STRUCTURE AND FUNCTION OF THE ELASTIC FIBRE NETWORK OF THE HUMAN LUMBAR ANULUS FIBROSUS

by

Lachlan James Smith

Thesis submitted for the degree of

Doctor of Philosophy

Discipline of Pathology
School of Medical Sciences
Faculty of Health Sciences
The University of Adelaide

February 2008
TABLE OF CONTENTS

ABSTRACT.. vii
DECLARATION... x
ACKNOWLEDGEMENTS.. xi
PUBLICATIONS, CONFERENCE PROCEEDINGS AND AWARDS...................... xiii
LIST OF FIGURES.. xvi
LIST OF TABLES.. xxvii
CHAPTER 1: INTRODUCTION AND BACKGROUND... 1
 1.1 Introduction and Scope ... 2
 1.2 Background... 5
 1.2.1 The Intervertebral Disc .. 5
 1.2.1.1 Anatomy... 5
 1.2.1.2 Biochemical Composition... 7
 1.2.1.2.1 Extracellular Matrix.. 7
 1.2.1.2.2 Cellular Component... 8
 1.2.1.3 Microstructure... 11
 1.2.1.4 Mechanical Properties... 17
 1.2.1.4.1 Motion Segment... 17
 1.2.1.4.2 Tissue Level.. 22
 1.2.1.5 Degeneration and Aging.. 29
 1.2.1.5.1 Biochemical Changes... 30
 1.2.1.5.2 Structural Changes... 31
 1.2.1.5.3 Mechanical Changes... 31
 1.2.1.5.4 In Vitro Assessment of Disc Condition....................................... 35
 1.2.2 Elastic Fibres... 37
1.2.2.1 Biochemistry and Distribution in the Anulus Fibrosus 37
1.2.2.2 Mechanical Properties ... 43
1.2.2.3 Functional Roles in Composite Tissues .. 43
1.2.2.4 Roles in Disease and Aging ... 49
1.3 Study Objectives ... 52

CHAPTER 2: SPECIMEN RETRIEVAL AND GRADING 53

2.1 Introduction ... 54
2.2 Methods ... 55
2.3 Results .. 59

CHAPTER 3: STRUCTURE OF THE ELASTIC FIBRE NETWORK 63

3.1 Introduction ... 64
3.2 Scope ... 65
3.3 Objectives and Hypotheses ... 65
3.4 Review of Techniques ... 66
3.5 Methods ... 71
3.5.1 Specimen Preparation ... 71
3.5.2 Histochemistry ... 74
3.5.2.1 Collagen Staining ... 74
3.5.2.2 Elastic Fibre Staining ... 74
3.5.3 Microscopy and Imaging ... 75
3.5.4 Qualitative Analysis ... 78
3.5.5 Quantitative Analysis ... 78
3.6 Results .. 80
3.6.1 Validation of Staining ... 80
3.6.2 Collagenous Architecture ... 80
3.6.3 Elastic Fibre Arrangement in the Intralamellar Zones 85
3.6.4 Elastic Fibre Arrangement in the Interlamellar Zones 92
3.6.5 Regional Variations in Intralamellar Elastic Fibre Density 95
3.7 Discussion .. 98

CHAPTER 4: STRUCTURE-FUNCTION ASSOCIATIONS BETWEEN ELASTIC FIBRES AND COLLAGEN ...

4.1 Introduction ... 105
4.2 Scope .. 109
4.3 Objectives and Hypotheses ... 109
4.4 Elastic Fibres and Collagen Crimp ... 110
 4.4.1 Methods ... 110
 4.4.2 Results .. 113
4.5 Elastic Fibres and Cross-Collagen Fibre Connectivity 115
 4.5.1 Methods ... 115
 4.5.2 Results .. 118
4.6 Discussion .. 124

CHAPTER 5: THE FUNCTIONAL ROLE OF ELASTIC FIBRES 129

5.1 Introduction ... 130
5.2 Scope .. 131
5.3 Objectives and Hypotheses ... 131
5.4 Specimen Preparation and Equilibration .. 132
 5.4.1 Review of Techniques ... 132
 5.4.2 Excision .. 136
 5.4.3 Equilibration ... 141
 5.4.4 Dimension Measurements ... 145
Degeneration of the lumbar intervertebral disc, a condition widely implicated in the cause of low back pain among adult humans, is typically characterised by progressive biochemical and structural changes to the extracellular matrix. Comprehensive descriptions of the structural and functional inter-relationships within the extracellular matrix are therefore critical to understanding the degenerative process and developing effective treatments. In the anulus fibrosus, this matrix has a complex, hierarchical architecture comprised of collagens, proteoglycans, and elastic fibres. Elastic fibres are critical constituents of dynamic biological structures that functionally require elasticity and resilience. Studies to date of elastic fibre network structure in the anulus fibrosus have been qualitative and limited in scope. Additionally, there is poor understanding of the structural and functional associations between elastic fibres and other matrix constituents such as collagen, and, critically, there have been no studies directly examining the nature and magnitude of the contribution made by elastic fibres to anulus fibrosus mechanical behaviour. In this thesis, multiple experimental studies are described that specifically examine each of these areas.

Novel imaging techniques were developed and combined with histochemistry and light microscopy to facilitate the visualisation of elastic fibres at a level of detail not previously achieved. Examination of elastic fibre network structure revealed architectural differences between the intralamellar and interlamellar regions, suggesting that elastic fibres perform functional roles at distinct levels of the anulus fibrosus structural hierarchy. The density of elastic fibres within lamellae was found to be significantly higher in the lamellae of the posterolateral region of the anulus than the anterolateral, and significantly higher in the outer regions than the inner,
suggesting it may be commensurate with the magnitude of the tensile strains experienced by each region of the disc in bending and torsion.

The nature of the structure-function associations between elastic fibres and collagen was then examined with respect to the reported structural mechanisms of collagen matrix tensile deformation. Histological assessment of collagen crimp morphology in specimens from which elastic fibres had been enzymatically removed revealed no observable differences when compared with controls, suggesting that any contribution made by elastic fibres to maintaining crimp is minimal. Elastic fibres in anulus fibrosus specimens subjected to radial tensile deformations exhibited complex patterns of re-arrangement, suggesting that they maintain cross-collagen fibre connectivity. Elastic fibres were also observed to maintain physical connections between consecutive lamellae undergoing relative separation.

Finally, the nature and magnitude of the contribution made by elastic fibres to anulus fibrosus mechanical properties at the tissue level was investigated using a combination of biochemically verified enzymatic treatments and biomechanical tests. Targeted degradation of elastic fibres resulted in a significant reduction in both the initial modulus and the ultimate modulus, and a significant increase in the extensibility, of radially oriented anulus fibrosus specimens. Separate treatments and mechanical tests were used to account for any changes attributable to non-specific degradation of glycosaminoglycans. These results suggest that elastic fibres enhance the mechanical integrity of the anulus fibrosus extracellular matrix in the direction perpendicular to the plane containing the collagen fibres.
In summary, the results of the studies presented in this thesis provide important new insights into the structure and function of the anulus fibrosus elastic fibre network, and highlight its potential importance as a contributing or ameliorating factor in the progression of the structural and mechanical changes associated with intervertebral disc degeneration. Additionally, these results establish an improved framework for the development of more accurate analytical and finite element models to describe disc behaviour.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis being made available in the University Library. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder/s of those works.

Lachlan James Smith

x
ACKNOWLEDGEMENTS

Firstly I would like to thank my principal advisor, Professor Nick Fazzalari. His experience, enthusiasm and optimism have made my candidature an enjoyable and intellectually fulfilling experience. I would also like to thank my co-advisors, Dr Sharon Byers, Dr John Costi and Mr Chris Jeffs. Their advice and expertise have been critical to the success of the work described in this thesis.

Funding support for this work from the University of Adelaide Faculty of Health Sciences and the Institute of Medical and Veterinary Science is gratefully acknowledged. I also gratefully acknowledge the large number of people who provided either advice or practical assistance with specific technical aspects of the investigations. These include in no particular order: Ms Emmae Ramsay and Dr Kristyn Willson from the Discipline of Public Health at the University of Adelaide for assistance with the initial statistical design; Dr Bingkui Ma from the Bone and Joint Research Laboratory at the Institute of Medical and Veterinary Science for additional assistance with the statistical analysis; Mr Enzo Ranieri and Dr Peter Clements from the Department of Genetic Medicine at the Children, Youth and Women’s Health Service for assistance with liquid chromatography; Mr Richard Stanley from the Department of Orthopaedics at the Repatriation General Hospital for assisting with the design and manufacture of the specimen cutting tool and grips; Professor Bill Walsh from the Surgical and Orthopaedic Research Laboratories at the University of New South Wales for providing access to his mechanical testing equipment; Ms Gail Hermanis from the Discipline of Anatomical Sciences at the University of Adelaide for providing access to the sledge microtome in her laboratory; Ms Susan Rippin from the Division of Clinical Biochemistry at the Institute of Medical and Veterinary
Science for providing the standards for the pyridinoline assays; Mr Arash Badiei from the Bone and Joint Research Laboratory at the Institute of Medical and Veterinary Science for assistance with image processing.

More generally, I would like to thank my colleagues and fellow students both in the Bone and Joint Research Laboratory at the Institute of Medical and Veterinary Science and in the Matrix Biology Laboratory at the Children, Youth and Women’s Health Service for their support.

Finally, I would like to thank my parents, Alexis and Barry, and my sister, Miranda, for their support and patience over the last three and a half years.
PUBLICATIONS, CONFERENCE PROCEEDINGS AND AWARDS

Publications

Conference Proceedings

xiii

Awards

Travel grant, 13th Annual Scientific Meeting, Australian and New Zealand Orthopaedic Research Society, 17th-18th October 2007.

Travel grant, 12th Annual Scientific Meeting, Australian and New Zealand Orthopaedic Research Society, 6th-8th October 2006.

RJ Bauze Prize for best paper, Annual Scientific Meeting, Australian Orthopaedic Association South Australian Branch, 11th August 2006.
LIST OF FIGURES

Figure 1.1. The three anatomical regions of the lumbar disc as they appear in a mid-sagittal cross-section. ... 6

Figure 1.2. Cells in the outer anulus of a 16 year old L3-L4 human disc. Those within a lamella are fusiform (F), while those at the lamella boundary are disc-shaped (D) (author’s image, haematoxylin and eosin stain, transverse-plane section, 40 times objective magnification). ... 10

Figure 1.3. Three-dimensional representation of the intervertebral disc illustrating the concentric lamellar structure and alternating collagen fibre bundle orientations in the anulus fibrosus... 13

Figure 1.4. A collagen bundle subjected to deformation perpendicular to the collagen fibre direction, illustrating the complex mechanisms of transverse structural integration (adapted from (Pezowicz et al., 2005)). 15

Figure 1.5. A. In-plane and cross-sectioned collagen bundles in consecutive lamellae in the anulus fibrosus. B. Lamellae subjected to transverse deformation resulting in bundle elongation and lamellar separation. C. Linking elements connecting consecutive lamellae undergoing transverse separation. D. A ‘bridging element’ passes between two collagen bundles to connect non-consecutive lamellae (adapted from (Pezowicz et al., 2006a), original annotations masked). 16

Figure 1.6. The internal pressure profile of a non-degenerate intervertebral disc under pure axial compression (Adams et al., 1996). .. 18

Figure 1.7. Components of the quasi-static stress-strain response which is typical of anulus fibrosus tissue specimens tested in unaxial tension. 23
Figure 1.8. Anulus fibrosus specimens tested at different orientations demonstrate significant mechanical anisotropy. (In some cases mean values have been estimated from multiple data and graphs in the publications cited). Units are MPa. ..25

Figure 1.9. The pressure distribution in a degenerate intervertebral disc under pure axial compression (adapted from (Adams et al., 1996)). ...33

Figure 1.10. Comparison of disc degenerative grades (anterior-posterior sagittal sections) (adapted from (Thompson et al., 1990)).36

Figure 1.11. The elastic fibre assembly process, illustrated schematically, from microfibril (MF) deposition to subsequent association with tropoelastin (TE) to form the mature fibre (adapted from (Kielty et al., 2002)).38

Figure 1.12. Elastin immunostaining in the inner region of a healthy human anulus fibrosus showing apparent architectural differences in the elastic fibre network between intralamellar (arrows) and interlamellar (*) regions (adapted from (Yu et al., 2005)). ..42

Figure 1.13 The effect of elastase treatment on the quasi-static mechanical properties of A. aortic valve tissue strips (Lee et al., 2001) and B. lung tissue strips (Yuan et al., 2000). A comparison of the elastase treated responses for these architecturally distinct tissues reveals the extent to which tissue structure determines the nature of the contribution made by elastic fibres to the overall mechanical properties..48

Figure 2.1. X-ray image of the 16 year old lumbar spine. Note the excellent disc height, vertebral body shape and consistent trabecular architecture and volume.60
Figure 2.2. X-ray image of the 82 year old lumbar spine. Note the presence of osteophytes (O), pointed vertebral body margins (P), a crush fracture (C) and inconsistent trabecular bone volume between vertebral bodies. 61

Figure 2.3. Comparison of healthy and degenerate intervertebral discs (mid-sagittal cut). A. Grade 1 L1-L2, 40 year old. B. Grade 4 L1-L2, 87 year old. AF = anulus fibrosus. 62

Figure 3.1. Elastic fibres (arrows) in the interlamellar region of a transverse section of anulus fibrosus stained with haematoxylin and eosin, and viewed using fluorescence microscopy at 100 times objective magnification. Elastic fibres are significantly masked by the fluorescence of the surrounding collagen matrix at the same wavelength. Also note the visibility of chondrocyte nuclei (dark circles). 70

Figure 3.2. Schematic representation of the intervertebral disc illustrating section orientations and sampling zones (radial: inner, middle, outer; circumferential: anterolateral, posterolateral). ... 73

Figure 3.3. Motorised microscope and digital imaging workstation. 77

Figure 3.4. Composite mosaic image of an entire hemidisc (28 year old, grade 2, L3-L4, transverse section, van Gieson stain, polarised light). This section was taken directly adjacent to a section used for elastic fibre assessment. 81

Figure 3.5. Higher magnification view of the region indicated in Figure 3.4. Note the light and dark bands indicating alternating collagen fibre directions. Also note the presence of subsplitting (S) within a lamellae into multiple collagen bundles across its thickness, and the interface between two adjacent collagen bundles in the same lamella (B). Apparent vertical and horizontal interruptions are artifacts of the mosaic image reconstruction process. 82
Figure 3.6. A lamellar plane section showing bundles of collagen fibres arranged at approximately 30 degrees to the axial plane of the disc. (40 year old, grade 2, L3-L4, Van Gieson stain, 30µm section, 5x objective magnification, polarised light). This section was taken directly adjacent to a section used for elastic fibre assessment..........................83

Figure 3.7. Higher magnification view of the region indicated in Figure 3.6. Note the periodic crimp characteristic of the fibrillar collagen..84

Figure 3.8. Intralamellar elastic fibre arrangement in the outer anterolateral anulus. (Example elastic fibres indicated by arrows; resorcin-fuchsin stain, transverse section, 54 year old, grade 2 specimen, 100 times objective magnification, phase contrast z-projection). Note also the presence of background-stained chondrocyte-like cells, visible as dark ovals.................................86

Figure 3.9. Intralamellar elastic fibre arrangement in the outer posterolateral anulus. (Example elastic fibres indicated by arrows; resorcin-fuchsin stain, transverse section, 54 year old, grade 2 specimen, 100 times objective magnification, phase contrast z-projection)...87

Figure 3.10. Under dark field, elastic fibres appear bright pink/purple against a dark bluish background (image adjusted to improve contrast). This image shows a mass of fibres within the complex lamellar structure of the posterolateral anulus in the 54 year old, grade 2 specimen. (Resorcin fuchsin stain, 30µm section, 20x objective magnification composite z-projected image).88

Figure 3.11. Intralamellar elastic fibre arrangement in the inner anulus. (Example elastic fibres indicated by arrows; resorcin-fuchsin stain, transverse section, 28 year old, grade 2 specimen, 100 times objective magnification, phase contrast z-projection). ...89
Figure 3.12. Intralamellar elastic fibres and the surrounding matrix architecture of the outer annulus viewed in the lamellar plane. (a) Polarised light image depicting collagen fibre bundles (CB) in the outer annulus of a 40 year old, grade 2 disc angled at approximately 30° to the transverse plane. (b) Higher magnification, phase contrast, z-series composite image in the region of image (a) indicated by the square, showing elastic fibres (examples indicated by arrows) running parallel to the collagen fibril bundles. (c) Binarised reconstruction of (b). (d) Elastic fibres in (c) are superimposed over a high magnification, polarised light view of the same region showing elastic fibre distribution relative to the collagen microarchitecture, including planar crimp.

Figure 3.13. Elastic fibre architecture at the intersection of adjacent collagen bundles, viewed in the transverse plane as z series composite images (b and c), contextualised against the surrounding architecture viewed under polarised light (a). In some cases, these fibres appeared straight, as though under stress (b), and in other cases, they appeared looser (c), suggesting a more relaxed state. A large number of non-specifically stained chondrocyte-like cells are also visible. (Resorcin-fuchsin stain; image a viewed under cross-polarised light at 5 times objective magnification; images b and c are bright-field z-projected images viewed at 100 time objective magnification).

Figure 3.14. Interlamellar elastic fibres and the surrounding matrix architecture viewed in the lamellar plane (40 year old, grade 2 specimen). (a) Polarised light image depicting an oblique cut through the interlamellar space (ILS) separating two collagen bundles in consecutive lamellae (CB). (b) High magnification, phase contrast, z-series composite image in the region of image (a) indicated by the square, showing a complex meshwork of elastic fibres in the interlamellar
space (examples indicated by arrows). (c) Binarised reconstruction of (b). (d) Elastic fibres in (c) are superimposed over a high magnification, cross-polarised light view of the same region. ... 93

Figure 3.15. Interlamellar elastic fibres and the surrounding matrix architecture viewed in the transverse plane (54 year old, grade 2 specimen). (a) Polarised light image depicting two collagen bundle lamellae (CB) separated by an interlamellar space (ILS). (b) High magnification, phase contrast, z-series composite image in the region of image (a) indicated by the square, showing a complex meshwork of elastic fibres (examples indicated by arrows) in the interlamellar space. (c) Binarised reconstruction of (b). (d) Elastic fibres in (c) are superimposed over a high magnification, cross-polarised light view of the same region showing elastic fibre distribution relative to the collagen microarchitecture. The circles indicate apparent fibre ‘kinks’ at the points of anchorage into the collagen bundles. 94

Figure 3.16. Variations in intralamellar elastic fibre density with radial and circumferential location, (mean ± SD, n = 7). Significance was detected between anterolateral and posterolateral (inner: p = 0.02, middle: p = 0.007, outer: p = 0.001, overall: p = 0.002), and between inner and outer (anterolateral: p = 0.005, posterolateral: p = 0.002). .. 97

Figure 4.1. Schematic illustrating the excision site in the lateral anulus fibrosus for lamellar plane specimens used to investigate the role of elastic fibres in the maintaining collagen crimp... 112

Figure 4.2. Crimp morphology in control and elastase treated specimens (30 micron lamellar plane sections, van Gieson stain, cross-polarised light, 40 times objective magnification).. 114
Figure 4.3. A. Intervertebral disc posterolateral quadrant schematic showing the harvest site for radially oriented specimens. B. Schematic of a strained specimen showing histological sampling sites within collagen bundles and at lamellar interfaces.

Figure 4.4 Transverse deformation of collagen bundles in specimens under radial tensile strain (arrows indicate test direction) resulted in splitting and sub-splitting of fibrous elements (stained red), in a manner comparable to that observed in a previous study (compare with Figure 1.4, (Pezowicz et al., 2005)). (Van Gieson stain, phase contrast, 40 times objective magnification).

Figure 4.5. Elastic fibre network structure, within a collagen bundle, in the 40 year old, grade 2 specimen subjected to radial tensile strain (inset shows loading direction). \(SE \) = straight elastic fibres potentially indicating regions and directions where the collagen matrix is in tension. \(RE \) = relaxed elastic fibres potentially indicating regions and directions where the collagen matrix is in compression. (Resorcin-fuchsin stain, phase contrast composite z-stack image, 100x objective magnification).

Figure 4.6. Comparison of elastic fibre arrangements within the collagen bundles of adjacent strained and unstrained specimens. A. Elastic fibre arrangement in a collagen bundle of a specimen subjected to radial tensile strain. Green circles indicate examples of elastic fibres that undergo sharp changes of direction along their length. Arrows indicate test direction. B. Elastic fibre arrangement in a collagen bundle of a specimen subjected to zero strain, displaying characteristic isotropy. Original images were z-series projections taken from 30 micron-thick sections stained with resorcin-fuchsin and imaged under phase contrast at 100x.
times objective magnification. Three-dimensional reconstructions of the elastic fibres in both images can be found on the accompanying media......................... 121

Figure 4.7. Elastic fibres (pink) form a point of adhesion between two lamella undergoing transverse separation in a specimen under radial tensile strain (40 year old, grade 2 specimen, dark field image, 30 micron section, resorcin-fuchsin stain). For the detail within the square refer to Figure 4.8......................... 122

Figure 4.8. Bundles of elastic fibres, E, forming connections between two collagen bundles in consecutive lamellae, L, in a specimen subjected to radial tensile strain (inset shows loading direction). (40 year old, grade 2 specimen, resorcin-fuchsin stain, phase contrast composite z-stack image, 100x objective magnification). A three-dimensional reconstruction of the elastic fibres in this image can be found on the accompanying media... 123

Figure 4.9. Schematic representing intralamellar elastic fibres and collagen fibres, with multiple points of connection between them. A. In unloaded lamellae, elastic fibres lie parallel to collagen fibres. B. In loaded lamellae, relative shear and normal strains between adjacent collagen fibres results in decreased elastic fibre isotropy, and both localised fibre extension and crumpling.................. 128

Figure 5.1. Hemi-disc schematic illustrating specimen harvest sites in the anterolateral and posterolateral quadrants ($r =$ radial, $c =$ circumferential and $a =$ axial directions)... 138

Figure 5.2 Anulus quadrant mounted on cryostat chuck ready for trimming......... 139

Figure 5.3 Razor tool, configured to cut A. parallel-edged specimens or B. dumb-bell shaped specimens. ... 140

Figure 5.4. Time course percent increase in specimen wet weight (measured from the zero time point). Mean \pm SD, n = 6.. 143
Figure 5.5. Example specimen images used for dimension measurements. W = width, T = thickness. The rectangle indicates the approximate location of the gauge region...146

Figure 5.6. Standard curve for the desmosine assay. A. Linear scale horizontal axis. B. Logarithmic scale horizontal axis. ...164

Figure 5.7. Standard curve for the hydroxyproline assay.................................165

Figure 5.8. Standard curve for the pyridinoline assay.......................................166

Figure 5.9. HPLC chromatographs for four serial dilutions of combined pyridinoline and deoxypyridinoline standard. The pyridinoline peak is at approximately 3.4 minutes. ..167

Figure 5.10. Standard curve for the uronic acid assay (assayed in triplicate, absorbance measured at 520nm). ...168

Figure 5.11. Sandpaper mounting frame (prior to assembly) with specimen in position. G = gauge region; dotted lines = cutting zones following placement in the mechanical testing system grips...180

Figure 5.12. Biosyntech Mach-1 mechanical testing system..............................182

Figure 5.13. Specimen under test submerged in saline......................................183

Figure 5.14. Typical stress versus strain responses A. before and after elastase treatment, and B. before and after chondroitinase ABC treatment.190

Figure 5.15. Initial modulus, ultimate modulus and extensibility, before and after elastase treatment (n = 14; all median + IQR). * Indicates significant difference between median values before and after treatment, p < 0.001.................191

Figure 5.16. Initial modulus, ultimate modulus and extensibility, before and after chondroitinase ABC treatment. (n = 14; all median + IQR). * Indicates significant difference before and after treatment, p < 0.001.................192
Figure 5.17. Comparison of the changes in initial modulus and extensibility following treatment with elastase and chondroitinase ABC (n = 14; median + IQR). * Indicates significant difference, p < 0.001.193

Figure 5.18. Variations in pre-treatment mechanical properties with circumferential location. (AL: n = 8; PL: n = 8; all mean ± SD). * Indicates significant difference between anterolateral and posterolateral, p = 0.02. .. 196

Figure 5.19. Variations in mechanical properties with circumferential location following treatment with elastase (AL: n = 7; PL: n = 7; initial modulus: mean ± SD; ultimate modulus and extensibility: median + IQR). * Indicates significant difference between anterolateral and posterolateral, p = 0.02............................ 197

Figure 5.20. Variations in mechanical properties with circumferential location following treatment with chondroitinase ABC (AL: n = 8; PL: n = 6; both median + IQR). .. 198

Figure 5.21. Variations in the magnitude of the changes associated with each of the mechanical properties with circumferential region following treatment with elastase (AL: n = 7; PL: n = 7; initial modulus: median + IQR; ultimate modulus and extensibility: mean ± SD)... 199

Figure 5.22. Variations in the magnitude of the changes associated with each of the mechanical properties with circumferential region following treatment with elastase (AL: n = 8; PL: n = 6; both median + IQR).. 200

Figure 5.23. Variations in pre-treatment mechanical properties with disc condition (pooled anterolateral and posterolateral; non-degenerate: n = 13; degenerate: n = 15; all median + IQR). Significant difference between non-degenerate and degenerate, * p = 0.048, ** p = 0.005. .. 202
Figure 5.24. Variations in mechanical properties with disc condition following treatment with elastase (pooled anterolateral and posterolateral; non-degenerate: n = 7; degenerate: n = 7; initial modulus and ultimate modulus: mean ± SD; extensibility: median + IQR). ... 203

Figure 5.25. Variations in mechanical properties with disc condition following treatment with chondroitinase ABC (pooled anterolateral and posterolateral; non-degenerate: n = 6; degenerate: n = 8; both median + IQR). 204

Figure 5.26. Variations in the magnitude of the changes associated with each of the mechanical properties with disc condition following treatment with elastase (pooled anterolateral and posterolateral; non-degenerate: n = 7; degenerate: n = 7; initial modulus: median + IQR; ultimate modulus and extensibility: mean ± SD). ... 205

Figure 5.27. Variations in the magnitude of the changes associated with each of the mechanical properties with disc condition following treatment with chondroitinase ABC (pooled anterolateral and posterolateral; non-degenerate: n = 6; degenerate: n = 8; both median + IQR) .. 206
LIST OF TABLES

Table 1.1. Internal radial strains (percent) experienced by the non-degenerate anulus fibrosus under physiological loading (Tsantrizos et al., 2005). Positive = tensile; negative = compressive. ... 21

Table 1.2. Internal circumferential strains (percent) experienced by the non-degenerate anulus fibrosus under physiological loading (Tsantrizos et al., 2005). Positive = tensile; negative = compressive. ... 21

Table 1.3. Collagen fibre bundle strains on the exterior surface of the anulus fibrosus under various loading conditions (disc only) (Stokes, 1987). *Percent; **percent per degree; †strains positive (tensile) for torsion in the opposite direction...... 21

Table 2.1. Age and sex information for cadaveric lumbar spines. 57

Table 2.2. Disc grading criteria, adapted from (Thompson et al., 1990). 58

Table 3.1. Intervertebral hemi-discs used for examination of elastic fibre network structure, including sex, disc height (anterior), degenerative grade and T-scores for adjacent vertebral bodies. All discs are from the L3-L4 level. *VB = vertebral body.. 72

Table 3.2. Intralamellar elastic fibre density, summarised by region for each specimen - fibres per 100µm (mean ± SD, n ≥ 6). *AL = anterolateral, PL = posterolateral ... 96

Table 5.1. Specimen age, sex and grade... 136

Table 5.2. Results of specimen hydration study (n = 6). 142

Table 5.3. Elastin degradation conditions used in previous studies. *Soybean trypsin inhibitor... 154
Table 5.4. Glycosaminoglycan degradation conditions used in previous studies. *pH not stated. .. 154

Table 5.5. Desmosine assay results (n = 4). *Absorbance measured at 490nm. 163

Table 5.6. Hydroxyproline assay results (n = 4). *Absorbance measured at 560nm. 165

Table 5.7. Pyridinoline assay results (n = 4)... 166

Table 5.8. Results of uronic acid assay for specimens subjected to elastase treatment.
 *Absorbance measured at a wavelength of 520nm.. 169

Table 5.9. Results of uronic acid assay for specimens subjected to chondroitinase ABC treatment. *Absorbance measured at a wavelength of 520nm.............. 169

Table 5.10. Specimen assignments to digestion groups. ... 171

Table A4.1. Mechanical testing data – elastase treated group. 243

Table A4.2. Mechanical testing data – chondroitinase ABC treated group. 244

Table A4.3. Change in initial modulus following enzyme treatment. Each n = 14, median (IQR), Wilcoxon signed ranks tests. ... 245

Table A4.4. Change in ultimate modulus following enzyme treatment. Each n = 14, median (IQR), Wilcoxon signed ranks tests. ... 245

Table A4.5. Change in extensibility following enzyme treatment. Each n = 14, median (IQR), Wilcoxon signed ranks tests. ... 246

Table A4.6. Regional variations in pre-treatment mechanical properties. Each n = 8, mean ± SD, paired t-tests. .. 246

Table A4.7. Regional variations in mechanical properties following elastase treatment. Each n = 7; *mean ± SD, unpaired t-test; **median (IQR), Mann-Whitney U test. ... 247

Table A4.8. Regional variations in mechanical properties following chondroitinase ABC treatment. Median (IQR), Mann-Whitney U tests; *n = 8, **n = 6. 247
Table A4.9. Regional variations in the magnitude of the changes in mechanical properties after elastase treatment. Each n = 7; *median (IQR), Mann-Whitney U test; **mean ± SD, unpaired t-test. ... 248

Table A4.10. Regional variations in the magnitude of the changes in mechanical properties after chondroitinase ABC treatment. Median (IQR), Mann-Whitney U test; *n = 8, **n = 6. ... 248

Table A4.11. Variations in pre-treatment mechanical properties with degenerative condition. Pooled anterolateral and posterolateral, median (IQR), Mann-Whitney U test; *n = 13, **n = 15. ... 249

Table A4.12. Variations in mechanical properties with degenerative condition following treatment with elastase. Pooled anterolateral and posterolateral, each n = 7; *mean ± SD, unpaired t-test; **median (IQR), Mann-Whitney U test. 249

Table A4.13. Variations in mechanical properties with degenerative condition following treatment with chondroitinase ABC. Pooled anterolateral and posterolateral, median (IQR), Mann-Whitney U test; *n = 6, **n = 8. 250

Table A4.14. Variations in the magnitude of the change in mechanical properties with degenerative condition following treatment with elastase. Pooled anterolateral and posterolateral, each n = 7; *median (IQR), Mann-Whitney U test; **mean ± SD, unpaired t-test. ... 250

Table A4.15. Variations in the magnitude of the change in mechanical properties with degenerative condition following treatment with chondroitinase ABC. Pooled anterolateral and posterolateral, median (IQR), Mann-Whitney U test; *n = 6, **n = 8. ... 251