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Novel Low-Loss Bandgaps in All-Silica Bragg Fibers
Kristopher J. Rowland, Shahraam Afshar V., and Tanya M. Monro

Abstract—We demonstrate that higher order bandgaps in all-
silica Bragg fibers can have modes with four orders of magnitude
lower confinement loss than those using the fundamental bandgap.
A scheme for exploiting the higher order gaps for any specific wave-
length via a global scaling of the fiber geometry is proposed. This
approach provides lower losses than by reducing the confinement
loss of the fundamental gap by scaling the core. Using a variety
of modeling techniques, we have examined the band structure and
guidance of idealized air-core all-silica Bragg fibers. It is demon-
strated that the higher order, low loss, bandgaps analyzed here are
uniquely accessible to single-material Bragg fibers, and are fun-
damentally different from the higher order gaps typically associ-
ated with depressed-index Bragg fibers such as the “Omniguide”
fibers. Further analysis suggests that some of the key features of
the guided modes of Bragg fibers can be understood by considering
the properties of single hollow-core homogeneous dielectric waveg-
uides (“boreholes”).

Index Terms—Bragg fiber, microstructured optical fiber, optical
fiber design, photonic bandgap fiber.

I. INTRODUCTION

OPTICAL fibers that can confine light within an air core
have excited significant interest in recent years. These

fibers are of particular promise for guiding high intensity light
without damage or undesired nonlinear effects, and are also at-
tractive for a range of applications including sensing, telecom-
munications, and medicine. Most of the work in this field to date
has focused on silica fibers with holes arranged on a hexagonal
lattice, with an air core formed by either 9 or 17 missing air
holes [1].

An alternate form of air-guiding photonic bandgap fiber has
recently been revived: the Bragg fiber, which has a cladding con-
sisting of concentric layers of high and low refractive index ma-
terials [2]. Indeed, the Bragg fiber appears to have been the first
proposed photonic bandgap fiber, circa 1978 [2], but its devel-
opment was restricted due to fabrication technology constraints
such as the requirements for material compatibility, large refrac-
tive index contrasts, and the large number of alternating layers
needed to achieve reasonable confinement loss (CL). Although
there have since been advances in this area [3], [4] these fabri-
cation constraints still exist.

Recently, Vienne et al. [5] demonstrated an hollow-core
single-material Bragg fiber made solely from silica and air.
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They showed that by using only three rings of silica-air layers
connected by thin struts, such fibers can produce substantially
better light confinement than what can be achieved in conven-
tional Bragg fibers [5]. Their so-called ‘OD90’ fiber design is
capable of an almost octave frequency range of hollow-core
guidance (impossible via conventional designs) with a nominal
loss of dB/m using just three pairs of cladding layers.

The modeling of an idealized (concentric annular rings with
no connecting struts) version of the OD90 fiber of [5], via the
asymptotic transfer matrix method [6] predicts confinement
losses about 100 times lower than the total losses measured in
the fabricated analog. Uranus et al. [7] calculate the CL of a
geometry close to that of the fabricated OD90 fiber, claiming
values very close to the experimentally measured value. This
suggests that the dominant loss mechanism is indeed confine-
ment loss and that the reason for the discrepancy with the ideal
geometry is predominantly due to the presence of the connec-
tive struts. Confinement loss limited transmission has also been
observed experimentally in more conventional Bragg fibers for
similar near-infrared (NIR) wavelengths [4]. Recent work [8]
demonstrates that the struts introduce surface modes whose
CL introduces sharp features in the OD90 fiber’s transmission
spectrum.

Our work here focuses on the analysis of an idealized single-
material silica Bragg fiber, where the connective struts have
been ignored. The analysis of this simpler waveguide is para-
mount since the fundamental principles governing the behavior
of the idealized case must be first understood before the effects
of (potentially tunable) surface modes can be appreciated. We
extend considerably upon work recently presented by the au-
thors in [9]. In Section II, we detail the various modeling tech-
niques used to analyze the idealized fiber and discuss points
pertinent to the discussions of Section III. Section III-A ana-
lyzes the dispersion and confinement loss properties of the con-
sidered fiber, showing how there exists a second bandgap pro-
viding four orders of magnitude lower confinement loss than
the fundamental. Section III-B provides insight into the guid-
ance mechanisms responsible for this behavior. Section III-C
looks at the bandgap structure of the fiber cladding in greater
detail, demonstrating a nontrivial bandgap topology uniquely
accessible to such Bragg fibers. Section III-D presents a way to
exploit the second bandgap for potentially broadband air-core
guidance with far lower confinement loss than that already ob-
served [5].

II. MODELING BRAGG FIBERS

Several semianalytical and numerical techniques have been
used to analyze the guidance properties of Bragg fibers, in-
cluding Chew’s method [10], Galerkin’s method [11], the
transfer matrix method (TMM) [2], [11], the asymptotic
method [6], [12], [13] and the finite element method (FEM) [7].
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Galerkin’s method approximates the fields by an infinite set of
Laguerre-Gaussian functions, the TMM describes the fields in
each layer as a linear combination of Bessel functions, and the
asymptotic approach is essentially the same as the TMM except
that the asymptotic forms of the Bessel functions are used.
The FEM numerically solves Maxwell’s equations over a mesh
discretising the Bragg fiber geometry. We use the TMM here
since it is the most accurate semi-analytical method [11], as
confirmed by our results found with the FEM. FEM modeling
can also be used to extend the analysis to real single-material
Bragg fiber geometries with struts in later work.

In addition, we also analyze the behavior of the Bragg stack
and borehole waveguide analogous to the Bragg fiber cladding
and core respectively. As we will show later, the fundamental
physics of the Bragg fiber guidance is strongly related to the
optical behavior of these two structures.

A. Fiber Parameters

Since we are analyzing an idealized version of a single-ma-
terial Bragg fiber (neglecting the connecting struts) we con-
sider the conventional Bragg fiber geometry: a circular core sur-
rounded by a cladding of two types of concentric circular layers
of varying thicknesses and refractive indices. Taking as the ra-
dial coordinate, the refractive index distribution is

for
for

(1)

where

for
for

so that even or odd numbered rings have the same refrac-
tive index and thickness , allowing us to define

and . Thus,
there are pairs of layers in the cladding with width
(the period). Fig. 1 is a schematic representation of an idealized
single-material Bragg fiber, where (air/vacuum).
This geometry has four free parameters: (the core
radius), , and . The main case we consider here is the

idealized single-material silica Bragg fiber considered
by Vienne et al. [5], namely: m, m,

m, , and . It is known
that the mode typically produces the lowest CL of any
mode supported by a Bragg fiber [14] and is hence the main
one we consider throughout.

B. Transfer Matrix Method

We consider the wave equation

(2)

where is the transverse Laplacian, is
the angular frequency, and is the modal propagation constant.
This is solved by expanding the fields using Bessell functions [2]

(3)

Fig. 1. Schematic representation of an arbitrary idealized single material Bragg
fiber geometry withN cladding pairs. The plot underneath is a slice of the profile
made by any plane touching the axis of the fiber.

where , and are the expansion coefficients, and
are arbitrary constants, is the azimuthal quantum number

(an integer) and . The expan-
sion coefficients between two arbitrary layers at are
related through the dielectric waveguide boundary conditions,
producing a matrix equation [2], [11]

(4)

Enforcing a finite field amplitude at the center and no incoming
waves in the outermost layer, a complex characteristic equation
can be derived from whose complex roots are the propaga-
tion constants . This gives the effective index and
confinement loss [15].

C. FEM

The FEM is implemented via the commercial FEM package
Comsol Multiphysics with which we use perfectly matched
layers (PMLs) [16] to calculate complex propagation constants.
Since is difficult to calculate accurately, a thorough
convergence test as a function of the mesh and PML parameters
was performed. The mesh density in the calculation domain
(enclosed by the PMLs) greatly effects the value of the CL
obtained and increasing the mesh density within only the Si
rings was the best way of converging the model (a maximum
element size of 0.1 m was used). Converged PML parameters
must be determined first, which was done by scanning them
appropriately. We found the best values for this case were:
distance of inner PML edge from center 30 m, PML width
2 m, PML absorption coefficient [16] 1, and PML maximum
mesh element size 0.15 m.

We consider a quarter-plane of the fiber’s cross section for all
calculations, using appropriate boundary conditions to produce
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Fig. 2. Schematic representation of a Bragg stack similar to the cladding struc-
ture of the fiber in Fig. 1. Gray: n . White: n = 1. N =1.

TE, TM or hybrid mode classes as required. The boundary con-
ditions of the two non-PML boundaries must be: electric con-
ducting for TE modes, magnetic for TM modes, and a combi-
nation for the hybrid modes.

D. Bragg Cladding Bandgaps

In the limit of large core radius, the behavior of the cladding
can be approximated by that of a planar Bragg stack [3], [4]. The
work of Yeh et al. [17] derives an analytic condition determining
if it is possible for light to propagate within an infinite stack. The
incident plane wave’s wave vector can be decomposed into
normal and planar components , Fig. 2. is thus re-
lated to the propagation constant of a Bragg fiber mode made
from such a cladding structure (although we strictly consider
the mode’s ). corresponds to plane waves propagating
normal to the stack (due to transmission and Fresnel reflection),
where the index specifies what layer type the plane wave is
in ( for alternating layers of only two materials with
thicknesses ). From the vector diagram in Fig. 2 it fol-
lows that , where is the index
of the layer.

Two matrix recursion relations, one for the transverse electric
(TE: electric field vector solely in the stack plane) and transverse
magnetic (TM: magnetic field vector solely in the stack plane)
cases, may then be constructed relating the fields of the plane
waves in the stack to that of the incident wave. Up to this point,
the analysis is similar to the TMM. The next step employs the
Bloch-Floquet theorem, which is impossible to incorporate into
a full azimuthally symmetric 2-D problem like the TMM. The
theorem states that the electric field, say, must exhibit the pe-
riodicity of the stack so that with

where is the stack period (Fig. 2). Plane
waves in the stack are thus described as Bloch waves, reducing
the recursion relation to an eigenvalue problem whose eigen-
values are the Bloch phase factors , where is the Bloch
wavenumber to be determined. The problem produces eigen-
values [17]

(5)

where and are elements of the 2 2 matrix in the eigen-
value equation given by [17]

(6)

Fig. 3. Cladding bandgap map evaluated over unitless propagation constant and
angular frequency. Gray regions represent the allowed bands of the Bragg stack.
Above the air-line (� < !=c), the TE allowed band is the dark gray region
and the TM allowed band is both dark and light gray regions. The white region
represents the TM bandgap and the white and light gray regions represent the TE
bandgap. The TE bandgaps are labeled as defined in the text. Solid line: Air-line.
Dashed line: Light-line representing Brewster angle ray incidence (� = � );
note that it coincides with the TM gap closure.

for TE waves and

(7)

for TM waves.
Equation (5) then gives the dispersion relation between ,

and for the Bloch waves [17]

(8)

If has an imaginary component, the Bloch wave is evanes-
cent. Thus, only solutions satisfying the condition [17]

(9)

correspond to waves allowed to propagate perpendicular to the
Bragg stack in the -direction. Its evaluation is straightforward,
with and being the only free parameters. The regions in
the 2-D space, , satisfying (9) are allowed bands, and are
shown in Fig. 3 as gray regions. Thus, the regions in between
these allowed bands are the bandgaps.

From Fig. 2, is referred to as the “light-
line.” In the case of and glancing incidence ,
we call the “air-line,” Fig. 3. For fibers of sufficiently
large core radius, modes of low order tend to exhibit dispersion
curves close to those of plane waves of glancing incidence.
Decreasing the core size, or considering modes of higher order,
tends to produce curves corresponding to smaller [18].

It is well known that the Fresnel reflection efficiency in-
creases monotonically as the incidence angle approaches ,
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Fig. 4. Schematic of a borehole waveguide. Analysis assumes R !1.

as described by the Fresnel equations [19]. Also, within a
circular waveguide, such as a Bragg fiber, this glancing inci-
dence also implies fewer ‘bounces’ within the core for a given
axial propagation distance, hence, fewer lossy reflections from
the Bragg cladding. These two points imply that a mode will
typically have a lower CL when its lies closer to the
light-line. An explicit demonstration of this is shown below,
and can also be seen in the results of Argyros et al. [18].

An important feature of the Bragg stack bandgaps is exhib-
ited by the TM wave. Since this wave’s electric field lies in the
plane of incidence, it succumbs to the Brewster phenomenon
[19]. In other words, if it approaches the stack at the Brewster
angle , it will be totally transmitted at every interface of the
stack. This behavior sees the TM bandgap close up completely
at all lying on the light-line for [17], Fig. 3, and
means that the TM bandgaps always lie within the TE bandgaps
(for ). This behavior is often exploited when seeking
to make a Bragg fiber “effectively single-moded,” where sub-
stantial confinement loss discrimination between the and

modes is sought so that all but the lowest loss mode are
substantially attenuated for a given length of fiber [20], [21].

E. Pure Hollow Core Guidance

As will be shown later, physical insight can be drawn by
considering the similarities between guidance within a Bragg
fiber and a simple dielectric “borehole” (a circular air hole sur-
rounded by a uniform dielectric, see Fig. 4). The borehole was
one of the first structures considered for telecommunications
[22]. Marcatili et al. [22] describe the theory of propagation
within borehole structures using the general solution to the step-
index waveguide [23] where the core refractive index can
be higher or lower than the cladding index .

The main difference between the two cases is that the truly
bound modes of the case are replaced by the funda-
mentally leaky modes of the case (like the borehole).
In both cases, however, the general solution sees that first-order
Hankel functions are used for solutions outside the core

and Bessel functions of the first kind are used within. The
dispersion relation is, thus, [23]

(10)

where

(11)

(12)

It is easily shown that (10) reduces to the typical full-vector
dispersion equation for the step index fiber when we enforce

, as is the case for conventional step-index
fibers. It helps to note the relation between the modified Bessel
function of the second kind and the first-order Hankel function:

.
Considering an air core and assuming [22]

(13)

(14)

the problem is simplified substantially. is the core radius and
is the th root of the equation where

and are the azimuthal and radial quantum numbers of a given
mode, respectively.

Inequality (13) states that the wavelength of the guided light
must be much smaller than the core and that only low-order
modes be considered, while (14) restricts accurate analysis to
modes with close to the air-line. These assumptions are satis-
fied by the structures and modes considered here.

Using these assumptions, the dispersion relation can be ma-
nipulated to give the propagation constant analytically [22]

(15)

where

for

for

for .

An important corollary of this is that all the mode types (TE,
TM, and HE) of a given set are degenerate in
under this approximation. , however, is polarization de-
pendent. This is a result of the Brewster phenomenon mentioned
in Section II-D, and for the same reasons, sees the TM mode al-
ways having a higher loss than the TE (the hybrid modes have a
loss somewhere in between since they are a combination of TE
and TM modes in this regime). The arguments given above re-
garding modes lying close to the light-line having lowest loss are
verified explicitly here as well; as decreases, clearly
approaches monotonically while is proportional to
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Fig. 5. Real part of the effective index (a) and the confinement loss (b) of the
TE ;TM , and HE modes found using the TMM [for T(E=M) ] and
FEM (forHE ). (a) also showsRefn g for the analogous borehole modes as
the black dashed lines. The results are overlayed on the cladding bandgap maps,
as shown in Fig. 3 but in the new coordinates (�;Refn g). TE bandgap labels
are defined in the text. Circles in (a) correspond to the points at which the fields
were taken for Fig. 6. Symbols in (b) correspond to the FEM calculations of the
transverse modes for the fundamental gap.

and, hence, decreases. Again, as the bound rays approach
glancing incidence and approaches the light-line, the confine-
ment loss is reduced.

III. RESULTS AND DISCUSSION

A. Bragg Fiber Guidance

We have modeled the Bragg fiber using the TMM and FEM
methods for the , and modes. Dispersion
curves and confinement loss are shown in
Fig. 5. Fig. 5(a) also shows the bandgaps associated with the
cladding, as per Section II-D, demonstrating that the transition
regions of the curves occur precisely at the bandgap edges.

The modes are close to the light-line and continue to approach
it as the wavelength decreases, as expected from discussions
above (the modes approach the behavior of a plane wave as
the core becomes relatively larger). The discontinuities for each
mode correspond to the transition regions of the bandgaps, with
the mode exhibiting slightly higher dispersion than the

Fig. 6. Electric field of the TE mode at three wavelengths (depicted in
Fig. 5): 1.155 �m, the position of CL of the first gap; 795 �m, the low-�
band edge of the fundamental gap; and 759 �m, the high-� band edge of the
second gap. Fields are ovelayed on the refractive index profile. TE modes
only have one nonzero electric field component, E �̂. The field is azimuthally
symmetric, so the field distribution has the familiar ‘doughnut’ shape.

, as would be expected from the Brewster phenomenon
arguments in Section II-D (the TM gap is always smaller than
the TE gap).

Fig. 5(b) shows how the minimum CL reached
within each bandgap is reduced as the dispersion curves ap-
proach the light line. This is expected from the discussions of
Sections II-D and E, except now the effects of the bandgap
edges become apparent: CL increases as the band edges are
approached since more of the mode propagates within the
cladding, agreeing with [18]. This is also the reason why the
dispersion curves exhibit such large discontinuities over the
band edges; a larger overlap of the mode with the cladding
structure unsurprisingly results in a higher dispersion, forcing

to depart rapidly from its general trajectory. To demon-
strate this behavior of the fields about the band edges, Fig. 6
shows the electric field distribution of the mode at
specific points along its dispersion curve (Fig. 5).

The CL of the mode in the fundamental gap has a min-
imum of dB/km at nm. More importantly,
we find that the mode in the second gap, with a minimum
of dB/km at nm, has four orders
of magnitude lower than that of the fundamental gap, Fig. 5(b).
Note also that of all calculated modes decreases by this
order, Fig. 5(b).

The difference between the propagation constants of two
modes determines the extent of coupling between them due
to fiber perturbations (such as surface roughness or mi-
crobending). Since the of the quasi-degenerate

modes lie very close to one another in all gaps,
Fig. 5(a), it is unlikely the considered fiber would be effectively
single-moded. Also, by considering the borehole equivalents
of the fiber modes (explained in Section III-B), it can easily be
shown that only eight modes lie within the higher order bandgap
and have considerably separated compared to the
quasi-degenerate modes; the exception being which is
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also quasi-degenerate with the transverse modes. Thus, if this
intermode coupling should increase the total loss of such a
fiber, it is clear that the higher order bandgap may be exploited
to produce modes of overall lower CL, Fig. 5(b). In this way,
low-loss (albeit multimode) propagation can be achieved. We
explore this further in Section III-D.

In practice, the addition of supporting struts between the
cladding layers, as in [5], would alter the CL of all bandgaps
by two effects: an increase in “tunnelling” through the cladding
and the introduction of surface modes. Tunnelling is less of
a concern for higher order bandgaps since they lie at smaller
wavelengths, hence the modes would be more confined and
less affected by the addition of struts. Surface modes are more
complicated, introducing a complicated structure to the CL
spectrum of all bandgaps by coupling with the core modes
[8]. Indeed, since the CL spectrum is determined by both the
cladding bandgaps and potential strut-induced surface modes,
only after the idealized case is understood can the behavior of
a realistic fiber be appreciated. Further, the conclusions which
may be drawn from the semianalytical treatment given here
would be very difficult to deduce from a realistic model alone
precisely because of the increased complexity. Thus, the main
focus of this work is to analyze the idealized bandgap behaviour
which may be used to provide the groundwork for analysis of
more realistic geometries.

Throughout this modeling, excellent agreement between the
TMM and FEM models is obtained as shown in Fig. 5(b). In
comparison with the asymptotic results in [5], this clearly indi-
cates more than one order of magnitude lower CL. Since
both the TMM and FEM methods agree so well here, we con-
clude that the asymptotic method is not suitable for accurate
modeling of CL in single-material Bragg fibers.

B. Guidance Mechanisms

Observe the behavior of in Fig. 5(a): all calculated
modes of the Bragg fiber lie close to the trajectory of their bore-
hole analogs. Similar behavior has already been observed in
the context of surface modes [21], so its applicability here fol-
lows naturally. This deep connection between the two waveg-
uides is quite revealing. Indeed, as discussed in Section II-E,
(15) implies that for the borehole is independent of the
cladding properties; only and the core radius are important.
In other words, the core itself is responsible for the dispersion
properties of the borehole. Since this behavior agrees so well
with the Bragg fiber, we can make a similar conclusion for it
as well. With the Bragg fiber, the bandgap behavior dominates
as the modes reach the band edges, Fig. 5(a). These points are
closely related to the work of Issa et al. [24] in which the core,
not the surrounding microstructure, was found to be the domi-
nant guidance mechanism of a polymer bandgap fiber (although
it was discovered that the disorder in the fabricated cladding es-
sentially destroyed any measurable bandgap behavior).

It is clear that approaches the value of the refractive
index of the material in which the mode has greatest overlap (air
for this case). Fig. 6 also gives the CL of the Bragg fiber and
equivalent borehole, showing that (at its minimum) the Bragg
cladding reduces the CL significantly. Given that the
values are close in the middle of the bandgaps, we can give a

Fig. 7. The same map as Fig. 3 recast in unitless frequency and (real) effective
index. The color scheme for the bandgap maps has been retained and the TE
bandgaps are again labeled according to the system discussed within. Thin solid
line: air-line. Solid line: The dispersion curve of the (l;m) = (0; 1) modes of
an R = 10 �m radius borehole. Dashed lines: Same as the solid line but for
R = 12 �m (above solid line) and R = 7 �m (below solid line).

physical picture of why the CL is reduced with a Bragg cladding.
Without the Bragg structure, the field in the cladding radially os-
cillates with exponential decay. The effect of the Bragg cladding
on this tail is to maintain a similar light-material overlap (sim-
ilar ) but reduce the overall field amplitude due to the
large air-filling-fraction (Fig. 6). Thus the field amplitude at the
final cladding interface will be lower than that of the borehole,
reducing the CL.

C. Bandgap Analysis

In order to investigate the behavior of the second bandgap
further, we now consider the structure of the cladding bandgaps
in more detail. Fig. 3 shows the Bragg cladding bandgap maps
evaluated over unitless propagation constant and angular fre-
quency, . This is the usual representation
of Bragg stack bandgaps used in most literature.

This first representation shows where air-core modes would
lie in the first bandgap since the actual dispersion curves, Fig. 5,
of the low order modes are almost indistinguishable from the
light-line in this representation. From this we see that this single-
material fiber has dispersion properties quite dissimilar to other
Bragg geometries where . Instead of the light-
line intersecting the bandgaps somewhere in the middle, here
it lies close to the region where the bandgaps terminate. This
is entirely due to the fact that here we have . Clearly,
the representation makes it difficult to
determine the interaction of the light-line with the bandgaps for
fibers satisfying this condition.

By transforming the bandgaps to new coordinates,
as in Fig. 7, the detail close to the

air-line in Fig. 3 is exposed. Immediately, we notice how
the bandgap structure in the region close the air-line is very
different to the gaps in Fig. 3.
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The higher order bandgaps of the Bragg stack clearly are not
simply connected (Fig. 7), as may be assumed from the original
representation (Fig. 3). The first-order gap is simply connected

, but all higher order gaps close at points within
and open up again as new gaps (this is unrelated to

the TM bandgap Brewster phenomenon).
It is possible to label the TE bandgaps straightforwardly in

this regime: considering the gaps coinciding with normally inci-
dent rays (a vertical line at placed on Fig. 3) one can label
each with an index , starting at 1 for the fundamental and in-
creasing by 1 for each gap as increases. However, the th gap
evolves into others as (or ) increases from 0. Thus,
we may label these intermediates with another index ,
such that any bandgap may now be referenced by . The
bandgaps at the extreme ends of for
and for , are always open and (for ) the
gaps in between are always closed. All gaps shown in Figs. 3
and 7 are labeled using this system.

Any Bragg fiber with a depressed-index core
is incapable of guidance within most of these higher

order bandgaps. The air-line of such fibers typically intercepts
the gaps, making it impossible for any other incident ray
(which must have ) to access the higher order
gaps. Thus, a unique property of single-material
Bragg fibers is their ability to access these higher order
bandgaps, particularly the gaps. This is an important
point since the gaps are much wider than their lower
order counterparts.

Finally, we can now identify the second gap observed in Fig. 5
as the gap.

It is worth noting that in practice, due to fabrication toler-
ances, the cladding can become aperiodic with multiple regions
of uniform periodicity, such as in [5]. It can be shown that this
broken periodicity combines the bandgaps associated with the
different uniform regions, thus splitting them. Since the funda-
mental gap sits at the extremity of the long wavelength end of the
bandgap spectrum, it is perturbed the least. In other words, the
widths of the higher order bandgaps will decrease (in a nontrivial
fashion). Because of this, it is likely that some bandgaps
will produce a higher, not lower, than those at longer
wavelengths because of the relatively narrowed band edges
introduced by the aperiodicity. Indeed, it can be shown that this
is why the second bandgap observed by Vienne et al. [5], calcu-
lated for the idealised version of their OD90 fiber, has a higher

than the fundamental, not lower as would be expected
from our treatment of purely periodic layered claddings here.

D. Reducing Confinement Loss

The observation that is lower in higher order
gaps than in the fundamental is a general one (for periodic
claddings). This applies to any fiber with a sufficiently large ,
such that intercepts the (2,2) gap. Section III-A
presents one such case. Other fiber geometries may vary in core
radius , global scale factor , cladding layer thickness
ratio , or the total number of cladding ring pairs .
For all cases, higher order bandgaps will always exist and
produce a lower for sufficiently large .

We now investigate the best way to reduce the confinement
loss at the central wavelength of the considered Bragg fiber’s

Fig. 8. The TE mode calculated by the TMM. (a) CL for the (2,2) bandgap
for global scale factors 1.6, 2.0, and 2.4. The solid curve corresponds to the scale
factor for which the (2,2) gap’sCL lies at� = 1:155�m (the fundamental’s
CL position when �s = 1). (b) Confinement loss for the fundamental gap
for various core radii (R = 7 �m! 12 �m). The original radius corresponds
to the solid curve. c)CL of the fundamental gap for various core radii (solid
line), dashed line represents the achievable CL by scaling the second gap
(using �s = 2:4).

first gap ( nm), without altering the fiber geometry sig-
nificantly (such as adding more rings to the cladding or changing
the thickness ratio). As already discussed, this is tantamount to
bringing closer to the light-line. Two methods can be em-
ployed: 1) Scaling the core radius of the fiber to reduce
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of the fundamental gap; 2) Scaling the whole geometry
up to shift the position of the (2,2) gap’s to that of the fun-
damental ( nm). The first method works because, by
increasing indeed approaches 1. This is explained
via the borehole analog: (15) describes how monoton-
ically as . Fig. 7 explicitly shows this, with the of
the modes for a range of overlayed on the bandgap
maps. The second method is obvious from the scale invariance
of the problem; since none of the fiber parameters depend on

, by scaling and the geometry by the same factor, must
be invariant, thus CL is also invariant up to the spatial scaling
factor (since ). Also note that because of this, all cal-
culations thus far also describe the behavior of any waveguide
related via a global scale factor to the one considered (a simple
but important point).

Our results in Fig. 8(a) and (b), calculated solely using the
TMM, demonstrate the rate at which the position of the second
gap and of the fundamental gap change as a function of
the global scale and core radius , respectively. While
Fig. 8(a) indicates the expected relation between the min-
imum CL of the second gap and the global scale factor, Fig. 8(b)
and (c) shows that of the first gap exhibits an extremely
rapid decrease in its rate of change for increasing . This is
explained by observing the position of the (equivalent bore-
hole) dispersion curves with respect to the bandgaps as shown
in Fig. 7. As decreases from m, shifts down
and enters the smaller region of the (1,1) gap. As the available
bandgap region decreases, is affected by both the ap-
proaching band edges and the fact that the mode is moving away
from the light-line. Both these effects see that increases
rapidly as is decreased, as demonstrated in Fig. 8(b) and (c).
As increases, however, approaches the light-line
at a slower rate [ from (15)] within a re-
gion where the band edges do not change significantly, so
decreases slowly.

We now see that global scaling of the whole structure to ex-
ploit the bandgap is the best means of reducing
CL at a desired wavelength, as shown in Fig. 8(c). In order to
achieve the same via increasing as by shifting the (2,2)
bandgap, an utterly impractical core radius would be required
( mm). Exploiting the higher order bandgap in this way pro-
vides a real advantage in terms of fabrication since scaling of
the fiber structure during the drawing process is much easier
to implement than scaling the core radius alone. For complete-
ness, we note that in using this method, the (2,2) gap can be
shifted to 1550 nm using a scale factor of 3.23, giving

dB/km.

IV. CONCLUSION

Using a variety of modeling techniques, we have examined
the band structure and guidance of idealized air-core all-silica
Bragg fibers. From this we have predicted that TMM and FEM
methods give more accurate CL results than the asymptotic
method. By examining the bandgap structure of the fiber
cladding we have determined that the Bragg stack actually
exhibits a nontrivial topology of bandgaps. We have shown
that single-material Bragg fibers can uniquely access higher
order, wider, bandgaps unavailable to more conventional Bragg

fibers (such as Omniguide fibers). A scheme for exploiting the
higher order gaps at a specific wavelength via a global scaling
of the fiber geometry was proposed and favorably compared to
scaling only the core radius when considering the fundamental
bandgap. By accessing the second-order bandgap closest to
the light-line, the all-silica Bragg fiber considered can achieve
a confinement loss four orders of magnitude smaller than that
attainable by using the fundamental gap. By incorporating
these principles into fabricable fiber designs, it is expected
that the confinement loss can be reduced to levels where other
loss mechanisms become dominant. We have also discussed
concepts providing considerable insight into the guidance
mechanisms of Bragg fibers.
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