The Role of β_c Subunit Phosphorylation in the Functioning of the GM-CSF/IL-3/IL-5 Receptors.

Wendy Winnall
Hanson Institute/
Department of Medicine, University of Adelaide

Submitted in July 2007
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Wendy Winnall

Acknowledgement of Contributions

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

The assays used in Figures 3.11 and 3.12 were performed by Ms E.Barry and Dr M. Guthridge, constituting approximately 10% of the data in Chapter 3. Creation of the pRUFneoIRES construct and subcloning in the huGMRα and huβc mutant constructs, and creation of the Ψ2 cell lines expressing these constructs, was performed by Dr H. Ramshaw (Sections 2.2.1.17, 4.3.1, Figure 2.1).
Abstract

The cytokines GM-CSF, IL-3 and IL-5 are central regulators of haemopoietic cell functions and are pivotal in the regulation of haemopoiesis and inflammatory responses of myeloid cells. In particular, these cytokines have been shown to perform essential functions in host defence against foreign pathogens through their ability to regulate innate immune responses in myeloid cells. As key regulators of such important processes, these cytokines play an important role in human inflammatory pathologies such as rheumatoid arthritis, asthma, multiple sclerosis and psoriasis as well as a number of leukemias such as JML and CMML.

GM-CSF, IL-3 and IL-5 signal through receptors containing α subunits specific to each cytokine and a common β subunit (βc). Cytokine stimulation leads to tyrosine phosphorylation of the βc and promotes specific responses such as proliferation, survival and activation of haemopoietic cells. Mouse knockout studies identified a key function of these cytokines in the activation of effector functions of myeloid cells, including production of reactive oxygen species (ROS) and phagocytosis. These earlier studies provide a link between cytokine signalling and inflammation, but the molecular mechanisms by which βc activation regulates effector cell functions, and the receptor motifs involved, are unknown.

The aim of this thesis was to address two broad questions with regard to βc signalling: (1) Does βc regulate specific cellular responses by phosphotyrosine-independent mechanisms?
What are the molecular mechanisms by which βc initiates signalling to promote specific biological responses such as activation of effector cell functions?

To address the first question, we have focussed on Serine 585, a potential 14-3-3 binding site which lies in the cytoplasmic potion of huβc. Our results show that the mutation huβcS585G disrupted the interaction of 14-3-3ζ with βc, whilst not affecting receptor tyrosine phosphorylation. Both mouse and human βc were shown to interact with 14-3-3 proteins, indicating that this interaction is conserved between these species. Significantly, a huβcS585G mutant was unable to promote haemopoietic cell survival in response to IL-3. These results identify a new mechanism by which cytokine receptors are able to couple to downstream signalling pathways that regulate cell survival.

An approach was developed and optimised to analyse specific GM-CSF-mediated responses in monocytes/macrophages expressing wildtype or mutant huβc, (including huβcS585G that was defective in regulating survival). Bone marrow-derived muβc−/−,muββ3−/− monocytes/macrophages were retrovirally transduced with constructs expressing wildtype or mutant huβc, along with huGMRα, then purified by FACS. Two assays were established to measure effector functions in the transduced monocyte/macrophages; (1) a flow cytometry assay for ROS production, and (2) an assay for phagocytosis. The capacity for GM-CSF to prime (i.e. enhance effector functions) ROS production and phagocytosis was investigated in huGMRα-transduced monocytes/macrophages. Our results have identified two key residues in the cytoplasmic domain of βc subunit: Tyrosine 577 (required for huβc interaction with the adaptor protein Shc) and serine 585 (required for 14-3-3 association), that are essential for the ability of GM-CSF to regulate key effector functions in monocytes/macrophages.
These novel findings are significant in that they establish a molecular link between the GM-CSF/IL-3/IL-5 receptor and the regulation of both haemopoietic cell survival and inflammatory responses, and therefore have important implications in our understanding of inflammatory diseases such as rheumatoid arthritis and asthma.
Publications arising from this thesis

Important results from Chapter 3 of this thesis are published in these papers:

Abbreviations

Ab: Antibody
AML: acute myeloid leukemia
APS: ammonium persulphate
ATP: adenosine triphosphate
βc: common β-subunit of the GM-CSF, IL-3, IL-5 receptor
βIL3: β-subunit of the mouse IL-3 receptor
bisacrylamide: N,N’-methylene-bisacrylamide
βME: beta-mercaptoethanol
bp: base pairs
BSA: Bovine serum albumin
°C: degrees Celcius
cAMP: cyclic adenosine monophosphate
cDNA: complementary DNA
CFU: colony forming unit
CIP: calf intestinal phosphatase
CMML: chronic myelomonocytic leukemia
CRM: cytokine receptor module
CsCl: caesium chloride
DMEM: Dulbecco’s modified Eagle’s medium
DTT: dithiothrietol
EDTA: ethylenediaminetetra acetic acid
ERK: extra-cellular signal-related kinase
EtBr: ethidium bromide
ETOH: ethanol
FACS: fluorescene activated cell sorting
FcR: “fragment, crystallisable” region of antibody receptor
FCS: fetal calf serum
FITC: fluorescein
fMLP: N-formylmethionyl-leucyl-phenylalanine
GM-CSF: granulocyte macrophage colony-stimulating factor
GMR: GM-CSF receptor
GMRα: GMR alpha subunit
GRB2: growth factor receptor bound G-CSF
HEPES: 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid
HRP: horseradish peroxidase
hu: human
IFNγ: interferon gamma
Ig: immunoglobulin
IL: interleukin
IL-3: interleukin-3
IL-3R: IL-3 receptor
IL-3Rα: IL-3 receptor alpha subunit
IL-5: interleukin-5
IL-5R: IL-5 receptor
IL-5Rα: IL-5 receptor alpha subunit
IMDM: Isocove’s modified Dulbecco’s medium
JAK: Janus Kinase
JNK: c-jun N-terminal kinase
KAc: potassium acetate
kb: kilobase pairs
kJ: kiloDaltongs
krpm: kilorevolutions per minute
L: litre(s)
LB: Luria broth
M: molar
mu: murine/mouse
MAP kinase: mitogen-activated protein kinase
MQ: Milli Q purified water
mu: murine
NaAc: sodium Acetate
NADPH: reduced form of nicotinamide adenine dinucleotide phosphate
NO: nitric oxide
OD: optical density
p: plasmid
PAG: polyacrylamide gel
PAP: pulmonary alveolar proteinosis
PBS: phosphate buffered saline
PCR: polymerase chain reaction
PE: phycoerythrin
Pfu: Pyrococcus furiosis bacterium
PI 3-kinase: phosphoinositide 3-kinase
PKA: protein kinase A
PKC: protein kinase C
PMSF: phenylmethysulfonyl fluoride protein-2
PTB domain: phospho-tyrosine binding domain
R: receptor
RNA: ribonucleic acid
ROS: reactive oxygen species
rpm: revolutions per minute
SCF: Stem cell factor
SDS: sodium dodecyl sulphate
SH2: shc homology 2
SH3: shc homology 3
STAT: signal transducer and activator of transcription
TEMED: N,N,N',N-tetramethylenediamine
TNF: tumour necrosis factor
tris: tris(hydroxymethyl) aminomethane
µl: microlitres
UV: ultraviolet light
v/v: volume per volume
w/w: weight per weight
Acknowledgements

My thanks are due to…

Prof. Angel Lopez and Dr Mark Guthridge for their expert supervision and the opportunity to join the Lopez laboratory for my PhD.

Members of the Lopez lab who have given me help and support over the years: Emma, Melissa, Jo, Mara, Barb McClure, Chris, Frank, Hayley, Timbo, Jane, Ma, Bronny, Craig, Emily, Fernando, Elena and Natasha. Particularly I’d like to thank Emma and Mark who worked closely with me, lent me reagents and helped with my experiments on a daily basis. Hayley who made the pRUFneoIRE construct and Ψ2 cell lines. Thanks to Frank for teaching me pull-downs and other procedures, to Jo, Chris and Tim for lots of helpful advice and to all lab members and human immunology members (especially Karen and Briony) for lots of fun times and great nights out.

A big thankyou to Mark for all your support throughout the whole saga of my PhD.

To our collaborators Dr M. Berndt and Dr R. Andrews of Monash University for making and providing to us the anti-phospho-S585βc antibody.

To housemates and friends: Erica, Camilla, Tammy, Seb, Eddie, Robyn, Matt and Sharleen.
To Emma, Melissa, Karen and Briony who started as work mates and rapidly became such good friends.

To my parents for their ongoing support, hot meals, trips home from the airport and providing a place to stay for numerous times “between houses”. To Kevin and Dolores for their help and friendship.

Finally a great big thank you to Matt for your help and inspiration.
Table of contents

DECLARATION...2

ACKNOWLEDGEMENT OF CONTRIBUTIONS ...2

ABSTRACT ...3

PUBLICATIONS ARISING FROM THIS THESIS ...6

ABBREVIATIONS ...7

ABBREVIATIONS ...7

ACKNOWLEDGEMENTS .. 9

TABLE OF CONTENTS ..11

CHAPTER 1 INTRODUCTION ..17

1.1 Introduction..17

1.2 The Roles of the Haemopoietic System ...18

1.2.1 Steady-state haemopoiesis ..18

1.2.2 Reactive haemopoiesis and the activation of phagocytes ...22

1.3 The Immune System ...22

1.3.1 Innate Immune Response ..23

1.3.2 Acquired Immune Response ...24

1.4 The roles of specific cytokines and their receptors in regulating steady-state haemopoiesis, reactive haemopoiesis and effector cell functions ..26

1.4.1 The GM-CSF/IL-3/IL-5 family of cytokines share a common receptor subunit, βc26

1.4.2 GM-CSF, IL-3 and IL-5 share overlapping biological functions29

1.4.2.1 GM-CSF, IL-3 and IL-5 stimulate the proliferation and differentiation of haemopoietic progenitors and cells line in vitro ..29

1.4.2.2 GM-CSF, IL-3 and IL-5 stimulate the survival of haemopoietic progenitors and cell lines in vitro. ..30

1.4.3 The in vivo roles of GM-CSF, IL-3 and IL-5 as revealed by analysis of knockout and transgenic mice ..31

1.4.3.1 The in vivo functions of GM-CSF ..31

1.4.3.2 The in vivo functions of IL-5 ..33

1.4.3.3 The phenotype of βc−/− mice ...34

1.4.3.4 The phenotype of βc−/−IL-3−/− and βc−/−βIL-3−/− mice35

1.4.4 Roles of GM-CSF, IL-3 and IL-5 in reactive haemopoiesis and control of effector cell functions ..37

1.4.4.1 GM-CSF, IL-3 and IL-5 promote reactive haemopoiesis37

1.4.4.2 GM-CSF, IL-3 and IL-5 prolong the survival of haemopoietic cells during reactive haemopoiesis ..38

1.4.4.3 GM-CSF and IL-5 increase (prime) ROS production by mature myeloid cells38

1.4.4.4 GM-CSF, IL-3 and IL-5 increase (prime) the phagocytic activity of neutrophils and macrophages ..39

1.4.4.5 GM-CSF, IL-3 and IL-5 increase of cytotoxicity and other effector cell functions40
1.5.1 Molecular composition of the receptors for GM-CSF, IL-3 and IL-5 .. 47
1.5.2 The mechanisms of activation of the GM-CSF, IL-3 and IL-5 receptor complexes 53
1.5.3 Signalling events involving the GMRα, IL-3Rα and IL-5Rα ... 54
1.5.4 Intracellular signalling from the βc ... 55
1.5.4.1 The Jak/STAT Pathway .. 55
1.5.4.2 The Ras/MAP Kinase Pathway ... 61
1.5.4.3 The PI3-kinase Pathway .. 63
1.5.4.4 Shc signalling ... 64
1.5.4.5 14-3-3 Signalling ... 66

TABLE 1.2 KNOWN INTERACTORS WITH 14-3-3 PROTEINS AT THE OUTSET OF THIS THESIS, AND THEIR SITES OF INTERACTION ... 87
1.5.5 Activation of cellular functions by the GM-CSF/IL-3/IL-5 receptors .. 70
1.5.5.1 Signalling for regulation of proliferation ... 72
1.5.5.2 Signalling for regulation of survival ... 74
1.5.5.3 Signalling for regulation of differentiation .. 76
1.5.5.4 Signalling for regulation of effector cell functions .. 77
1.5.5.5 The limitations of previous studies on GM-CSF/IL-3/IL-5 regulation of specific cellular functions 78

1.6 Aims of this thesis .. 80

CHAPTER 2: MATERIALS AND METHODS ... 81
2.1 Materials .. 81
2.1.1 Chemicals and reagents ... 81
2.1.2 Enzymes for manipulation of DNA .. 81
2.1.3 Kits .. 82
2.1.4 Antibodies ... 82
2.1.5 Factors ... 84
2.1.6 Cloning and expression vectors ... 85
2.1.7 Cloned DNA sequences .. 85
2.1.8 Molecular weight standards .. 85
2.1.9 Oligonucleotides ... 86
2.1.10 Mice strains .. 88
2.1.11 Tissue culture reagents .. 88
2.1.12 Cell lines .. 88
2.1.13 Standard solutions and bacterial media .. 89

2.1 Methods .. 90
2.2.1 DNA Manipulation .. 90
2.2.1.1 Restriction Digests .. 90
2.2.1.2 Electrophoresis of DNA on agarose gels .. 91
2.2.1.3 Small scale preparation of plasmid DNA .. 91
2.2.1.4 Large scale preparation of plasmid DNA by Qiagen MIDI kit ... 92
2.2.1.5 Large scale preparation of plasmid DNA by CsCl purification .. 93
2.2.1.6 Cycle sequencing of DNA ... 94
2.2.1.7 Preparation of JM109 E. coli electrocompetent cells ... 95
3.1 Introduction .. 118

3.2 Production of CTL-EN cell lines expressing wildtype huβc, huβc, or huβc containing substitution mutations of the 14-3-3 binding site ... 122

3.2 Production of CTL-EN cell lines expressing wildtype huβc, huβc, or huβc containing substitution mutations of the 14-3-3 binding site ... 123

3.2.1 Construction of mutant huβc, cDNA expression constructs ... 123
3.2.2 Production of cell lines expressing wildtype huβc, huβcS585A or huβc containing substitution mutations of the 14-3-3 binding site.. 124

3.3 Development and characterisation of a polyclonal antibody which recognises phosphorylated serine 585 of huβc.. 126
3.3.1 Production of a polyclonal antibody raised against a human βc phosphoserine 585 peptide ... 126
3.3.2 Demonstration of the specificity of the affinity-purified antibodies .. 127
3.3.2.1 The affinity-purified antibodies recognise only the phospho-Ser585 peptide on dot-blot... .. 127
3.3.2.2 The affinity-purified antibodies recognise huβc on Western blots, and this interaction is competed out by excess phospho-Ser585 peptide .. 129
3.3.2.3 The affinity-purified antibodies recognise wildtype huβc, but not huβcS585A on Western blots.. 129

3.4 Phosphorylation on huβc, serine 585 is upregulated by GM-CSF or IL-3 stimulation in cell lines 130
3.4.1 huIL-3 upregulates huβc, serine 585 phosphorylation in CTL-EN cells... 130
3.4.2 huβc, tyrosine phosphorylation is not required for IL-3 stimulated increase in huβc, serine 585 phosphorylation .. 131
3.4.3 huβc, serine phosphorylation is not required for huβc, tyrosine phosphorylation in response to IL-3 .. 133
3.4.4 huGM-CSF upregulates serine 585 phosphorylation in M1 cells ... 133

3.5 Phosphoserine 585 is required for 14-3-3 co-immunoprecipitation with the huβc, in response to IL-3 stimulation ... 134

3.6 14-3-3 is recruited to the mouse βc, at serine 583 .. 138
3.6.1 Expression of wildtype and mutant muβc, in COS cells .. 138
3.6.2 14-3-3 interacts with the mouse βc, at serine 583 in COS cell lysates .. 139

3.7 The 14-3-3 binding motif of huβc, is required for IL-3 supported survival of transfected CTL-EN cell lines by suppressing apoptosis ... 143
3.7.1 The 14-3-3 binding motif of huβc, is required for cellular viability in trypan blue assay of transfected CTL-EN cells in response to IL-3 .. 143
3.7.2 The 14-3-3 binding motif of huβc, is required for cell viability in an assay for metabolic activity of transfected CTL-EN cells in response to IL-3 ... 145
3.7.3 The 14-3-3 binding motif of huβc, is required for suppression of apoptosis in transfected CTL-EN lines in response to IL-3 ... 145

3.8 Discussion .. 146

CHAPTER 4: DEVELOPMENT OF A NOVEL APPROACH TO ALLOW MEASUREMENT OF THE EFFECOR CELL FUNCTIONS OF PRIMARY HAEMOPOIETIC CELLS ... 156

4.1 Introduction .. 156
4.1.1 A novel approach to isolating primary myeloid cells where the measure of huβc, regulation of effector cell functions is possible .. 156
4.1.2 Attributes of primary haemopoietic cells required for their use in assays for the regulation of effector cell functions by huGM-CSF .. 157

4.2 Assembly of retroviral constructs for the co-expression of huGMRα and wildtype huβc, or mutant huβc, in primary haemopoietic cells .. 159

4.3 Transduction of foetal liver and bone marrow cells from muβc−/−βc−/− mice with pRUFneoIRES constructs, by co-culture with Ψ2 cell lines ... 161
4.3.1 Stable transfection of Ψ2 lines with retroviral constructs ... 161
4.3.2 Infection of muβc−/−;muβc−/− mouse bone marrow and foetal liver cells with pRUFneoIRES retroviral constructs by co-culture with Ψ2 cells .. 163
4.3.3 Characterisation of the unpurified population of pRUFneoIRES transduced cells .. 166
4.3.3.1 Surface expression of GMRα by pRUFneoIRES-transduced foetal liver and bone marrow cells. 166
4.3.3.2 Viability of pRUFneoIRES-transduced foetal liver and bone marrow cells. 166
4.3.3.3 Morphology of pRUFneoIRES-transduced foetal liver and bone marrow cells. 166
4.3.3.4 Optimal culture conditions for generation of pRUFneoIRES-transduced primary cells. 170
4.3.4 Characterisation of pRUFneoIRES-transduced bone marrow cells purified by FACS on the basis of huGMR expression. 172
4.3.4.1 Morphology of huGMR positive FACS-purified pRUFneoIRES-transduced bone marrow cells. 172
4.3.4.2 Cell surface marker expression by FACS-purified pRUFneoIRES-transduced bone marrow cells. 174

4.4 Attempts to produce neutrophils co-expressing huGMRα and huβc by transduction of mouse primary haemopoietic cells with pRUFneoIRES constructs in the presence of huG-CSF. 178

4.5 Discussion .. 181

CHAPTER 5: THE ROLE OF HUβC SERINE 585 AND TYROSINE RESIDUES IN THE REGULATION OF ROS PRODUCTION. .. 185

5.1 Introduction.. 185
5.2 Measurement of ROS production in primary cell assays by flow cytometry .. 189
5.2.1 Measurement of ROS production by flow cytometry... 189
5.2.2 Priming of fMLP-stimulated ROS production with GM-CSF and TNFα in mouse bone marrow cells derived from wildtype and muβc−/−;muβcIL-3−/− double knockout mice ... 189

5.3 Analysis of the roles of the huβc, serine 585 and intracellular tyrosine residues in GM-CSF priming of ROS production... 195
5.3.1 huGM-CSF primes ROS production in monocytes/macrophages expressing huGMRα and wildtype huβc. 195
5.3.2 The role of serine 585 of the huβc in huGM-CSF priming of ROS production in mouse monocytes/macrophages.. 199
5.3.3 The role of tyrosine 577 of the huβc in huGM-CSF priming of ROS production in mouse monocytes/macrophages .. 200
5.3.4 The effect of a combined loss of huβc serine 585 and tyrosine 577 on priming of ROS production in mouse monocytes/macrophages. ... 207
5.3.5 The role of intracellular tyrosine residues of the huβc in huGM-CSF priming of ROS production in mouse monocytes/macrophages. .. 213

5.4 Discussion .. 214

CHAPTER 6: THE ROLE OF THE HUβC SERINE 585 AND TYROSINE RESIDUES IN THE REGULATION OF PHAGOCYTOSIS. .. 222

6.1 Introduction.. 222

6.2 GM-CSF priming of the phagocytic activity of muβc−/−;muβcIL-3−/− monocytes/macrophages expressing huGMRα... 226

6.3 Analysis of the roles of huβc, serine 585 and tyrosine residues in the huGM-CSF priming of the phagocytic activity... 230
6.3.1 GM-CSF primes the phagocytic activity of muβc−/−;muβcIL-3−/− macrophage/monocytes expressing huGMRα and huβc577F. ... 231
6.3.2 GM-CSF primes the phagocytic activity of muβc−/−;muβcIL-3−/− macrophage/monocytes expressing huGMRα and huβc577F. ... 233
6.3.3 GM-CSF fails to prime the phagocytic activity of muβc−/−, μβIL-3−/− macrophage/monocytes expressing huGMα and huβcSSGS/Y577F.

6.3.4 GM-CSF fails to prime the phagocytic activity of muβc−/−, μβIL-3−/− macrophage/monocytes expressing huGMα and huβcF8.

6.4 Discussion

CHAPTER 7: GENERAL DISCUSSION

REFERENCES