THE RELATIONSHIP BETWEEN DISTURBED
GASTRIC MOTOR FUNCTION AND ENTERAL
NUTRITION IN CRITICALLY ILL PATIENTS

A thesis submitted by

Nam Quoc Nguyen

For the degree of

Doctor of Philosophy

Department of Medicine

University of Adelaide

August 2007
TABLE OF CONTENTS

Thesis summary xiv
Statement of originality xvii
Dedication xvii
Acknowledgements xix
Publications xxi
 Original papers xxii
 Review articles xxiv
 Abstracts xxiv

SECTION 1: LITERATURE REVIEW 1

CHAPTER 1: OVERVIEW OF THE MACROSCOPIC AND NEURAL ANATOMY OF THE STOMACH

1.1 Introduction 3
1.2 Muscular Anatomy 4
1.3 Mucosal anatomy 6
1.4 Electrophysiology of gastric smooth muscle 7
 1.4.1 Proximal stomach 7
 1.4.1 Distal stomach 8
1.4.2 Pylorus 9
CHAPTER 2: PATTERNS OF GASTRIC EMPTYING AND MOTOR ACTIVITY IN HEALTHY HUMANS

2.1 Introduction 16

2.2 Patterns of gastric emptying 16
 2.2.1 Pattern of gastric emptying – an overview 17
 2.2.2 Specific patterns of gastric emptying 18

2.3 Patterns of gastric motility 20
 2.3.1 Fasting gastric motor patterns 21
 2.3.2 Post-prandial gastric motor patterns 23
 2.3.3 Relationship between the proximal and distal motor unit 26

2.4 Patterns of intra-gastric meal distribution and its relationship with gastric emptying 27
 2.4.1 Solids 27
 2.4.2 Liquids 27
 2.4.3 Mixed meals 28

2.5 Role of the proximal and distal stomach in gastric emptying 29
CHAPTER 3: CONTROL OF GASTRIC MOTILITY AND EMPTYING IN HEALTHY HUMANS

3.1 Introduction
3.2 Myogenic control
3.3 Intrinsic neural control
3.4 Extrinsic neural control
 2.4.1 Vagal (parasympathetic) control
 2.4.2 Splanchnic (sympathetic) control
3.5 Hormonal control
 2.5.1 Cholecystokinin
 2.5.2 Peptide YY
 2.5.3 Other candidate hormones
3.6 Regulation of gastric emptying by nutrients
 2.6.1 Intraluminal nutrients
 2.6.2 Intravenous nutrients
3.7 Conclusions
CHAPTER 4: DISTURBANCES OF GASTRIC MOTOR ACTIVITY AND EMPTYING IN CRITICAL ILLNESS.

4.1 Introduction 58
4.2 Prevalence of disturbed gastric motor activity in critical illness 58
4.3 Characteristics of disturbed gastric motor activity in critical illness 59
 4.3.1 Distal gastric abnormalities 60
 4.3.2 Pyloric abnormalities 61
 4.3.3 Duodenal abnormalities 61
 4.3.4 Proximal gastric motor activity 62
 4.3.5 Entero-gastric feedback responses 62
4.4 Potential factors contributing to disturbed gastric motor function 64
 4.4.1 Medications 65
 4.4.2 Nature and severity of admission diagnosis 67
 4.4.3 Blood glucose concentration 68
 4.4.4 Nutritional deprivation 69
 4.4.5 Mechanical ventilation 69
 4.4.6 Pre-existing morbidity 70
4.5 Manifestations and consequences of impaired gastric motility in critical illness 71
 4.5.1 Relationship between gastric residual volume (GRV) and feed intolerance 72
 4.5.2 Consequences of impaired gastric motor function in critical illness 74
4.6 Current management of impaired gastric motility and emptying 76
CHAPTER 5: NUTRITIONAL SUPPORT IN CRITICALLY ILL PATIENTS

5.1 Introduction 87

5.2 The importance of nutritional support in critical illness 88

5.3 Nutritional support in critically ill patients 90
 5.3.1 Total parenteral nutrition versus enteral nutrition 90
 5.3.2 Timing of nutrient delivery in critical illness 92

5.4 Current evidence-based recommendations 93

5.5 Factors impeding adequate delivery of enteral nutrition 94
 5.5.1 Under-prescription of nutrients 95
 5.5.2 Disturbed upper gastrointestinal motility 95
 5.5.3 Medical interventions 96
 5.5.4 Nursing care activities 96

5.6 Optimization of nutritional support in critical illness 97
 5.6.1 Team approach 97
 5.6.2 Impact of feeding protocols 97
 5.6.3 Management of gastric dysmotility and feed intolerance 98
 5.6.3 Parenteral nutrition 99

5.7 Conclusions 101
CHAPTER 6: PATIENTS AND COMMON TECHNIQUES USED

6.1 Introduction 104
6.2 Subjects 104
 6.2.1 Healthy volunteers 104
 6.2.2 Critically ill patients 105
 6.2.3 Common limitations in studying critically ill patients 106
6.3 Ethics approval and consent 107
6.4 Study environment 108
6.5 Drug preparation and administration 108
6.6 Protocol for enteral nutritional support in critically ill patients 109
6.7 Techniques used to assess gastric motor activity and emptying 111
 6.7.1 Gastric barostat 111
 6.7.2 Antro-pyloro-duodenal manometry 115
 6.7.3 Gastric scintigraphy 121
 6.7.4 13C-octanoic acid breath test 125
 6.7.5 Gastric residual volume 128
6.8 Assays of gut hormones 130
 6.8.1 Cholecystokinin assay 130
 6.8.2 Peptide YY assay 131
6.9 Medical records audit 132
6.10 Statistical analysis 133
SECTION 3: RESULTS

CHAPTER 7: FURTHER CHARACTERIZATION OF GASTRIC MOTOR DISTURBANCES IN CRITICALLY ILL PATIENTS

7.1 Introduction 136
7.2 Proximal gastric motor function during fasting and nutrient stimulation 137
 7.2.1 Introduction 137
 7.2.2 Methods 138
 7.2.3 Results 142
 7.2.4 Discussion 146
7.3 Integration of motor activity between the proximal and distal stomach 150
 7.3.1 Introduction 150
 7.3.2 Methods 151
 7.3.3 Results 157
 7.3.4 Discussion 162
7.4 Summary and Conclusions 167

CHAPTER 8: RELATIONSHIP BETWEEN HUMORAL RESPONSES TO NUTRIENTS, GASTRIC EMPTYING AND FEED INTOLERANCE IN CRITICALLY ILL PATIENTS

8.1 Introduction 170
8.2 Plasma concentrations of cholecystokinin and peptide YY during fasting and in response to duodenal nutrient stimulation in critically ill patients 172

8.2.1 Introduction 172
8.2.2 Methods 172
8.2.3 Results 175
8.2.4 Discussion 183

8.3 The relationship between gastric emptying, plasma cholecystokinin and peptide YY concentrations in critically ill patients 189

8.3.1 Introduction 189
8.3.2 Methods 189
8.3.3 Results 191
8.3.4 Discussion 197

8.4 Summary and conclusions 201

CHAPTER 9: FACTORS THAT CONTRIBUTE TO DISTURBED GASTRIC EMPTYING AND FEED INTOLERANCE DURING CRITICAL ILLNESS

9.1 Introduction 203

9.2 The impact of admission diagnosis on gastric emptying 204

9.2.1 Introduction 204
9.2.2 Methods 204
9.2.3 Results 207
9.2.4 Discussion

9.3 The impact of type of sedation on gastric emptying and meal distribution

9.3.1 Introduction

9.3.2 Methods

9.3.3 Results

9.3.4 Discussion

9.4 The impact of delayed enteral feeding on gastric emptying, plasma cholecystokinin and peptide YY responses

9.4.1 Introduction

9.4.2 Methods

9.4.3 Results

9.4.4 Discussion

9.5 The relationship between blood glucose control and feed intolerance

9.5.1 Introduction

9.5.2 Methods

9.5.3 Results

9.5.4 Discussion

9.6 Summary and Conclusions
CHAPTER 10: IMPACT OF PRE-EXISTING TYPE 2 DIABETES MELLITUS (DM) ON PROXIMAL GASTRIC MOTILITY, GASTRIC EMPTYING AND FEED INTOLERANCE DURING CRITICAL ILLNESS

10.1 Introduction 263

10.2 The impact of pre-existing type 2 DM on proximal gastric motor activity 265
 10.2.1 Introduction 265
 10.2.2 Methods 265
 10.2.3 Results 268
 10.2.4 Discussion 273

10.3 The impact of pre-existing type 2 DM on gastric emptying 277
 10.3.1 Introduction 277
 10.3.2 Methods 277
 10.3.3 Results 279
 10.3.4 Discussion 283

10.4 The impact of pre-existing type 2 DM on the development of feed intolerance 286
 10.4.1 Introduction 286
 10.4.2 Methods 286
 10.4.3 Results 289
 10.4.4 Discussion 293

10.5 Summary and Conclusions 296
CHAPTER 11: PROKINETIC THERAPY WITH ERYTHROMYCIN FOR THE TREATMENT OF FEED INTOLERANCE IN CRITICALLY ILL PATIENTS

11.1 Introduction 299

11.2 The effects of erythromycin versus metoclopramide on the success of feeds 300

11.2.1 Introduction 300

11.2.2 Methods 301

11.2.3 Results 303

11.2.4 Discussion 310

11.3 The effects of combination of erythromycin and metoclopramide on the success of feeds 313

11.3.1 Introduction 313

11.3.2 Methods 313

11.3.3 Results 315

11.3.4 Discussion 323

11.4 The adverse effects of prokinetic therapy for feed intolerance in critically ill patients 327

11.4.1 Introduction 327
THESIS SUMMARY

Delayed gastric emptying, that manifests clinically as intolerance to enteral feeding, occurs in over 50% of critically ill patients and has a major impact on patient morbidity and mortality. Despite the recognition that the proximal stomach has a major role in gastric emptying of liquids, only the motor activity of the antro-pyloro-duodenal region has been evaluated in detail. In addition, many of the proposed risk factors for the gastric dysmotility, particularly a prior history of diabetes mellitus, have not been evaluated formally but have been extrapolated from data from non-critically ill patients. The currently available prokinetic drugs, erythromycin and metoclopramide, are considered to be the first line treatment for feed intolerance. However, neither data comparing the effectiveness of these agents nor the data on the effects of combination of therapy in the treatment of feed intolerance are available. The aims of this thesis were, therefore, to examine: (i) proximal gastric motor activity and the association between proximal and distal motility; (ii) the relationship between entero-gastric humoral responses to nutrients, gastric emptying and feed intolerance; (iii) the impact of admission diagnoses, choice of sedations, timing of initiation of feeding, and pre-existing history of diabetes mellitus on gastric emptying and feed intolerance; and (iv) the efficacy of erythromycin, metoclopramide and combination of these drugs in treatment of feed intolerance in critically ill patients.

The current thesis indicates that motor activity is impaired in multiple regions of the stomach in the critically ill. When compared to healthy humans, proximal gastric relaxation was prolonged and fundic wave activity was educed during small intestinal
nutrient infusion in critically ill patients. In addition, simultaneous assessment of proximal and distal gastric motility demonstrated a possible disruption of the motor integration between the proximal and distal stomach. In light of the recent data that suggested a significantly greater proportion of meal distributed proximally in critically ill patients with delayed gastric emptying (Nguyen, et al. 2006), the disruption of the gastric motor integration and the prolonged gastric relaxation in response to duodenal nutrients may play a significant role in the pathogenesis of slow gastric emptying during critical illness, especially as liquid formulae.

The entero-gastric hormonal feedback responses were also disturbed during critical illness. Both fasting and duodenal nutrient-stimulated plasma CCK and PYY concentrations were significantly higher in critically ill patients, particularly those who did not tolerated gastric feeds. The rate of gastric emptying of a liquid meal was inversely related to both fasting and postprandial plasma CCK and PYY concentrations, supporting the potential role of plasma CCK and PYY in the pathogenesis of gastric dysmotility in critically ill patients.

Admission diagnosis, choice of sedative drug and blood glucose control but not the timing of enteral feeds were important factors for delayed gastric emptying and feed intolerance in these patients. In particular, delaying enteral feeding by 4 days had no impact on the rate of gastric emptying, intra-gastric meal distribution, or plasma CCK and PYY concentrations. Contrary to traditional belief, critically ill patients with a pre-existing diagnosis of type 2 DM have only a minor disturbance to the proximal stomach, a relatively normal gastric emptying and are at no higher risk of feed intolerance than those
without DM, suggesting the presence of pre-existing DM 2 in critically ill patients should not influence the standard practice of gastric feeding.

Therapeutically, short-term treatment with low dose erythromycin was more effective than metoclopramide, but the effectiveness decreased rapidly overtime at similar rate as observed with metoclopramide. In patients who failed to response to either agent, treatment with both agents was highly effective in re-establishing feeding success. The use of combination therapy as the initial treatment for feed intolerance was also more effective than erythromycin alone and had less tachyphylaxis. Treatment with erythromycin and metoclopramide, either as a single agent or in combination did not associated with major cardiovascular adverse side effects. Although diarrhoea was a common side effect and was highest with combination therapy, it was not associated with *Clostridium difficile* infection and settled quickly after the cessation of the prokinetic therapy.

In summary, the work performed in the current thesis has provided substantial insights into the understanding of the nature, risk factors, pathogenesis and treatment of disturbed gastric motor function in critically ill patients. Not only do these findings stimulate further research into the mechanisms responsible for gastric dysmotility in critical illness, they also lead to the development of new strategies for optimizing the management of feed intolerance.
STATEMENT OF ORIGINALITY

The work presented in this thesis has been submitted to the University of Adelaide for the degree of Doctor of Philosophy. The studies reported herein are entirely original and were performed by the author between 2004 and 2006. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except when due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provision of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed in the “Publications from this thesis”) resides with the copyright holders of the journals.

Nam Q. Nguyen

August 2007
DEDICATION

I dedicate this thesis to my dearest parents, Mai and Lưu Nguyên.

To my dearest wife, Lisa Tang, I am forever grateful for your unconditional love and support.

Kính thưa Cha Mẹ,

Con cảm ơn công nuôi dưỡng và dạy dỗ của Cha Mẹ bao năm qua.

Công bằng tiền si này là công sức và sự thành công của Cha Mẹ.

Nguyễn Quốc Nam

August 2007
ACKNOWLEDGEMENTS

The work performed in the current thesis would not have been possible without the support of a number of organisations and individuals. All studies were conducted in the Departments of Gastroenterology and Intensive Care Medicine at the Royal Adelaide Hospital, and were supported financially by a NHRMC Postgraduate Research Scholarship provided by the Australian National Health and Medical Research Council (NHMRC) from February 2004 to June 2007. Throughout this period and during the preparation of this thesis, I was fortunate to receive the mentorship from Professor Richard Holloway and Professor Robert Fraser, to whom I am most grateful for the endless support and intellectual advice from their busy schedules. Not only have their supports enabled the successful completion of the thesis, they have also ensured that my introduction into the world of scientific research has been both enlightened and enjoyable.

The practical support from Dr Marianne Chapman and staff in the Department of Intensive Care Medicine in the performance of research in critically ill patients was always greatly appreciated. I am also thankful for the opportunities to present and discuss the results of several projects described in this thesis with the Staff Specialists in the Department, in order to comprehend the problem from an intensivist’s perspective. The friendly assistance from staff at all levels helped make the project successful and enjoyable.

My special thanks go to Ms Laura Bryant not only for her invaluable technical skills but also for her enthusiasm and friendly suggestions in many projects. I am also indebted to
Ms Katrina Ching, Ms Carly Burgstad and Mr Marcus Tippett for their ever present practical support in the motility laboratory. The supports from Dr Mark Schoeman and the staff from the Endoscopy Unit in the provision of endoscopic equipment to perform the studies were always appreciated. I am grateful for the expertise and practical support from Mr Max Bellon, who provided extensive assistance during the performance and subsequent analysis of the gastric emptying studies. The assistance of Dr Ross Butler and his staff in the analysis of 13C-octanoic acid breath test is most valued.

A number of projects in the current thesis were performed in collaboration with the Department of Medicine, University of Adelaide. Special thanks go to Professor Michael Horowitz, who provided valuable practical and intellectual contributions to projects that examined the role of entero-gastric hormones on gastric emptying. I am thankful to Ms Judith Wishart for her assistance in conducting the hormonal assays for a number of studies. The input of Dr Christine Feinle-Bisset in a number of manuscripts was mostly appreciated. Lastly, I would like to thank Ms Mei-Poh Ng and Dr Steven Lam for their contribution in two of the projects.

Without the assistance of Ms Virginia Shirley and the staff of the Department of Pharmacy at the Royal Adelaide Hospital, studies that examined the impact of prokinetic therapy on the success of feeds in feed intolerant critically ill patients would not have been possible. I am especially grateful for the extensive support from Ms Sandra Kong in the preparation of the study drugs.
PUBLICATIONS FROM THIS THESIS

PUBLISHED ORIGINAL PAPERS:

REVIEW ARTICLES:

PUBLISHED ABSTRACTS:

Nguyen NQ, Fraser R, Chapman M, L Bryant, C Burgstad and Holloway RH. Disruption to the interaction of proximal and distal gastric motor activity in critically ill patients. *Gastroenterology* 2006: 130(4S); A430.

NQ Nguyen, AA Mangoni, M Chapman, R Fraser, Creed S, L Bryant, C Burgstad, Bland K and RH Holloway. Prokinetic therapy with erythromycin has no significant impact on the hemodynamics of critically ill patients. *Anaesthesia and Intensive Care* 2005

NQ Nguyen, R Fraser, M Chapman, L Bryant, C Burgstad and RH Holloway. A lack of coordination between proximal and distal stomach - a contributing factor to delay gastric emptying in critically ill patients? *Anaesthesia and Intensive Care* 2005