MULTI-OBJECTIVE PORTFOLIO OPTIMISATION OF
UPSTREAM PETROLEUM PROJECTS

Otto Aristeguieta
I.D. 1109860

Supervisors:
Prof. Reidar Bratvold
Prof. Steve Begg
Prof. Andrés Medaglia

Adelaide
April, 2008
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contents</td>
<td>i</td>
</tr>
<tr>
<td>List of figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of tables</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>Statement of originality</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
<tr>
<td>List of selected acronyms and abbreviations</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives and scope</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Assumptions and limitations</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Outline of the thesis</td>
<td>4</td>
</tr>
<tr>
<td>2 Overview of the general upstream oil and gas portfolio optimisation</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 The source of the problem: the budgetary constraint</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Shareholder value maximisation: a single objective?</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Objectives under uncertain conditions</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Accounting for correlation</td>
<td>9</td>
</tr>
<tr>
<td>2.5.1 Intra-project correlation</td>
<td>9</td>
</tr>
<tr>
<td>2.5.2 Inter-project correlation</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Implications of correlation in multi-objective optimisation over several attributes</td>
<td>11</td>
</tr>
<tr>
<td>2.7 Defining a portfolio: the decision variables</td>
<td>12</td>
</tr>
<tr>
<td>2.8 Performance goals</td>
<td>12</td>
</tr>
<tr>
<td>2.9 Summing up</td>
<td>13</td>
</tr>
<tr>
<td>3 Oil & Gas project valuation: a multi-attribute perspective</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Project valuation</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Mathematical modelling</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Deterministic and probabilistic approaches to modelling and valuation</td>
<td>16</td>
</tr>
<tr>
<td>3.5 A general framework to model and characterise upstream projects stochastically</td>
<td>17</td>
</tr>
<tr>
<td>3.5.1 Resources estimation</td>
<td>17</td>
</tr>
<tr>
<td>3.5.2 Production estimation</td>
<td>18</td>
</tr>
<tr>
<td>3.5.3 Economics</td>
<td>18</td>
</tr>
<tr>
<td>3.5.4 Stochastic oil price modelling</td>
<td>20</td>
</tr>
<tr>
<td>3.6 Valuation</td>
<td>22</td>
</tr>
<tr>
<td>3.6.1 Utility theory: one attribute with uncertain performance</td>
<td>23</td>
</tr>
<tr>
<td>3.6.2 Multi-attribute utility theory</td>
<td>25</td>
</tr>
<tr>
<td>3.7 Summing up and discussion</td>
<td>29</td>
</tr>
<tr>
<td>4 Optimisation</td>
<td>30</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Optimisation definition</td>
<td>30</td>
</tr>
<tr>
<td>4.3 Single objective optimisation</td>
<td>30</td>
</tr>
<tr>
<td>4.4 Multiple objective optimisation</td>
<td>31</td>
</tr>
<tr>
<td>4.4.1 Multi-objective optimisation problem</td>
<td>32</td>
</tr>
<tr>
<td>4.4.2 Classes of techniques for solving multi-objective optimisation problems</td>
<td>34</td>
</tr>
<tr>
<td>4.4.3 Stochastic optimisation</td>
<td>39</td>
</tr>
<tr>
<td>4.5 Multi-objective genetic optimizer with linear constraints (MOGOL)</td>
<td>41</td>
</tr>
<tr>
<td>4.5.1 Discussion of the MOGOL algorithm</td>
<td>45</td>
</tr>
<tr>
<td>4.6 Summing up</td>
<td>45</td>
</tr>
<tr>
<td>5 Oil and gas portfolio optimisation</td>
<td>47</td>
</tr>
</tbody>
</table>
5.1 Introduction

5.2 Aggregating projects: deterministic and stochastic approaches

5.3 E&P portfolio optimisation methods most commonly found in the literature
 5.3.1 Capital rationing approach
 5.3.2 Mean-variance approach

5.4 Review of the state of the art multi-attribute E&P portfolio optimisation methods
 5.4.1 Multi-attribute utility theory (MAUT) approach
 5.4.2 Multiple goals approach
 5.4.3 Single objective simulation-optimisation approach

5.5 Summing up

6 A multi-objective simulation-optimisation approach for E&P portfolio optimisation
 6.1 Introduction
 6.2 Single project model
 6.2.1 Production profile model
 6.2.2 Oil price model
 6.2.3 Costs
 6.2.4 Tax calculation
 6.2.5 Reserves and NPV calculation
 6.3 Stating the objectives of the portfolio
 6.4 Integrated portfolio multi-objective optimisation model
 6.4.1 Integrating the search engine with the portfolio model
 6.5 Summing up

7 Application of the model to a set of development projects
 7.1 Introduction
 7.2 The projects
 7.3 Experimental settings hardware and software
 7.3.1 Hardware
 7.3.2 Software
 7.3.3 Projects Inputs
 7.3.4 Mean reverting oil price model base parameters
 7.3.5 Single project output
 7.4 Convergence of the objectives
 7.4.1 Convergence of the E(NPV), P10(NPV) and P90(NPV)
 7.4.2 Convergence of the E(R) and P10(R)
 7.5 Experiment 1: Multiple objectives over multiple attributes
 7.5.1 Settings
 7.5.2 Results
 7.5.3 Result analysis
 7.6 Experiment 2: Multiple objectives over a single attribute
 7.6.1 Settings
 7.6.2 Results
 7.6.3 Result analysis
 7.7 Summing up

8 Conclusion and discussion
 8.1 Introduction
 8.2 Results
 8.2.1 Multi-objective E&P project portfolio optimisation model
 8.2.2 Application of the portfolio optimisation model
 8.3 Further research and model development

9 APPENDIX A: SPE Reserves and resources definitions SPE (2000)
 DISCOVERED PETROLEUM-INITIALLY-IN-PLACE
 ESTIMATED ULTIMATE RECOVERY
 RESERVES
 PROBABILISTIC MODEL
LIST OF FIGURES

Figure 2-1 Relationship between corporate objectives and shareholder value. Modified from Walls (1995) .. 7
Figure 2-2 Hypothetical mean objectives for a risk averse company .. 8
Figure 3-1 Distribution of Reserves ... 20
Figure 3-2 Mean-reverting price forecast model. Modified from Dias (2004) .. 22
Figure 3-3 Single attribute utility function .. 24
Figure 4-1: Illustration of a general multi-objective optimisation problem. Modified from Zitzler et al. (2004) .. 33
Figure 4-2: Illustration of Pareto optimality in the objective space. Modified from Zitzler (1999) 34
Figure 4-3: The ε– constraint method ... 35
Figure 4-4 Contours of the multi-attribute utility function (Modified from Deb (2001)) 37
Figure 4-5: Approximation of the Pareto set through iterative evaluation and search. Source Zitzler et al. (2004) .. 38
Figure 4-6 Feasible region. Modified from Medaglia (2003) ... 42
Figure 4-7 Flow chart describing the evaluation of possible solutions by MOGOL 44
Figure 5-1 Efficient frontier calculated for the eight project proposals and a budget of US$400 million. 57
Figure 5-2: Working interest composition of the portfolios shown in the efficient frontier 57
Figure 6-1 Intra and inter-asset correlations ... 74
Figure 6-2 Separation of the project characterisation and portfolio optimisation stages 75
Figure 6-3 Integration of the project characterisation and portfolio optimisation stages 76
Figure 7-1 Behavior of the mean-reverting oil price model with the inputs specified above 81
Figure 7-2 Performance of the approximate Pareto set over the objectives E(Reserves), P10(Reserves), P(NPV>0) and E(NPV) ... 87
Figure 7-3 Composition of the approximate Pareto set of portfolios .. 88
Figure 7-4 Performance of the approximate Pareto set over the objectives E(NPV), P10(NPV), P(NPV>0) and P90(NPV) ... 94
Figure 7-5 Composition of the approximate Pareto set of portfolios .. 94
Figure 11-1 P10, P50 and P90 production of project 1 ... 104
Figure 11-2 P10, P50 and P90 NCF of project 1 .. 105
Figure 11-3 NPV distribution of project 1 .. 105
Figure 11-4 Reserves distribution of project 1 .. 106
Figure 11-5 P10, P50 and P90 production of project 2 ... 106
Figure 11-6 P10, P50 and P90 NCF of project 2 .. 107
Figure 11-7 NPV distribution of project 2 .. 107
Figure 11-8 Reserves distribution of project 2 ... 108
Figure 11-9 P10, P50 and P90 production of project 3 ... 108
Figure 11-10 P10, P50 and P90 NCF of project 3 ... 109
Figure 11-11 NPV distribution of project 3 .. 109
Figure 11-12 Reserves distribution of project 3 ... 110
Figure 11-13 P10, P50 and P90 production profile of project 4 ... 110
Figure 11-14 P10, P50 and P90 NCF of project 4 .. 111
Figure 11-15 NPV distribution of project 4 ... 111
Figure 11-16 Reserves distribution of project 4 ... 112
Figure 11-17 P10, P50 and P90 production of project 5 .. 112
Figure 11-18 P10, P50 and P90 NCF of project 5 .. 113
Figure 11-19 NPV distribution of project 5 ... 113
Figure 11-20 Reserves distribution of project 5 ... 114
LIST OF TABLES

Table 5-1 Costs and distribution parameters of the NPV and cumulative production metrics.........50
Table 5-2 Results of the capital rationing method...52
Table 7-1 Summary of stochastic project inputs: initial production and EUR..............................79
Table 7-2 Summary of stochastic project inputs: variable Opex and Abex.................................79
Table 7-3 Summary of deterministic project inputs number of wells, Capex, fixed Opex and maximum capacity ..80
Table 7-4 Summary of deterministic project inputs tax rate, royalty rate, discount rate and percentage of total Capex that is intangible..80
Table 7-5 Summary of the performance of the projects on relevant statistics, probabilities and percentiles of the attribute NPV ..81
Table 7-6 Summary of the performance of the projects on relevant statistics, probabilities and percentiles of the attribute reserves..82
Table 7-7 Summary of the convergence of relevant statistics extracted from the NPV attribute.......82
Table 7-8 Summary of the convergence of relevant statistics extracted from the Reserves attribute..83
Table 7-9 Composition of the approximate Pareto optimal portfolios...85
Table 7-10 Performance of the approximate Pareto set in the 4 objectives under study and the Capex 86
Table 7-11 Composition of the approximate Pareto optimal portfolios...92
Table 7-12 Performance of the approximate Pareto set in the 4 objectives under study and the Capex 93
ABSTRACT

The shareholders of E&P companies evaluate the future performance of these companies in terms of multiple performance attributes. Hence, E&P decision makers have the task of allocating limited resources to available project proposals to deliver the best performance on these various attributes. Additionally, the performance of these proposals on these attributes is uncertain and the attributes of the various proposals are usually correlated. As a result of the above, the E&P portfolio optimisation decision setting is characterised by multiple attributes with uncertain future performance.

Most recent contributions in the E&P portfolio optimisation arena seek to adapt modern financial portfolio theory concepts to the E&P project portfolio selection problem. These contributions generally focus on understanding the tradeoffs between risk and return for the attribute NPV while acknowledging the presence of correlation among the assets of the portfolio. The result is usually an efficient frontier where one objective is set over the expected value of the NPV and the other is set over a risk metric calculated from the same attribute where, typically, the risk metric has a closed form solution (e.g., variance, standard deviation, semi-standard deviation). However, this methodology fails to acknowledge the presence of multiple attributes in the E&P decision setting.

To fill this gap, this thesis proposes a decision support model to optimise risk and return objectives extracted from the NPV attribute and from other financial and/or operational attributes simultaneously. The result of this approach is an approximate Pareto front that explicitly shows the tradeoffs among these objectives whilst honouring intra-project and inter-project correlations. Intra-project correlations are incorporated into the optimisation by integrating the single project models to the portfolio model to be optimised. Inter-project correlation is included by modelling of the oil price a global variable. Additionally, the model uses a multi-objective simulation-optimisation approach and hence it overcomes the need of using risk metrics with closed form solutions.

The model is applied to a set of realistic hypothetical offshore E&P projects. The results show the presence of complex relationships among the objectives in the approximate Pareto set. The ability of the method to unveil these relationships hopes to bring more insight to the decision makers and hence promote better investment decisions in the E&P industry.
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Signed: ___________________________ Date: ___________________________
ACKNOWLEDGEMENTS

Many people have contributed to bring this thesis to life. I would like to take this opportunity to recognise them.

I want to thank the University of Adelaide for funding this research with a Santos scholarship. I would also like to express my gratitude to Professors Reidar Bratvold and Steve Begg for introducing me to the fascinating area of decision and risk analysis and for their guidance throughout this research. A very special thank to Professor Andrés Medaglia for his enthusiasm, for providing the MOGOL algorithm and for joining this research as an external supervisor.

Many thanks to Yvonne Philp and Maureen Sutton from the Australian School of Petroleum for all their help during my stay in Adelaide and while writing the thesis in the UK. Additionally, I would like to thank Professor Graeme Simpson and Ian Beck for their support during the writing up period in the UK.

Lastly, but most importantly, I would like to thank my wife, Irene, my family and friends, for their love, energy, and support. This thesis is also yours.
LIST OF SELECTED ACRONYMS AND ABBREVIATIONS

Abex abandonment costs
ATNCF after tax net cash flow
Bbl barrels
Capex capital expenditures
DM decision maker
E&P downstream oil and gas exploration and production companies
E(X) expected value of the attribute X
EconLimit economic limit of the field
EUR expected ultimate recovery
FixOpex fixed operating expenditures
IntanCapex intangible capital expenditures
M thousand
Maxcap maximum capacity of the production hub
MM million
NCF net cash flow
NPV net present value
OOIP original oil in place
Opex operating expenditures
P(X>0) probability that the attribute X will return a positive value
P10(X) 10th percentile of the attribute X
P50(X) 50th percentile of the attribute X
P90(X) 90th percentile of the attribute X
PDF probability density function
PSC production sharing contract
qt production of the field in time t
R reserves
ROCE return over capital employed
SD(X) standard deviation of the attribute X
TanCapex tangible capital expenditure
US$ United States Dollars
VarOpex variable operating expenditures