Vascular endothelial and smooth muscle function in children at risk of cardiovascular disease and the effect of folic acid supplementation

ALEXIA SOPHIE PEÑA VARGAS (MD)

Department of Endocrinology and Diabetes
Women’s and Children’s Hospital

Thesis submitted for the Degree of Doctor in Philosophy
At The University of Adelaide
Faculty of Health Sciences
Department of Paediatrics

September 2007
ABSTRACT

Cardiovascular disease secondary to atherosclerosis is the most common cause of human morbidity and mortality. An early and fundamental event in the development of atherosclerosis is abnormal vascular endothelial and smooth muscle function. This can be measured by flow mediated dilatation and glyceryl trinitrate mediated dilatation in children at risk of atherosclerosis. Folic acid improves endothelial function (flow mediated dilatation) in adults with coronary artery disease. No studies have previously investigated the effects of folic acid on vascular function in at risk children with diabetes or obesity.

In a cross sectional study an evaluation of vascular endothelial and smooth muscle function and their determinants was performed in 159 children with type 1 diabetes, 58 children with obesity, and 53 healthy children. Children with type 1 diabetes and children with mild to moderate obesity had comparable and severe vascular dysfunction but different determinants. Vascular function in healthy and obese children related to both body mass index and weight (adjusted for age and sex), and blood glucose. Children with obesity had lower folate levels and higher homocysteine levels than children with type 1 diabetes, an abnormal lipid profile and raised inflammatory markers.

A randomised double blind placebo controlled cross over trial of 8 weeks of folic acid supplementation was performed in 38 children with type 1 diabetes. In these children, folic acid improved endothelial function with a sustained increase in folate levels but independent of homocysteine levels. Folic acid did not improve smooth muscle function.

A randomised double blind placebo controlled parallel trial of 8 weeks folic acid supplementation was performed including 53 obese children. Folic acid did not improve
vascular function in obese children in spite of sustained increase in folate levels, and a decrease in homocysteine levels.

It was concluded that children with type 1 diabetes and obesity have comparable and severe endothelial and smooth muscle function. Determinants of vascular function in children, including weight and glucose, represent a continuum effect. Folic acid supplementation improved endothelial function in children with type 1 diabetes but not in children with obesity, whose metabolic changes causing endothelial dysfunction differ from children with diabetes.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to a copy of this thesis, when deposited in the University Library being available for loan and photocopying.

... September 28th 2007
Alexia Sophie Peña Vargas Date
DEDICATION

To Mellick
ACKNOWLEDGMENTS

It is impossible to adequately acknowledge the help of the people who have been instrumental in this thesis and to whom I am deeply indebted.

Professor Jennifer Couper, has been my guide and mentor since the beginning of my research career. Her kindness, amazing energy and availability at all times even under the most stressful circumstances have inspired me deeply. I am privileged to have had the opportunity to work with her and my indebtedness to her extends well beyond this thesis.

Dr Esko Wiltshire, (Paediatric Endocrinologist), has been like an older brother to me guiding me from the most simple things in research to the most complex ones. His clarity of thought and ability to “laterally” extend an argument has been inspirational. His continuous guidance via email and in overseas meetings has been invaluable.

Roger Gent (Chief Paediatric ultrasonographer, Women’s and Children’s Hospital) and Lino Piotto (Paediatric ultrasonographer, Women’s and Children’s Hospital) were responsible for excellent ultrasound scans at a very early morning almost any day of the week. I am very thankful to them and especially to Roger, without whose enthusiasm this project would have not been possible.

Mr Craig Hirte (Statistician) for his invaluable long hours with amazing statistical explanations that actually made statistics looks easy!
The University of Adelaide scholarship and the International Postgraduate Research Scholarship that funded me to do this research.

To all the children and their families, who kindly participate in the trials coming at very early hours in the morning, without whom it would have not been possible.

To my parents, Gustavo and Hilda Sophie, for the years of love and support that made my research career possible going out of Colombia. For their ongoing support from Colombia. Muchísimas gracias no es ni será suficiente!

To my “Australian mother”, Margaret Brown, not only for encouraging me to do research and to always ask the right research question as a good Research Fellow, but also for the everyday invaluable support as an adopted mum.

To my other parents, Karl and Delele, for the continuing support and looking after me as my parents and my other parents. Thank you very much.

To Karl and Natalia…. who not only support me through this hard work and studying but also helped me being part of one of the trials as healthy volunteers.

Finally I want to acknowledge the unbelievable, unending love and support of my husband, Mellick, who has never stopped me from pursuing new ideas. He has encouraged me to go through this research pathway from the very beginning and I am sure he will continue to do so. He has been my personal supervisor as his PhD preceded mine by 10 years.
TABLE OF CONTENTS

TITLE PAGE ...i

ABSTRACT ..ii

DECLARATION ..iv

DEDICATION ..v

ACKNOWLEDGMENTS ..vi

TABLE OF CONTENTS ..viii

PUBLICATIONS RELEVANT TO THIS THESIS ...xiv

ABSTRACTS RELEVANT TO THIS THESIS ...xv

LIST OF SPECIAL ABBREVIATIONS ...xvii

LIST OF FIGURES ...xix

LIST OF TABLES ...xx

1 Chapter 1: Introduction ..1

1.1 Problem statement ...2

1.2 Hypothesis ...5

1.3 Overall objectives and aims ...5

1.4 Research strategy ...6
Chapter 2. Literature Review

2.1 Vascular endothelial and smooth muscle function

2.1.1 Endothelial function

2.1.2 Smooth muscle function

2.1.3 FMD and GTN in the evaluation of endothelial and smooth muscle function

2.2 Vascular dysfunction and diabetes

2.2.1 General etiopathogenesis

2.2.2 Vascular dysfunction in adults and children with diabetes

2.2.3 Interventions for vascular dysfunction in diabetes

2.3 Vascular dysfunction and obesity

2.3.1 General etiopathogenesis

2.3.2 Vascular dysfunction in adults and children with obesity

2.3.3 Interventions for vascular dysfunction in obesity

2.4 Folic acid and endothelial dysfunction

2.4.1 Folic acid overview

2.4.2 Effects of folic acid on vascular function

2.4.3 Interventional trials using folic acid to improve endothelial function

2.4.4 Folic acid, homocysteine and other markers of cardiovascular disease

Chapter 3: Vascular endothelial and smooth muscle function in children with type 1 diabetes, children with obesity and healthy children

3.1 Abstract
3.2 Introduction.................................46

3.3 Materials and methods..........................47
 3.3.1 Subjects ...47
 3.3.2 Ultrasound assessment of vascular function...............48
 3.3.3 Laboratory tests....................................49
 3.3.4 Statistical analysis...............................50

3.4 Results..51
 3.4.1 Vascular function in obese, non-obese and T1DM children........51
 3.4.2 Vascular endothelial and smooth muscle function and BMI........53
 3.4.3 Vascular endothelial and smooth muscle function and glucose homeostasis..57

3.5 Discussion...57

4 Chapter 4. Folic acid improves endothelial function in children and adolescents
with type 1 diabetes...61

 4.1 Abstract...64

 4.2 Introduction..65

 4.3 Methods...66
 4.3.1 Subjects...66
 4.3.2 Study Design......................................66
 4.3.3 Ultrasound assessment of endothelial function..................67
 4.3.4 Laboratory tests..................................68
 4.3.5 Statistical analysis..............................69

 4.4 Results..70
4.5 Discussion..75

5 Chapter 5. Folic acid does not improve endothelial function in obese children and adolescents...77

5.1 Abstract..80

5.2 Introduction..81

5.3 Research Design and Methods...82
 5.3.1 Subjects..82
 5.3.2 Study Design..83
 5.3.3 Vascular function assessment ..85
 5.3.4 Laboratory tests..86
 5.3.5 Statistics ...87

5.4 Results..87

5.5 Conclusions..93

6 Chapter 6. Discussion ..97

6.1 Study results ...98
 6.1.1 Vascular endothelial and smooth muscle function in children with type 1 diabetes, children with obesity and healthy children...98
 6.1.2 Folic acid supplementation and its effects on endothelial function in children with type 1 diabetes ...102
 6.1.3 Folic acid supplementation and its effects on endothelial function in children with obesity...106

6.2 Implications of this research..110
6.3 Future research...112

7 Chapter 7. Summary and final conclusions...114

8 Chapter 8. Appendices...117

8.1 Appendix A: Ethics Committee approvals, Drug and Therapeutics Committee approval and information sheet of cross sectional study...118

8.2 Appendix B: Consent forms of cross sectional study...123

8.3 Appendix C: Suitable site for imaging the brachial artery with ultrasonic markers ..131

8.4 Appendix D: Pulsed doppler signal showing arterial flow before, during and after arterial occlusion ..132

8.5 Appendix E: Vessel diameter before and after the increase in blood flow – Flow mediated dilatation ..133

8.6 Appendix F: Vessel diameter before and after glyceryl trinitrate spray – Glyceryl trinitrate mediated dilatation...134

8.7 Appendix G: Ethics Committee approvals, Drug and Therapeutics Committee approval and information sheet of folic acid intervention trial in children with type 1 diabetes ..135

8.8 Appendix H: Consent forms of folic acid intervention trial in children with type 1 diabetes ..143

8.9 Appendix I: Ethics Committee approval, Drug and Therapeutics Committee approval and information sheet of folic acid intervention trial in obese children148
8.10 Appendix J: Consent forms of folic acid intervention trial in children with obesity

.............................. 152

9 Chapter 9. Bibliography... 156
PUBLICATIONS RELEVANT TO THIS THESIS

ABSTRACTS RELEVANT TO THIS THESIS

LIST OF SPECIAL ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Angiotensin Converting Enzyme</td>
</tr>
<tr>
<td>APEG</td>
<td>Australian Paediatric Endocrine Group</td>
</tr>
<tr>
<td>ATL</td>
<td>Advanced Technology Laboratories</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual Energy X-ray Absorptiometry</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial Nitric Oxide Synthase</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>FMD</td>
<td>Flow Mediated Dilatation</td>
</tr>
<tr>
<td>FABF</td>
<td>Forearm Arterial Blood Flow</td>
</tr>
<tr>
<td>GTN</td>
<td>Glyceryl Trinitrate Mediated Dilatation</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Haemoglobin A1c, glycosylated haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HsCRP</td>
<td>High Sensitive C reactive protein</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Methylene tetrahydrofolate reductase</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen Activator Inhibitor-1</td>
</tr>
<tr>
<td>RCF</td>
<td>Red Cell Folate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error of Mean</td>
</tr>
<tr>
<td>tHcy</td>
<td>Total Plasma homocyst(e)ine</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor α</td>
</tr>
<tr>
<td>tPA</td>
<td>Tissue Plasminogen Activator</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type 1 Diabetes Mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes Mellitus</td>
</tr>
<tr>
<td>VD</td>
<td>Vessel Diameter</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand Factor</td>
</tr>
</tbody>
</table>
Vascular function in children at risk of cardiovascular disease and the effects of folic acid

LIST OF FIGURES

Figure 1. Effects of hyperglycaemia..16
Figure 2. Increased adipose tissue and vascular dysfunction24
Figure 3. Synthetic folic acid molecule. ...32
Figure 4. Metabolism of homocysteine and the role of folic acid.33
Figure 5. FMD and GTN in non-obese, obese and children with type 1 diabetes.53
Figure 6. The relationship between GTN and BMI z-score in non-obese and obese children ..56
Figure 7. FMD changes over time by treatment group72
Figure 8. Serum folate changes over time by treatment group74
Figure 9. Study design ..84
Figure 10. Flow chart participant and recruitment of diabetic trial103
Figure 11. Flow chart participant and recruitment of obese trial107
LIST OF TABLES

Table 1. Trials evaluating the effects of folic acid on endothelial function37
Table 2. Results of vascular function studies and other variables by group52
Table 3. Significant correlations between vascular function and cardiovascular risk factors
 in a univariate analysis in all subjects without diabetes ...54
Table 4. Significant correlations between vascular function and cardiovascular risk factors
 in a univariate analysis in all subjects without diabetes ...55
Table 5. Baseline characteristics of subjects with type 1 diabetes71
Table 6. Effects of intervention on endothelial function, folate status and HbA1c73
Table 7. Baseline characteristics of obese children ...89
Table 8. Vascular function, folate status, hsCRP and body size measurements during study
 period in folic acid and placebo group ...91
Table 9. Trials with evaluating the effects of folic acid on endothelial function (FMD or
 FABF) in diabetes ..105
Table 10. Folic acid effects in obese children and children with type 1 diabetes110