several issues considered in decoder design and implementa-

tion. In this thesis, we overlap check and variable node computations to reduce decoding

time. Three techniques are discussed, two of which are introduced in this thesis. The tech-

niques are code matrix permutation, matrix space restriction and sub-matrix row-column

scheduling. Matrix permutation rearranges the parity-check matrix such that rows and

columns that do not have connections in common are separated. This techniques can be

applied to any matrix. Its effectiveness largely depends on the structure of the code. We

show that its success also depends on the size of row and column weights. Matrix space

restriction is another technique that can be applied to any code and has fixed reduction in

time or amount of overlap. Its success depends on the amount of restriction and may be

traded with performance loss. The third technique already suggested in literature relies

on the internal cyclic structure of sub-matrices to achieve overlapping. The technique is

limited to LDPC code matrices in which the number of sub-matrices is equal to row and

column weights. We show that it can be applied to other codes with a lager number of
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sub-matrices than code weights. However, in this case maximum overlap is not guaran-

teed. We calculate the lower bound on the amount of overlapping. Overlapping could

be applied to any sub-matrix configuration of quasi-cyclic codes by arbitrarily choosing

the starting rows for processing. Overlapping decoding time depends on inter-iteration

waiting times. We show that there are upper bounds on waiting times which depend on

the code weights. Waiting times could be further reduced by restricting shifts in identity

sub-matrices or using smaller sub-matrices. This overlapping technique can reduce the

decoding time by up to 50% compared to conventional message and computation schedul-

ing.

Techniques of matrix permutation and space restriction results in decoder architectures

that are flexible in LDPC code design in terms of code weights and size. This is due to

the fact that with these techniques, rows and columns are processed in sequential order

to achieve overlapping. However, in the existing technique, all sub-matrices have to be

processed in parallel to achieve overlapping. Parallel processing of all code sub-matrices

requires the architecture to have the number of processing units at least equal to the

number sub-matrices. Processing units and memory space should therefore be distrib-

uted among the sub-matrices according to the sub-matrices arrangement. This leads to

high complexity or inflexibility in the decoder architecture. We propose a simple, pro-

grammable and high throughput decoder architecture based on matrix permutation and

space restriction techniques.
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Chapter 1

Introduction

1.1 Overview

Communications systems transmit data from source to destination through a channel or

medium such as air, wire lines and optical fibres. The reliability of the received data

depends on the channel and external noise that could interfere or distort the signal rep-

resenting the data. The noise introduces errors in the transmitted data. Shannon[1]

showed through his coding theorem that reliable transmission could be achieved if the

data rate is less than the channel capacity. The theorem shows that a sequence of codes

of rate less than the channel capacity have the capability of correcting all errors as the

code length goes to infinity [1]. Error detection and correction is achieved by adding

redundant symbols to the original data. This realization has lead to the development of

error correction codes(ECCs) and the subject of information theory to meet Shannon’s

conditions. Without ECCs data will need to be retransmitted if it could be detected that

there is an error in the received data. Retransmission adds delay, cost and wastes system

throughput. Alternatively the number of errors could be reduced by using a stronger

signal to dominate the noise. However, this approach increases power consumption of the

system as more power is needed to drive a signal[2]. ECCs could be used to detect and

correct errors in the received data thereby increasing the system throughput, speed and

reducing power consumption. They are especially suitable for long distance one-way com-

munication channels such as satellite to satellite and deep space communication. They

are also used in wireless communications and storage devices. Figure 1.1 shows a basic
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Figure 1.1. A basic communication system block diagram

communication system diagram showing data movement from source to destination. Data

from the source is encoded using an encoder based on an error detection and correcting

algorithm before it is modulated and sent through a channel. Encoding adds redundant

symbols to the data to be transmitted. The channel noise or interference might affect

the transmitted data, changing some symbols. At the destination received data (source

data plus noise) is demodulated and estimated using a predefined method defined by the

decoder algorithm.

Several error correction codes have been developed over time to encode and decode

sent and received data respectively. They differ in correcting performance, computation

and implementation complexity. ECCs include Viterbi, convolution, Bose-Chaudhuri-

Hocquenghen (BCH), Reed-Solomons[2][3], turbo [4] and low-density parity-check codes

(LDPC)[5].

1.2 LDPC Codes

In 1992 Turbo codes developed by Berrou et al in [4] were the first codes to be shown to

perform close to the Shannon limit or channel capacity. They iteratively estimate received

bit probabilities using Pearl’s belief propagation algorithm[6]. The success of Turbo codes

led to the rediscovery of low-density parity-check codes by MacKay and Neal in [7]. They

were originally developed by Gallager in the 1960s[5][8]. They were largely ignored for a

long time because their computational complexity was high for the hardware technology

at the time.

LDPC codes also use iterative updating of bit probabilities based on belief algorithm.

Richardson et al also proved the results obtained by MacKay and Neal in [9].
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LDPC codes match Turbo codes in decoding performance[10]. However, they have several

advantages over Turbo codes including parallelism in decoding and simple computation

operations.

LDPC decoding computations are divided into two sets of nodes, check and variable

nodes. Nodes on each side do computations independently of each other. A node is only

connected to nodes on the other side. This allows computations in each side to be done in

parallel. In Turbo codes, decoding operations in a block or window are dependent on each

other in both ascending and descending order. This forces decoding calculations to be

serialized within a block or window [11]. Although some LDPC code computations involve

complex operations such as tangent and inverse tangent there are complexity reducing

techniques for approximating these operations without a significant loss of performance.

Low computational complexity combined with parallelism and good error correcting per-

formance are some of the reasons LDPC codes have since received much attention and are

being recommended for some communications systems such as digital video broadcasting

(DVB-2) [12] and considered for many others[13][14].

Despite these advantages good LDPC code construction methods and efficient hardware

(encoder and decoder) implementations are still a challenge. Meeting or coming close to

the channel capacity performance assumes that an infinitely long code is used. Richard-

son and Urbanke [15] used a one million block length to come within 0.13dB of the

channel capacity at 10−6 bit error probability. Different application systems have dif-

ferent decoding performance, latency, power and cost requirements. These requirements

put constraints on code size and hardware implementations. As a result, different code

sizes are recommended for different applications to meet both performance and hardware

requirements. For example, LDPC codes can be applied to wireless, wired and opti-

cal communication systems, storage applications such magnetic discs and compact discs.

Wireless applications require low power implementations with few rates at several Mbps.

Storage applications require about 1Gbps and high rates codes [16], while optical com-

munication throughput can be above 10Gbps[14].

These applications tolerate different delays, hardware cost and throughput. In addition

they have different error probability expectations. The challenge is to find ways of con-

structing good performing LDPC codes given a fixed length and rate.

Construction of LDPC codes is not unique. It is varied and could be designed with sev-

eral parameters including length and rate. These parameters also vary widely. For LDPC
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codes to be successfully applied to many applications systems, methods for constructing

good codes given a limited block length and other parameters are needed. Constructed

codes must also satisfy hardware constraints such as latency, cost, power consumption

flexibility and scalability depending on the application. These are the issues that will be

addressed in this thesis.

1.3 Thesis Contribution

The main subject of this thesis is the construction of LDPC codes and their hardware

implementations, in particular structured codes. There are a number of contributions in

the literature on LDPC codes construction and implementation. Our aim is to add to that

knowledge by developing possible solutions to some of the pressing issues on LDPC codes

construction and implementation. Existing LDPC codes construction methods for struc-

tured (defined interconnection pattern) codes have limitations in using arbitrary lengths

or rates. We introduce methods for constructing structured codes over a wide range of

rates, lengths and girths. In hardware implementation, a case is made for using multi-

stage networks as a communication network for quasi-cyclic LDPC decoders. Techniques

for reducing decoding delay by overlapping decoding computations are also introduced

and discussed. A decoder architecture based on developed overlapping techniques is also

proposed.

The contributions of this thesis are summarized in the following points:

• A method for deriving column-weight two LDPC codes from distance graphs is

introduced. A wide range of codes are obtained in terms of girth and rate. (Chapter

3, section 3.3)

• A structured search method for constructing structured LDPC codes of a desired

girth is also introduced. Rows and columns are divided into equal groups to obtain a

block or sub-matrix structure in the parity-check matrix. Connections within groups

are made if they do not violate a desired girth. Searching for such connections is

done sequentially within groups. Although codes of a desired girth are obtained

such codes show poor bit-error probability. (Chapter 3, section 3.4)
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• Another search algorithm is introduced to obtain quasi-cyclic LDPC codes. Connec-

tions within row and column groups are in consecutive order such that sub-matrices

are cyclically shifted. Connections are made between rows and columns if they do

not violate a desired girth. Searching for such connections could be done sequen-

tially or randomly within a group. Randomly searched codes outperform sequen-

tial searched ones. Although the algorithm guarantee only a girth of six, higher

girths are also easily obtained. A major advantage of this algorithm compared to

other methods is its flexibility (code size,rate, regular, irregular and sub-matrix

configurations). The algorithm could be used with any number of sub-matrices and

sub-matrices arrangement or configuration. (Chapter 4)

• To reduce wiring congestion and complexity in fully parallel decoders, the parity-

check matrix is reordered using matrix reordering algorithms. Average connection

ranges are reduced resulting in smaller cut-sizes. (Chapter 5, Section 5.3)

• Decoder check and variable node interconnections are discussed. A case is made for

banyan and Benes multistage networks as a means of communication between check

and variable processing nodes in quasi-cyclic LDPC decoders. Multistage networks

are efficient than hardwired or memory banks interconnections when sub-matrix

configurations in a quasi-cyclic are random. For multistage networks to be efficient

vector processing should be used. (Chapter 6, Section 6.2)

• Techniques for reducing decoding time for quasi-cyclic LDPC decoders are sug-

gested. Permutation of the parity-check matrix, matrix connections restrictions and

quasi-cyclic computation overlapping methods are introduced and discussed. Ma-

trix permutation can be applied to any matrix but is limited by structure and row

and column weights of the code. Matrix-space restriction gives the same amount

of overlapping regardless of the code. Its performance depends on the extent of

row-column connections restriction which needs to be weighed against possible per-

formance loss. Careful calculation of starting rows and columns in a quasi-cyclic

code can lead to a decoding time of up to 50%. Worst cases of overlapping are

calculated based on row and column weights of target code. Techniques of matrix

permutation and space restriction allow sequential processing of code sub-matrices.

This property leads to simpler and flexible decoder architectures compared to the

existing technique. In the existing technique sub-matrices are processed in parallel
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to achieve overlapping. A simple and programmable LDPC decoder architecture

is proposed based on matrix permutation and matrix space restriction overlapping

techniques. The architecture can run codes of any length, rate and both regular and

irregular codes. The throughput can be increased by simple increasing the number

of processing elements. Although the proposed decoder is designed based on quasi-

cyclic LDPC codees, it can be used for random and other structured codes. To our

knowledge this is the most flexible decoder to date. (Chapter 6, section 6.3)

1.4 Thesis Outline

This thesis is organized as follows.

Chapter 2 Presents an overview of LDPC codes and the message passing decoding al-

gorithm.

Chapter 3 An overview of LDPC code construction methods is presented. A method for

constructing codes with a column-weight of two from distance graphs is proposed.

A search method is introduced for constructing structured codes. Codes of different

rates and girths are obtained using the method.

Chapter 4 The proposed search algorithm in Chapter 3 is modified to obtain quasi-cyclic

codes. Quasi-cyclic codes over a wide range of rates and lengths are obtained with a

girth of at least six. The algorithm could also be used with an arbitrary arrangement

of sub-matrices for both regular and irregular codes. Decoding performance of these

codes is also evaluated.

Chapter 5 Previews LDPC decoder architectures. Methods for reducing routing com-

plexity and average wire-length in fully parallel decoders are also discussed. We use

sparse matrix reordering algorithms to reduce the overall wire-length and routing

complexity.

Chapter 6 Decoder communication implementation using multistage interconnection

networks is discussed. Banyan and Benes networks are suggested for quasi-cyclic

codes. Techniques for overlapping decoder computations are introduced and evalu-

ated. A decoder architecture based on proposed overlapping techniques is developed.
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Chapter 7 Summarizes the thesis and proposals for further research in relation to some

presented ideas.
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Chapter 2

LDPC Codes

2.1 Linear Block Codes

Error correcting codes attach extra bits (or in general symbols) to the transmitted data.

The extra bits are the redundancy which are then used to detect and correct errors on

the received data. In block coding, the transmitted data is segmented into blocks of

fixed length of K bits. Linear block codes are a special class of block codes where each

bit or symbol can be expressed as a linear combination of other bits or symbols in the

transmitted data. The encoder then based on certain rules transforms the input segment

into an output block of length N . N > K, thus providing the redundancy needed for

error correction and detection. The rate of the code is expressed as R = K
N

.

With K bits in an input message, there are 2K distinct input entries possible. Each output

message of N bits associated with each input message is called a codeword. With input

messages of K bits, an arbitrary encoding would require the encoder to store a table of

2K entries each of length N . This approach is not practical for large K. Linear block

codes reduce the complexity of encoding by using a linear generator matrix to transform

inputs to codewords.

A code is a linear code if and only if the modulo-2 (modulo-q in general) sum of two

codewords is also a codeword. This property of the code allows the encoder designer to

find a generator matrix(G) that defines the code. The generator matrix is made up of K
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linearly independent row vectors of size N ,g1...gK , such that it can be as expressed as

G =






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
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
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

g1

.

.

.

gK



















(2.1)

The encoder generates a codeword by multiplying the input vector with the generator

matrix, c = uG, where c is the codeword and u is the input vector of bits. The encoder

has to store only G, thus reducing the space complexity from 2K×N (arbitrary encoding)

to K × N (size of G). From the generator matrix G, a parity-check matrix H can be

derived. The matrices are related by GHT = 0. When a decoder receives a word,y, it

checks using H if the word is indeed a codeword. The received word is a codeword if

yHT = 0 (2.2)

since uGHT = 0. The decoder uses this expression to detect and correct errors. G can

be put in systematic form as G = [IK | P ] from which the derived H is

H = [−P T | IN−K ], (2.3)

where P is an (N −K)×K sub-matrix, and IN−K is the (N-K) identity matrix and P T

is the transpose matrix of P [17]. For binary codewords, −P T = P T . If H is given, a

corresponding G could also be derived from H similarly to the way it is derived from G.

2.2 Low-Density Parity-Check Codes

Low-density parity-check codes are a class of linear block code defined by a sparse MxN

parity-check matrix, H [5],where N > M and M = N −K. Although LDPC codes can

be generalized to non-binary symbols, we consider only binary codes. The parity-check

matrix has a small number of ‘1’ entries compared to ‘0’ entries, making it sparse. The

number of ‘1’s in a parity-check matrix row is called the row-weight, k, and the number

of ‘1’s in a column is the column-weight, j. A regular LDPC code is one in which both

row and column weights are constant, otherwise, the parity check matrix is irregular.
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Row and column weights are much smaller than the matrix dimensions, with row weights

greater than column weights. The rate of the parity check or code matrix is the fraction

of information bits in the codeword. It is given by K
N

= N−M
N

= 1− M
N

. The number of ‘1’

entries in the parity-check matrix is given by Mk or Nj. From Mk = Nj, we get M
N

= j
k
.

Hence, the rate of the matrix could also be expressed as 1− j
k
. We briefly describe LDPC

code representation, encoding and decoding and LDPC characteristics and evaluation in

the following sections. Detailed introductions and tutorials of LDPC codes are found in

[18][19][20].

2.3 LDPC Representation

Although a LDPC code is defined by a sparse matrix, a bipartite graph, also known as a

Tanner graph[21], can be used to represent the code. A bipartite graph is a graph whose

nodes can be divided into two sets such that each node is connected to a node in the other

set. The two sets of nodes in a Tanner graph are called check nodes and variable nodes

representing rows and columns respectively. Figure 2.1 shows a parity check matrix with

a corresponding Tanner graph. The ath check node is connected to the bth variable node

if and only if Ha,b = 1. Check nodes f0...f5 represent the six rows of the matrix, whereas

v0...v11 are the columns. The number of edges in each check node is equal to the row

weight and the number of edges in each variable node is equal to the column weight. The

row and column weights are four and two respectively in this example.

A cycle in a parity check matrix is formed by a complete path through ‘1’ entries with

alternating moves between rows and columns. In a Tanner graph a cycle is formed by a

path starting from a node and ending at the same node. The length of the cycle is given

by the number of edges in the path. A cycle of six is shown in bold in the graph of Figure

2.1 (b). The smallest cycle in a Tanner graph or parity check matrix is called its girth.

The smallest possible girth is four. A bipartite graph has a minimum cycle of length four

and has even cycle lengths.
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Figure 2.1. LDPC code (a) matrix representation (b) Tanner graph representation.

2.4 LDPC Encoding

LPDC codes encoding is performed in a similar way as in linear codes briefly discussed

above. From a given parity-check matrix, H, a generator matrix, G, is derived. Data,

u = u1...uN , is encoded by multiplying it with the generator matrix, c = uG, where u

is a string of information bits. It has to be noted that putting H in systematic form,

H = [P T | IM ], no longer has fixed column or row weights and P is very likely to be dense.

The denseness of P determines the encoder computational complexity. A dense generator

matrix requires a large number of operations when doing the matrix multiplication with

the data to be sent. The encoding process complexity is O(N2) or more precisely N2 R(1−R)
2

operations where R is the code rate[22]. Encoding complexity could be reduced for some

codes by parity-check matrix preprocessing. An efficient encoding technique has been

developed to reduce encoding complexity to O(N) by rearranging the parity-check matrix

before encoding[22]. The encoding complexity also depends on the structure (row-column

interconnections) of the code. Quasi-cyclic codes are codes in which a cyclic shift of one

codeword results in another codeword. Their encoding has been shown to be linear with

code length thanks to the cyclic row-column connections[23][24].
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2.5 LDPC Decoding

LDPC code decoding tries to reconstruct the transmitted codeword, c, from the possibly

corrupted received word, y. It is achieved by using the parity-check matrix, H. The

condition that cHT = 0 defines the set of parity-check constraints or equations that must

be satisfied for the received codeword to be the same as the transmitted codeword. Using

the parity-check matrix of Figure 2.1, the parity-check constraints are as follows:

v0 + v1 + v2 + v3 = f0

v4 + v6 + v7 + v8 = f1

v0 + v4 + v5 + v9 = f2

v1 + v7 + v8 + v10 = f3

v2 + v7 + v9 + v11 = f4

v3 + v8 + v10 + v11 = f5

(2.4)

If the values assigned to the set of variable nodes represent a valid code then each con-

straint equation is equal to zero. The equations can be generalized in the form

fa = ⊕Hab=1vb a = 1...M, b = 1...N (2.5)

where fa is the ath row of H and vb is the bth column. The parity check equations are

formed from each row of the matrix.

2.5.1 Decoding Algorithm

LDPC code decoding is achieved through iterative processing based on the Tanner graph,

to satisfy the parity check conditions. A message passing algorithm (MPA) based on

Pearl’s belief algorithm [6] describes the decoding iterative steps. The passed messages

are probability estimations.

The M check nodes of a Tanner graph correspond to the parity constraints and the N

variable nodes represent the data bits of the codeword. The algorithm estimates code-

words by iteratively updating and exchanging messages between connected variable and

check nodes on the Tanner graph. Check nodes estimate the probability that a given

parity check equation is satisfied given the messages or estimates from connected variable
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nodes. That is, check nodes probabilities measure the reliability of the bit (data) prob-

ability estimations using estimations from adjacent variable nodes. The variable nodes

estimate the probability that a given bit is 0 or 1 based on the received bit (codeword)

and messages or estimates from connected check nodes. The codeword estimations and

message computations are based on the initial values (received codeword) and received

messages from adjacent nodes. Each variable node sends a message to each check node it

is connected to, and vice versa.

The decoding algorithm is usually implemented in the log domain to simplify computa-

tions. Multiplication operations are converted to additions and divisions to subtractions

in the log domain. There are other approximations which are used to reduce computa-

tional complexity. A summary of the steps and computations of the decoding algorithm

in the log domain is presented in the next subsection.

Message Passing Algorithm

The MPA algorithm estimates the bit probabilities using intrinsic(knowledge before an

event) and extrinsic (knowledge after an event) information. For a variable u, there

are different types of probabilities to express its relation to an event E. The a priori

probability of u with respect to the event E is the probability that u is equal to a, and is

denoted by

P priori
E (u = a) = P (u = a). (2.6)

This probability is called a priori because it refers to what was known about the variable

u before observing the outcome of the event E. On the other hand, the a posteriori

probability of u with respect to the event E is the conditional probability of u given the

outcome of the event E, and is denoted by

P post
E (u = a) = P (u = a | E) (2.7)

This probability represents what is known about the variable u after observing the

outcome of the event E. Using Bayes’ theorem [6], the a posteriori probability can be

written as

P (u = a | E) =
1

P (E)
P (E | u = a)P (u = a) (2.8)
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The term P (E | u = a) is proportional to what is called the extrinsic probability,

which describes the new information for u that has been obtained from the event E. The

extrinsic probability is denoted as

P ext
E (u = a) = dP (E | u = a), (2.9)

where d is a normalization constant to make the extrinsic probability sum to 1.

Therefore, the relationship between a priori, extrinsic and a posteriori probabilities can

be written as

P post
E (u = a) = P priori

E (u = a)P ext
E (u = a). (2.10)

In the binary case, u = [0, 1], it is convenient to express the probability of a binary

variable u in terms of a real number called the log-likelihood ratio (LLR). Assuming

P (u = 1) = p, the log-likelihood ratio of u is defined as

LLR(u) = log
P (u = 1)

P (u = 0)
= log

p

1− p
(2.11)

LLR(u) is positive if p ≥ 0.5 and negative if p < 0.5. Equation (2.8) can be rewritten

in terms of log-likelihood ratios as

LLRpost
E (u) = LLRpriori

E (u) + LLRext
E (u) (2.12)

The extrinsic information reflects the incremental gain in knowledge of a posteriori infor-

mation over a priori information.

The message passing algorithm is based on a priori, extrinsic and a posteriori probabilities.

The a priori information is obtained from the channel whereas the extrinsic information is

obtained from other nodes using the decoding algorithm. Below are steps and equations

for calculating the probabilities in the log domain. For a full explanation of the MPA

algorithm including convergence issues refer to [2][15][25].

Page 15



2.5 LDPC Decoding

MPA iterative processes:

1.Initialization: Initialize each variable node with the received information, y, from the

source. Each variable node,n, calculates the initial log likelihood ratio (LLR), given

by

L(un) = ln

{

P (un = 1 | yn)

P (un = 0 | yn)

}

(2.13)

In the case of an additive white Gaussian noise (AWGN) channel,

L(un) = 2yn/σ
2, (2.14)

where σ2 is the noise variance and yn is the received data [26]. L(un) is the prob-

ability that the sent bit un is 1 or 0 given the received bit yn. For every variable

node the initial LLR is given by L(un) and messages along edges (to check nodes)

are initialized to zero. Check node LLR and messages (to variable nodes) are both

initialized to zero. Figure 2.2 shows the initialization and calculation of LLRs and

direction of incoming and outgoing messages. Incoming and outgoing messages are

exchanged among connected nodes only.

2.Check-node update: For each check node,m, calculate LLR and check-to-variable

node messages based on the incoming messages from variable nodes. The check

node LLR is given by

λm =
∑

all−msgs

ln

{

tanh(
abs(Ωn,m)

2
)

}

, (2.15)

where Ωn,m represents messages from variable nodes to a given check node. The

outgoing check-to-variable messages are given by

Λm,n = 2 ∗ atanh

{

exp{ln(λm)− ln(tanh(
Ωn,m

2
))}

}

(2.16)

The sign of λm is given by the exclusive-or (XOR) of all the incoming messages

and (ANDed with) the sign of Λm,n is given by the sign of λm and the sign of the
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variable nodes : 

check nodes : 

Initial values: zero 

Compute check node LLR and check-to-variable messages in each 

iteration 

Initial values : L(un), n=1….N.  

Compute variable node LLR and variable-to-check messages in each iteration. 

check-to-variable messages 

variable-to-check messages  

CN CN CN 

VN VN VN VN VN 

CN 

Figure 2.2. MPA calculations on a Tanner graph.

corresponding incoming message(Ωn,m)[27].

3.Variable-node update: For each variable node,n, calculate LLR and outgoing mes-

sages along its edges to check nodes. The LLR is given by

λn = L(un) +
∑

all−msgs

Λm,n, (2.17)

where Λm,n represents a check-to-variable node message. LLR is the sum of all

incoming messages plus the initial value of the variable node (equation 2.14). The

outgoing messages to check nodes are given by

Ωn,m = λn − Λm,n (2.18)

The outgoing message for each edge is given by the check node LLR minus the

message received on that edge.

4.Decision: Quantize the LLR of variable nodes such that LLRn = 0 if λn < 0, and

LLRn = 1 if λn ≥ 0. If LLR ×HT = 0, then halt the algorithm with LLR at the

decoder output. LLR gives the estimation of the codeword, cn. Otherwise go to

step(ii). If the algorithm does not halt within some maximum number of iterations,

then declare a decoder failure.
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2.6 LDPC Code Design

LDPC code design is determining the basic parameters of a code such as rate and size.

These parameters are often determined in consideration of the target application. Below

are brief descriptions of some of these parameters and how they affect performance and

implementation.

Code size The code size specifies the dimensions of the parity check matrix (M × N).

Sometimes the term code length is used referring to N. Generally a code is spec-

ified using its length and row-column weights in the form (N, j, k). M can be

deduced from the code parameters N ,j and k. It has been shown that very long

codes perform better than shorter ones[7][9]. Long codes are therefore desirable

to have good performance. However, their hardware implementation requires more

resources(memory plus processing nodes).

Code Weights and Rate The rate of a code, R, is the number of information bits over

the total number of bits transmitted. It is expressed as N−M
N

or 1− j
k
. Higher row and

column weights result in more computations at each node because of many incoming

messages. However, if many nodes contribute in estimating the probability of a bit

the node reaches a consensus faster. Higher rates mean fewer redundancy bits. That

is, more information data is transmitted per block resulting in high throughput.

However, low redundancy means less protection of bits and therefore less decoding

performance or higher error rate[28]. Low rate codes have more redundancy with

less throughput. More redundancy results in more decoding performance. However,

very low rates may have poor performance with a small number of connections.

LDPC codes with column-weight of two have their minimum distance (see below)

increasing logarithmically with code size as compared to a linear increase for codes

with column weight of three or higher[5]. As a result column-weight two codes

perform poorly compared to higher column-weight codes. Column weights higher

than two are usually used. Although regular codes are commonly used, carefully

constructed irregular codes could have better error correcting performance [29][30].

Code Structure The structure of a code is determined by the pattern of connections

between rows and columns. The connection pattern determines the complexity of

the communication interconnect between check and variable processing nodes in
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an encoder and decoder hardware implementations. Random codes do not follow

any predefined or known pattern in row-column connections. Structured codes on

the other hand have a known interconnection pattern. Many methods have been

developed for constructing those types of codes, some of which are described in

Chapter 3. New construction methods are introduced in Chapters 3 and 4.

Number of iterations The number of iterations is the number of times the received bits

are estimated before a hard decision is made by the decoding algorithm. A large

number of iterations may ensure decoding algorithm convergence but will increase

decoder delay and power consumption. The number of corrected errors generally de-

creases with an increasing number of iterations. In performance simulations a large

number of iterations, (about 100 to 200), can be used. For practical applications 20

to 30 iterations are commonly used[31][32][33].

2.7 LDPC Optimization and Evaluation

There are several ways of improving the decoding performance of a LDPC code including

improving girth, and minimum distance. The improvement in performance also depends

on the technique used. There are also performance measures to determine how good a

code is in correcting errors. Besides bit error rate simulations, other parameters could

be used to predict the performance of a code. Below we describe some of the common

techniques used in the literature.

2.7.1 LDPC Code Performance Optimization Techniques

There are several parameters of a LDPC code that could be changed to improve its

performance. These parameters include girth, average girth and minimum distance. Here

were mention some of the common techniques.

Minimum distance The Hamming weight of a codeword is the number of 1’s of the

codeword. The Hamming distance between any two codewords is the number of

bits with which the words differ from each other, and the minimum distance of

a code is the smallest Hamming distance between two codewords. The larger the
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distance the better the performance of a code. Very long and large girth LDPC

codes tend to have larger minimum distances[7]. A better code could be determined

by using minimum distance as a measure. However, for randomly constructed codes,

no algorithm is known to efficiently and accurately calculate its minimum distances.

This problem was proved to be NP-hard[34]. Algebraic software products such as

MAGMA[35] have been used by some researchers to calculate minimum distances

of structured codes.

Girth and Average Girth Both girth and average girth affect the decoding perfor-

mance of a code. Large girth and average girth tend to improve code performance

whereas small ones especially of length four degrade performance. The average

girth is the sum of smallest cycles passing through nodes divided by the number

of nodes. With small cycles a node gets a probability estimate including its own

contribution after a few iterations. When the girth is large the estimates are less

dependent on the node’s contribution for a larger number of iterations, which is the

assumption of the MPA decoding algorithm. Sullivan[36] showed using bit error

rate simulations that large girth codes perform better than those with lower girths.

Mao[37] showed that girth distribution matters more than girth. A code with a

larger average girth is likely to outperform a code with a lower average of the same

girth. LDPC construction algorithms are used to deliberately look for row-column

connections resulting in lager girth codes. In this thesis we develop construction

algorithms for obtaining large girth codes in Chapters 3 and 4.

Stopping Sets A stopping set S is a subset of V , the set of variable nodes, such that all

neighbors of the variable nodes in S are connected to S at least twice. The size of a

stopping set s is defined as the cardinality of S. It has been shown that prevention

of small stopping sets improves minimum distance of a code. Prevention of small

stopping sets has been used to improve code performance in [38].

Density Evolution Density evolution[15] is an algorithm that tracks the probability

density function of the messages through the graph nodes under the assumption

that the cycle free hypothesis is verified. It is a kind of belief propagation algorithm

with probability density function messages instead of log likelihood ratios messages.

As the code length tends to infinity, the bit error probability can be made arbitrarily
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small if the noise level is smaller than some constant threshold. By observing the

density of messages between nodes the performance of a code is estimated.

2.7.2 Error Rate

Although parameters such as girth could be used as a metric to measure decoding perfor-

mance, they do not show how much error correction the code can do. Also a code with

a better girth or average girth does not guarantee better performance than one with a

lower girth or average girth. LDPC codes are often evaluated using bit-error rate (BER)

performance over a specified channel and type of modulation. In this thesis all LDPC code

performance simulations were performed on an Additive White Gaussian Noise (AWGN)

channel with Binary Phase Shift Key (BPSK) modulation. Log domain MPA was used

in all simulations.

Channels are described by a mathematical model making it easy to design suitable mod-

ulations and coding schemes. The AWGN channel is one of the simplest channel models.

It subjects a vector of transmitted bits, u, to some noise in the form of random peaks of

energy. The amount of noise at any time instant can be described by a random normally

distributed variable, n, such that the channel bits are yi = ui + ni, where i is the position

of a bit in the signal, noise and received bit vectors. The randomness of the Gaussian noise

has a one-sided power spectral density No which depends on the noise level or variance,σ2,

by the expression No = 2σ2.

The BER measures the number of errors (yi 6= ci) found per iteration over the code length

at a given signal-to-noise ratio (SNR). It is expressed as

BER =
number of errors

number of bits
(2.19)

Errors are bits that are not equal to the sent bits of the transmitted data. The SNR is

the power ratio of the signal (transmitted data) and the background or channel noise. A

high SNR means the signal is much stronger than noise whereas a low SNR means the

noise is significantly close to the signal. In low SNRs the signal can be badly distorted by

the noise.The number of errors generally decreases with increasing signal to noise ratio.

SNR is defined as SNR = 10log Es

No
, where Es is the signal energy. To achieve a sufficient

degree of statistical confidence in the BER, the simulation is repeated many times for

a given SNR, and the average BER is reported. A plot is then generated with average

BER versus SNR. The BER curves show the probability that a bit, after decoding, will

Page 21



2.8 LDPC Implementation

be in error at a particular SNR. Another performance measure related to BER is frame

error rate (FER) or Word error rate(WER). FER is the number of decoded words (length

of code) that contain errors as a fraction of the total number of words decoded. In

applications were it is essential that all of a word is correctly received, FER is preferred

over BER.

2.8 LDPC Implementation

LDPC encoding and decoding are mostly done in hardware to meet high throughput re-

quired by most applications. Encoding complexity is quadratic with respect to the code

length. There are several methods suggested for reducing encoding complexity by pre-

processing the parity check matrix. The complexity of the encoder also depends on the

structure of the parity check matrix as already stated earlier. Large codes require more

hardware in terms of memory communication network and processing nodes.

LDPC decoder memory required depends on the structure of the code and implementa-

tion architecture. Interconnection complexity between nodes and large memory are the

main difficulties in hardware decoders implementation especially for fully parallel, ran-

dom and irregular codes. Semi-parallel decoder architectures based on structured codes

are often implemented. They offer a better tradeoff between throughput and hardware

cost and complexity. Several issues including type of MPA, numeric precision, decoding

delay, power consumption, scalability and programmability are considered in designing

and implementation of LDPC decoders to suit a particular application. A brief overview

of these factors is presented in Chapter 5. In Chapter 6, we discuss use of multistage

networks in quasi-cyclic LDPC decoders. Methods of overlapping node computations to

reduce decoding delay are introduced and discussed.

2.9 LDPC Applications

LDPC codes have been applied to applications in communication and storage systems.

Code design, construction and implementation is dictated by the target applications.

Storage systems require very high rate (8
9

and higher), low SNRs (7 to 12dB), and very

high data rates in the Giga-bits per second range (Gbps) and faster[16]. The codes are
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expected to have BER of 10−12 to 10−15. In [16][39][40] column-weight two codes are

investigated for disk storage because of their low complexity (few edge connections). Low

complexity codes such as column-weight two codes or quasi-cyclic codes are important

as disk storages are also sensitive to VLSI cost[41]. Communications standards such as

digital video broadcasting version 2 (DVB-2) recommend a variety of rates, 1
4

to 8
9
, and

very long code lengths of 3200 and 64800 [12]. LDPC codes are also recommended for

other communication environments such as Gigabit Ethernet, wireless broadband and

optical communications[13][42][43][44].
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Chapter 3

Constructing LDPC Codes

LDPC code construction requires the definition of the pattern of connection between

rows and columns of a parity-check matrix or between check and variable nodes of a

corresponding Tanner graph. The construction process considers LDPC code parameters

such as row and column weights, rate, girth and code length. A code is first designed from

which the rate and length are determined before it is constructed. The main objectives in

code construction are good decoding performance and easier hardware implementation. A

LDPC code could be constructed such that it has low hardware complexity and cost. This

is mostly achieved by having row-column connections that have a regular pattern. Good

error correcting performance and low complexity hardware characteristics could also be

optimized at the same time. However, putting constraints on construction methods to

obtain hardware aware codes may degrade or limit decoding performance.

The challenge in LPDC code construction is to obtain a wide range of codes in length and

rate that have good decoding performance and are also easy to implement in hardware.

For practical purposes the length of the code is constrained. There are numerous ways a

code can be realized for a given length and rate. However, developed methods often have

limitations in meeting the flexibility in code design and ease of implementation.

Construction methods can be either random(unstructured row-column connections) or

structured(row-column connections predefined in some way). Random constructions have

flexibility in design and construction but lack row-column connections regularity, which

increases decoder interconnection complexity. Structured constructions may have regular

interconnection patterns but often produce a class of codes limited in rate, length and

girth. There is still need to develop methods that can produce a wide range (rate, length
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and girth) of LDPC codes with consideration of performance and implementation factors.

In this chapter we review some of the existing constructions methods and suggest two

new methods of constructing structured LDPC codes.

3.1 Random Constructions

Random constructions connect rows and columns of a LDPC code matrix without any

structure or predefined connection pattern. They are actually pseudo-random connec-

tions done by computer searches. Constructions could be done in the Tanner graph by

connecting check to variable nodes with edges or in the parity-check matrix by connecting

rows to columns with ‘1’ entries where all other entries are ‘0’s. Randomly adding edges

to a Tanner graph or ‘1’ entries in the parity-check matrix will not produce a desired rate

and will probably have cycles of four. However, the resulting code could be optimized

by either post processing or by putting constraints on the random choices as the code is

built. Post processing exchanges or deletes some connections in order to get a desired

girth and rate. Random construction with constraints add a connection in the code if it

does not violate the desired girth or row and column weights.

Random codes have good performance especially at long code lengths compared to struc-

tured codes [7][9]. Random construction methods could be used to maximize performance

(e.g by girth ) and rate for a given size as demonstrated by Campello et al in [45]. In [37]

a heuristic algorithm is developed to search for good LDPC codes based on average girth

distribution. While random codes show better performance compared to structured or

constrained codes at code lengths of several thousands, there is no assurance that a partic-

ular code chosen at random will have good performance. Below we look at some random

construction methods relevant to this thesis. Detailed examples of random construction

methods or algorithms are found in [5][7][29][45][46].

3.1.1 MacKay Constructions

Mackay [7] showed that random LDPC codes have good performance approaching Shan-

non’s limit. He also developed some random construction methods for developing codes

some of which are listed below[47].
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1. Matrix H is generated by starting with an all zero matrix and then randomly flipping

bits in the matrix. Flipped bits are not necessarily distinct.

2. Matrix H is generated by randomly creating weight j columns.

3. Matrix H is generated with weight j per column and uniform weight per row and no

two columns are connected to the same row more than once (avoiding four-cycles).

4. Matrix H is generated as in 3 with the girth condition further constrained so that

the girth is larger than six.

Mackay’s algorithms were used to find good performing codes with a variety of rates

and length. Some of the obtained codes are listed in a World Wide Web database in [48].

3.1.2 Bit-Filling Algorithm

A bit-filling (BF) algorithm introduced in [45] constructs a LDPC code by connecting

rows and columns of a code one at a time provided a desired girth is not violated. The

number of connections to rows and columns are kept almost balanced (about same number

of connections) by connecting rows or columns with the least number of connections first.

The algorithm obtains irregular codes with either a fixed row or column weight. The

algorithm is as follows according to [45]:
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Bit-Filling Algorithm

c is check node,

M is the number of check nodes

ℵc is a set of check nodes sharing a variable node and

U1 is a set of check nodes connected to the new or current variable node.

F0 is a set of check node that can be connected

to U1 without violating the girth or check-degree constraint.

Set N = 0, A =|M |, and U1 = ∅

for c ∈|M |, set weight(c)=0 and ℵc = ∅

do {

∀c ∈ U1, set Hc,N = 1 and increment deg(c) by 1

set i = 0, U1 = ∅, and U = ∅

do {

compute F0 = A \ U

if (F0 6= ∅) {

choose c⋆ from F0 according to some heuristic

∀c ∈ U1, update ℵc = ℵc ∪ {c
⋆} and update ℵc⋆ = ℵc⋆ ∪ U1 update

U1 = U1 ∪ {c
⋆}, U = U ∪ Vg/2−1(c

⋆), and A }

i = i + 1

} while ((i < a) and (F0 6= ∅))

n=n+1

} while ((i = a) and (F0 6= ∅))

The algorithm can obtain very-high rate and high-girth codes with a computational

complexity of O(kM3). It is extended in [49] to get better girths and rates for a given

code length. Although the algorithm produces high-rate and high-girth codes given a

particular code size, resulting codes are not easily implementable in hardware. This

is because the structure of row-column connections is not consistent enough to be an

advantage in hardware implementation. The objective of the algorithm is to optimize

girth or rate for a given code size.
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3.1.3 Progressive Edge-Growth Algorithm

The progressive edge-growth (PEG) algorithm is another simple non-algebraic algorithm

that can be used to construct codes of arbitrary length and rate. It is similar to the bit-

filling algorithm. In PEG node degrees are distributed according to some performance

criteria (e.g density evolution) before edges are added. The algorithm builds a Tanner

graph by connecting the graph’s nodes edge by edge provided the added edge has minimal

impact on the girth of the graph. With this algorithm regular and irregular codes can be

obtained with optimized performance. Codes obtained using this method are one of the

best known performing codes at short lengths[46][50]. The algorithm as described in [51]

and is as follows:

Progressive Edge-Growth Algorithm

vl is a variable node l and fl is check node l.

Evl
is a set of edges connected to variable node vl

dvl
is the edge degree of variable node l

ℵg
vl

is a set of check nodes reached by a subgraph spreading from variable node

vl with depth g.

for l = 0 to N − 1 do {

for t = 0 to dvl
-1 do {

if t =0 {

E0
vl
← edge (fi, vl), where E0

vl
is the first edge incident to variable

node vl, and fi is one check node such that it has the lowest check-

node degree under the current graph setting Ev0 ∪ Ev1 ... ∪ Evl−1

}

else { expand a subgraph from symbol node vl up to depth g

under the current graph setting such that the cardinality of ℵg
vl

stops increasing but is less than M , or ℵ
g

vl
6= ∅ but ℵ

g+1

vj
= ∅,

then Et
vj
← edge (fi, vl), where Et

vl
is the kth edge incident to

vl, and fi is one check node picked from the set ℵ
g

vl
having the

lowest check node degree.

} } }
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There are other variations of the algorithm that slightly improve performance of the

obtained codes[38][52].

Just as with bit-filling code, a major disadvantage of PEG codes is their high hardware

complexity making them impractical at very large lengths. The unstructured interconnec-

tion results in routing complexity and congestion in decoder implementations[27]. When

row-column connections are done at random, there would be no general rule to define

how a set of rows or columns are connected. Therefore the random connections need to

be defined by a table (addressing) for each individual row or column or hardwired. Since

codes are generally a few or more thousands in size, the tables would also be very large or

the number of interconnections will be high and unstructured leading to long wire-lengths,

large decoders with slow clock rates.

3.2 Structured Constructions

Structured construction methods put constraints on row-column connections to get a de-

sired or predefined pattern. The main objectives are to achieve good performance and at

the same time have a connection pattern that is easier to implement in hardware. There

are many structured methods already developed producing codes differing in structure

(row-column interconnection pattern), performance and hardware implementation com-

plexity. Developed methods include those based on graphs, combinatorial designs, algebra

and heuristic searching techniques. Below we briefly describe some existing structured

construction methods relevant to this thesis.

3.2.1 Combinatorial Designs

A combinatorial design is an arrangement of sets of v points into b subsets called blocks.

The inclusion or placement of points in blocks is according to some defined constraints.

The basic constraints are

1. A pair of points can appear together in λ blocks for a defined value of λ.

2. The number of points in each block is given by γ and the number of blocks in which

a point appears is denoted as ρ [53].
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A design is balanced if the covalency , λ, is the same for all pairs of points. To form a

LDPC code from a combinatorial design, points and blocks are interpreted as rows and

columns respectively(or columns and rows) to form an incidence matrix. The dimensions

of the code are v × b (or b × v) which is given by M × N in our notation. γ and ρ are

column weight (j) and row weight (k) respectively. The design is regular if points appear

the same number of times and all blocks have the same number of points.

The design ensures that obtained codes do not have a four-cycles by using a covalency of

1 in the first constraint. From a matrix point of view, a four-cycle is formed by having a

pair of rows connected to the same columns more than once or having a pair of columns

connected to the same rows more than once. The first constraint breaks this condition

by requiring that two points appear in the same block only once. That is, λ = 1. This

constraint is known as a row-column (RC) constraint[3]. It is used in different forms

in many constructions methods to avoid four-cycles. The example in Figure 3.1 shows

a combinatorial design with column weight of two and row weight of three. Part (a)

shows the division of points in subsets. An equivalent graph is also shown with points

as vertices and edges as blocks. The incidence matrix forms a LDPC code in which rows

are connected to a column if they do not belong to the same block. Part(b) of Figure 3.1

shows the derived matrix from the graph. It is an adjacency matrix showing graph vertex

connections by a ‘1’ entry in matrix form.

This construction method was used in [54] to construct column weight two codes with

girth of eight. The size of the codes is given by 2k × k2, where k is equal to ρ. The

same combinatorial design could be applied to blocks with three or more points to obtain

codes with column weight three and higher. Examples of such constructions include those

based on Kirkman and Steiner triple systems described in [28]and [53]. Codes obtained

from these systems have a girth of six which is a limitation in large codes lengths. With

large codes decoding performance can be improved by increasing the girth of the code.

Although a wide range of rates and lengths are obtained, the code lengths are determined

by row and column weights in combinational designs.
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(b) 

Figure 3.1. Combinational design (a) points and subset arrangement with corresponding graph form

(b) incidence matrix.

3.2.2 Finite Geometry

Finite geometries are another approach similar to combinatorics that can be used to design

structured LDPC codes. A finite geometry is defined by n points and J lines with the

following properties[55]

1. Every line consists of ρ points.

2. Any two points are connected by one and only one line.

3. Every point lies on γ lines.

4. Two lines are either parallel or they intersect at only one point.

Figure 3.2 shows an example of a finite geometry with n = 4, J = 6, γ = 3 and ρ = 2.

An incidence matrix is also shown derived from the geometry. Lines are represented by

rows and points by columns. The intersection of a line and a point is represented by a ‘1’

entry in the matrix. When ρ << n and γ << J the incidence matrix can be regarded as

a low density parity check matrix as the number of ‘1’ entries is very small compared to

the number of ‘0’ entries. The example matrix with n as the block length is referred to as

type-I geometry LDPC codes (Euclidean geometry or EG-LDPC codes). The transpose

of the matrix is a matrix with length of J which is referred to as type-II geometry LDPC

code (projective geometry or PG-LDPC codes). γ and ρ are column and row weights

respectively in type-I codes and they are row and column weights in type-II codes.
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Figure 3.2. (a) Finite geometry with ρ = 2 and γ = 3 (b) corresponding type-I incidence matrix.

Properties 1) and 3) of finite geometry make the codes regular as lines have the same

number of points and points are crossed by the same number of lines. Property 2) ensures

that obtained codes have a girth of at least six. That is, four-cycles are avoided. As was

explained above in combinational designs, a cycle of four is formed if two rows share more

than one column or when two columns share more than one row. Property 2) breaks

four-cycles since no two points will appear in more than one line at the same time. It was

shown however, that these codes will always have a girth of six [55] which is a limitation

in terms of improving performance by larger girths. In [55] and [56] finite geometry of

the two types were constructed and analyzed. They can be obtained over a wide range

of lengths and rates and have good minimum distances. Type-I codes have a minimum

distance of at least γ + 1 and type-II codes of at least ρ + 1[55]. Although a wide range

of code lengths and rates could be obtained, they could not be chosen arbitrarily. For

example the length of a code is determined by its row weight. The length of EG-LDPC

codes is a(pms − 1) with a row-weight of aps, where p is a prime and a,m, s are positive

integers. The length of PG-LDPC codes is a(p(m+1)s−1
ps−1

, and a row-weight of a(ps + 1)[56].

This clearly limits the flexibility of code design and construction.

3.2.3 Algebraic Methods

Parity check matrix connections could be constrained algebraically to obtain codes with a

particular structure. Constraints could also be used to get a desired girth, rate or length.

Fossorier [57] presents algebraic constraints to obtain quasi-cyclic codes of a given girth.

The code matrix is divided into shifted identity sub-matrices of equal sizes. The structure

of the matrix is given by,

Page 33



3.2 Structured Constructions

H =









I1,1 I1,2 ... I1,k

. . . .

Ij,1 Ij,2 ... Ij,k









(3.1)

Fossorier presents algebraic conditions under which cycles are present in a code. The

conditions are then used to find codes with girths of six to twelve. A necessary condition

to have a girth of at least six is that hj1,k1 6= hj2,k1 for j1 6= j2 and hj1,k1 6= hj1,k2 for

k1 6= k2. This condition basically breaks any four-cycles in the matrix. A four-cycle con-

sists of ‘1’ entries forming a square or rectangle in a matrix. The author also shows that

girth-six codes have a length,N ,of at least k2 if k is odd and k(k + 1) if k is even. Condi-

tions breaking cycles of six to obtain at least girth eight are also presented. The author

also proves that quasi-cyclic codes have a maximum girth of twelve when the number of

sub-matrices per row and column is equal to k and j respectively.

The given algebraic conditions are meant to break or avoid cycles of a given length in

a matrix. However, the conditions do not determine values of shifts in sub-matrices or

size of sub-matrices that will work for a given N ,j and k. In the paper, two construction

methods are presented to find codes of a particular girth given N ,j and k. Random con-

structions randomly generate shift values that satisfy the girth conditions. As reported

in the paper, it takes a long time to find the right combination of shifts that results in

minimum (smallest code size) codes. It took long computer searches to get some codes for

girths six and eight using an algebraic software program called MAGMA [35] developed

at the University of Sydney. A structured construction method is suggested to reduce

code search. The method puts more constraints on the girth conditions such that there

is less space to search. However, obtained codes are slightly larger than the minimums

(theoretical smallest code size).

The advantage of this algorithm compared to other algebraic methods in [36][58] is that

it does not put many restriction on the size of sub-matrix group.

There are many other methods in literature for constructing structured LDPC codes.

These codes also apply the row-column constraint in some way to avoid four-cycles. Most

of them are as good as other codes from the examples given here. They also have limita-

tions in some way.
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3.2.4 Advantages of Structured Codes

Structured connections generally reduce hardware complexity and the cost of encoders

and decoders[14][59][60]. For example, a code matrix divided into sub-matrices can be

mapped onto a decoder with the number of processing nodes equal to the number of row

and column sub-matrices. Since there are fewer sub-matrices compared to individual rows

or columns, the number of processing nodes and interconnections is also reduced. In most

structured codes, several rows or columns have a common connection rule. Hardware

implementations of such codes can be simplified in the sense that a group of messages

between check and variable nodes can be routed using a single connection rule. If messages

are stored in memory blocks, the source and destination addresses are calculated using

the connection rule.

Another advantage of structured codes besides ease of implementation is that they could

be characterized by their performance profile. Hence, their general performance is known.

Construction constraints often produce a family of codes of a similar structure. Code

characteristics such as girth, rate and minimum distance may be applied to all codes

in the family. A major drawback of structured codes is that performance is degraded

compared to random codes for codes longer than 10 000[9]. Constraints may limit the

girth, rate and minimum distance of a code. If there is a weakness in the code graph it is

replicated because of the regularity in the connections. Another disadvantage is that, they

sometimes exist for only a few parameter combinations (rate,girth,length) that may not fit

or satisfy some applications. The ‘structure’ and performance of structured codes depends

on the constraints used. However, compared to random codes, structured codes offer the

best performance and hardware implementation tradeoffs. One major contribution of this

thesis is to construct structured over a wide range of rates, lengths and girths.

In the following sections we introduce two new methods for constructing structured codes.

In the first method, we derive column-weight two LDPC codes from existing distance

graphs. The second methods constructs codes with a higher column-weight than two

using a search algorithm. In both methods a wide range of code rates, lengths and girths

are obtained. The structure of the codes also has regular patterns leading to less complex

implementations compared to random codes.
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3.3 Column-Weight Two Codes Based on Distance Graphs

Gallager[8] has shown that column-weight two codes have minimum distance increasing

only logarithmically with code length compared to a linear increase when the column-

weight is at least three. Despite the slow increase in minimum distance, column-weight

two codes have shown potential in magnetic storage applications[16][39][54]. Their perfor-

mance has been shown to be good enough for partial response channels and inter-symbol

interference (ISI) signals. They also have low computational complexity since there are

only two column connections per row.

Construction methods for column-weight two codes are found in [16][39][54][61]. Girth-

eight column-weight two codes can be constructed from combinatorial designs[54] as was

described in the previous section. Cyclic codes with a girth of twelve are constructed

in [39] and applied to partial response channels. These codes are of size (k2 − k + 1)

where (k− 1) is a prime number. Moura et al[62] constructed codes with girths of 16 and

18 based on graphical models for rates 1
2

and 1
3

respectively with lengths of 4000. The

method also has limited code rates and lengths.

In this section we show how column-weight two codes can be derived from distance graphs.

A distance graph is a connected graph of a given number of vertices (m) and vertex degree

(k) in which the minimum cycle length between vertices or edges is g. To derive column-

weight two codes, vertices of a distance graph are defined to represent rows whereas edges

represent columns of a parity-check matrix. Using this representation LDPC codes of

various girths and rates are obtained from already known distance graphs. A wide range

of codes are obtained using this method compared to previous methods.

3.3.1 LDPC Code Graph Representation

A LDPC matrix is conventionally represented by a Tanner graph. The matrix can also

be represented by a non-bipartite or distance graph in which vertices are rows and edges

represent columns. With this representation a column is a set of edges forming a com-

plete graph between vertices involved in the column. That is, a column in the matrix

is connected to connected vertices(rows) in the graph. In the case of two rows per col-

umn (column-weight of two), a complete graph between two vertices is formed by a single
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1 

Figure 3.3. A LDPC code matrix derived from a distance graph.

edge. Figure 3.3 (a) shows a distance graph of five vertices and a minimum cycle length of

three. Taking each vertex as a row and each edge as a column a corresponding matrix is

formed as in part (b) of the figure. A column is connected to two rows that are connected

in the graph. The connections are represented by ‘1’ entries in the matrix. That is, if

vertices, vx and vy, are connected in the graph, then Hx,z = Hy,z = 1 for some column z.

The number of rows is equal to the number of vertices in the graph whereas the number

of columns is equal to the number of edges. In general the size of the code is given by

m×mk
2

, where mk
2

is the number of edges. mk is divided by two because each edge is shared

by two vertices. The rate of a code is given by 1− j
k
, hence for these codes the rate is 1− 2

k
.

A cycle in a distance graph is formed by a path of edges or vertices starting from a

vertex, vx and ending at vx. No more than two vertices forming the cycle belong to the

same column. The girth, g, is the smallest cycle in the graph. A cycle of length of g in the

graph corresponds to a cycle of length 2g in matrix form. In the graph we calculate the

length using either vertices or edges only. In matrix form a cycle alternates between rows

and columns. Therefore, the graph cycle represents half of the matrix cycle. A cycle of

three in the example graph is shown in dotted lines between vertices 1,2 and 3. It forms

a cycle of six between rows 1,2,3 and columns 1,2,5 in matrix form as shown.

Using distance graphs of different sizes, vertex degrees and girths we can form column-

weight two codes of different lengths, rates and girths. The following subsections show

sizes (number of vertices) of some known distance graphs from the literature and sizes of

derived codes.
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3.3.2 Cages

Distance graphs could be regular with vertices of the same edge degree or irregular with

vertices of different edge degrees. Both regular and irregular graphs can be used in a

similar way to construct LDPC codes. There are several methods described in [63][64]

that construct distance graphs of girth g, given an arbitrary number of vertices m and

the average number of vertex edges k. These algorithms achieve girths in the order of

logk−1(m). There are also known distance graphs called cages that have higher girths

with a lower number of vertices compared to other graphs. A (k, g)-cage is a k-regular

(uniform vertex degree of k) graph of girth g with the fewest possible or known number

of vertices (m). The lower bound (Moore bound) on the number of vertices for a given k

and g depends on whether g is odd or even[65][66].

If g is odd then

m(k, g) = 1 + k + k(k − 1) + ... + k(k − 1)
g−3
2 (3.2)

and if g is even, then

m(k, g) = 1 + k + k(k − 1) + ... + k(k − 1)
g

2 − 2 + (k − 1)
g

2 − 1 (3.3)

However, these bounds are met very infrequently[67]. Although there is no uniform

approach to constructing arbitrary cages, many cages have been constructed for some

vertex degrees and girths. A discussion on algebraic methods for constructing cage graphs

is beyond the scope of this thesis. They are described elsewhere in cited references and

references within. Meringer[68] presented ways of generating regular graphs and cages.

There is also an associated software by the same author at [69] that generates some cages.

Cubic Cages

Cages with a vertex degree of three are called cubic cages. Table 3.1 shows the number

of vertices for some of the known cubic cages found in [70]. It also shows corresponding

derived LDPC code sizes and their girths. Cubic cage construction methods could be

found in [65][71][66] and [70]. These graphs produce a parity-check matrix with girth

twice the corresponding graph girth, column weight of 2 and rate 1
3
. As shown in the

table, obtained girths are very large.
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Table 3.1. Sizes of some known cubic cages with corresponding code sizes, girths and rates.

(k, g) m(k, g) code size(m× mk
2

) girth (2g) rate (1− 2
k
)

(3,8) 30 30×45 16 1
3

(3,9) 58 58×87 18 1
3

(3,10) 70 70×105 20 1
3

(3,11) 112 112×168 22 1
3

(3,12) 126 126×189 24 1
3

(3,13) 272 272×408 26 1
3

(3,14) 384 384×576 28 1
3

(3,15) 620 620×930 30 1
3

(3,16) 960 960×1440 32 1
3

(3,17) 2176 2176×3264 34 1
3

(3,18) 2640 2640×3960 36 1
3

(3,19) 4324 4324×6486 38 1
3

(3,20) 6048 6048×9072 40 1
3

(3,21) 16028 16028×24042 42 1
3

(3,22) 16206 16206×24309 44 1
3

Cages of Higher Vertex Degrees

Cages of higher degrees are harder to construct[67]. However, there are many examples

of these cages and some construction algorithms[68][72] in the literature. Table 3.2 shows

the number of vertices for some of the known high vertex degree cages found in [70][72].

Derived code sizes, girths and rates are also shown. Corresponding LDPC code matrices

from these graphs have higher rates but lower girths compared to cubic cages. The higher

rates are due to higher vertex degrees.

3.3.3 Code Expansion and Hardware Implementation

Some cage graphs are small in size resulting in practically small dimension LDPC codes.

Small codes have low decoding performance as already stated. One method of obtaining

larger dimension codes is to expand the code obtained from cage graphs. The codes can be
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Table 3.2. Some of known cages graphs with vertex degree higher than three.

(k, g) m(k, g) code size(m× mk
2

) girth (2g) rate(1− 2
k
)

(4,9) 275 275×550 18 1
2

(4,10) 384 384×768 20 1
2

(5,7) 152 152×380 14 3
5

(5,8) 170 170×425 16 3
5

(6,7) 294 294×882 14 2
3

(6,8) 312 312×936 16 2
3

(7,5) 50 50×175 10 5
7

(7,6) 90 90×315 12 5
7

(8,8) 800 800×3200 16 3
4

(9,8) 1170 1170×5265 16 7
9

(10,8) 1640 1640×8200 16 4
5

(12,8) 2928 2928×17568 16 5
6

(14,8) 4760 4760×33320 16 6
7

expanded by replacing each ‘1’ entry in the matrix by a shifted p× p identity sub-matrix

and each ‘0’ by a p× p zero sub-matrix. The resulting matrix size is p times the original

matrix. The girth is at least that of the original matrix.

The codes obtained from cage graphs are structured in that their connections can be de-

fined by some defined rules (algebraic construction methods). However, their structures

vary from graph to graph and so does the complexity of their hardware implementation.

Figures 3.4 shows a (6,4) cage with a corresponding matrix respectively. In this graph

an odd vertex is connected to all even vertices and an even vertex to all odd vertices. In

fact, all (k, 4) cages are formed this way.

The matrix could be arranged such that rows are separated into two groups and columns

into k groups. The connections could also be arranged such that they form cyclically

shifted identity sub-matrices as shown in Figure 3.5. The matrix comprises of 6 × 6

shifted twelve identity sub-matrices. The structure of this code is easier to implement

compared to a random structure. Rows and columns of this code could be divided into

groups of equal sizes (6) with two row groups and six column groups. The groups can

be mapped to an architecture with the same number of processing nodes. With two row
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Figure 3.4. A (6,4) cage graph.

 

100000   100000      100000       100000    100000    100000 

010000    010000     010000       010000    010000     010000 

001000    001000     001000       001000    001000     001000 

000100    000100     000100       000100    000100     000100 

000010    000010     000010       000010    000010     000010 

000001    000001     000001       000001    000001     000001 

 

100000    000001     000010       000100    001000     010000 

010000    100000     000001       000010    000100     001000 

001000    010000     100000       000001    000010     000100 

000100    001000     010000       100000    000001     000010 

000010    000100     001000       010000    100000     000001 

000001    000010     000100       001000    010000     100000 

Figure 3.5. A matrix representation of (6,4) cage graph.

groups and six column groups, the interconnection complexity is reduced compared to

when individual rows and columns are mapped as in random codes. Connections within

row and column groups are also cyclic leading to simple linear addressing of messages

between row and column processing nodes. However, other cage structures are not so

uniform in their connections. Figure 3.6 shows a (4,5) cage graph which does not have

uniform connections between vertices. Therefore, the ease of implementation varies from

graph to graph.

Column weight two codes also have low computational and memory requirements in vari-

able nodes. Variable nodes calculate LLR by summing the intrinsic LLR and the incoming

messages by equation 2.13. Outgoing messages are calculated by subtracting incoming

message. Since there are only two incoming messages outgoing messages are calculated

by swapping incoming messages in equation 2.14.
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Figure 3.6. (4,5) cage graph with 19 vertices.
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Figure 3.7. BER performances of very high girth LDPC codes constructed from cage graphs (25

iterations).

3.3.4 Performance Simulations

Decoding performances of codes obtained from cages was measured by BER simulations on

AWGN channel with BPSK modulation. The codes show BER performances approaching

10−6 between 5 and 6dB for some codes. Figure 3.7 shows performance curves for codes

derived from (3,17), (4,9) and (4,10) cage graphs, where the (k, g) format is used. k is

the vertex degree and g is the graph girth. The codes from (4,9) and (4,10) cages are

expanded by 8 and 4 respectively as explained in Section 3.4.3. The codes perform better

than a random code free of four-cycles. Random codes have been found to generally

perform better than structured codes. The random code, constructed using MacKay’s
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Figure 3.8. BER performances of some (k, 5)-cages LDPC codes (25 iterations).

algorithm, has a girth of eight. The performances of the structured codes is according

to their girths with higher girths codes performing better. The (3,17)-cage LDPC code

has the best performance which could be attributed to its large girth of 34 compared to

girths of 20 and 18 for the (4,10) and (4,9) cage graphs respectively.

Figure 3.8 shows performances of two codes with higher rates derived from a family of

(k, 5) cages. Both codes are expanded by a factor of 2. The code from the (12,5) cage

performs better than that from the (11,5) cage and a random code of about the same

size free of four-cycles. Although the (11, 5) cage code has lower rate it performs poorly

compared to the (12, 5) cage code. Performance differences between (12,5) and (11,5)

cages may be attributed to structural differences of the graphs.

3.4 Code Construction Using Search Algorithms

In the previous section distance graphs were used to construct column-weight two codes.

To construct codes of column weight higher than two, we need distance graphs in which

a column is formed by a complete graph with more than two vertices. We could not find

many such graph constructions in the literature.

Random search algorithms BF and PEG (section 3.1) have flexibility in designing codes
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of a desired girth, rate and length. We adopt their strategy in order to have flexibility in

constructing structured codes. In this section we construct structured codes with higher

column weights than two using a search algorithm.

3.4.1 Proposed Search Algorithm for Structured Codes

We add more constraints to the BF and PEG algorithms to introduce some structure in

the obtained codes. Rows are divided into equal-sized groups, RG1...RGj. A column is

formed by j rows, r1...rj, one from each row group. r1...rj rows are a distance of at least

g from each other and each row has k connections. The distance between any two rows

is given by the minimum number of edges between the rows. It can also be defined as

the shortest path between the rows. Rows that meet the distance of g from each other

are searched sequentially in each group. With these constraints, the code connections are

structured in that for each column we know in which row groups its connections are and

vice versa. Rows from different row groups are connected together forming a column.

The algorithm forms a distance graph in which vertices are rows and edges form columns.

The algorithm is described below.
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Sequential Search Algorithm

rx is row x. ∪rx
is a set of rows within a distance of g from rx.

1. Divide rows into j (column weight) groups (RG1, ...RGj) of equal sizes of p. It is

assumed M
j

is an integer. If the group size is not given start with a theoretical

minimum number of rows if known otherwise start with a group size of k (row-

weight). A pair of rows is connected at most once to avoid four-cycles, therefore at

least k rows are required in each group.

2. Connections can be done in two ways.

(a) Type I connections:

∀ri ∈ RG1 do {

ri ∈ RG1

for z = to k {

find (ra...rd) ∈ (RG2...RGj) respectively where rx /∈
∑

y 6=x(∪ri
,∪ra

...∪rd
)

else the algorithm fails.

connect ri to (ra...rd). } }

(b) Type II connections:

For i = 1 to k {

ri ∈ RG1

find (ra...rd) ∈ (RG2...RGj) respectively where rx /∈
∑

y 6=x(∪ri
,∪ra

...∪rd
)

else algorithm fails.

connect ri to (ra...rd) }

3. Construct the code matrix using the row connections made. The number of

columns or code length is equal to the number of connections made

The proposed algorithm attempts to find a code with a given girth, g, and rate (de-

fined by j, k) given the code size,M and N . The algorithm may fail to find the code, if it

does not find any rows that satisfy the girth or rate condition. The girth condition is suf-

ficient to obtain a desired girth. That is, if rows are found satisfying the desired distance

from each other, then the resulting code will have the desired girth. In type I connections

(step 2 (a) of algorithm) the algorithm makes k connections to each row in row-group

1 before moving to the next row. In type II connections ( step 2(b) of algorithm), the
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algorithm makes a single connection to each row in row-group 1 each time. The two types

of connections result in different code structures.

The complexity of the algorithm is analyzed as follows. Given M rows, there are j row

groups of size M
j
. Each connection at a row in group 1 searches other groups once. Tak-

ing each row search as one operation, there are (j − 1)M
j

searches that can be made.

Before searching, neighbors of each row at least a distance of g in non-reference groups

(RG2...RGj) are updated. Updating row neighbors takes g operations and updating all

rows takes g(j − 1)M
j

operations. Making k connections for a row requires kg(j − 1)M
j

operations. The total number of operations for all the rows in group 1 (reference row) is

kg(j − 1)M2

j2 . Therefore the complexity of the algorithm is O(M2).

The proposed algorithm was used to obtain codes with girth of at least six. From experi-

ments we obtained regular girth six and eight codes for various rates and lengths. Regular

codes were obtained with column weights of 3 and 4 for girth six codes. With girth eight

codes only a column weight of 3 produced regular codes. Girth-ten and higher codes were

all irregular. Below we describe regular girth six and eight codes that were obtained.

3.4.2 Girth-Six Codes

To obtain girth-six codes no two rows should be connected to the same column more

than once. As the algorithm forms a distance graph, it searches for rows that have not

been connected together before. Figure 3.9 shows row connections for two girth-six LDPC

codes obtained using type I connections ( see step 3 of algorithm). Each triplet shows

three (j) rows that are connected to the same column. The number of rows connected is

j and each row has k connections. The number of rows is equal to M and the number of

row connection triplets is equal to the number of columns (N). In part(a) of Figure 3.9, a

(16,3,4) code is formed with a group size of 4 (4 rows in each group). In part (b) a group

size of 5 is used which result in a code size of (20,3,4). By increasing group sizes larger

codes could be obtained. Figure 3.10 shows construction of girth-six codes using type II

connections. Part (a) is a (20,3,4) code with row group size of 5. A larger code is obtained

in part (b) with a group size of 6. With type II connections, cyclic codes are formed with

groups shifted relative to each other. Larger dimension codes could also be obtained by

increasing the group size. Table 3.3 shows minimum group sizes obtained with column-

weights of three and four. For column-weight three codes the observed minimum group
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1,5,9      2,5,10    3,5,11     4,5,12 

1,6,10    2,6,11    3,6,12     4,6,9 

1,7,11    2,7,12    3,7,9       4,7,10 

1,8,12    2,8,9      3,8,10     4,8,11     

1,6,11      2,10,15     3,9,15     4,8,15     5,7,15 

1,7,12      2,6,12       3,10,11   4,9,11     5,8,11 

1,8,13      2,7,13       3,6,13     4,10,12   5,9,12 

1,9,14      2,8,14       3,7,14    4,6,14      5,10,13 

(a) (b) 

Figure 3.9. Column formations for column-weight three girth six codes using type I connections (a)

(16,3,4) code (b) (20,3,4) code.

 

1,6,11     1,7,13    1,8,15     1,9,12 

2,7,12     2,8,14    2,9,11     2,10,13 

3,8,13     3,9,15    3,10,12   3,6,14 

4,9,14     4,10,11  4,6,13     4,7,15     

5,10,15   5,6,12    5,7,14     5,8,11  

1,7,13      1,8,15     1,9,17     1,10,14      

2,8,14      2,9,16     2,10,18   2,11,15    

3,9,15      3,10,17   3,11,13   3,12,16      

4,10,16    4,11,18   4,12,14   4,7,17      

5,11,17    5,12,13   5,7,15     5,8,18      

6,12,18    6,7,14     6,8,16     6,9,13 

(a) (b) 

Figure 3.10. Column formations for column-weight three girth six codes using type II connections

(a) (20,3,4)code (b) (24,3,4) code.

size is k for type I connections. In type II the group size is k and k + 1 for odd and even

k respectively. No known general group size was observed for column-weight four codes.

Column-weight four codes were also obtained using the two types of connections. Fig-

ure 3.11 (a) shows row connections obtained using the first connection type for a (45,4,5)

LDPC code. Part (b) is a (25,4,5) code obtained using the second type of connections. Ta-

ble 3.3 shows minimum group sizes obtained for some row weights for both cases. Larger

dimension codes can also be obtained by using larger group sizes in both connections.
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1,10,19,28     2,15,24,33    3,11,21,31    4,16,26,36    5,12,23,34 

1,11,20,29     2,16,25,34    3,12,22,32    4,17,27,28    5,13,24,35 

1,12,21,30     2,17,26,35    3,13,23,33    4,18,19,29    5,14,25,36 

1,13,22 ,31    2,18,27,36    3,14,24,34    4,10,21,32    5,15,26,28  

1,14,23,32     2,10,20,30    3,15,25,35    4,11,22,33    5,16,27,29 

 

 

6,17,19,30     7,13,25,28    8,18,21,33    9,14,27,31 

6,18,20,31     7,14,26,29    8,10,23,36    9,15,19,32 

6,10,22,34     7,15,27,30    8,11,24,28    9,16,20,23 

6,11,23,35     7,16,19,31    8,12,25,29    9,17,21,34 

6,12,24,36     7,17,20,32    8,13,26,30    9,18,22,35 

1,6,11,16      1,7,13,19     1,8,15,17      

2,7,12,17      2,8,14,20     2,9,11,18      

3,8,13,18      3,9,15 ,16    3,10,12,19    

4,9,14,19      4,10,11,17   4,6,13,20      

5,10,15,20    5,6,12,18     5,7,14,16     

 

 

1,9,12,20      1,10,14,18 

2,10,13,16    2,6,15,19 

3,6,14,17      3,7,11,20 

4,7,15,18      4,8,12,16 

5,8,11,19      5,9,13,17  

(a) (b) 

Figure 3.11. Column formations for column-weight four girth six codes (a) type I connections (b)

type II connections.

3.4.3 Girth-Eight Codes

To obtain a code with a girth of eight, rows in the same column must have a distance of at

least four in the distance graph. Figure 3.12 shows column formations for k = 4 using type

I connections. The graph structure of the code is shown in Figure 3.13. Each row triplet

is represented by three vertices connected by two edges. The third edge is not shown, for

clarity. According to the non-bipartite graph representation (distance graph), a column is

formed by completely connecting three vertices (rows). From the figure we observed that

row groups 2 and 3 form a bipartite graph with each group divided into 4 sub-groups of

size 4. Each row from group 1 is connected to all rows in one of the sub-groups in groups

2 and 3. The graph structure could be extended to any k by changing the number of

sub-groups to k each with k rows. Then the general code size can be expressed as 3k×k3

for all row weights of k. Larger dimension regular codes are obtained by extending each

group by sub-groups of k rows. That is, larger dimension codes are obtained with row

group sizes larger than k2 and are multiples of k. With type II connections minimum

code sizes obtained are as shown in Table 3.4.

The proposed algorithm was modified such that the search for rows starts from the

beginning of the group each time in step 2. With this modification we obtained girth-six

codes of the same structure and size as before. Girth-eight codes are also of the same
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1,17,33     2,21,37       3,25,41     4,29,45     5,17,37     6,21,41    7,25,45     8,29,33 

1,18,34     2,22,38       3,26,42     4,30,46     5,18,38     6,22,42    7,26,46     8,30,34 

1,19,35     2,23,39       3,27,43     4,31,47     5,19,39     6,23,43    7,27,47     8,31,35 

1,20,36     2,24,40       3,28,44     4,32,48     5,20,40     6,24,44    7,28,48     8,32,36 

  

9,17,41     10,21,45     11,25,33   12,29,37   13,17,45   14,21,33   15,25,37   16,29,41 

9,18,42     10,22,46     11,26,34   12,30,38   13,18,46   14,22,34   15,26,38   16,30,42 

9,19,43     10,23,47     11,27,35   12,31,39   13,19,47   14,23,35   15,27,39   16,31,43 

9,20,44     10,24,48     11,28,36   12,32,40   13,20,48   14,24,36   15,28,40   16,32,44 

Figure 3.12. Column formations for a girth eight (64,3,4) code.
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Figure 3.13. Column formations graph structure for girth eight codes for (N,3,k) codes.

structure and size but with an increment of k2 for larger dimension codes when k = 3.

For column-weight four, regular codes were obtained for k = 4, 8 and 32 only, for k ≤ 40.

Larger regular codes were obtained with multiples of k2. Girth-ten and twelve codes are

of different structure than the original algorithm but still we could not obtain regular

codes.

Another modification made was using two groups for column weight three codes. In this

case, a group 1 size of k2+k
2

and a group 2 of size k2 + k produced regular codes of girth

eight with row weight of k. Larger groups of multiples of k2+k
2

also produced regular codes.

The groups sizes were observed by experiment. Other modifications could be made to

the algorithm to obtain codes of different connection structures. For example, random

searches could be made with each connection as was done in the original bit-filling and

progressive-edge growth algorithms.
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Table 3.3. Column-weight four girth-six minimum group sizes.

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17

j

3(connection I) 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3(connection II) 5 5 7 7 9 9 11 11 13 13 15 15 17 17

4(connection I) 9 11 13 15 17 19 21 23 25 27 29 31 33 35

4(connection II) 5 7 7 10 11 13 13 13 13 16 17 17 17 19

Table 3.4. Column-weight three girth-eight minimum group sizes using type II connections.

k 4 5 6 7 8 9 10 11 12

j

3(connection II) 9 19 21 25 27 55 61 63 67

3.4.4 Performance Simulations

Codes obtained using the search algorithm were simulated for BER performance on an

AWGN and BPSK modulation. Figure 3.14 the shows the performance of regular girth-

six and eight codes. The codes have very poor decoding performances despite the lack of

four-cycles. The poor performance may be due to their connection structure. Gallager[5]

has shown than random connections do better than structured ones. The sequential

search results in very poor performing codes. A random code of the same size and girth

six developed using Mackay’s algorithm performs far better than the obtained codes.

Obtained codes are outperformed by 2dB at 10−4 BER by a random matrix with a girth of

six. This results show that the structure of a code also plays an important role in decoding

performance. As already stated, it has been shown that random connections result in

better codes. In the proposed construction method, connections are made sequentially to

the next available row. Despite the high girths of six and eight obtained code perform

very poorly because of their connections pattern.
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Figure 3.14. BER performances of obtained codes with 25 iterations.

3.5 Summary

Since the rediscovery of LDPC codes, many researchers have been searching for ways

of constructing good performing codes. However, construction of LDPC codes should

also take hardware complexity and cost into consideration to meet application system

hardware requirements. Random constructions generally result in good performing codes

compared to structured codes. Methods such as BF and PEG could be used to maxi-

mize code performance, rate and girth. They are also flexible in satisfying parameters

such as girth, rate and length. However, their unstructured interconnections have high

hardware complexity and cost. Structured methods on the other hand constrain parity-

check matrix row-column connections such that obtained codes have a defined connection

pattern. These methods produce a family of codes which can be characterized by per-

formance, rates, length or girths. They could also be used to construct codes which are

easily implementable in hardware. Such methods include combinatorics, finite geometry

and algebraic methods. Four-cycles are avoided by observing the row-column constraint.

However, construction methods can not obtain codes of arbitrary lengths and rates.

Two methods were developed in this chapter for constructing structured codes. In the

first method, column-weight two codes were derived from known distance graphs. Codes
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with a wide range of girth, rate and length were derived from known distance graphs.

BER performance of the obtained codes depends on the structure of the corresponding

distance graph. The ease of hardware implementation also depends on the structure of

the distance graph. In some cases graph connections could be rearranged to produce a

more hardware aware structure.

We then presented a search algorithm based on BF and PEG algorithms to obtained

codes of higher column weights. Rows of a code are divided into groups of equal sizes.

Regular codes were obtained for girths of six and eight. Girth-ten and twelve codes were

all irregular codes. Obtained codes have some structure in that rows and columns are

divided into groups and rows or columns in a group are connected to the same groups.

Though obtained codes are free of four-cycles they show very poor BER performance.

The poor performance may be due to the sequential search connections.
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Chapter 4

Constructing Quasi-Cyclic LDPC

Codes

Structured LDPC codes differ in performance and implementation complexity. Check

and variable node interconnection patterns or code structure affects decoder communica-

tion interconnection complexity. Some structured codes obtained in the previous chapter

do not have the same pattern of connections for all rows or columns. Codes obtained

from proposed methods in the previous chapter have some defined structure. Distance

graph connections are determined algebraically whereas in the search algorithm rows and

columns are divided into sub-matrices. However, the connection pattern of individual

rows or columns in codes derived from distance graphs and in sub-matrices of searched

codes is not the same for all rows or columns. Hence the row-column interconnections are

defined by several or many patterns. The more row-column interconnection patterns or

criteria the more data the corresponding decoder has to store and manage. Hence many

interconnections patterns generally increases complexity of a decoder.

Quasi-cyclic (QC) LDPC codes are codes in which rows or columns in a sub-matrix have

similar and cyclic connections. Due to the quasi-cyclic structure, QC-LDPC codes can be

encoded efficiently with shift registers[23][24][73] and their decoder architectures require

simple address generation mechanisms, less memory and localized memory accesses[74].

Row-column connections in QC-LDPC codes are constructed by shifting identity sub-

matrices. Knowing the location of one row or column in a decoder memory one can

deduce locations of the remaining rows or columns in the same sub-matrix. Quasi-cyclic

decoder implementations will be discussed in more detail in Chapter 6.
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A QC-LDPC code can be simply represented by shift values of all of its sub-matrices.

This provides a compact representation of the matrix and easy construction. Although

row-column connections are constrained QC-LDPC codes can perform close to the capac-

ity limit as demonstrated in [75].

There are several exisiting methods for constructing QC-LDPC codes. In this chapter we

use a search algorithm similar to BF and PEG algorithms to obtain quasi-cyclic LDPC

codes. We search for connections with large girth to improve decoding performance. The

proposed algorithm is flexible in that it can be used to construct codes over a wide range of

rates, girths and lengths comparable to random constructions. Another major advantage

of the proposed algorithm is that, it can be applied to different sub-matrix configurations

or arrangements. This property is very important when codes are constructed such that

they have a reduced decoder complexity and delay as shown later in Chapter 6. Perfor-

mance simulations show that constructed codes can perform as well as random codes at

short lengths. Our algorithm could be used to construct codes optimized for decoding

performance, hardware implementation or both. It offers the flexibility offered by random

codes at the same time producing hardware aware codes.

4.1 Quasi-Cyclic LDPC Codes

A QC-LDPC code can be formed by a concatenation of circularly shifted sub-matrices

with or without zero sub-matrices. The codes have a general structure as

H = [A1, A2..., Ak], (4.1)

where Ai is a circulant matrix. Such structures can be obtained with combinatorial

construction and finite geometry methods[56][55] which were described in the previous

chapter. Other construction methods result in matrices consisting of isolated shifted

identity sub-matrices as in Figure 4.1 or equation 3.1. In Figure 4.1 Ixy is a p× p shifted

identity sub-matrix whereas O is a p× p zero sub-matrix, where p is a positive integer. A

shifted identity sub-matrix is obtained by shifting each row of an identity sub-matrix to

the right or left by some amount. There are p such shifted matrices for a p × p identity

matrix. Figure 4.1 shows arrangement of sub-matrices for a code of rate 1
4
. In part (a) all

sub-matrices are shifted identity sub-matrices whereas in part(b) the code is made up of

shifted identity and zero sub-matrices. In (a) the number of sub-matrices in a row is equal
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I11 I12 I13 I14 

I21 I22 I23 I24 

I31 I32 I33 I34 

 
(a) 

I11 0 0 0 I12 I13 0 I14 

0 I21 I22 I23 0 0 I24 0 

I31 I32 0 I33 0 0 0 I34 

0 I41 I42 0 I43 I44 0 0 

0 0 I51 0 0 I52 I53 I54 

I61 0 0 I62 I63 0 I64 0 

 

(b) 

Figure 4.1. Quasi-cyclic code sub-matrices arrangement (a) with all non-zero sub-matrices (b) with

zero sub-matrices.

to the matrix row-weight (4) and equal to column weight (3) in a column. Such struc-

tures have been shown to have a maximum girth of twelve[57]. In part (b) the number of

sub-matrices is greater than row and column weights. This structure could be the result

of irregular code designs or decoder architecture. It has also been shown that matrix

sub-divisions larger than row and column weights results in better performing codes than

those with sub-divisions equal to row and column weights[37].

Several methods have been suggested for constructing QC-LDPC codes. The structure

of the code depends on the arrangement of sub-matrices and their shift values. Random

shifting of identity sub-matrices may result in codes with properties that reduce perfor-

mance such as four-cycles. Some construction methods impose constraints to avoid four-

cycles and they include finite-geometry[56],combinatorial designs [76][77], algebraic[57],

difference sets[53] and search algorithms[78][57]. As was stated in the previous chapter,

construction methods avoid four-cycles by enforcing the row-column constraint.

Finite-geometry and combinatorial designs ensure that there are no four-cycles by adding

the condition that no two points are in the same line more than once or no two points

are in the same block more than once. Kou et al [56] present a geometric approach to the

design of LDPC codes based on the lines and points of Euclidean and projective geome-

tries over finite fields. Codes constructed from these finite geometries have girth of six

and have a wide range of lengths and code rates.

Page 55



4.2 Proposed Search Algorithm for QC-LDPC Codes

Construction methods such as combinatorics, finite geometry and algebra produce

codes that are limited in all or one of rate, length or girth parameters. Other methods

such as the recursive approach developed in [79] could be used to obtain a wide range

of lengths rates and girths. This method constructs a basis QC-LDPC code using one

of the developed methods, geometric or algebraic construction. The basis matrix is then

expanded by replacing ‘1’ entries by p× p randomly shifted identity sub-matrices and ‘0’

entries by p×p zero sub-matrices. The expanded matrix has girth and minimum distance

at least that of the basis matrix. Although the method can be used to obtain a wide

range of rates and lengths it divides the code into many sub-matrices which eventually

increases data management in a decoder. A lager number of sub-divisions are required

to obtain a large girth and high rates. In the next section we introduce a construction

method with which a wide range of girths, rates and lengths could be obtained with as

few sub-matrices as row and column weights. In this algorithm sub-matrices could be

arranged arbitrarily.

4.2 Proposed Search Algorithm for QC-LDPC Codes

Random search algorithms such as BF and PEG have flexibility in constructing both

regular and irregular codes over a wide range of girths, rates and lengths as previously

discussed. In the proposed method we add more constraints to random searches such that

the obtained codes are quasi-cyclic. The proposed algorithm produces regular and irreg-

ular quasi-cyclic codes with much more flexibility in girths, rates and lengths compared

to other algorithms.

The algorithm is similar to the search algorithm developed in the previous chapter. Rows

are divided into groups as before to obtain a block structure in the form of sub-matrices.

To obtain cyclic connections in sub-matrices, rows in a group are connected in consec-

utive order according to their position. That is, if {ra, rb, ...rc} are connected rows, so

are rows {ra+1, rb+1, ...rc+1}. A non-bipartite or distance graph representation described

in the previous chapter is assumed. Rows are used to form a distance graph which is

then transformed to a parity-check matrix. To obtain a given girth, rows that are at a

desired distance from each other are searched sequentially or randomly in each group and

connected. Row connections are between j rows from j different groups. According to

the distance graph representation, a set of j connected rows (vertices) are the rows that

Page 56



Chapter 4 Constructing Quasi-Cyclic LDPC Codes

are connected to the same column in matrix form. So each connection of j rows forms a

column of the designed code. The algorithm is described as follows.

QC-LDPC Search Algorithm

1. Divide rows into j′ equal groups of size p, (RG1...RGj′). If the number of rows is

unknown or not given, start with a theoretical minimum number of rows if known

otherwise start with a group size of k (row-weight).

rx is row x. ∪rx
is a set of rows within a distance of g from rx. Distance is the

shortest path between any two vertices. g determines the desired or target girth.

2. Make sub-groups with j distinct row-groups with each row-group appearing k times.

The number of sub-groups is kj′

j
which is assumed to be an integer. Row-group sub-

groups are (RGP1...RGP kj′

j

).

3. For t = 1 to kj′

j
{

select RGref ∈ RGPt, where 1 ≤ ref ≥ j

select ri ∈ RGref , where 1 ≤ i ≥ p

sequentially or randomly search for (ra...rd) ∈ RGPt(z = 1...j, z 6= ref) re-

spectively where rx /∈
∑

y 6=x(∪ri
,∪ra

...∪rd
), else the algorithm fails.

For z = 1 to p {

ri+z is connected to (ra+z...rd+z) if rx /∈
∑

y 6=x(∪ri+z
,∪ra+z

...∪rd+z
)

else the algorithm fails. } }

4. Use obtained distance graph to form a LDPC parity-check matrix.

The construction of the code graph is done in step 3 of the algorithm. First a refer-

ence row group (RGref ) is selected from a sub-group (RGPt) of row-groups. Selection of

RGref could is arbitrary. A reference row (ri) is then also arbitrarily selected from the

reference row-group. The algorithm then searches for rows (ra...rd) from the remaining

row-groups of RGPt, where rows (ra...rd) are at a distance of at least g from ri and from

each other. If such rows are not found in their respectively row-groups, the algorithms

fails and exits. In the second part of step 3, the algorithm connects the remaining rows of

RGref to the remaining rows in other row-groups if the first part is was successful. The

connection of rows ri+z and (ra+z...rd+z) is made if it does not violate the girth condition.
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Figure 4.2 shows row connections for a (16,2,4) QC-LDPC code with girth of eight, con-

structed using the proposed algorithm. The number row-groups, j′, is 2, each group with

4,(p), rows. We refer to the groups as group 1 and group 2. Group 1 has rows 1 to 4 and

group 2 rows 5 to 8. The number of sub-groups, kj′

j
, is 4, where j = 2 and k = 4. The

4 sub-groups are [1 2],[1 2],[1 2] and [1 2] with each group appearing four times (desired

row weight,k). A sequential search for a row satisfying the distance is used in this case.

Group 1 and row 1 are always picked as the reference group and row respectively. In the

first connection row 5 is found to satisfy the distance of four (desired girth) from row 1.

The rest of group 1 rows, rows 2 to 4, are then connected to rows 6 to 8. In the second

connection, row 6 is the first to satisfy the distance. It is connected to row 1 with the

rest of group 1 connected to the rest of group 2. The process is repeated in connections

three and four as shown in the figure. The row connections form a distance graph with

the number of vertices equal to eight, a vertex degree equal to four and a girth of four.

Figure 4.3 shows a matrix representation of the code. Each set of connections forms a

column group with each row group as a 4× 4 shifted identity sub-matrix. Since the first

group is not searched or shifted, rows in this group are connected in their natural order

in each sub-matrix. The top four rows contain four unshifted identity sub-matrices corre-

sponding to the four connections for group 1 rows. Group 2 rows are connected in their

natural order only in the first connection. The bottom 4×4 sub-matrices represent group

2 connections. Figure 4.4 shows the general structure of the codes obtained when group

1 and its first row are always the reference group and row respectively. If the reference

row is chosen randomly, sub-matrices in the first column and row will also be shifted.

The complexity of the algorithm is analyzed in terms of the number of rows,M , and

the number of row groups as follows.
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Figure 4.2. Graph representation of a (16,2,4) code with girth eight.
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Figure 4.3. Matrix representation of a (16,2,4) code with girth eight.
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Figure 4.4. General structure of QC-LDPC codes using sequential search.
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• If the number of row groups is j′, each group is of size p = M
j′

.

• For each row-group set (sub-group), rows in non-reference row-groups and at a

distance of at least g from the reference row, r, are updated before searching for a

row satisfying the distance g from reference row, ri. Updating neighbors of a row

at a distance of g takes g cycles (or operations). For a single row-group it takes gM
j′

cycles. Since there are (j − 1) non-reference groups rows, it takes gM
j′

(j − 1) cycles

to update rows within distance g from reference row, ri.

• For each row-group set, rows from the j row-groups are connected according to the

reference row connections. There are M
j′

connections in each group set and in each

connection the girth condition must not be violated. Checking for girth violation

with j rows takes j!
(j−2)!2!

comparisons. Each row-group set search and connect

process takes Mg(j−1)
j′

+ Mα
j′

cycles, where α is j!
(j−2)!2!

.

• The connection process is repeated for each row-group set. There are kj′

j
row-group

sets for regular codes with row weight of k. Therefore it takes kM(g(j−1)+α)
j

cycles to

complete all connections. This is assuming that the group size is large enough for

the algorithm to form all connections and not counting the number of extra tries in

case the connections failed the girth condition. The complexity of this algorithm is

therefore O(M).

The complexity of the algorithm may also be determined by how it is implemented.

Straight forward group searches may take a long time especially when group sizes are

very large. We adopt the set algebra approach used in the bit-filling algorithm [45] to

reduce searching time. Rows that are not far enough (in terms of the girth condition)

from reference row ri are updated before searching for rows to connect to in other groups.

To find a set of rows that satisfy the desired distance in other groups we perform set

operations with the searched groups and neighbors of the reference row. Rows satisfying

the girth condition are then either sequentially or randomly picked from the resulting set.

If the set of rows satisfying the girth condition is empty the algorithm fails. Since all

rows in a group are connected the same way, the algorithm has a linear complexity with

respect to the number of rows. In bit-filling the complexity of connecting individual rows

is cubic with respect to the number of rows[45].
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The proposed algorithm constructs a code of a given girth by searching and connect-

ing rows that are at some specified distance from a reference row. However, connecting

the remaining rows in the same group as the reference row, as stated in step 3 of algo-

rithm, does not guarantee that the target girth or distance will not be violated. The

search and connect process is therefore not sufficient to obtain a desired girth. Step 3 of

algorithm checks whether the girth is violated or not, when the rest of group rows are

connected. The algorithm guarantees a girth of six by not connecting any two rows more

than once. Since any two row groups form a bipartite graph between themselves, if the

reference row avoids connecting to another row more than once then other rows in the

same group cannot be connected to any row more than once. That is, if ri and rx are

connected once then ri+a and rx+a are also connected only once. Therefore the girth-six

condition is sufficient. For girth-six codes, the algorithm does not need to check if the

rest of the group connections do not violate the girth condition (in step 3 of algorithm).

With girths larger than six, the girth condition can be violated when connecting the rest

of the group rows especially with column weights larger than three and small group sizes.

Figure 4.5 shows how a cycle of three could be formed when the target cycle length is four

in distance graphs. After the first two successful connections rows, 22 and 42 are found

to satisfy the distance of at least four from the reference row 1 for the third connection.

If this connection is made, rows 9,16 and 36 will be connected. Then rows 1 and 16 which

are already connected will both be connected to row 36 in separate connections forming

a cycle of length of three. Figure 4.6 shows how a target girth of twelve could be violated

when the rest of the group rows are connected. The solid and dotted lines represent the

first and second connections respectively. In the second connection attempt row 20 is

found to satisfy the length of at least six from reference row 1. However, connecting the

rest of group 1 rows creates cycles of length four. An example of such a cycle is between

rows 1,15,6,20.

Although the proposed algorithm does not guarantee girths larger than six, codes with

girths larger than six have been easily obtained for a wide range of lengths and rates. In

the constructions presented below LDPC codes were constructed targeting a specific girth

given the code size and weights. For codes with large group sizes, the algorithm could be

greedy such that it maximizes the girth or average girth. Instead of choosing a row that
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26 41 

27 42 
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30 45 

1st connection 

2nd connection 

3rd connection 

Figure 4.5. LDPC graph three-cycle formations with three groups.

satisfies the distance at random, the algorithm could choose a row with the maximum

distance from the reference row similar to progress-edge growth[46] ( a greedy approach).

Mao[37] showed girth distribution matters more than the minimum girth in decoding

performance. Codes with a larger average girth perform better compared to codes with

the same or higher girth. Below we look at codes with column weight of two and then

those with higher column weights obtained with the proposed algorithm.

4.3 Column-Weight Two Quasi-Cyclic LDPC Codes

The proposed algorithm obtains column-weight two codes with a minimum girth of eight

if two row groups are used. Row connections form a bipartite graph between the two

groups. The minimum cycle length in a bipartite graph is four, which translates to a

cycle length of eight in matrix form. Since bipartite graphs have even length cycles, only

girths of eight and twelve are obtained. Girths higher than twelve could be obtained by
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Figure 4.6. Formation of smaller cycles than the target girth.

using a number of row groups larger than two. Some obtained codes are presented below

for some girths.

4.3.1 Girth-Eight Codes

Girth-eight codes are formed by a bipartite graph with 2k (k is row-weight) vertices when

two row-groups are used. A smallest cycle length of four is formed between vertices

(rows) of the two row-groups. The minimum group size,p, of each group was found to

be k resulting in a code size of 2k × k2 for all row weights(k). The length of the code is

calculated using the relation N = Mk
j

. The obtained sizes of the codes are the minimum

dimensions possible for a quasi-cyclic or any code. k is the minimum size of each group as

each row has to be connected to k different rows to avoid cycles of four. The graph size

also is the minimum possible as it corresponds to the size of a cage with girth of four for

a given vertex-degree ((k, 4) − cages)[67][68]. These codes could also be obtained using

combinatorial designs[54].

For girth-eight codes, the first row found satisfying the girth condition from reference

row will have a successful connection in the construction algorithm. The row will have

distance of at least four if it has not been connected to the reference row before. If the two

rows (reference row of group one and found row in group two) are not yet connected, then

the rest of the rows will not be connected since the connections are relative to each other.
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1,8     1,9    1,10     1,11    1,12    1,13     1,14 

2,9     2,10  2,11     2,12    2,13    2,14     2,8 

3,10   3,11  3,12     3,13    3,14    3,8       3,9 

4,11   4,12  4,13     4,14    4,8      4,9       4,10 

5,12   5,13  5,14     5,8      5,9      5,10     5,11 

6,13   6,14  6,15     6,9      6,10    6,11     6,12 

7,14   7,8    7,9       7,10    7,11    7,12     7,13  

(a) 
(b) 

1 

2 

3 

4 

5 

14 

13 

12 

11 

9 

10 

8 

6 

7 

Figure 4.7. (49,2,7) girth-eight code (a) row connections (b) distance graph connections, (7,4)

cage.

 

1,11     1,12     1,13     1,14    1,15     1,16    1,17     

2,12     2,13     2,14     2,15    2,16     2,17    2,18     

3,13     3,14     3,15     3,16    3,17     3,18    3,19     

4,14     4,15     4,16     4,17    4,18     4,19    4,20     

5,15     5,16     5,17     5,18    5,19     5,20    5,11     

6,16     6,17     6,18     6,19    6,20     6,11    6,12     

7,17     7,18     7,19     7,20    7,11     7,12    7,13     

8,18     8,19     8,20     8,11    8,12     8,13    8,14     

9,19     9,20     9,11     9,12    9,13     9,14    9,15     

10,20   10,11  10,12   10,13   10,14   10,15  10,16   

Figure 4.8. Row connections for a (70,2,7) code with girth eight.

 

1,8      5,9       6,14     3,9      6,8     4,14    7,12    

2,9      6,10     7,8       4,10    7,9     5,8      1,13     

3,10    7,11     1,9       5,11    1,10   6,9      2,14     

4,11    1,12     2,10     6,12    2,11   7,10    3,8     

5,12    2,13     3,11     7,13    3,12   1,11    4,9     

6,13    3,14     4,12     8,14    4,13   2,12    5,10     

7,14    4,8       5,13     2,8      5,14   3,13    6,11    

Figure 4.9. Girth-eight (49,2,7) code using random search.
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Therefore, girth-eight is guaranteed for column-weight two codes when two row-groups

and a row-group size of at least k are used.

Figure 4.7 shows row connections for a (49,2,7) code resulting from a sequential search

with two groups. The two row groups have rows 1-7 and 8-14. The reference group and

reference row are always chosen as group 1 and row 1 respectively. Figure 4.7 (a) shows

the pairs of rows that are connected after construction. Connecting the rest of group

1 rows relative to the row 1 produces a shift connection of rows. In the seven sets of

connections, group 2 is shifted by 0,1,2,3,4,5 and 6 respectively relative to group 1. The

connections are presented in a graphical form in part (b) of the figure. The graph is a

bipartite graph with distance of four and vertex degree of seven. It is actually a (7,4) cage

graph[72]. Large codes can be obtained by using larger group sizes. With larger groups,

the same number and size of shifts are performed. Figure 4.8 shows row connections with

20 rows in each group for a (70,2,7) LDPC code. The code is constructed in a similar way

to the code in Figure 4.7.

Generally a quasi-cyclic column-weight two LDPC code with girth of eight can be con-

structed by simply starting with two row groups of size at least k and shifting one or both

groups k times using different shift values. The shifting could also be random. Sequential

searches result in the same code every time for a given rate and length whereas random

searches result in different codes in terms of shifts some of which may give better BER

performances as demonstrated in the next sub-section. Random shifts may also result in

better average girth in some cases. Figure 4.9 shows row connections for a (49,2,7) girth-

eight code obtained using random searches (step 3 of proposed construction algorithm).

Reference rows (ri) are also chosen randomly for each connection.

4.3.2 Girth-Twelve Codes

Girth-twelve codes are formed by a bipartite graph with a smallest cycle length of six

when two row groups are used. As with girth-eight codes, girth-twelve codes could be

constructed from cage graphs. For codes with (k − 1) as a prime, derived quasi-cyclic

girth-twelve codes from cages are of length k(k2 − k + 1)[39][80]. Construction of codes

based on cages could only be done for those values of k where cages are known.

Using the proposed algorithm, girth-twelve LDPC codes with row weights ranging from

3 to 18 were constructed. Table 4.1 shows code sizes obtained when a sequential search
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Table 4.1. Girth-twelve (N, 2, k) code sizes using sequential searches and two row groups.

k min. group size code size

3 7 14×21

4 15 30×60

5 25 50×125

6 35 70×210

7 61 122×427

8 77 154×616

9 119 238×1071

10 134 268×1340

11 174 348×1914

12 216 432×2592

13 251 502×3263

14 304 608×4256

15 390 780×5850

16 509 1018×8144

17 615 1230×10455

18 663 1326×11934

is used with two groups. The codes are about twice the size of codes derived from

cage graphs. Codes with row-weights larger than 18 could also be obtained using the

construction algorithm. Figure 4.10 shows row connections for two girth-twelve codes

using sequential searches. Part (a) is a (60,2,4) code with a row-group size of 15. In part

(b) a larger group size of 20 is used to construct an (80,2,4) code. The same shifts are

obtained in both cases in the second row-group with sequential searches. Smaller code

sizes closer to those from cages could be obtained using random searches as shown in Table

4.2. However it may take many tries (executing the algorithm many times) to get the

right shift combinations resulting in a smaller code especially for large row weights. For

both types of searches (sequential and random) larger dimension codes can be obtained

by using larger group sizes. This is an advantage compared to a single dimension obtained

from cage graphs. However, there is no guarantee that all larger group sizes will always

produce a girth of twelve.
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1,16     1,17     1,19     1,23 

2,17     2,18     2,20     2,24 

3,18     3,19     3,21     3,25 

4,19     4,20     4,22     4,26 

5,20     5,21     5,23     5,27 

6,21     6,22     6,24     6,28 

7,22     7,23     7,25     7,29 

8,23     8,24     8,26     8,30 

9,24     9,25     9,27     9,16 

10,25   10,26   10,28   10,17 

11,26   11,27   11,29   11,18 

12,27   12,28   12,30   12,19 

13,28   13,29   13,16   13,20 

14,29   14,30   14,17   14,21 

15,30   15,16   15,18   15,22   

1,21     1,22     1,24     1,28 

2,22     2,23     2,25     2,29 

3,23     3,24     3,26     3,30 

4,24     4,25     4,27     4,31 

5,25     5,26     5,28     5,32 

6,26     6,27     6,29     6,33 

7,27     7,28     7,30     7,34 

8,28     8,29     8,31     8,35 

9,29     9,30     9,32     9,36 

10,30   10,31   10,33   10,37 

11,31   11,32   11,34   11,38 

12,32   12,33   12,35   12,39 

13,33   13,34   13,36   13,40 

14,34   14,35   14,37   14,21 

15,35   15,36   15,38   15,22  

16,36   16,37   16,39   16,23 

 17,37  17,38   17,40   17,24 

18,38   18,39  18, 21   18,25 

19,39   19,40  19, 22   19,26 

20,40   20,21  20, 23   20,27       

Figure 4.10. Row connections for girth-twelve LDPC codes (a) (60,2,4) code (b) (80,2,4) code.

 

[1   2]     [1   2]    [1   3]     [1   3]      [2    3]      [2     3] Group Pairs 

Row 

connections 

1,55        1,56      1,109      1,112       55,119      55,134 

2,56        2,57      2,110      2,113       56,120      56,135 

3,57        3,58      3,111      3,114       57,121       57,136 

4,58        4,59      4,112      4,115       58,122       58,137 

 .  .           .  .          .   .          .   .           .   .              .    . 

 .  .           .  .          .   .          .   .           .   .              .    . 

 .  .           .  .          .   .          .   .           .   .              .   

54,108   54,55     54,162   54,111    108,117      108,133 

Figure 4.11. Group row connections forming girth-sixteen LDPC code with row weight of 4.

4.3.3 Girths Higher than Twelve

Codes with higher girths were obtained by using a number of row groups larger than two.

Figure 4.11 shows row division and row-group pairing for a girth-sixteen code. There are

162 rows in three row groups, 1-54, 55-108, 109-162. The three groups are paired as [1

2],[1 2],[1 3],[1 3],[2 3] and [2 3] to construct group sets or sub-groups with each group

appearing four times. Table 4.3 shows code sizes for some of the codes obtained with girth

higher than twelve using a sequential search. The sizes and girths of codes obtained may

differ depending on the number and combination of groups. The number of row groups

and group combinations used here were chosen arbitrarily.
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Table 4.2. Girth-twelve (N, 2, k) codes sizes using random searches and two row groups.

k min. group size code size

3 7 14×21

4 13 26×52

5 21 42×105

6 31 62×186

7 53 106×371

8 67 134×536

9 105 210×945

10 125 250×1250

4.3.4 Performance Simulations

Bit error rate (BER) performances of constructed codes were simulated on an AWGN

channel with BPSK modulation. Performance curves are shown in Figures 4.12 and 4.13.

Simulated codes are all of size (2556,2,4) in Figure 4.12.

Four points are noted from performance curves in Figure 4.12. Firstly, the randomly

shifted codes perform better than the sequentially shifted codes. The two seq-(2556,2,4)

and ran-(2556,2,4) codes in the figure have sequential and random shifts respectively from

two row groups. They have a girth and average girth of twelve. However, the randomly

shifted code outperforms the sequentially shifted code by about 0.4dB at 10−5 BER.

Secondly, multi-level or multi-division codes perform better than those with two groups.

The multi-level code used here was constructed with six row groups (instead of two

groups). It has a girth and average girth of twelve as does the other sequentially shifted

code. It however, performs better by about 0.4dB at 10−5 BER. This confirms results

obtained in [81] showing that multi-division could improve error correcting performance.

Codes in [81] are quasi-cyclic but of a different structure.

Thirdly, performance curves show larger girth codes performing better. A girth-twenty

code also from six row groups with sequential shifts outperforms the girth-twelve code by

1dB at 10−5 BER.

Lastly, performance curves also show a random code outperforming girth-twelve QC-

LDPC codes by about 0.7 dB at 10−5 BER. The random code was constructed using a
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Table 4.3. Code sizes with girth higher than twelve using sequential searches.

k number of groups min. group size code size girth

3 4 9 36×54 14

3 4 16 64×96 16

3 4 17 68×102 18

3 4 18 72×108 20

4 3 35 105×210 14

4 3 54 162×324 16

4 3 69 207×414 18

4 6 213 1278×2556 20

4 8 390 3120×6240 24

5 4 65 260×650 14

5 4 112 448×1120 16

6 6 121 726×2178 14

6 12 108 1286×3888 16

slightly modified bit-filling algorithm to obtain a regular code. It has a girth of ten and

average girth of 14.6. However, the random code is outperformed by the girth-twenty

quasi-cyclic code.

Figure 4.13 shows larger codes compared to codes obtained using graphical models in [61]

and a random code with a high girth of 14. The row-weight three codes have similar

performances. The obtained QC-LDPC code with row-weight of four outperforms the

graphical code by about 0.6dB at 10−5 BER and outperforms the random code by about

0.1dB at 10−5BER.

Performance simulations show that codes obtained using the proposed algorithm perform

similar or higher than random codes when their girths are high (at least girth of 16).

Performance of the codes is also improved by using row-groups larger than the column-

weight,j. Obtained codes also perform as well as other structured column-weight two

codes such as those from graphical models in [61].
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Figure 4.12. BER performance of obtained codes with 35 iterations.

4.4 Quasi-Cyclic Codes of Higher Column-Weights

The proposed search algorithm could also be used to construct codes with column weights

higher than two. In this case a column is formed by a complete graph of more than two

vertices. Codes with girths of six, eight, ten and twelve were obtained and are discussed

below.

4.4.1 Girth-Six Codes

The proposed search algorithm was used to obtain column-weights of 3,4 and 5 using the

number of row groups equal to the column weight. Figure 4.14 (a) shows row-column

connections for a (42,3,6) girth-six code with a group size of seven. The number of row

connections is 42, which is the length of the code or number of columns. The distance

between rows is three. There are three groups (1-7, 8-14 and 15-21). Groups 2 and 3 are

shifted by the algorithm in each connection to avoid four-cycles using a sequential search

starting from the last row used in the previous connection. That is, if the reference row

was connected to row x in the first connection, in the second connection searching for

a row satisfying the girth condition starts at row x + 1. These are the search criteria

that gave the smallest code for column-weight three codes but other variations of the

search criteria could be used. Shift values for each row group are also shown at the top
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Figure 4.13. BER performance of larger dimension codes compared to graphical codes with 35

iterations.

of the figure. These connections form a distance graph in which a column is formed by a

connection of three rows (vertices). Each triplet is a set of rows connected to the same

column in the matrix form. The matrix form has the same structure as that of Figure 4.4

(a). Larger dimension codes can be obtained by using larger group sizes. Increasing the

group size does not reduce the girth as the algorithm will still have group rows shifted such

that no two rows are connected more than once as shown in Figure 4.14 (b) with a group

size of ten. Figures 4.15 (a) and 4.15 (b) show row-column connections for column-weight

4 and 5 codes respectively. The first row of group one is always used as a reference row

in these examples with sequential searching criteria.

Table 4.4. girth-six minimum group sizes with a sequential search.

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

j

3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19

4 5 7 7 10 10 11 11 13 13 16 17 17 17 19

5 7 7 11 11 11 11 13 13 17 17 17 17 19

In the example codes given above non-reference groups are shifted by a different

increment each time. The reference group is shifted by an increment of zero each time,

group 2 by one, group 3 by two and so on. Girth-six codes are obtained by simply using
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1,8,15      1,9,17     1,10,19      1,11,21     1,12,16     1,13,18 

2,9,16      2,10,18   2,11,20      2,12,15     2,13,17     2,14,19 

3,10,17    3,11,19   3,12,21      3,13,16     3,14,18     3,8,20 

4,11,18    4,12,20   4,13,15      4,14,17     4,8,19       4,9,21 

5,12,19    5,13,21   5,14,16      5,8,18       5,9,20       5,10,15 

6,13,20    6,14,15   6,8,17        6,9,19       6,10,21     6,11,16 

7,14,21    7,8,16     7,9,18        7,10,20     7,11,15     7,12,17 

1,11,21     1,12,23     1,13,25      1,14,27      1,15,29     1,16,22 

2,12,22     2,13,24     2,14,26      2,15,28      2,16,30     2,17,23 

3,13,23     3,14,25     3,15,27      3,16,29      3,17,21     3,18,24 

4,14,24     4,15,26     4,16,28      4,17,30      4,18,22     4,19,25 

5,15,25     5,16,27     5,17,29      5,18,21      5,19,23     5,20,26 

6,16,26     6,17,28     6,18,30      6,19,22      6,20,24     6,11,27 

7,17,27     7,18,29     7,19,21      7,20,23      7,11,25     7,12,28 

8,18,28     8,19,30     8,20,22      8,11,24      8,12,26     8,13,29 

9,19,29     9,20,21     9,11,23      9,12,25      9,13,27     9,14,30 

10,20,30   10,11,22   10,12,24    10,13,26    10,14,28   10,15,21 

(a) (b) 

Shift values       0  0  0       0  1 2      0  2  4       0  3  6       0  4  8        0  5  10 0  0  0       0  1 2      0  2  4       0  3  6       0  4  8        0   5  10 

 

Figure 4.14. Girth-six (42,3,6) code using sequential searches.

different shift increments for each row group. However, this does not work for all group

sizes. We observed that for j = 3, the minimum p that produces a girth of six is k and

k + 1 for odd and even row-weights respectively.

Figure 4.16 shows why these are the minimum group sizes. With three groups, groups 2

and 3 are shifted such that no two groups are shifted by the same increment more than

once. Part (a) of Figure 4.16 shows that with group size of six (p), only five different

shifts are obtained with increments of 1 and 2 for row groups 2 and 3 respectively. The

sixth shift results in a four-cycle because its the same shift as the first one. However,

when p is odd, seven in part (b) of figure, seven different shifts are obtained.

A shift increment of 2 in group 3 does not produce k consecutive increments when p is

even and equal to k. The first half of the increments pick odd positions and ends where

we started. The second half of the increments is then started at the first position available

which is the first even position. Even positions are then picked until the last one which

is k for even p and p = k, which is the same position as the increment of one in group

two. Hence in the last connections we have groups 2 and 3 aligned the same way again.

The first and last connections are the same for groups 2 and 3 producing a four cycle

as shown in the example of Figure 4.16 (c). We can generalize these observations by

saying that for column-weight three codes, the minimum group size is k and k + 1 for

odd and even k respectively. These minimums were proved by Fossorier in [57] using

algebraic constraints. Minimum group sizes for column-weights higher than three will be

at least that of column-weight three. Table 4.4 shows minimum group sizes obtained with
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(b) 

(a) 

1,8,15,22      1,9,17,25     1,10,19,28      1,11,21,24     1,12,16,27     1,13,18,23 

2,9,16,23      2,10,18,26   2,11,20,22      2,12,15,25     2,13,17,28     2,14,19,24 

3,10,17,24    3,11,19,27   3,12,21,23      3,13,16,26     3,14,18,22     3,8,20,25 

4,11,18,25    4,12,20,28   4,13,15,24      4,14,17,27     4,8,19,23       4,9,21,26 

5,12,19,26    5,13,21,22   5,14,16,25      5,8,18,28       5,9,20,24       5,10,15,27 

6,13,20,27    6,14,15,23   6,8,17,26        6,9,19,22       6,10,21,25     6,11,16,28 

7,14,21,28    7,8,16,24     7,9,18,27        7,10,20,23     7,11,15,26     7,12,17,22 

1,8,15,22,29      1,9,17,25,33     1,10,19,28,30      1,11,21,24,34     1,12,16,27,31     1,13,18,23,35 

2,9,16,23,30      2,10,18,26,34   2,11,20,22,31      2,12,15,25,35     2,13,17,28,32     2,14,19,24,29 

3,10,17,24,31    3,11,19,27,35   3,12,21,23,32      3,13,16,26,29     3,14,18,22,33     3,8,20,25,30 

4,11,18,25,32    4,12,20,28,29   4,13,15,24,33      4,14,17,27,30     4,8,19,23,34       4,9,21,26,31 

5,12,19,26,33    5,13,21,22,30   5,14,16,25,34      5,8,18,28,31       5,9,20,24,35       5,10,15,27,32 

6,13,20,27,34    6,14,15,23,31   6,8,17,26,35        6,9,19,22,32       6,10,21,25,29     6,11,16,28,33 

7,14,21,28,35    7,8,16,24,32     7,9,18,27,29        7,10,20,23,33     7,11,15,26,30     7,12,17,22,34 

 

Shift values       0  0  0  0       0  1 2  3        0  2  4  6         0  3  6   9       0  4  8   12      0  5  10 15 

Shift values          0  0  0  0  0      0  1 2  3   4        0  2  4  6  8           0  3  6   9 12      0  4  8  12  16     0   5  10  15  20 

 

Figure 4.15. Row-column connections for (a) (42,4,6) and (b) (42,5,6) girth-six quasi-cyclic codes.

a sequential search. The sizes obtained are the same sizes as those found by algebraic

methods in [36][57].

Girth-six codes can also be obtained by using random searches. Random searches are

likely to take longer to find the right shift combination that gives the minimum code size.

Since practical codes will be larger than minimum sizes for most row weights, a random

search is recommended. Random searches result in a variety of codes some of which may

have better performance as was shown with column-weight two codes in the previous

section. Figure 4.17 shows a girth-six code constructed using random searches. Random

searches could quickly obtain minimum codes in some cases. Algebraic constructions

in [36][57] used the MAGMA algebraic software to find minimum groups sizes and shift

values that satisfy the girth of six. These papers report that, it takes a long time to

find the minimum group sizes using these methods. However, with the proposed method,

girth-six codes are almost instantly formed. For example, a girth-six code with k = 3,

p = 6 takes 0.4s in MATLAB on standard PC (Pentium IV processor, 0.5GB RAM). The

construction complexity is linear with respect to the number of rows as was shown in the

previous section.
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1,7,13      1,8,15     1,9,17      1,10,14     1,11,16     1,12,18 

2,8,14      2,9,16   2,10,18      2,11,15     2,12,17     2,7,13 

3,9,15      3,10,17   3,11,13    3,12,16     3,7,18       3,8,14 

4,10,16    4,11,18   4,12,14    4,7,17       4,8,13       4,9,15 

5,11,17    5,12,13   5,7,15      5,8,18       5,9,14       5,10,16 

6,12,18    6,7,14   6,8,16        6,9,13       6,10,15     6,11,17 

Shift values       0  0  0       0  1 2      0  2  4       0  3  7       0  4  9        0  5  11 

Increment       p       group positions 

 

 

1                     6        0,1,2,3,4,5 

2                     6        0,2,4,1,3,5 

(a) 

Increment       p       group positions 

 

 

1                     7        0,1,2,3,4,5,6 

2                     7        0,2,4,6,1,3,5 

(b) 

(c) 

Figure 4.16. Group shifts increments for girth-six code.

 

1,14,16      1,11,18     1,13,21     1,9,15       1,12,17     1,10,20 

2,8,17        2,12,19     2,14,15     2,10,16     2,13,18     2,11,21 

3,9,18        3,13,20     3,8,16       3,11,17     3,14,19     3,12,15 

4,10,19      4,14,21     4,9,17       4,12,18     4,8,20       4,13,16 

5,11,20      5,8,15       5,10,18     5,13,19    5,9,21        5,14,17 

6,12,21      6,9,16       6,11,19     6,14,20     6,10,16     6,8,18 

7,13,15     7,10,17      7,12,20     7,8,21       7,11,15     7,9,19 

Shift values         0  6  1       0  3  3        0  5  6      0  1  0       0  4  2        0  2  5 

Figure 4.17. Row-column connections for a (42,3,6) quasi-cyclic girth-six code using a random

search.

4.4.2 Girth-Eight Codes

To construct a code with girth of eight, connected rows must have a distance of at least

four. Cycles of length three between rows must be avoided. To avoid six-cycles (3-cycle in

row connection), if rows ra and rb are connected to rc, then ra and rb cannot be connected.

Tables 4.5 and 4.6 show obtained minimum group sizes of girth-eight codes obtained with

sequential and random searches. The codes obtained are of the same size as those obtained

by algebraic methods in [57] and [82].

With random searches smaller codes can be obtained even though it may take longer in

some cases (because of large row weights). Table 4.6 shows code sizes for some (N, 3, k)

codes using random searches. As with girth-six codes the algorithm does not take long
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to find a code even for the minimum code sizes shown in Tables 4.5 and 4.6. Larger

dimension codes can be obtained by using larger group sizes as in column weight-two

codes. The proposed algorithm can therefore quickly construct a variety of girth-eight

codes over a wide range of rates and lengths. However, also in this case, there is no

guarantee that all larger group sizes would hold the girth of eight.

Table 4.5. (N,3,k) and (N,4,k) girth-eight codes minimum group sizes using sequential search.

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17

j

3 9 19 21 25 27 55 57 61 63 73 75 79 81 163

4 31 38 44 56 73 84 108 121 134 149 180 210 230

Table 4.6. Obtained (N, 3, k) girth-eight LDPC codes sizes using random searches

k group size code size

4 9 27×36

5 13 39×65

6 18 54×108

7 22 66×154

8 27 81×216

9 38 114×342

10 41 123×410

11 56 168×616

12 58 174×696

4.4.3 Girth-Ten and Twelve Codes

With girths of ten and twelve, the proposed algorithm often has failing row connections.

That is, even though we find rows meeting the distance required from the reference row,

the rest of the reference group row connections often result in smaller cycles than the tar-

geted one. Most connections collapse to form smaller cycles of four as was shown in the
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examples of Figures 4.5 and 4.6. In such cases the algorithm fails and is restarted. From

our experiments it took too many (a few thousands) tries to get the right shifts resulting

in girth-ten and twelve codes. The proposed algorithm is not time efficient in construct-

ing distance graphs for codes with girths of ten and twelve. To reduce this problem the

algorithm was used to construct a Tanner graph instead of a distance graph. Rows and

columns are divided in to equal groups as before and connected to form a Tanner graph.

Each row group is connected to k column groups and each column group to j row groups.

Although the two constructions (Tanner and distance graph) are equivalent they behave

differently in some cases. When constructing a Tanner graph the proposed algorithm was

found to be more successful compared to constructing a distance graph for girth-ten and

twelve codes. The algorithm could add connections (edges) between nodes from either

side (rows or columns). For clarity the algorithm is repeated below for constructing Tan-

ner graphs with connections made from row side.
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Tanner Graph Search Algorithm

1. Divide rows into j′ equal groups of size p, (RG1...RGj′).

Columns are also divided into k′ groups of size p, (CG1...CGk′).

If the number of rows or columns is unknown or not given, start with a theoretical

minimum number if known otherwise start with a group size of k (row-weight).

rx is row x, and cx is column x.

∪rx
is a set of columns within a distance of g from rx.

∪cx
is a set of rows within a distance of g from cx.

2. Pair row and column groups such that each row-group appears k times and each

column-group j times. We denote these row-column group pairs as RCG.

RCG={(RG1, CG1)...(RGj′ , CGk′)}. There are kj′ or jk′ row-column group pairs.

3. For t = 1 to kj′ {

RG ∈ RCGt, CG ∈ RCGt

select ri ∈ RG

sequentially or randomly search for some cx ∈ CG such that cx /∈ ∪ri
else

algorithm fails.

For z = 1 to p {

ri+z is connected to cx+z if cx+z /∈ ∪ri+z
else algorithm fails.

} }

4. Use obtained Tanner graph to form a LDPC parity-check matrix.

The algorithm constructs the Tanner graph in step 3. A reference row, ri, is arbitrar-

ily selected from a row-group,RG, from the row-column group pair RCGt. A column,cx

that is at least a distance of g from ri is sequentially or randomly searched from CG of

RCGt. If cx is not found the algorithm fails and exits. In the second part of step 3, RG

rows are connected to CG columns relative to the positions of ri and cx provided the

girth condition is not violated. If one of the connections violated the girth condition the

algorithm fails and exits.

The complexity of the algorithm is analyzed in terms of the number of columns or the

length of the code,N , and the number of column groups as follows. It is assumed that
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the algorithm adds edges to the graph from the row side. The complexity is the same if

edges are added from column side.

• If the number of row groups is j′, each group is of size p = M
j′

.

• For each row-column groups pair neighbors of columns at a distance within g are

updated before searching for a column satisfying the distance g from reference row,

ri. Updating neighbors of a column at a distance of g takes g cycles (or operations).

For a single column-group it takes gM
j′

cycles.

• For each row-column pairing, rows and columns are connected according to the

reference row connections. These connections add an extra M
j′

cycles. Each row-

column group pair search and connect process takes Mg
j′

+ M
j′

cycles.

• The connection process is repeated for each row-column group pair. There are kj′

pairs for a regular code with row weight of k. Therefore it takes kM(g + 1) cycles

to complete all connections. This is assuming that the group size is large enough

for the algorithm to form all connections and not counting the number of extra

attempts in case the connections failed the girth condition. The complexity of this

algorithm is therefore O(M). When connections are done from column groups the

complexity is jN(g + 1) which is the same as kM(g + 1) since kN = jN .

The complexity of the algorithm when constructing a Tanner graph is also linear with

respect to the number of rows. However, the complexity of constructing a Tanner graph is

j times more than constructing a distance graph. j connections to a column in a Tanner

graph correspond to a single connection between rows in a distance graph. Although the

Tanner graph has more operations, our construction experiments show that it is more

successful in making connections compared to a distance graph for girth-ten and twelve

codes. Table 4.8 shows some of the code sizes obtained for girth-ten and twelve codes

using a random search. Although searches were not exhaustive, the code sizes obtained

are comparable in size to those obtained in [36] using algebraic constraints.

Page 78



Chapter 4 Constructing Quasi-Cyclic LDPC Codes

Table 4.7. (N,3,k) LDPC codes sizes with girth ten and twelve.

k group size code size girth

4 47 141×188 10

4 110 330×440 12

5 134 402×670 10

5 341 1023×1705 12

6 161 483×966 10

6 513 1539×3072 12

7 231 693×1617 10

7 851 2553×5957 12

8 356 1068×2848 10

9 515 1545×4635 10

4.4.4 Performance Simulations

Codes obtained using the proposed algorithm were evaluated using BER performance.

Figure 4.18 shows performance curves for (1200,3,6) regular codes. As in column-weight

two codes, higher column-weight codes using sequential search show poor performances

compared to those obtained using random searches. The difference in performance is

particularly pronounced in low girth codes. Girth-six and eight sequential codes perform

very poorly compared to randomly shifted codes of the same girth. Girth-ten codes have

the smallest difference up to 10−6 BER. Random codes pass 10−6 BER at about 3dB at

a length of 1200 and half rate.

The codes obtained could vary in their performance depending on the combinations of

shifts when random searches are used. Fossorier in [57] showed that some shift combina-

tions result in better minimum distances than others even with the same size and rate. A

good performing code may be found by constructing many codes and then determining

the best one by minimum distance measure. The performance shown may also vary de-

pending on code size. In [36], girth-six and eight quasi-cyclic code showed a much higher

difference in performance at 1K length compared to code length of 282.
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Figure 4.18. BER performance curves for (3,6) regular codes with 25 iterations.

Matrices with Zero Sub-Matrices

Matrices with zero sub-matrices are designed by using row and column groups larger than

row and column weights. The number and interconnection of row-column groups may be

dictated by decoding performance, hardware architecture or just be random. Codes with

zero sub-matrices could be regular or irregular. In [60][83][84] protographs are used to

design codes that match the structure of a semi-parallel architecture. A protograph is a

small bipartite graph from which a larger graph can be obtained by a copy-and-permute

procedure. The protograph is copied a number of times and then edges of individual

replicas are permuted to obtain a single, large graph. Figure 4.19 shows an example of

a graph derived from a protograph by connecting two copies of a protograph. In [60]

the protograph is designed to resemble a decoder architecture. The decoder architecture

may first be chosen based on a protograph decoding performance. Random or simulated

annealing techniques were used to find the best performing protograph. Performance of

the code also depends on the size of sub-matrices and their shift values. The matrix is

expanded with p× p shifted identity sub-matrices. We could use the proposed algorithm

to improve performance of obtained codes by improving the girth. The advantage of

the proposed algorithm is that it can be used to construct codes with any sub-matrix or
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Figure 4.19. Simple protograph with derived code graph structure.

protograph configuration when the number of sub-divisions are at least equal to the row

weights.

Irregular Codes

Carefully constructed irregular codes could have better performance compared to regular

codes[29]. It was also shown in [50] that the degree of a variable node plays an important

role in determining its error correcting performance. Variable nodes with a high degree

tend to be decoded correctly compared to others. By targeting message bits to have

higher degrees compared to parity bits we can improve the performance of a parity-check

code. In [85] irregular quasi-cyclic codes from difference sets were found to have slightly

better performance compared to regular ones. As stated in our algorithm, if the number

of row or column groups is not uniform we obtain irregular codes. We can therefore

construct irregular codes by having different numbers of appearances for row or column

groups or both. A group weight is equal to the number of times it appears in connections.

Figure 4.20 shows regular and irregular QC-LDPC code structures. The matrices show

connected row-column groups by ‘1’ entries. The average column and row weights are

3 and 6 respectively for both matrices. In the irregular structure extra connections are

deliberately made in information groups compared to parity groups. Information groups

have four connections whereas parity groups have only two connections as shown in Figure

4.20 (a). The regular structure has uniform connections for all groups with connections
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(a) 

(b) 

Figure 4.20. QC-LDPC code structures (a) irregular structure (b) regular structure.

randomly placed. The number of sub-divisions was chosen arbitrarily. BER simulations

show one irregular code performing better than one regular code by 0.2dB at 10−4 BER

as shown in Figure 4.21. The codes were constructed using the proposed algorithm with

the structure of Figure 4.20.

Performance Comparison

We compare some of the codes obtained by our algorithm to other well known best per-

forming codes. Short block codes obtained by Mackay[48] and by Hu using the PEG

algorithm[46] are used for comparison. The codes used are regular and irregular (504,3,6)

and (1008,3,6). These codes can be obtained from [48] and their performance is discussed

in [46].

We constructed our codes based on the two matrix structures in Figure 4.20. The struc-

tures are not optimized in any way. The number of sub-divisions is also arbitrary.

For regular codes Mackay’s algorithm obtains a girth of 6 and average girth of 6.74 for the

(504,3,6) codes and girth of 8 and average girth of 9 for the (1008,3,6) code. In the PEG

code, the girth is 8 with an average girth of 8.01 for the (504,3,6) code and girth of 8 and

average girth 9.66 for the (1008,3,6) code. Using our proposed algorithm we obtain girth

and average girth of 8 for the first code and girth and average girth of 10 for the second

code. Figure 4.22 shows BER performances of the (504,3,6) codes with 80 iterations. Our

code performs as well as Mackay’s and almost as well as PEG codes at this size despite
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Figure 4.21. BER performances of irregular compared to regular codes.

0 0.5 1 1.5 2 2.5 3 3.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BER vs SNR

SNR(dB)

B
E

R

PEG-(504,3,6)

Mackay-(504,3,6)

QC-LDPC(504,3,6)

 

Figure 4.22. BER performances regular (504,3,6) qc-ldpc code compared to Mackay and PEG codes

of the same size.
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Figure 4.23. BER performances regular (1008,3,6) qc-ldpc codes compared to Mackay and PEG

codes of the same size.
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Figure 4.24. BER performances irregular (504,3,6) qc-ldpc code compared to Mackay and irregular

PEG codes of the same size.
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Figure 4.25. BER performances irregular (1008,3,6) qc-ldpc code compared to Mackay and irregular

PEG codes of the same size.
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Figure 4.26. BER performances high-rate qc-ldpc code compared to a finite geometry code.
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its constraints in structure (quasi-cyclic). It is outperformed by the PEG code at 10−6

BER by about 0.1dB. Larger codes of length 1008 show similar performance as shown in

Figure 4.23. Our code still performs as well as PEG and Mackay’s codes at this size. The

PEG code still out performs our code by 0.1dB.

The same experiment was repeated with irregular codes. Figures 4.24 and 4.25 show per-

formance comparisons of the two code sizes. In this case our code performs much worse

than the PEG code. In the first instance the performance difference is about 0.25dB at

10−5 BER and about 0.2dB in the larger code. It however out performs Mackay’s code.

As already stated application of optimization techniques for performance on the basis

graph may improve performance. Techniques such as density evolution[46] and simulated

annealing[60] could be used to optimized or improve performance of the basis graph. It

was shown in [75] that quasi-cyclic codes can perform as well as random codes. The

result obtained here confirm that and show that the performance is also close for very

short codes.

Figure 4.26 shows a highrate obtained code compared to a finite geometry code. The

finite geometry code outperforms our code by about 0.4dB at 10−5BER.

4.5 Summary

In this chapter a construction algorithm for quasi-cyclic codes based on BF and PEG

search algorithms was presented. The algorithm divides rows and columns into equal

groups sizes to obtain the sub-matrix or block structure. Connections in groups are in

numerical order to produce the cyclic structure in sub-matrices. Although the proposed

algorithm guarantees at least girth of six, higher girths are easily obtained as well. The

algorithm could be used to construct a distance or Tanner graph. The complexity of the

algorithm is linear in code size when constructing both distance and Tanner graphs.

Compared to other search methods the proposed algorithm is much more efficient in

constructing both regular and irregular quasi-cyclic LDPC codes with no four-cycles.

One major advantage of this method is that it can easily be used to construct codes over

a wide range of girths, lengths and rates. It can also be used with any sub-matrices

arrangement with the number of groups at least equal to the row and column weights.

It is generally easy to generate QC-LDPC codes using this algorithm. Random searches

result in better performing codes compared to sequential codes. Random searches may
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also result in smaller codes even though it may take more tries to get them. Obtained

codes also show comparable BER performances when compared to random codes. Regular

codes perform as well as some of the best known short codes in literature. Irregular codes

however, fall short compared to random irregular codes but have the advantage of ease of

implementability. Using more row and column groups larger than row or column weights

results in better performing codes in column-weight two codes.
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Chapter 5

LDPC Hardware Implementation

For most applications LDPC encoding and decoding is done using hardware to speed up

processing. Successful application of LDPC codes to various systems depends mainly on

encoders and decoders meeting cost, power, complexity and speed requirements of those

systems. Applications differ on these requirements and LDPC performance expectations.

The large size of LDPC codes, wide range of rates and unstructured interconnection pat-

terns are some of the characteristics that make hardware implementation a challenge.

Although decoder implementations are often targeted for a particular application, their

architectures are often required to be scalable, programmable and have low chip area.

Some applications require a wide range on some parameters such as rate and length.

Also, application requirements may change from time to time. In such cases, it is desir-

able to have a flexible decoder that could easily be adapted to new requirements. The

adaptability of hardware to new requirements may depend on its architecture.

We will briefly discuss some of hardware implementation issues in the following sections.

We start with a broad classification of decoder architectures. A matrix rearranging

method is then suggested for reducing routing congestion and complexity for random

and fully parallel architectures.
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5.1 LDPC Decoder Architecture Overview

LDPC decoder architectures differ mainly in the arrangement of check and variable

processing nodes and their interconnections, message passing or scheduling, node im-

plementations and number of nodes. The interconnection between nodes can be done

using a variety of components such as memory blocks, buses and crossbar switches.

Message scheduling can also take various forms. The most common or natural scheduling

criteria is called flooding. In flooding all check node messages are sent to all variable

nodes after computation and vice versa. Other scheduling methods include staggering in

which only a fraction of nodes send on demand messages across[14]. Staggering tries to

reduce memory conflicts and improve computation units utilization. Depending on the

interconnection network and storage of messages there might be memory access conflicts.

Because the network is very likely not to accommodate all messages at the same time,

scheduling of messages is needed. During message transmission no computations are done

which reduces computation nodes utilization. Decoding equations can be implemented in

different forms, including approximations and look up tables. LDPC decoders are often

classified according to the number of processing nodes in comparison to the size of the

code. Below are the three classifications based on this criteria.

5.1.1 Number of Processing Nodes

Fully Parallel architectures

Fully parallel architectures resemble the bipartite graph of the parity check matrix of a

code as shown in Figure 5.1. There are mostly implemented for random codes. Each node

of the Tanner graph is mapped onto a processing unit. The nodes are connected by wires or

buses wherever there is a check-variable node connection in the graph. Hence the number

of check processing nodes is equal to the number of rows (M) and the number of variable

processing nodes is equal to the number of columns (N). The number of connections is

equal to the number of edges in the corresponding bipartite graph which is kM or jN . If

connections are not bidirectional the number of connections is doubled to 2kM or 2jN .

In each iteration each set of nodes computes probability ratios and messages. Messages

are then passed onto the opposite or adjacent nodes via the interconnection network.

The architecture is fast as it provides the maximum number of computation nodes and
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Figure 5.1. Fully parallel LDPC decoder architecture

communication wires. There is no queuing or scheduling of messages for computation or

communication. The number of decoding cycles is equal to the number of iterations. With

this architecture the throughput (number of decoded bits per unit time) depends on the

node and interconnection implementations. However, for large codes the interconnection

could be very complex and costly. The number of wires is very large and combined

with unstructured check-variable node connections and limited layers in a chip it can be

difficult to successfully do routing.The complex routing is due to the random connection

of rows and columns in the code matrix. Each ‘1’ or row-column connection in the

code matrix represents a wire/bus connection between processing elements (variable and

check nodes). The connections are random and over a large range which makes it almost

impossible to route for large codes. Blanksby and Howland in[27] developed a 1024-b

LDPC fully parallel irregular LDPC decoder. Although the decoder operated at a low

frequency of 64Mz with a throughput of 1Gbps, the interconnect occupied half of the

chip area. As reported in the article, the routing proved to be the main challenge of the

implementation. Fully parallel architectures are also not flexible and not scalable. There

are unable to execute codes with different parameters such as rate. As the size of the

code increases the complexity of the architecture also increases.

Serial architectures

Fully parallel architectures instantiate each node and edge of the Tanner graph. The

architecture requires maximum hardware with respect to the size of the code. The other
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Figure 5.2. Serial LDPC decoder architecture with unidirectional connections.

extreme case would be to provide minimum hardware. Serial architectures as shown in

Figure 5.2, have one check and one variable node computation units. The check node

unit processes one row at a time and the variable node does the same with columns.

As in fully parallel architectures the interconnection network could be bidirectional or

unidirectional. Figure 5.2 shows two unidirectional connections. Serial architectures are

very flexible and less costly compared to fully parallel ones. Any code structure could

be executed on this architecture. However, serial implementations would not meet time

constraints of most applications[14] which require high throughputs. Examples of serial

decoder implementations can be found in [86][87].

Semi-parallel architectures

To improve throughput of serial architectures and reduce the complexity and cost of fully

parallel architectures, semi-parallel architectures have been developed. Several processing

nodes are implemented with an interconnection network between the two set of nodes as

shown in Figure 5.3. The number of nodes, F and T , are much smaller than M and N

and are greater than one. Hence, several columns or rows are mapped onto a single node.

Semi-parallel architectures are often based on structured codes. The choice of intercon-

nect network and scheduling of messages depends on the structure of the target code.

Semi-parallel architectures have reduced cost and complexity compared to fully parallel

architectures as there are fewer nodes. They are also easily scalable. However, they have

less throughput. The throughput depends on the number of processing elements,F and
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Figure 5.3. Semi-parallel LDPC decoder architecture with unidirectional connections.

T . Throughput can be traded with hardware cost to suit target application. Examples of

semi-parallel architectures are found in [14][88][89][90] and many other references within.

5.1.2 Reduced Hardware Complexity

Besides the number of nodes there are other issues to be considered when designing

LDPC hardware architecture. Although serial and semi-parallel decoders instantiate a

small number of nodes they could still be large in area due to large memory required

to store messages prior to transmission to adjacent nodes. There are several techniques

which have been suggested to reduce decoder memory. Most techniques use variations

or approximations of the MPA algorithm commonly referred to as reduced complexity

algorithms. These algorithms reduce the number of messages to be transmitted across

and in some cases the amount of intermediate values to be stored during calculations.

The min-sum algorithm reduces complexity by simplifying the check node update. Issues

related to its implementation and its modifications are explored in [91]. In [88] vari-

ous log-likelihood-ratio-based belief-propagation decoding algorithms and their reduced

complexity derivatives are presented. Performance and complexity of various reduced

complexity algorithms are compared in the paper. Other reduced memory implementa-

tions are suggested in [92][93] and [94].

Besides hardware size and complexity, decoding latency is one of the critical factors for

most applications. One major drawback of LDPC codes compared to Turbo codes is their
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low convergence rate. Turbo codes take on average 8-10 iterations to converge [4] while

LDPC codes typically need about 25-30 iterations to match the performance. A large

number of iterations means longer decoding time. The overall decoding time could be re-

duced by faster convergence of the decoding algorithm and faster or simpler computations.

Some of the reduced complexity algorithms mentioned above have faster convergence and

simplified computations reducing decoding time as well.

In [95] an early detection method is used to reduce the computational complexity and

delay. In this method nodes with a high log-likelihood ratio are considered reliable and

not likely to change in the next iteration. Hence only a fraction of nodes do their updates

in the next iteration. These nodes are not updated. They are instead passed as they are

saving computation time.

It has also been shown that message scheduling can affect the convergence rate and per-

formance of a code. Hocevar in [96] showed by simulations that the convergence rate

of LDPC codes can be accelerated by using ‘turbo scheduling’ applied on variable node

messages. In [97] it is shown analytically that the convergence rate for this scheduling is

increased by about twice for regular codes. Another scheduling algorithm based on den-

sity evolution was suggested in [98] which also doubles the convergence rate and improves

performance. Decoding time could also be reduced by overlapping computations[74][99].

Overlapping is discussed in detail in the next chapter.

The interconnection network is also a major consideration in decoder implementation.

The interconnection could dominate the decoder both in area and decoding time[27][100].

Different forms of interconnection networks include memory banks, crossbar switches,

multiplexors and buses. The choice of the interconnect depends on code structure and

scheduling of messages. Interconnection networks will also be covered in more details in

the next chapter.

5.1.3 Numeric Precision

Implementation of the MPA algorithm involves some complex operations, hyperbolic and

inverse tangents as described by equations 2.5 and 2.6. The MPA algorithm could be

simplified using approximations which reduce implementation complexity, but incurs de-

coding performance degradation. There are many complexity-reduced variants of the
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Figure 5.4. Rearranged LDPC matrix for reduced encoding.
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Figure 5.5. Shift encoder for quasi-cyclic LDPC codes.

MPA which have near optimum peformance[32][33][75][101]. The original MPA and its

variations are sensitive to finite quantization. A large number of quantization bits gives

more precision and better decoding performance. However, precision bits also affect hard-

ware cost and decoding delay. Large precision numbers need more memory for storage

and more time to read and process. Efficient hardware implementation of MPA requires

a tradeoff between algorithm performance and hardware cost. The effects of quantization

on performance have been measured in several articles in which a minimum quantization

of 4 to 6 bits is found to be close to the un-quantized MPA[33][101]. However, the precise

number of bits may vary depending on the algorithm used and target application. Quan-

tization could be varied or uniform. In varied quantization the LLR and intermediate

values use different number of bits. Uniform quantization has the same number of bits

for all computations.
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5.2 Encoder Implementation

Although most of research in LDPC codes is concentrated in decoder designs and imple-

mentations, encoder implementation also has significant complexity. The encoding com-

plexity involves a large amount of data and a large number of computations. A straight

forward encoding (uG) has O(N2) computational complexity[9]. The generator matrix is

dense, increasing the number of multiplication operations with the incoming word,u. In

[9], Richardson and Urbanke (RU), showed that linear time encoding can be achievable

through manipulation of some LDPC codes.They present methods for preprocessing the

parity check matrix and a set of matrix operations to perform the encoding. The pre-

processing could be done in software since it is done once for a code.

The parity-check matrix can be rearranged into sub-matrices of the form

H =

[

A B T

C D E

]

(5.1)

as shown in Figure 5.4, where A is of size (M − l) × (N −M), B is (M − l) × l, C is

l × (N −M), D is l × l and E is l × (M − l). T is a lower-triangular sub-matrix and l is

called the “gap”. If a codeword c = (u, p1, p2) then multiplying HcT = 0 on the left by

[

I 0

−ET−1 I

]

(5.2)

we get

[

A B T

−ET−1A + C −ET−1B + D 0

]









u

p1

p2









=

[

0

0

]

(5.3)

This gives two equations and two unknowns p1 and p2 since u is the known information

bit vector. It is then shown in [102], that the complexity of solving for the unknowns is

linear with respect to the code length, N, except solving for p1 which has the complexity

of O(l2). Hence to reduce the overall complexity of encoding the parity-check matrix is

permuted such that l is reduced or eliminated. Algorithms for permuting H such that l

is reduced are presented in [102].
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Cyclic codes such as quasi-cyclic could be encoded using shift registers taking advantage

of the cyclic structure as was done in [3] with cyclic codes. The cyclic parity-check matrix

produces a cyclic generator matrix. To multiply the input vector u with G, a shift register

could be used to hold u as in Figure 5.5. A network of connections and XORs are then used

to obtain the product. The interconnections of the register and XOR could be hardwired

based on a particular code or reconfigurable. The interconnection circuitry executes the

N−K multiplications to the u. After u is loaded, the shift register is shifted N−K times.

Each time the interconnection circuitry calculates the corresponding output to each input

bit. Examples of fast and efficient QC-LDPC codes encoding architectures based on this

technique are presented in [24][73][103][104].

5.3 Fully Parallel and Random LDPC Decoders

Some applications require low-power,area and high throughput hardware. They also re-

quire large size codes. Applications such as magnetic recording systems, are sensitive

in area and power[16]. For such systems a fully parallel decoder will be more suitable

than a serial or semi-parallel decoder. Parallel decoders may be operated at low fre-

quencies reducing power consumption. The large number of processing units increases

throughput and the unconstrained matrix design allows us to have better decoding per-

formance. However, for fully parallel decoders to be incorporated in these applications

we need to overcome the routing complexity. As already stated fully parallel and random

decoders have a high routing complexity and congestion of wires. The example decoder

implemented by Blanksby and Howland in [27] was only 1024 bit long but proved hard

to route. The large number of processing nodes and their unstructured interconnection

increase the complexity of routing. We propose the use of reordering algorithms to reduce

congestion and average wire length in fully parallel random decoders.

5.3.1 Structuring Random Codes for Hardware Implementation

There are techniques which have been suggested to reduce routing complexity in fully

parallel LDPC decoder architectures. In [105] the routing congestion and average wire

length are reduced by restricting the range of row-column connections as shown in Fig-

ure 5.6. Row-column connections are only in the shaded region. This produces localized
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Figure 5.8. Unordered and ordered random code matrix space.
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connections between check and variable nodes within restricted ranges. The reduction

in congestion depends on the amount of restriction. Performance simulations need to be

performed to analyze how much performance if any is lost due to the constraints on the

formation of the matrix. In [106] a similar method is used to minimize the maximum

number of wires (maximum cut-size) across the decoder chip area. The reduced number

of wires eases routing. However, constraining the parity check matrix may reduce decod-

ing performance of a code. The constraints may restrict parameters such as maximum

girth and rate that could be obtained for a given code size.

In [107] half-broadcasting of messages is used to reduce routing congestion and complex-

ity. In half-broadcasting computation and transmission of messages is delayed until near

the destination. As shown in Figure 5.7, conventionally node messages are computed and

broadcasted to their destinations using separate wires. In half-broadcasting message com-

putation units are moved closer to the destination nodes. A single wire is used to carry

needed values from one node to its destinations. Individual messages are computed closer

to the destinations. The scheme is reported to reduce average wire length by 40%[107].

A heuristic method is used to reorder columns of the parity-check matrix such that the

maximum wire length is reduced. For a 2048-bit code a reduction of 30% in maximum

wire-length was achieved. Half-broadcasting assumes destination nodes (nodes with a

common neighbor) can be placed close enough such that these nodes are not far from

the source. The reordering algorithm reduced the maximum distance between connected

rows and columns of the matrix.

We propose the use of sparse matrix reordering algorithms to reduce average wire length

and routing congestion in fully parallel LDPC decoders by first designing the code ma-

trix and then restructuring it for implementation. Sparse matrix reordering algorithms

reorder columns such that row-column connections move closer to the diagonal of the

matrix. Check nodes and their corresponding variable nodes are grouped closer together.

The reordering does not change the matrix graph hence its decoding performance remains

the same.
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Figure 5.9. Row-column connections for an 18×36 random code.

Reverse Cuthill-Mackee algorithm

There are several algorithms for reducing bandwidth and profile of a sparse matrix. The

bandwidth is the connection range of each row and profile is the area covered by row-

column connections. The effect of these algorithms is to shift connections closer to the

matrix diagonal thereby reducing the profile or area and bandwidth of connections. They

are used in many fields such as networking, parallel and distributed processing, profile

identification and layout problems in VLSI. Common algorithms include reverse Cuthill-

McKee (RCM), King’s and Gibbs-Poole-Stockmeyer (GPS) algorithms[108][109][110]. We

used the RCM algorithm to reduce the bandwidth (range of row connections) of random

LDPC connections. We did not get any significant difference with GPS or King’s algo-

rithms compared to RCM.

Reverse Cuthill-MacKee algorithm rearranges a matrix as follows. The code matrix is

converted into a corresponding bipartite graph with one set of vertices representing rows

and the other set columns. Edges are made between the vertices if there is a ‘1’ entry

in the corresponding row-column matrix location. The vertices are numbered from 1 to

M + N . The RCM algorithm [108] proceeds as described below.

1. Choose a vertex (v) with a lowest edge degree, breaking ties arbitrarily. Number

the vertex as level 1.

2. Number all the unvisited neighbors of v in increasing order by increasing degree.
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Figure 5.10. Permuted 18×36 random code.

3. Repeat the process for the neighbors of the visited vertices until all the vertices of

the graph are visited.

4. Starting with vertices with the highest level (numbering), renumber the unvisited

neighbors with decreasing degree until all vertices are renumbered.

The original Cuthill-Mackee algorithm does not have the last (reverse) step. In

[109] it was shown that the reverse numbering of the Cuthill-Mackee algorithm achieves

bandwidth equal to or less than of the original algorithm. Hence reverse Cuthill-Mackee

(RCM) is more commonly used. The algorithm does not guarantee a minimum bandwidth

and the results may depend on the starting vertex.

Although reordering matrix algorithms are mostly applied to symmetric matrices they

have the same effect on nonsymmetric matrices. A LPDC code matrix is rectangular and

non-symmetric. Random code connections may cover the whole matrix space as shown in

Figure 5.8 (a). After reordering the matrix using the RCM algorithm the connection space

takes a shape similar to that shown in part (b) of Figure 5.8. The algorithm takes each

row and connects all its neighbors (columns) and vice versa. Each row has a maximum of

k neighbors and each column a maximum of j neighbors. After a row has visited all its

neighbors the algorithm moves to another row producing a ‘stairs’ shape as shown in the

figure. Since there are N columns, a maximum number of N
k

rows can have no overlaps

in their connections. Therefore the last column cannot be connected to a row less than
N
k
. Also a maximum number of M

j
columns can have no overlaps in their connections

as marked in the figure. Any given matrix with row and column weights k and j will
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Figure 5.11. Column-row ranges for a random (36,3,6) LDPC matrix.

produce the ‘stairs’ shape with points k,j and N
k

and M
j

as marked in figure.

From this general shape of the rearranged matrix we can approximate the reduction in

area. Since k << N and j << M we assume the lengths or heights of the two unshaded

triangles of the rearranged matrix space are N and M . Then the area of the two triangles

is given by

Unshaded Area =
M2

2j
+

N2

2k
(5.4)

The total area is MN , hence the relative area reduction is Unshaded Area
MN

.

Area Reduction =
M

2Nj
+

N

2Mk
(5.5)

From the relationship between code weights and matrix size given by

N −M

N
= 1−

j

k
(5.6)

we get
M

N
=

j

k
(5.7)
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Figure 5.12. Unordered random matrix space, with average wire length of 500.
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Figure 5.13. Rearranged random matrix space with average wire length reduced by 13%.

Substituting (5.7) in (5.5) we get area reduction of

Area Reduction =
1

2j
+

1

2k
(5.8)

Small weights will have larger reduction in area. For a (N, 3, 6) code the area is reduced

by at least a quarter.
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Figure 5.14. Row ranges or bandwidths for the original and rearranged matrices.
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Figure 5.15. Maximum cut is the number of row-ranges crossing a column.
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Figure 5.16. Number of vertical row-range cuts for columns.
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Simulation Results

A (36,3,6) random code with girth of six was used to show how row connections and

ranges can vary before and after applying the RCM algorithm. Figure 5.9 shows row-

column connections for this code. The connections cover the whole matrix space. After

reordering the matrix, row-column connections are moved closer to the diagonal as shown

in Figure 5.10. The reordered matrix connections are similar in shape to the general

shape of Figure 5.6 except that the other connection-free triangle is very small in this

case. Figure 5.11 shows the row-column connections of both permuted and the original

random codes. The plots show the range of each row, that is, the minimum and maximum

column connections for each row. The original matrix connections vary widely from row

to row whereas in the reordered code connections vary slightly. The lower variation would

reduce routing complexity in that consecutive processing nodes would have wire length of

approximately the same size. The ranges for rows also increase or decrease slightly. The

area covered by the ordered matrix is also reduced.

Figures 5.12, 5.13 ,5.14 and 5.15 are results for a larger random code of size 500x1000.

After reordering the connection space is reduced as shown by graphs of Figure 5.12 and

5.13. Figure 5.14 shows the maximum range for all the rows. The maximum row connec-

tion does not change but the average for all the rows is reduced by 30%.

The number of cuts for each column is the number of row connection ranges that cross

the column as shown in Figure 5.15. It measures the number of wires to cross a particular

area of a chip assuming the decoder chip follows the matrix layout. Figure 5.16 shows the

number of row connections ranges crossing each column for a 500 × 1000 random code.

As expected the middle columns have more cuts compared to extreme end columns. The

unordered matrix (top curve) has a large maximum cut. The maximum number of cuts

or cut-size is reduced by 24% whereas the average falls by 30% after reordering. Similar

results were obtained for different code sizes as shown in Table 5.1. The first values are

for rearranged matrix and the second for the original matrix.

Reordering algorithms could be used as part of the node placement algorithm to reduce

the average wire length. Unlike the algorithm suggested in [107], in our experiments, the

maximum wire length is not reduced. The overall wire length is reduced by reducing the

average distance between connected rows and columns.
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Table 5.1. Results for different parity-check matrix sizes. (original/reordered matrix)

Code Size Ave. row-range Max row-range Ave. col-range Max cut-size Ave. cut-size

350x808 314/357(12%) 800/798 428/602(29%) 256/345(26%) 185/264(30%)

500x1154 243/512(15%) 1133/1137 604/866(30%) 373/492(24%) 266/375(29%)

800x1848 703/804(13%) 1829/1827 965/1379(30%) 598/790(24%) 421/596(30%)

1200x2773 1037/1189(13%) 2766/2761 1455/2046(29%) 878/1168(25%) 618/881(30%)

5.4 Summary

LDPC code design depends on many parameters. They could be obtained by a variety of

construction methods. Their hardware implementations are also as varied as their con-

struction. There are many issues to be considered when designing LDPC encoders and

decoders. Decoder architectures are broadly classified according to the number of process-

ing nodes compared to the size of the code. Beyond the number of processing nodes, the

list of other factors to be considered include the type of MPA algorithm, node architec-

ture, scheduling, quantization, interconnection network and corresponding encoder. Most

of these factors overlap in determining the size and processing time of the hardware and

code performance. There are several methods already suggested for tackling each issue,

the appropriate choice will depend on the target application and tradeoffs between per-

formance, size and processing time.

Hardware LDPC decoder architectures are based on the structure of LDPC codes. Fully

parallel decoders have high interconnection complexity. Reordering the code matrix can

reduce the area and average wire-length of interconnections. Reordering algorithms move

row-column connections closer to the diagonal. Although the matrix space does not ac-

curately represent an actual chip floor plan, the results obtained show that rearranging

rows and columns of a LDPC code could reduced the routing complexity. On average

using RCM, wire-length reduction of 15% was achieved with average maximum length

and maximum cut-size at 25% and 30% respectively for a code a 1K. The gradual in-

crease/decrease in connection range of consecutive rows would reduce placement com-

plexity. The reordering also makes the connections more predictable. We get the same
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shape for all the matrix, therefore optimized placement and routing algorithms for this

type of shape or profile could be developed.
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Chapter 6

Quasi-Cyclic LDPC Decoder

Architectures

Partly parallel architectures are often designed for structured codes. Structured codes

have characteristics that could be exploited to reduce hardware implementation cost and

complexity. In particular the structure of a code affects the processing node intercon-

nection network choice and message scheduling. Quasi-cyclic codes are one example of

structured codes that have reduced hardware complexity and cost in both the encoder

and the decoder. Quasi-cyclic codes are constructed by division of the code matrix into

sub-matrices which divides rows and columns into groups that can be mapped onto a

single processing node. The cyclic shifting of identity sub-matrices simplifies routing and

addressing of messages within processing nodes. The cyclic structure could also be ex-

ploited to reduce encoding hardware and delay.

LDPC decoders for quasi-cyclic codes can be realized in many different architectures ex-

amples of which are found in [9][74][84][111] and references within. Decoder architectures

mainly differ in processing node interconnection, communication scheduling and node im-

plementations. As was stated in the previous chapter, several issues need to be addressed

in some way to design and implement an efficient decoder for a particular application.

In this chapter we look at inter-connection networks and message overlapping techniques

for quasi-cyclic LDPC codes. In the first half of the chapter we explore the use of multi-

stage interconnection networks as a means of communication between check and variable

processing nodes. Although multi-stage networks have large delays compared to other

communication implementations they are more flexible in accommodating a wide range
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code designs.

In the second half of the chapter we discuss message overlapping techniques for quasi-cyclic

codes. Overlapping could reduce decoding time by up to 50%. We adopt the technique

of matrix permutation to quasi-cyclic codes, introduce matrix space restriction and dis-

cuss modifications to the existing technique of overlapping quasi-cyclic codes by aligning

sub-matrices internally. The amount of overlapping that could be achieved by each tech-

niques is analyzed. A quasi-cyclic structure obtained by configuration of sub-matrices

as was done with proposed construction algorithm in Chapter 4 is assumed throughout

the chapter.Lastly we propose a flexible and high-throughput LDPC decoder based on

developed computation overlapping techniques and our proposed QC-LDPC construction

algorithm.

6.1 Interconnection Networks for QC-LDPC Decoders

As with other LDPC codes decoders, interconnection of the nodes in QC-LDPC decoders

could be implemented by memory banks, hardwired, crossbar switches or multistage in-

terconnection networks as was described in the previous chapter. Most suggested and

implemented decoders use memory banks and hardwired interconnect[74][84]. The advan-

tage of QC-LDPC codes is that rows and columns in a group (sub-matrix) are connected

to the same group. Group messages or data could therefore be stored and transmitted

as a group. This reduces the number of addresses and transmissions compared to when

rows and columns are accessed and transmitted individually.

6.1.1 Hardwired Interconnect

A hardwired interconnection network could be used in a QC-LPDC decoder as shown in

Figure 6.1. In such an architecture, one or more sub-matrices or group of rows or columns

are mapped on to a processing node. Each processing node computes results for each row

or column group. The processing nodes could have one or more processing units for serial

and vector processing respectively. Messages are exchanged directly between processing

nodes along the connecting wires. The communication could also be serial or in vector

form. Although the direct communication between nodes provides fast communication,

it does not match all matrix configurations hence restricting the type of codes that could
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Figure 6.1. Block diagram of LDPC decoder direct interconnection nodes.

be run on the decoder.

The interconnection graph between processing nodes determines sub-matrix configuration

of the parity-check matrix. As was also pointed out in the previous chapter, the intercon-

nection architecture requires multiple ports which are expensive in hardware. Large row

and column weights will require a large number of ports. Mapping several row or column

groups to a single processing node could reduce the number of ports needed, however, it

further restricts the flexibility of the decoder. Codes with a large number of sub-matrices

per row or column compared to row or column weights can be mapped onto the architec-

ture if the sub-matrix configuration is a replication of the decoder interconnect.

Figure 6.2 (a) shows a matrix in which a (3,4) structure is replicated three times. The

matrix can be mapped onto the architecture in Figure 6.1 as it appears with three rows to

each check processing node and three columns to each variable processing node. However,

if the sub-matrix configuration is random as in part(b) of the figure, then the configura-

tion does not fit the decoder interconnect of Figure 6.1. For such configurations a more

flexible interconnect is needed.

6.1.2 Memory Banks

A memory bank interconnect such as the one in Figure 6.3 could be used for execut-

ing QC-LDPC codes. In this architecture, code sub-matrices are mapped onto memory

banks. Processing nodes communicate by storing and reading data to or from memory.

The processing could also be in serial or in vector form in each sub-matrix. One advantage

of this architecture is that it uses half the memory compared to other interconnections as

Page 111



6.1 Interconnection Networks for QC-LDPC Decoders

 

Sub-matrix configurations 

1   1    1  1   

 1   1  1    1  

  1   1   1   1 

 1   1    1   1 

1     1 1    1  

  1 1    1  1   

  1  1   1    1 

 1  1   1   1   

1     1   1  1  

(a) 

1 1 1 1         

  1 1      1 1  

 1    1  1    1 

  1    1 1 1    

1 1   1       1 

1     1  1   1  

      1  1 1  1 

   1 1     1 1  

    1 1 1  1    

(b) 

Figure 6.2. Sub-matrix configuration for a parity-check matrix.

both check and variable processing nodes share the same memory banks. As in hardwired

interconnect, multiple ports are required.

Larger codes in terms of sub-matrices are executed by mapping more than one sub-

matrix onto a memory bank. However, not all sub-matrix configurations can be efficiently

mapped onto the architecture. Like the hardwired interconnect, the architecture is well

suited for codes which are an exact replication of the decoder interconnect. For exam-

ple, the configuration of Figure 6.2 (a) can be mapped onto the architecture with each

memory bank holding exactly three sub-matrices. However, if sub-matrices are randomly

configured as in part (b) of the figure, some memory banks will have more or less than

three sub-matrices. For example, the first row is connected to the first three columns

which are in the same memory bank. To access messages for the first row, the check node

has to read the same memory bank three times. Memory banks with more sub-matrices

will create an access bottleneck increasing communication delay. This architecture is not

flexible enough to execute the randomized sub-matrix configuration efficiently.
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Figure 6.4. Crossbar communication network.

6.2 LDPC Communication through Multistage Networks

Hardwired interconnection and memory banks require multi-ports for processing nodes

and are generally not flexible. Crossbar switches could be used for QC-LDPC decoder

interconnect to offer flexibility as shown in Figure 6.4. Each check processing node has

a switched connection to each variable processing node. Any sub-matrix configuration

could be mapped onto the interconnect. The challenge would be to have a mapping that

has the lowest communication scheduling time.

Although a crossbar switch offers maximum flexibility it is expensive to implement for

a large number of nodes. The number of switches required is m × n, where m and n
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Figure 6.5. Block diagram of a LDPC decoder using multistage networks.

are the number of nodes. Multistage networks have been used in areas where crossbar

switches are prohibitively expensive. They could also be used in connecting check and

variable processing nodes in LDPC decoders as shown in Figure 6.5. Two unidirectional

networks are used for communication. A single bidirectional network could also be used.

For message overlapping, which is covered later in the chapter, two networks are required.

Multistage networks offer flexibility at a reduced cost. They have a reduced number of

switches compared to crossbar switches. However, the number of switches is reduced at

the expense of increased delay because of the increased number of stages. These networks

also have higher scheduling and routing complexity as data has to be routed through the

network using a defined scheduler and routing algorithm.

Multistage stage networks were suggested as a means of communication in a LDPC de-

coder in [22]. The decoder was implemented by Flarion Technologies Inc.[112] for a wide

range of codes the details of which are withheld. The design does not specify the type

of multistage network used or if it is used at all. Olcer [111] uses banyan multistage net-

works for decoder architecture based on array QC-LDPC. Array codes have the number of

sub-matrices in rows and columns equal to row and column weights respectively with the

sub-matrix size as a prime number. Messages for sub-matrices in array codes can be sent

in ascending or descending order through a banyan network without data collisions (data

sent to the same output at the same time). Quasi-cyclic codes in which more than row

or column-weights of sub-matrices are used and randomized in configuration, scheduling
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data in ascending or descending order may increase the number of transmission cycles.

For such matrices, we suggest a Benes multistage network.

6.2.1 LDPC Communication

LDPC code computations produce many messages at the same time. Each check node

needs k messages for each computation producing k outgoing messages to k variable

nodes. Each variable node receives and sends j messages from and to j check nodes. In

hardwired and memory banks communication networks, k and j paths are required.

With multistage networks, there is only one connection port between a processing node

and the network. Therefore, messages need to be scheduled in and out of the processing

node. Also there are no dedicated paths through the network. There is a possibility of

data collisions as data is routed through the network. Handling data collisions requires

extra hardware and will increase communication delay. To efficiently send data across the

network without data collisions scheduling and routing of messages are needed.

Data collisions could be avoided by scheduling communication using edge coloring. The

Tanner graph is edge colored such that no vertex (nodes) have the same color more than

once. Scheduling data sequentially by color ensures that each node sends or receives one

distinct data (color) at a time to and from a distinct node. A bipartite graph could be

edge-colored using the number of colors equal to the highest edge degree, which is the

highest check node degree in LDPC codes [113]. Since the row/column group connections

do not change through the lifetime of a code, a scheduling timetable can be computed

and stored. The scheduling timetable is determined by edge coloring. The advantage of a

multistage network compared to hardwired and memory banks is that more flexibility is

allowed in sub-matrix configuration. Sub-matrix configuration does not necessarily have

to match the interconnection structure. This is possible because every check node has

a connection to every variable processing node and vice versa. The random sub-matrix

configuration example of Figure 6.2 (b) can be mapped onto the decoder with a multistage

network in such a way that the communication delay is reduced. Scheduling and routing

through banyan and Benes networks are discussed below.
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Figure 6.6. 2× 2 switch passes input data to lower or upper output port.

6.2.2 Multistage Networks

Multistage networks are built by small switches arranged in stages. In our case we con-

sider only binary switches. A binary switch has two inputs and outputs as shown in

Figure 6.6. We also assume that routing is determined by addresses attached to input

data and that each switch senses and then removes one bit address from the input data.

The switch routes data to the upper output port if input address tag is ‘0’ and to the

lower output port if its address tag is ‘1’.

There are a wide variety of multistage interconnection networks varying in topology

(switch interconnection), routing, switching strategies, flow control, delay and cost. Based

on the LDPC communication pattern discussed above, a non-blocking (no internal data

collisions at ports), self-routing and cheap network is most desirable. Blocking networks

would increase the number of communication cycles and decoding delay. Self-routing

networks determine the path of data based on address tags or bits attached to the data.

Since routing is pre-computed, self routing offers a low routing complexity. The cost and

delay of networks is determined by the number of switches. Based on these characteristics

we determined that banyan and Benes networks are most appropriate for structured and

semi-parallel LDPC decoder interconnect.

6.2.3 Banyan Network

Banyan networks are a family of multistage interconnection networks that have a single

path between inputs and output. They are blocking and self-routing networks with slog2s

switches and log2s stages, where s is the number of inputs or outputs. They have the

fewest number of switches and stages compared to other types of networks[114]. Banyan

networks are non-blocking if the data is sorted in decreasing or increasing destination

address order[111]. When the number of row and column groups is equal to the row and
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Figure 6.7. 4x4 and 8x8 banyan networks.

column weights, group scheduling could be done in k steps in ascending or descending

order. Hence for codes with j and k number of groups, banyan type networks could be

used in the architecture of Figure 6.5. Examples of banyan networks include Omega and

Delta networks[114]. Figure 6.7 shows 4×4 and 8×8 banyan networks. Banyan networks

are built recursively using binary switches. The last two stages of the 8 × 8 network is

made up of two 4× 4 networks.

Tables 6.1 and 6.2 show scheduling and routing information for an (N, 3, 4) code

through a 4 × 4 banyan network. In variable-to-check node communication (Table 6.1)

there are more source nodes than destination nodes. Three nodes (variable nodes,V N)

send data at a time to match with the three destination nodes (check nodes,CN). The

table shows the source variable nodes and destination check nodes together with the

address tag for the three data transmissions. The notation X − Y (ZZZZ) is used to

show the source, destination and address, where X is the source, Y is the destination

and (ZZZZ) is the routing address. The last three columns of the table show variable

nodes from which check nodes are receiving their data. The information could also be

found from columns 2 to 5. The destinations always appear in sorted or cyclic order

in each schedule. The ith stages of the network uses the ith bits of the address tags to

determine the direction of the inputs data. In Table 6.2 three check nodes send data

to four variable nodes. All check nodes send data at the same time to different and or-

dered variable nodes. Four schedules are also required to send all data across the network.

Banyan networks could be used with quasi-cyclic codes with zero sub-matrices (num-

ber of row or columns groups larger than k or j) if the parity-check matrix is obtained

by replication of a basis matrix as in Figure 6.2 (a). Exactly three rows or columns are
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Table 6.1. Variable to check nodes communication

schedule V N0 − CN V N1 − CN V N2 − CN V N3 − CN CN0 CN1 CN2

1 0-0(0000) 1-1(0101) 2-2(0010) 0 1 2

2 0-1(0001) 1-2(0110) 3-0(0100) 3 0 1

3 0-2(0010) 2-0(0000) 3-1(0101) 2 3 0

4 1-0(0000) 2-1(0101) 3-2(0010) 1 2 3

Table 6.2. Check to variable nodes communication

schedule CN0 − V N CN1 − V N CN2 − V N V N0 V N1 V N2 V N3

1 0-0(0000) 1-1(0101) 2-2(0010) 0 1 2

2 0-1(0001) 1-2(0110) 2-3(0011) 3 0 1

3 0-2(0010) 1-3(0111) 2-0(0000) 2 3 0

4 0-3(0111) 1-0(0000) 2-1(0101) 1 2 3

mapped onto each check or variable processing node respectively. Taking the groups in

each processing nodes as one large group, the groups can be scheduled as in Tables 6.1

and 6.2. The difference is that in the expanded structure there are three sub-matrices

in one schedule. With the basis matrix it takes k cycles to schedule messages across the

network as shown in Tables 6.1 and 6.2. When the basis graph is replicated three times,

then the number of communication cycles is 3k.

If the sub-matrix configurations are randomized as in Figure 6.2 (b) sorting the input

does not guarantee the same communication delay. The configuration in Figure 6.2 (b)

could be scheduled through a 4 × 4 banyan network with sorted destinations. Since the

sub-matrices are not evenly distributed, sorted scheduling will likely be more than 3k

cycles.

The communication delay will also depend on how data is used. If data is produced and

consumed immediately scheduling in sorted criteria may not produce the shortest delay.

When destination addresses are not ordered there is a possibility of data collisions in the

network. There are various techniques used to overcome this limitation [115][116]. The

techniques include sorting the data before inputting it to the banyan network, providing

alternative or extra paths, buffering etc.
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Figure 6.8. A 8x8 Benes network.

The drawback of these techniques is that they either add more hardware or delay. Some

techniques such as addition of extra paths, do not completely eliminate the possibility of

a collision. For codes with a larger number of sub-matrices than row or column weights

scheduling by sorting according to destination may result in more communication delay.

The scheduling may not be done in 3k cycles. For such configurations rearrangeable

networks such as a Benes network would be more appropriate compared to a banyan

network.

6.2.4 Benes network

A Benes network is the least costly rearrangeable network with O(slogs) switches[117][118].

Figure 6.8 shows an 8 × 8 Benes network with five stages. Rearrangeable networks are

non-blocking if the data is rerouted for each input-output combination. The path of data

at a particular input depends on the destination of other inputs to the network. Since

all LDPC code input-output permutations are known before transmission, all the rout-

ing addresses can be pre-computed. Addresses are used at each stage to direct the data

to the correct destination. Routing in a Benes network could be done using a looping

algorithm[117]. To realize a given input-output permutation (inputi, outputi, i = 1...s) in

an s × s Benes network, for each connection (inputi, outputi) the algorithm determines

whether the connection goes through the upper or lower s
2

subnetwork. The process is

repeated recursively for each of the subnetworks. The upper subnetwork is given a 0

address and lower subnetwork a 1.

Randomly distributed or arranged sub-matrices as in Figure 6.2 (b) can be routed through

a Benes network more efficiently than on a banyan network. The Benes network has more

paths and does not require that inputs destinations be sorted.
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6.2.5 Vector Processing

With the communication through multistage networks described above, serial or vec-

tor processing of sub-matrices in the check and variable nodes could be used. If serial

processing is used the decoder would be very inefficient. For each processing check node,

k messages are to be read or received one at time. k messages are also sent out one at a

time since there is only one port in or out of the processing node. The same applies to

variable processing nodes with j messages. With serial communication it takes kp cycles

for communicating, where p is the size of sub-matrices. The single-instruction multi-data

(SIMD) processing of LDPC decoding suits vector processing well. In semi-parallel archi-

tectures the number of processing elements is less than the size of the code. Processing

nodes could read and process many rows or columns per memory access. Processing one

row requires k reads and writes and j for a column. When several nodes are read and

processed at the same time k or j read/write will serve several rows or columns at the

same time. With vector processing and communication it takes kp
f

cycles for transmis-

sion of messages, where f is the vector size. Vector processing reduces decoding delay

and power consumption by reducing the number of memory reads and writes. However,

vectorization comes at a cost with more processing nodes, large ports, buses and network

switches.

6.3 Message Overlapping

Besides MPA algorithm modifications for faster convergence and computations, decoding

time could be reduced by overlapping variable and check node computations and commu-

nications. Traditionally variable node computations start after the entire cycle of check

node processing is completed and vice versa. Generally it cannot be guaranteed that all

messages for a particular row or column would be available when needed if overlapping

of computations is done arbitrarily. Figure 6.9 (a) shows conventional node computation

scheduling (Communication time is assumed to be included in check and variable process-

ing times). In the first half of each iteration check nodes are processed and variable nodes

are processed in the second half. Without overlapping, one iteration is the time it takes

to process all check nodes plus the time to process all variable nodes.
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Figure 6.9. Computation scheduling of check and variable nodes with and without overlapping.

There are more variable nodes than check nodes in a Tanner graph. However, check

nodes have more connections and higher computational complexity compared to variable

nodes. For simplicity, we assume it takes q clock cycles to process one set of nodes (this

assumption does not affect decoding time analysis). Then conventional decoding time is

2nq cycles, where n is the number of iterations. With overlapping of node processing,

variable nodes start processing while the check nodes have not completed their processing.

Check nodes also start processing while variable nodes have not processed all of the

columns.

In the first iteration variable nodes wait a number of cycles,w, for some columns to have all

their messages (check to variable messages) updated for computations. Part (b) of Figure

6.9 shows overlapped node processing for n iterations. With overlapping, the number

of decoding cycles could be less than 2nq. The decoding time is equal to the number

of cycles for processing check nodes plus the number of cycles check node processing is

stalled. Nodes are stalled when they have to wait for their messages to be updated before

computations. It could also be calculated as the number of variable nodes processing

plus stalls. Overlapping decoding time is hence expressed as nq + (n − 1)wc + w or

nq + (n − 1)wv + w using check and variable nodes processing times respectively. Inter-

iteration waiting times, wc and wv are the number of cycles that check and variable nodes

are stalled between iterations. The number of overlapping decoding cycles approaches nq

as w,wc and wv approach zero, which is half the conventional or non-overlapping time.

Overlapping decoding gain in time is given by

Gain =
2nq

nq + (n− 1)wv + w
(6.1)
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Figure 6.10. Plot of gain with respect to the number of iterations when inter-iteration waiting time

is zero.

If wv is zero the gain is given by

Gain =
2nq

nq + w
(6.2)

As w tends to zero, gain tends to 2. Also, as w tends to q gain can be expressed as

Gain =
2n

n + 1
(6.3)

which depends on the number of iterations and approaches 2 for large n.

According to equation 6.3 if the inter-iteration stalls are eliminated and the waiting, w,

is as large as q, the gain largely depends on the number of iterations only. Figure 6.10

shows a plot of gain versus the number of iterations using equation 6.3. The rate of

increase in gain decreases considerably beyond twenty iterations with at least a gain of

1.9. The graph shows that if inter-iteration waiting times are eliminated the gain is still

good even if the waiting time,w, is not short (compared to q) with a sizeable number of

iterations. The gain is reduced when the inter-iteration waiting times are non-zero. In

this case the gain depends on how much wv is compared to q. Larger inter-iteration times

would adversely reduce gain as they are multiplied by the number of iterations. Therefore
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Figure 6.11. Plot of gain with respect to waiting times compared to sub-matrix size,p.

keeping wv as small as possible is important in maximizing the gain. Assuming wv is the

same as w the gain equation can be written as

Gain =
2nq

nq + n(wv)
=

2nq

nq + nqf
=

2

1 + f
, (6.4)

where f = wv

q
. With this equation the gain depends on how much the waiting times are

compared to the size of check or variable nodes,q. If there are almost zero then the gain

is 2, and if there are as large as the q there is no gain. Figure 6.11 shows the gain plot

with varying f . For gain to be above 1.9, the waiting times have to be less than 0.05q.

The assumption that wv = w above is valid in some cases. It depends on the techniques

used for overlapping as we will see in the following sub-sections.

For overlapping to work all messages for some columns must be available while some

rows are still being processed. The same is true with rows. In [99] overlapping is achieved

by matrix permutation for any matrix while in [119] the choice of starting rows and

columns allows overlapping in quasi-cyclic codes. Overlapping does not only increase

throughput by reducing processing time, it also improves hardware utilization efficiency.

Hardware utilization efficiency is the amount of time processing units are used over the

overall processing time. The increase in throughput is directly proportional to hardware

utilization efficiency. Without overlapping, processing nodes are unused half of the time.

Page 123



6.3 Message Overlapping

 

Matrix space 

columns 

rows 

Rows and columns with no 

connections in common. 

Figure 6.12. Row-column connections space.

When check nodes processing units are computing, variable nodes processing units are

idle. Below we suggest new methods and modify existing methods of overlapping check

and variable node computations for quasi-cyclic codes.

6.3.1 Matrix Permutation

A LDPC matrix could be rearranged such that rows and columns that do not have connec-

tions are separated and are at extreme ends of the matrix space. With such a separation,

rows and columns with no connections in common can be processed in parallel. Figure

6.12 shows a matrix space in which some rows and columns do not have connections in

common. Row-column connections are in the shaded area. Since the top-left rows do not

have connections to extreme right columns, these rows and columns could be processed

at the same time as they do not have data dependencies.

An algorithm was suggested in [99] to rearrange a given parity-check matrix such that

row-column connections with no connections in common are separated. The algorithm

effectively moves row-column connections closer to the diagonal such that empty spaces

are left at the left-bottom and top-right corners. Since top-left rows do not have connec-

tions at top-right corner, their processing could be overlapped with that of columns at

bottom-right corner. The permutation algorithm as suggested in [99] is as described below.
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Matrix Permutation Algorithm

1. Initialize row and column sequences to null.

2. Select a row rk randomly.

Order row indices randomly and pick the first one. Go to step 4.

3. If all the rows contained in a column are selected, such a column is called a com-

pleted column. If a column contained in a row is also in the column sequence, it is

called a common column of the row. For each unselected row, count the number of

common columns (CC) and the number of columns to be completed (CTC) when

the row is selected. Select a row from unselected rows, ri, that has the maximal

CTC. If there are more than two rows associated with the maximal CTC, select the

one that has the largest CC.

The row sequence is appended by ri, and the column sequence is enlarged by ap-

pending the columns of ri that are not in the current column sequence.

4. Find completed columns, and move them to the front of the first uncompleted

column in the column sequence.

5. If there are unselected rows, to go step 3.

6. Permute the parity-check matrix according to row and column sequences.

Steps 3 to 5 of the algorithm does the permutation of the matrix. The algorithm

tries to move connections between rows and columns closer together. This is done by con-

necting rows and columns that are likely to form a cluster. This is achieved by selecting

that have maximal CTC in step 3 of algorithm. Moving row-column connections together

separates row and columns that do not have connections. Rows and columns that do

not have connections in common do not have data dependencies and could therefore be

processed in parallel.

The matrix permutation algorithm can be applied to any matrix (random, structured,

any size etc). Its effectiveness depends on the structure of the code (row-column inter-

connections and row and column weights). The algorithm is similar to sparse matrix

reordering algorithms such as RCM, King’s and GPS, which were used in the previous
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chapter (section 5.2.1) to reduce matrix space and overall connection ranges. It is in par-

ticular similar to the King’s algorithm in that it moves rows or columns which are likely

to form a cluster first. We can thus use known sparse matrix permutation algorithms

such as the ones mentioned here to reorder LDPC matrices.

As was shown in the previous chapter the reduction in row-column connection area de-

pends on row and column weights, with smaller weights having larger reductions (equation

5.5). Hence high rate codes will offer smaller overlaps. In [99] a time reduction of 25%

was obtained for a (N, 3, 6) example matrix.

Figure 6.13 (a) shows an example of a (12, 3, 4) LDPC matrix. The matrix could be

rearranged such that connections are closer to the diagonal as in part (b) of Figure 6.13.

As a result some row and column computations could be overlapped. For example if there

are three check node processing units and four variable node units, scheduling could be

done as shown in Figure 6.14 with two iterations. After processing rows 1 to 6, columns

1 to 4 will have all their messages updated. When check nodes are processing the last

group of rows, variable nodes can start processing the first group of columns. In the

second iteration rows from group one have all their messages after two column groups

are processed so check nodes also have to wait one group cycle to start processing. The

first and second iteration scheduling is repeated in the subsequent iterations. With this

overlap the decoding time is reduced by a third.

We propose to apply matrix permutation matrix to quasi-cyclic codes by using the

permuted matrix as a basis matrix. To construct quasi-cyclic codes we design a small code

such as the example in Figure 6.13 to be the basis matrix. An expanded matrix is then

obtained from the basis matrix by replacing each ‘1’ by a p×p shifted identity sub-matrix

and each ‘0’ entry by a p×p zero sub-matrix. The identity matrices are shifted according

to the construction algorithm developed in chapter 4 to get a girth of at least six. The

expanded code has the same overlap and reduction in processing time as the basis matrix

with the number of processing units remaining the same.

6.3.2 Matrix Space Restriction

Reducing decoding time by matrix permutation is limited especially when column and

rows weights are high. With high weights it is harder to have all connections localized

without having connections covering the whole matrix range. We propose another method
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Figure 6.13. Scheduling by rearranging the matrix (a) original constructed LDPC matrix (b) re-

arranged LDPC matrix.
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Figure 6.14. Overlapped processing of the rearranged matrix.
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Figure 6.15. Overlapping by matrix space restriction.
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Figure 6.16. Quasi-cyclic basis matrix (a) without space restriction (b) with space restriction.

that achieves check and variable node computations by deliberately isolating nodes with-

out connections in common. We call this method or technique, matrix space restriction.

The row-column connections of a code matrix are constrained such that there are blocks

of rows and columns that could be processed in parallel without data dependencies.

Figure 6.15 shows matrix space row-column connection restrictions divided into two row

and three column groups respectively. Connections are made in the shaded region. The

space is divided such that some check and variable node computations can be overlapped.

The top rows do not have connections to far-right columns. Specifically, group 1 rows

and group 3 columns are not connected. Assuming row and column groups take the same

amount of time we can schedule the processing of groups as in the figure. One row or

column group is processed at a time. Without overlapping the total processing time is 5n

for the five groups, where n is the number of iterations. With overlapping the processing

time is 3n + 1. Variable node processing waits for one row-group processing in the first

iteration. The gain in time for this scheduling is 5n
2n−1

which is approximately a reduction

in time of 40% as n gets large.

The advantage of this technique is that all matrices will have the same time reduction

for a particular restriction basis matrix. However, restricting matrix connections may

reduce decoding performance. As with rearranged matrices, a basis matrix could be

designed and then expanded with p× p sub-matrices to obtain quasi-cyclic LDPC codes.
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Figure 6.17. BER performance of restricted and unrestricted qc-ldpc codes.
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Figure 6.18. Another overlapping by matrix space restriction.

Figure 6.16 shows two (N, 3, 6) basis matrices codes with and without space restrictions.

There are 6 row groups and 12 column groups. The first code, Figure 6.16 (a), is designed

by pairing column and row groups randomly with the condition that row and column

groups appear 3 and 6 times respectively. In the second code, part (b) of the figure,

group pairings are made only in the restricted connection space according to Figure 6.15.

With a group size of 100, (1200,3,6) codes were constructed according to the basis matrix

in Figure 6.16. The restricted code shows a BER performance degradation of about

0.1dB at 10−5 BER as shown in Figure 6.17 compared to the unrestricted code. The

codes have the same girth of 6 and average girth of 7.333 using the quasi-cyclic LCPC

code construction algorithm proposed in chapter 4. In the restricted code connections are
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Figure 6.19. BER performance of restricted and unrestricted qc-ldpc codes using second space

restriction (25 iterations).

divided into two sub-graphs with fewer messages crossing through the few connections in

the middle.

Figure 6.18 shows another space restriction in which short row-column connection spaces

are connected to one long connection space. When two rows and columns are processed

at a time the processing can be overlapped as shown in the figure. Without overlapping,

the total decoding time is 14n. With overlapping the time is reduced to 8n + 3, which

is a reduction of 42%. Performance could be traded with processing delay depending on

the demands of the target application. Figure 6.19 shows decoding performance of this

structure compared to a randomized row-column connection space. The unconstrained

code shows slightly better performance compared to the constrained code.

6.3.3 Sub-Matrix Row-Column Scheduling

Overlapping in quasi-cyclic LDPC codes could also be achieved by calculated scheduling

of rows and columns of the sub-matrices[74][119]. When sub-matrices belonging to the

same column group are processed one row at a time in consecutive order in parallel, some

columns will have all their messages updated at some point. Columns which have all

their messages updated could be processed while rows are still being processed. The time
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Figure 6.20. quasi-cyclic code.
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Figure 6.21. Scheduling example of check and variable nodes with overlapping.

it takes, for one column to have all its messages updated is the waiting time, w, which

depends on the shift values on the sub-matrices and where row processing was started.

The shift value for a sub-matrix is the column number the first row of the sub-matrix is

connected to. Columns with all of their messages ready could be processed before row

processing is completed. Similarly, some rows will have all their messages ready while

columns are still processed. Columns or rows with all updated messages are in consec-

utive order because of the cyclic structure of QC-LDPC codes. The consecutive order

allows us to know which columns or rows will have their messages updated next.

Figure 6.20 shows an example of a quasi-cyclic matrix with sub-matrices of size 8×8. If all
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row processing in each row group starts at row 0, the waiting time for column processing

is 5. That is, after processing five rows in each row group some columns in each column

group will have all their messages updated and will be ready for computation. Processed

rows are shaded. The arrows at the bottom of the figure show which columns will have all

their messages updated after 5 rows are processed. In column group 1, column 1 has all

its values after 1 row operations. In column group 2 it takes 5 row operations to have one

column with all of its messages updated. In column group 3 and 4, 3 and 5 row opera-

tions are needed respectively. Therefore after processing 5 rows, we could start processing

columns in each column group starting at the indicated columns. In the 6th cycle the

next columns to the starting columns will have all their messages updated. Columns are

processed consecutively from the starting columns.

The overlap between variable and check nodes processing may also have a stall. That

is, by the time check nodes finish processing none of the rows have all their messages

updated from columns. In the example of Figure 6.20, zero rows are all updated after

5 columns are processed. The waiting time for rows in the second time is 2 cycles since

three columns were processed in the overlap. Figure 6.21 shows overlap scheduling for

our example in Figure 6.20. The inter-iteration waiting times wc and wv are equal to 2

with w equal to 5. For 20 iterations, non-overlapping scheduling takes 320 cycles whereas

overlapping takes 241 cycles. The processing time is reduced by 25% with overlapping.

Waiting Time Minimization

As already stated, processing starting points for columns and waiting times for a code de-

pend on where row processing was started in each row-group (sub-matrix in that row) and

the shift values of each sub-matrix. When a quasi-cyclic LDPC code is constructed sub-

matrices in a column group are shifted by some values. The minimum waiting time in each

column group is obtained if starting rows (first processed rows in each sub-matrix) have

the same difference between themselves as sub-matrix shift values. That is, if processing

is started from rows x1 and x2 from two sub-matrices with shift values s1 and s2, then

the column minimum waiting time is obtained if the differences | x1 − x2 | and | s1 − s2 |

are equal.

For the example in Figure 6.20, sub-matrices in the first column group are all shifted by

zero. Any row processing of sub-matrices with the difference between the starting rows
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Figure 6.22. Calculation of starting addresses for check and variable nodes with overlapping.
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Figure 6.23. Maximum distance covering all points on a circle (a) with two points (b) with three

points.
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as zero will have the minimum waiting time of one. To minimize waiting time for a code,

the difference between starting rows must be as close as possible to the difference in sub-

matrix shift values of the code.

In the example code of Figure 6.20, the four column groups are shifted by {0,0,0},{0,2,4}

,{0,1,2}, and {0,2,6} where each triplet is the shift values of the sub-matrices from top to

bottom. If processing starting rows have the same differences between themselves as shift

values, the waiting time is minimized. Column group 1 shifts have a difference of zero.

Starting at rows with a difference of zero, such as {4,4,4} gives the minimum waiting time

of one. However, starting rows apply to all sub-matrices which do not have the same

shift differences. Therefore, finding the minimum waiting time becomes an optimization

problem.

In [74][119], a heuristic algorithm is suggested to minimize the waiting time. The heuristic

method calculates the waiting time by taking one row block or group as the reference (ie.

reads from 0 to p − 1). Then the minimum waiting time is calculated for each remain-

ing (j − 1) row-groups against the reference group. The process is then repeated with

the remaining j − 1 row groups as reference groups. The combination resulting with the

smallest waiting time wins.

Finding the minimum w does not guarantee that wv and wc are minimum. The delay of w

only ensures that starting columns will have updated messages for the first iteration. For

subsequent iterations, there could be stalls. Stalls are eliminated in [74] by subtracting

w from check and variable node starting addresses for even iterations. For odd iterations

starting or next addresses are determined by subtracting p−w from the current addresses.

With this technique the inter-iteration gaps (wc, wv in Figure 6.9) are reduced to zero or

one cycle.

Figure 6.22 shows calculation of addresses for check and variable nodes in a group size of

12. Part(a) of the figure shows scheduling of check and variable node computations. Part

(b) shows starting addresses for check and variable nodes at some intervals. Only one

variable or column group starting address is shown. Check node starting addresses are

3,5 and 7 as shown in Figure 6.22 (a). The covering distance or waiting time is equal to

5, starting from 3 through 5 to 7. After 5 cycles variable nodes start processing at point

7. At the end of check node processing, variable nodes have processed p − w (12-5=7)

points. For check nodes to start processing, we must access those points that are already

processed by variable nodes. Starting at check node positions and counting w backwards
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Figure 6.24. Gain with varying waiting time and zero or constant inter-iteration waiting time .

lands us in the variable node processed region. After 12 cycles we look for rows that

already have all their messages. Rows 3,5, and 7 have not yet been covered by column

processing. Recalculating starting addresses using the (p−w) technique changes starting

points from 3,5,7 to 10,0,2. All the new starting points are already processed by variable

nodes by the end of check node processing in iteration one.

Part (b) shows the second iteration. By the end of the first iteration for variable nodes,

starting point 7 does not have all its messages. The next starting point is calculated by

counting w backwards which lands us at point 2. You will notice, point 2 has just been

covered by all the check nodes starting points. After p−w cycles of variable nodes, check

nodes are at the end of iteration two processing. The next starting points are calculated

by counting p − w backwards which lands us at points 3,5,7 where we started. By the

time check nodes finish iteration two, point 7 will be covered. The process is repeated for

the number of iterations given.

Maximum Waiting Time

The algorithm described above for minimizing the waiting time assumes the number of

row and column groups is equal to the row and column weights respectively. For codes

with a larger number of groups than row and column weights such as the examples in
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Figure 6.25. Waiting times for a quasi-cyclic (1008,3,6) code of example in Figure 4.24.

Figure 6.2 and irregular codes, row groups do not have all of their sub-matrices aligned.

For such codes overlapping starting rows and columns could be still be determined by

starting processing at arbitrary points. This would not guarantee the shortest overlap

delay. In this sub-subsection we show that the worst waiting time depends on row and

column weights.

Figure 6.23 shows that the maximum distance that covers all starting points on a cir-

cumference of a cycle depends on the number of points. Since the distance between rows

or columns in a code matrix is modulo p (sub-matrix size), it can be represented by a

circle as in the figure. The figure shows a circumference of 12 which is equivalent to p. If

there are only two points, part (a), the maximum distance between them is 1
2
p. Moving

one of the points either way reduces the arc length on one side and increases it on the

other side. The distance is now given by the smaller arc which is less than 1
2
p or 6 in this

case. Part (b) shows division of the circumference with three points. The three points

are equidistance of 4 from each other. If one of them is moved the smaller arc covering

all three points will be less than 8 or 2
3
p. Hence generally given a group size of p and

j starting rows it takes a maximum distance (minimum arc length) of (1 − 1
j
)p to cover

all starting rows. Similarly with k columns, a maximum distance of (1 − 1
k
)p is needed

to cover all starting columns. The time to cover all starting points is the same as the

waiting time in the quasi-cyclic code. When all points are covered we start to have a row

or column processed by all the sub-matrices. This row or column is ready for processing

Page 136



Chapter 6 Quasi-Cyclic LDPC Decoder Architectures

because it will have all its messages updated. That is, if j starting columns are chosen

randomly in j sub-matrices of a column group, the maximum time (number of operations)

it will take to have the one row processed in all of the j sub-matrices is given by (1− 1
j
)p.

Also with any k starting rows in k sub-matrices of the same group, the maximum time it

will take to have one column processed by all sub-matrices is given by (1− 1
k
)p. However,

with overlapping all messages must be available. Thus, the covering distance must include

the starting point. Hence the actual delay is (1− 1
j
)p + 1 or (1− 1

k
)p + 1.

Codes with small j and k do not have a large worst case shift or starting point differences.

Codes would rarely have shifts dividing the group size in equal distances. We can gener-

ally expect the differences between shifts to be less than the maximum possible difference.

The minimum difference between starting points is equivalent to the waiting time w on

the overlapping scheduling scheme.

Since check nodes are processed first we can use the worst case of (1 − 1
j
)p + 1, with

random starting points. Random starting points could generally work if inter-iteration

delays are reduced to minimum. Inter-iteration waiting times in quasi-cyclic codes can be

eliminated or reduced to one by re-calculating starting addresses as was described in the

method above. Figure 6.24 shows that the gain is close to two even if w is significantly

large compared to size of sub-matrix.

Most LDPC codes have column weights of 2 to 4. Column weights of 2 to 4 have a

worst waiting time of 1
2
p to 3

4
p. These worst waiting periods have a gain of at least 1.9

above 20 iterations as shown in Figure 6.24 assuming inter-iteration delays are eliminated.

Hence, we could generally start row processing at any position or at zero addresses and

calculate the corresponding column addresses without loosing much decoding time gain.

This applies to all regular and irregular quasi-cyclic codes created from shifted identity

sub-matrices.

Figure 6.25 shows a matrix structure for a (1008,3,6) code used in Chapter 4 (Figure

4.12). The code was constructed by our proposed quasi-cyclic algorithm in chapter 4. It

has a girth and average girth of 10. Figure 6.25 shows shift values of each sub-matrix. The

shift values are the columns connected to the first row in each sub-matrix. If rows in each

sub-matrix are processed from row 1 the waiting times for columns in each sub-matrix

are as shown in the figure. Since the column weight is 3, the maximum waiting time is
2p
3

which is 37 (p = 56)in this case. In the example matrix code the maximum waiting

time calculated is 31. Addresses in the following iterations are calculated as in [74] as

described earlier.
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Figure 6.26. BER performance of code with constrained shifts compared to code with unconstrained

shifts (25 iterations).
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Figure 6.27. Matrix configuration with matrix space restriction.
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Figure 6.28. Overlapping Decoder architecture based on matrix permutation and space restriction.
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Reducing Waiting Time by Restriction

As already stated waiting time depends on how much the difference between starting

points vary from differences between sub-matrices shift values in the same column or row.

For very high time critical applications, we can push the decoding time gain much closer

to two by restricting the identity sub-matrix shift values.

Above, overlapping was achieved by restricting matrix space connections. Here, shift

values and starting points are restricted in each sub-matrix. For example a quasi-cyclic

code could be designed with p = 100 (sub-matrix size) and random shift values restricted

to a maximum difference of 50. The processing starting row could then be calculated

using a heuristic algorithm, or randomly selected. In both cases the worst waiting time

will be less than or equal to 50 (1
2
p). However, the matrix constraints have to be weighed

against decoding performance losses if any. Restricting shift values could limit the size of

girth that could be obtained thus limiting the decoding performane of the code.

Figure 6.26 shows BER performance of a shift restricted code compared to an unrestricted

one. The restricted code shows a performance degradation of less than 0.1dB with 25

iterations. The codes are constructed from a (N, 3, 6) structure with a sub-matrix size of

100. The restricted code has shifts restricted to the first 50 columns or rows. It has a

girth of 8 and average girth of 8.6667. The unrestricted code has a girth of 10 and average

girth of 10. The codes were constructed using our proposed quasi-cyclic algorithm which

once again proves its flexibility in accommodating a variety of code designs.

Reducing Waiting Time by Matrix Sub-division

Waiting time could also be reduced by constraining the size of sub-matrices. For example

instead of using sub-matrixes of 1000, the sub-matrix could be divided into four smaller

sub-matrices of 250. The waiting time with smaller sub-matrices is smaller compared to

the original sub-matrix size. Dividing the matrix into smaller sub-matrices may result

in better decoding performance as was shown in chapter 4. However, sub-dividing the

matrix would reduce the overall waiting time if the new sub-matrices are processed in

parallel. If they are processed serially their waiting times accumulate.

This technique would work if there are many processing nodes per sub-matrix. That

is, the architecture uses vector processing and sub-vectors are also possible. Even then,

the overall reduction may depend on the structure of the code. Complexity with many
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sub-matrices also needs to be weighed in. Matrix sub-division increases the number of

sub-matrices to be managed and memory requirements. Each sub-matrix has shift values

to be stored along with starting addresses.

6.4 Proposed Decoder Architecture

As was described at the beginning this chapter, there are several architectures for QC-

LDPC codes decoders. However, mapping QC-LPDC codes to hardware is as varied as

their construction. Reported decoder implementations are limited in flexibility and scal-

ability. They are for example, often targeted for a single rate. If other rates are executed

extra hardware is needed as in [120]. In [121] a multi-rate and size architecture is designed

only for irregular codes.

We propose a low-complexity, programmable, high-throughput and scalable QC-LDPC

decoder architecture based on matrix permutation and matrix space restriction overlap-

ping techniques suggested in the previous section. The discussed overlapping techniques

have implications on the design of the decoder architecture. Although overlapping by

careful scheduling of rows and columns of sub-matrices can achieve a time reduction of

50%, it leads to a complex decoder architecture. With this technique, overlapping is

achieved by processing all the sub-matrices in parallel. Therefore, the decoder should

have as many processing units as sub-matrices of the code and also have the capability

of mapping the processing units to the sub-matrices. In cases where there are many

sub-matrices, the decoder must be flexible enough to distribute its resources to all sub-

matrices. This complicates design and implementation of the decoder. Also, sub-matrices

need to be stored in different memory banks so that their messages can be read in parallel.

These characteristics require a complex design and will not cater for all matrix designs

(any number of sub-matrices and configuration).

Although matrix permutation and matrix space restriction techniques are limited in

overlapping, they require a relatively less complex architecture regardless of the code de-

sign (code length and weights). In these techniques, overlapping is achieved by processing

sub-matrices with no connections in parallel. Overlapping here relies on outer relation-

ships or dependencies of sub-matrices rather than their inner dependencies. To have
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Figure 6.29. Pipelining of reading, processing and writing stages of decoding computations.
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Figure 6.30. Overlapping Decoder architecture based on matrix permutation and space restriction.

overlapping, sub-matrices are scheduled and processed sequentially in both check and

variable nodes. This property allows us to have more compact decoder design and flexi-

bility in the code design. Using the example of matrix space restriction in Figure 6.7, we

can design codes with this shape as in the examples of Figure 6.27. The example codes

are scheduled the same as in as in Figure 6.7 producing a 33% reduction in decoding time.

In Figure 6.27 (a), we have (3,6) column-row weights in a 6× 12 basis matrix. Part (b)

is a (3,9) matrix on an 8× 24 structure. The codes could be mapped onto a simple archi-

tecture as that of Figure 6.28. Check and variable node processing units are connected

by a shared memory. Processing on each size could be serial or in vector form. With this

architecture, any overlapped code using matrix permutation or space restriction can be

efficiently mapped and executed. Using large basis matrices or larger row-column weights

does not affect the decoder structure. Processing is performed in a similar way with the

same time reduction as with any other matrix fitting the restricted space. Overlapping

is achieved when check and variable processing units read and process rows and columns

with no connections in common in parallel. To further reduce decoding time, reading,

processing and storage of rows and columns could be pipelined as shown in Figure 6.29.

Reading, processing and storage stages are pipelined so that data is continually fed to

processing units improving both throughput and hardware utilization.

Throughput of the proposed architecture can also be improved by increasing the number

of processing elements in check and variable nodes. However, the number of processing
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elements is limited by how larger the vector registers can be. This limitation can be over-

come by implementing several processing units as shown in Figure 2.30. Four check and

variable processing units are shown. The processing units have many processing elements

and do processing in vector form. The units can read and write any vector in the shared

memory bank. The overall architecture is similar to the Imagine Processor[122][123]

designed for multimedia processing. The Imagine processor has eight ALU clusters con-

nected to stream register file which provides a bandwidth of several GB/s. With this

amount of memory bandwidth the decoder architecture can have high throughput and

still have flexibility and scalability. Although this architecture is developed for quasi-

cyclic LDPC codes, it can be used for random or any other structured codes. The major

requirement is that matrices must be permuted or have connection restricted in order to

have overlapping. To our knowledge this is most flexible LPDC decoder to date.

6.5 Summary

Critical implementation issues for LDPC decoders include processing node interconnec-

tion and decoding delay. In this chapter, multistage interconnection networks have been

suggested as a possible means of communication between processing nodes. They are more

flexible compared to hardwired or memory bank interconnections. Banyan networks have

flexibility, however, they require the inputs to be sorted in ascending or descending or-

der. The ordering of inputs may increase the number of transmission operations. Benes

networks could be used to reduce the number of transmission operations as they do not

require inputs to be ordered. To efficiently use multistage networks, vector processing

must be used. One major drawback of the decoder with multi-stage networks is the sep-

aration of check and variable node memories which reduces opportunities for minimizing

memory usage.

Decoding delay could be reduced by overlapping check and variable node computations.

Overlapping could be achieved by matrix permutations, matrix space restrictions or care-

ful calculation of starting rows and columns in quasi-cyclic codes. Matrix permutation

can be applied to any matrix. However, the reduction in decoding time depends on the

code structure and is limited.

Matrix space restriction is another technique that can be applied to any matrix structure.

It gives a fixed reduction in time with decoding performance degradation. Reduction in
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time depends on the shape or extent of restriction. In quasi-cyclic codes the reduction

in decoding time depends on sub-matrix shift values and where processing was started.

We derived the worst waiting time and showed that arbitrary starting points could be

used assuming inter-iteration stalls are eliminated. The gain can be further improved by

constraining the shift values differences or using small sub-matrices. These options have

to be weighed against the complexity of the decoder and code performance. Although

regular codes we used as examples in this paper, irregular codes could be overlapped in a

similar way. We developed a decoder architecture based on developed computation over-

lapping techniques. The developed technique has high flexibility as its overlap is achieved

by processing sub-matrices in serial. Pipelining of memory accesses and computation

operations can further improve decoder throughput.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The construction and hardware implementation of LDPC codes were the main subjects

of this thesis. The objective was to construct good performing codes which are also easy

to implement in hardware. We achieved some of our objectives by developing new LDPC

code construction methods and ways of improving decoder efficiency.

Two main LDPC construction methods were proposed based on distance graphs and a

search criteria. The first method based on distance graphs constructs column-weight two

LDPC codes. Using a distance-graph representation a wide range of codes were obtained

from already known distance graphs. Some codes show good error correcting performance

compared to random codes whereas some codes perform poorly. The performance of the

codes depends on the structure of the graph used. Although a wide range of codes in terms

of rate, girths and size were obtained, the lengths of the codes are not flexible unless by

the use of other expansion methods. Also, some graph interconnections are inconsistent

with efficient decoder implementation.

The second method was proposed to construct quasi-cyclic LDPC codes. Although there

are many proposed methods for doing this, they lack flexibility in design. The proposed

algorithm is based on search algorithms such as bit-filling and progressive-edge growth to

have flexibility in code construction. Rows and columns are divided into groups to form

sub-matrices. Connections in groups are in consecutive order to obtain shifted identity

sub-matrices in the parity check matrix. Although the algorithm guarantees only a girth of
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six, it was successfully used to construct codes with higher girths. Given row and column

weights, the size of sub-matrix and girth as inputs, the algorithm tries to find a code with

the specified girth. The algorithm has a low complexity, which is linear with respect to the

length of the code. From our experiments the algorithm does not take long to find most

codes especially low girth and rate codes. Codes obtained from the proposed quasi-cyclic

codes are flexible in rate, length and have good girth. These characteristics make them a

good candidate for many applications. The disadvantage of the proposed algorithm com-

pared to other methods is that it may not find a code, especially at high girths, even if

they exist. It also does not detect whether the given dimensions can meet the girth or not.

In the second part of the thesis, we looked at some decoder implementations issues. A case

was made for use of multistage interconnection networks as a means of communication

between check and variable processing nodes. Banyan and Benes networks could be used

depending on the design of the codes. Although these networks are flexible in executing

any type of quasi-cyclic configuration, they add delays in communication.

Computation overlapping of check and variable processing was also looked at to reduce

decoding delay. Matrix permutation, space restriction could be used with any matrix.

We showed that matrix permutation is limited depending on row and column weights.

The success of matrix space restriction depends on the shape and extent of restriction

which has to be weighed against performance degradation. We also discussed overlapping

in quasi-cyclic codes by careful scheduling of rows and columns. Reduction in decoding

time could be reduced up to 50%. We showed that the worst overlap depends on col-

umn and row weights. We suggested improving overlapping by restricting the shifting of

identity sub-matrices and matrix sub-division. However, shift-restriction will likely affect

decoding performance and matrix sub-divisions further complicates the decoder architec-

ture. Finally we proposed a decoder architecture for quasi-cyclic codes based on matrix

permutation and matrix space restriction overlapping techniques. Since, these techniques

process rows and columns serially, they lead to a simple decoder architecture. The decoder

can also be used for random and other structured LDPC codes.
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7.2 Future Work

Girth conditions given in the proposed algorithm for quasi-cyclic codes are not sufficient

for girths above six for column weights higher than three. When the girth is above six

there are cases where smaller cycles are formed when all row or column connections are

made. Further work is needed to improve the success rate of finding codes with lager

girths (larger than 8) without significantly increasing the computational complexity of

the algorithm. Further analysis of the obtained codes is also needed in terms of minimum

distances, bounds on girth, rate and error correcting performance at very low bit error

rates. Some of of the obtained codes in Chapters 3 and 4 perform worse than random

codes despite their better girths. Analyzing the obtained codes using other parameters

such as minimum distance may reveal the reason for lower performances. This may lead

to better ways of constructing structured codes with better error correcting performances.

Our construction methods for quasi-cyclic codes in Chapter 4 does not determine bounds

on girth, rate or code dimensions. Adopting algebraic methods such as those in [57] may

give us bounds on these parameters to better maximize girth or rate for a given code

size. BER simulations for obtained codes were performed up to 10−7 and for small codes

(a few thousands). Most applications require very low BER performances and some use

very large codes than those experimented with. Further BER or FER simulations at lower

BERs will be necessary to evaluate the suitability of these codes for some applications.

Optimization of a basis matrix before applying the proposed algorithm may improve

performance of obtained codes. Other decoding performance improving techniques such as

density-evolution, reduction of stopping sets could be added to the algorithm. Obtained

codes in this thesis were tested using a single channel model and modulation (AWGN

and BPSK). These codes could be applied to other channels and modulations or other

technologies.

A detailed study of hardware costs of proposed interconnect and overlapping methods is

needed to have a better comparison between the proposed interconnect, architecture and

existing decoder implementations. Implementing a prototype of the developed decoder

architecture would give a better case to compare it to other existing architectures.
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