THE EFFECTS OF SHORT – TERM ENERGY RESTRICTION IN OVERWEIGHT / OBESE FEMALES ON REPRODUCTIVE OUTCOMES

Dr. Victoria Tsagareli
Bachelor of Medicine, MBBS, MD

January 2008

A thesis presented in fulfilment of the requirements for the Masters degree in Medical Science

Faculty of Health Science
School of Paediatrics and Reproductive Health Research
Centre for Reproductive Health
Discipline of Obstetrics and Gynaecology

Commonwealth Scientific Industrial Research Organization
Health Science and Nutrition
CHAPTER ONE

1. Introduction

1.1 Biological and physiological processes of human reproduction
 1.1.1 Human reproduction
 1.1.2 Oogenesis
 1.1.3 Abnormal gamete development
 1.1.4 Ovarian / Menstrual cycle
 1.1.5 Role of hormones in ovarian function
 1.1.6 ‘Ovarian reserve’ as a predictor projector of reproductive endurance

1.2 Embryology
 1.2.1 Fertilisation and embryo morphology
 1.2.2 Embryo quality
 1.2.3 Embryonic metabolism
 1.2.4 Embryonic abnormalities

1.3 Implantation
 1.2.6 Intrauterine environment
 1.2.7 Endometrial receptivity

1.4 Implantation and Assisted Reproductive Technology (ART)

1.5 Postimplantation period
 1.5.1 Age and miscarriage
 1.5.2 BMI and miscarriage
 1.5.3 Nutrition, miscarriage and birth defects

1.6 Infertility and ART
 1.6.1 Implication of ART

1.7 Influence of lifestyle factors on fecundity
 1.7.1 Negative effect of smoking on female’s fertility
1.7.2 Alcohol intake and fertility 33
1.7.3 Negative influence of caffeine, emotional and physical stress on reproduction 34
1.7.4 Detrimental effects of abnormal body weight on woman’s fertility 34
1.7.4.1 BMI and ART success 35
1.7.4.2 BMI a predictor of general healthy issues 36
1.8 Polycystic Ovary Syndrome (PCOS) 38
1.8.1 Relationship between PCOS, obesity and insulin resistance 39
1.8.2 Weight loss and insulin resistance 40
1.8.3 Insulin lowering drugs, dietary interventions and woman’s fecundity 41
1.9 Role of weight loss for overweight / obese women undergoing ART 42
1.9.1 Weight loss and reproduction 43
1.9.2 Energy restriction and effects on reproductive outcomes 43
1.9.3 Outcomes of using a very low calorie diet 44
1.10 Thesis Hypotheses 45
1.11 Thesis Aims and Significance 46
1.12 References 47

CHAPTER TWO

2. Effect of a very low calorie diet on in vitro fertilization outcomes 70
2.1 References 79

CHAPTER THREE

3. Mechanisms of obesity and short term weight loss on reproductive processes 81
3.1 Introduction 82
3.2 Schematic study design 84
3.3 Material and methods 85
3.3.1 Experimental animals maintenance and handling 85
3.3.2 Animal Ethics 85
3.3.3 Chemicals and solutions 86
3.3.4 Biological materials 86
3.3.5 Equipment 86
3.4 Study protocol and general procedures
- 3.4.1 Mice feeding protocol
- 3.4.2 Weight assessment
- 3.4.3 Mating
- 3.4.4 Tissue collection
- 3.4.5 Animal length assessment

3.5 Embryo collection and in vitro culture
- 3.5.1 Embryo zygote collection and culture
- 3.5.2 Assessment of the developmental stage of the cultured embryos

3.6 Embryo quality assessment
- 3.6.1 Blastocyst quality assessment

3.7 Statistical analyses

3.8 Results

3.9 Discussion / Conclusion

3.10 Image capture

3.11 Tables and Figures

3.12 References

CHAPTER FOUR Summary and future work

4. Summary and suggestions for future work

CHAPTER FIVE Appendices

Appendix I – Chemicals, solution, mediums and procedures
- I.I General solutions
- I.II Embryo culture media
 - i.ii.i G 1 and G 2 mediums
 - i.ii.ii G-MOPS wash medium without protein
 - i.ii.iii G-MOPS medium with protein
- I.III Solutions for differential nuclear staining

Appendix II – Dietary food
- II.I Atherogenic dry food for mice
 - ii.i.i SF00 – 219
 - ii.i.ii SF04 – 057
 - ii.i.iii Animal Joint Stock II
II.II Dietary product and CSIRO booklet 121
 ii.ii.i Optifast VLCD 121
 ii.ii.ii ‘The Total Wellbeing Diet’ 121

Appendix III – Protocols 122
 III.I Blastocyst differential staining 122
 III.II Embryo culturing and daily assessment protocol 123

Appendix IV - Patient Information Sheet 124
 IV.I Clinical pilot study 124

Appendix V - Clinical Randomised Controlled study 134
 V.I Introduction 134
 V.II Study aims 134
 V.III Primary and Secondary outcomes 134
 V.IV Study population / Inclusion criteria 135
 V.V Exclusion criteria 135
 V.VI Human Ethics 135
 V.VI Informed consent 136
 V.VIII Withdrawal of consent 137
 V.IX Recruitment and randomisation 137
 V.X Schematic study design 138
 V.XI Study design 139
 V.XII Total number of subjects and power analyses 141
 V.XIII Questionnaires 141
 V.XIV Randomisation method 142
Thesis abstract

In the general population, one in five couples experiences difficulty in conceiving a child. The role of obesity on women’s fecundity has become a focus of attention in recent years.

Successful treatment of infertility through Assisted Reproductive Technology (ART) is also compromised by the presence of obesity, which occurs in 30% of women seeking treatment. A negative correlation exists between increased body mass index (BMI) and the number of collected oocytes and a lower birth rate after ART. Furthermore, a number of studies have established that weight loss improves natural conception rates in overweight women. Whether weight management can improve success rates in overweight / obese women undergoing in vitro fertilisation (IVF) has not been studied.

The purpose of this project was to explore the role of short-term weight loss on potential pregnancy outcomes in overweight / obese women undergoing IVF programme. However, to establish this relationship, we proposed to carry out two studies to assess the following:

(I) The feasibility of very low calorie diet (VLCD) during IVF treatment with respect to duration, level of restriction and tolerability of the diet during hormonal down regulation in women (Chapter 2).

(II) How energy restriction may affect the quality of an early embryo in diet-induced obese mice with respect to various body weight and caloric intake (Chapter 3).

In study (I), women preferred a shorter dietary intervention with greater energy restriction (456 kcal per day) to gradual energy restriction (1200 kcal / day for the first week, and afterward, 456 kcal / day) prior to oocyte transfer. Women were able to comply with the VLCD during IVF treatment and both dietary groups achieved a significant weight loss (mean 6.3%).
In study (II), by using obese mice, the effect of rapid weight loss (mean 12 %) was observed after 5 days of energy restriction. Ovulation rate was greater in the Obese group (HFD) (55.6%) and equal in both Control (CD) and Energy Restricted (HF / ER) (44.4 %) groups. The HF / ER group showed higher fertilisation rate (80 %) than HFD and CD (55% and 45.5%, correspondingly). The blastocyst stage was reached by half of the cultured embryos in both HF / ER and HFD groups and 33 % in the CD group. The quality of embryos that completed blastocyst formation did not differ between groups. However, postfertilisation development in females fed a high fat diet was slower compared to CD and HF / ER groups.

In conclusion, this work illustrated a weight management prior conception and use of VLCD during IVF treatment in clinical study needs further investigation with regard to the dietary duration, level of energy restriction and how this combination will influence IVF treatment outcomes. Furthermore, as we were unable to determine the question of how the dietary intervention affects the quality of oocytes and the animal study illustrated a promising result, thus further studies are required.
Statement

I hereby state that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where stated.

I give consent for this thesis to be available for photocopying and loan purposes after depositing in The University of Adelaide library.

The research projects performed within this thesis work were funded by following organizations and sources: The University of Adelaide, CSIRO Health Science and Nutrition, NHMRC Program Grant and Brailsford – Robertson Grant.

The experiments reported in this work were performed by myself and any assistance received from others is acknowledged. To my knowledge, there are no intellectual property issues or conflicts of interest with other persons or organizations with respect to the data presented in this thesis.

Dr. Victoria Tsagareli

January 2008
Acknowledgements

I would like to thank my supervisors, Professor Robert Norman and Associate Professor Manny Noakes for giving me the opportunity to work with them, their encouragement and continued support throughout my project. Thank you to both for being such awesome supervisors, who helped me enjoy the new experience of being a postgraduate student and getting me through all the difficulties that I experienced at some points of my study. Thank you especially for the meticulous proofreading of my work. It was a pleasure to work with you, develop and discover myself in a new field.

I appreciate very much all the assistance offered to me and friendship of the people of the Discipline of Obstetrics and Gynaecology, in particular Dr. Jim Wang, Dr. Rebecca Robker, Dr. Michelle Lane, Fred Amato and Michael Guerin. I would like to thank my colleagues and friends in the discipline, in particular Brenton Bennett and Lisa Akison, for their enormous assistance with my animal project. It also was a pleasure to be associated with and be a part of Cadence Minge’s project. I extend my appreciation to Kara Cashman and David Froiland for their valuable assistance in gaining skills in an embryology lab and using specialist microscopes. In addition, I would like to express gratitude to Dr. Theresa Hickey for her friendship, understanding and unconditional help. Thank you all for your enormous assistance, co-operation and encouragement in all aspects related to my work. My very special thanks also to Di Sutton for her faithful support, warm friendship and responsive heart.

I would like to acknowledge and thank all personnel (every clinician and nurse) at Repromed, who helped me to accomplish my project. In particular, a very special thanks to Helen Alvino for her endless support, comprehension, availability at any time and offering words of encouragement. Appreciation also goes to Bronwen Roberts for her friendship,
committed time and vast assistance in the ongoing clinical project (Randomised Controlled Dietary and in vitro Fertilisation Assessment (DIVA) study). Personal thanks to Sue Brown, Gillian Homan, Leonie Rankin, Robyn Cadd, who demonstrated their wish to be involved in the research project and unconditionally contributed their time for recruiting and following up participants in the clinical pilot study.

Special thanks to Adrian, Bronwyn and Michelle, personnel at The Queen Elizabeth Hospital Animal facility, for their hospitality, friendship and helpful recommendations regarding the maintenance and animal care.

I am also very grateful to The University of Adelaide for the scholarship granted to me during my postgraduate candidature and Novartis Nutrition Corporation for the donation of a dietary product (Optifast VLCD) for the clinical projects described in the following work.

Ultimately and with much love, I would like to acknowledge and thank my family (husband and children: Kakha, Nicholas, Annie and Irakli) for their enormous support, encouragement, love and care throughout my postgraduate work.

Minge CE, Bennett BD, Tsagareli V, Lane M, Owens JA, Norman RJ, Robker RL. Ovulation and Oocyte quality are adversely affected by a High fat diet. In press.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ART</td>
<td>Assisted Reproductive Technology</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CC</td>
<td>Clomiphene Citrate</td>
</tr>
<tr>
<td>CD</td>
<td>Control diet</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific Industrial Research Organization</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DHEA-s</td>
<td>Dehydroepiandrosterone sulphate</td>
</tr>
<tr>
<td>DHT</td>
<td>Dihydrotestosterone</td>
</tr>
<tr>
<td>DIVA</td>
<td>Diet and IVF assessment</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOB</td>
<td>Date of birth</td>
</tr>
<tr>
<td>ESHRE</td>
<td>European Society for Human Reproduction & Embryology</td>
</tr>
<tr>
<td>ET</td>
<td>Embryo transfer</td>
</tr>
<tr>
<td>FET</td>
<td>Frozen embryo transfer</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GH</td>
<td>Growth hormone</td>
</tr>
<tr>
<td>GIFT</td>
<td>Gamete intra fallopian transfer</td>
</tr>
<tr>
<td>HC</td>
<td>High carbohydrate</td>
</tr>
<tr>
<td>hCG</td>
<td>Human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HDL - C</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HFD</td>
<td>High fat diet</td>
</tr>
<tr>
<td>HF / ER</td>
<td>High fat / Energy restricted</td>
</tr>
<tr>
<td>HP</td>
<td>High protein</td>
</tr>
<tr>
<td>ICSI</td>
<td>Intracytoplasmic sperm injection</td>
</tr>
<tr>
<td>IUD</td>
<td>Intrauterine device</td>
</tr>
<tr>
<td>IUGR</td>
<td>Intrauterine growth retardation</td>
</tr>
<tr>
<td>IUI</td>
<td>Intrauterine insemination</td>
</tr>
<tr>
<td>IVF</td>
<td>In vitro fertilisation</td>
</tr>
<tr>
<td>LC</td>
<td>Low carbohydrate</td>
</tr>
<tr>
<td>LCD</td>
<td>Low calorie diet</td>
</tr>
<tr>
<td>LDL - C</td>
<td>Low density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NH&MRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>OC</td>
<td>Oral contraceptives</td>
</tr>
<tr>
<td>OPU</td>
<td>Oocyte pick up</td>
</tr>
<tr>
<td>PCO</td>
<td>Polycystic ovaries</td>
</tr>
<tr>
<td>PCOS</td>
<td>Polycystic ovarian syndrome</td>
</tr>
<tr>
<td>RDI</td>
<td>Recommended dietary intake</td>
</tr>
<tr>
<td>RM</td>
<td>Recurrent miscarriage</td>
</tr>
<tr>
<td>RMU</td>
<td>Reproductive Medicine Unit</td>
</tr>
<tr>
<td>SHBG</td>
<td>Serum testosterone-binding globulin</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error Mean</td>
</tr>
<tr>
<td>STIs</td>
<td>Sexually transmitted infections</td>
</tr>
<tr>
<td>TWD</td>
<td>The Total Wellbeing Diet</td>
</tr>
<tr>
<td>VLCD</td>
<td>Very low calorie diet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>