Kinetostatic Modelling of Compliant Micro-motion Stages with Circular Flexure Hinges

Yuen Kuan Yong

School of Mechanical Engineering
The University of Adelaide
South Australia 5005
Australia

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering on the 16th March 2007
Contents

Abstract xiii

Statement of Originality xv

Publications xvii

Acknowledgements xix

1 Introduction 1
 1.1 Background and motivation ... 1
 1.2 Objectives and scope ... 5
 1.3 Organisation of thesis .. 7

2 Literature Review 9
 2.1 Modelling of flexure hinges .. 10
 2.1.1 Gaps in current knowledge of the modelling of flexure hinges 16
 2.2 Modelling of compliant micro-motion stages 17
 2.2.1 Gaps in current knowledge of the kinetostatic modelling of compliant micro-motion stages 29
 2.3 Summary .. 30

3 A Scheme for Selecting Flexure Hinge Compliance Equations 33
 3.1 Modelling of circular flexure hinges using FEA 34
 3.1.1 Boundary conditions .. 35
 3.1.2 Applying forces and moments 35
 3.1.3 Nodal deformations of FEA flexure hinge model 37
3.2 Experimental validation of the FEA model
- 3.2.1 Experimental setup
- 3.2.2 Experimentally determined flexure hinge compliances
- 3.2.3 Experimental results and comparisons

3.3 A scheme for selecting flexure hinge compliance equations
- 3.3.1 A comparison of compliance results with FEA
- 3.3.2 Empirical Δx- and Δy-compliance equations

3.4 Concluding remarks

4 Kinematic Modelling of Micro-motion Stages
using the PRBM and Loop-closure Theory
- 4.1 PRBM and loop-closure theory
- 4.1.1 PRBM of compliant micro-motion stages
- 4.1.2 Loop-closure theory
- 4.2 Kinematic modelling of four-bar compliant mechanisms
- 4.3 Kinematic modelling of 3-RRR compliant micro-motion stages
- 4.4 Concluding remarks

5 Kinetostatic Modelling of Micro-motion Stages
- 5.1 Kinetostatic model of four-bar compliant mechanisms
- 5.1.1 Derivation of the output compliance matrix, C_{o,F_o}
- 5.1.2 Derivation of the compliance matrix, $C_{o,F_{in}}$ and C_{in,F_o}
- 5.1.3 Derivation of the compliance matrix, $C_{in,F_{in}}$
- 5.1.4 The Jacobian matrix of four-bar compliant mechanisms
- 5.1.5 Case studies of the four-bar compliant mechanism
- 5.2 Kinetostatic modelling of 3-RRR micro-motion stages
- 5.2.1 Derivation of the output compliance matrix, C_{o,F_o}
- 5.2.2 Derivation of the compliance matrix, $C_{o,F_{in}}$ and C_{in,F_o}
- 5.2.3 Derivation of the compliance matrix, $C_{in,F_{in}}$
- 5.2.4 The Jacobian matrix of 3-RRR micro-motion stages
- 5.2.5 Case studies of the 3-RRR compliant micro-motion stage
- 5.3 Concluding remarks

6 Finite Element Analysis
- 6.1 FEA modelling of micro-motion stages
- 6.1.1 FEA modelling of the four-bar micro-motion stage
- 6.1.2 FEA modelling of the 3-RRR micro-motion stage
- 6.2 Concluding remarks
7 Experimental Validation of the Kinetostatic and FEA Models 147
7.1 Experimentally determined compliance matrix, C_{o,F_o} 148
 7.1.1 Discussion .. 149
7.2 Experimentally determined compliance matrix, $C_{o,F_{in}}$ 152
 7.2.1 Discussion .. 152
7.3 Experimentally determined Jacobian matrix 154
 7.3.1 Strain gauge calibrations 156
 7.3.2 Jacobian measurements 159
 7.3.3 Comparison of J_{exp} results 161
7.4 Comparisons of analytical and FEA results with experimental results 162
 7.4.1 Discussion .. 166
7.5 Concluding remarks ... 169

8 Conclusions and Future Work 171
8.1 Objectives of the study 171
8.2 Summary of the research work presented in this thesis 172
8.3 Contributions ... 175
8.4 Recommendations for future work 176

A Sensor Calibration Using a Michelson Laser Interferometer 179
A.1 Background .. 179
A.2 Aim .. 180
A.3 Experimental Setup .. 180
 A.3.1 dSPACE DS1104 controller board 180
 A.3.2 Sensor system - eddyNCDT3700 180
 A.3.3 Fibre-optic sensor 181
 A.3.4 Michelson laser interferometer 181
 A.3.5 Overall system setup 184
A.4 Methods ... 184
 A.4.1 Eddy-current sensors 184
 A.4.2 Fibre-optic sensor 187
A.5 Results ... 190
 A.5.1 Estimation of sensor resolutions 190
A.6 Error analysis .. 193
 A.6.1 Measurement errors 193
 A.6.2 Temperature effects 194
A.7 Summary ... 197
B Manufacturing Data of Eddy-current and Fibre-optic sensors

B.1 Test reports of eddy-current sensors 199
B.2 Calibration curves of the fibre-optic sensor 203

C Circular Flexure Hinge Compliance Equations 207

Bibliography ... 213
List of Figures

1.1 Compliant micro-motion stages and their topological diagrams ... 2
1.2 Prototype of the 3-RRR micro-motion stage ... 3
1.3 Circular flexure hinge ... 6

2.1 Flexure hinge (Handley, 2006) .. 18

3.1 FEA meshing techniques .. 35
3.2 Dimensions of a FEA flexure hinge model ... 35
3.3 Dimensions, forces, moments and deflections of flexure hinge ... 36
3.4 Method of applying forces/moments on the FEA flexure hinge model 37
3.5 Calculation of rotational motions from nodal deformations obtained from FEA 39
3.6 Calculation of deformation along the y-direction of the flexure hinge 40
3.7 Δx-compliance measurement of flexure hinges ... 40
3.8 Experimental setup of the $\Delta \alpha_z$-compliance measurement of flexure hinges 41
3.9 Experimental setup of the Δy-compliance measurement of flexure hinges 42
3.10 Schematic of the experimental setup .. 44
3.11 Equivalent forces/moment on a flexure hinge ... 45
3.12 Differences of various compliance equations, $\Delta \alpha_z/M_z$ compared to FEA results 50
3.13 Differences of various compliance equations, $\Delta x/F_x$ compared to FEA results 53
3.14 Differences of various compliance equations, $\Delta y/F_y$ compared to FEA results ... 54
3.15 Flexure hinge models of Schotborgh et al. (2005) 55
3.16 The change of k_{hinge} with the height of the FEA model of Schotborgh et al. (2005) .. 55
3.17 Differences of empirical equations, K_x 57
3.18 Differences of empirical equations, K_y 57
4.1 Micro-motion system ... 62
4.2 The PRBM of a circular flexure hinge ... 63
4.3 The PRBM of micro-motion stages .. 63
4.4 Complex plane .. 64
4.5 Single loop four-bar structure analysis 65
4.6 Piezo-actuator and compliant mechanism 67
4.7 Two-loop 3-RRR structure analysis ... 69
5.1 Four-bar compliant mechanism .. 78
5.2 Parallel spring model of the four-bar compliant mechanism 78
5.3 Compliances due to Hinge 1 ... 79
5.4 $\Delta y_1^{o'}$-displacement caused by the amplification of link with distance $l_2 + l_3 + 2R_2$. Dashed lines represent initial position of the four-bar compliant structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block ... 82
5.5 $\Delta x_1^{o'}$-displacement caused by the amplification of link with distance $l_2 + l_3 + 2R_2$. Dashed lines represent initial position of the four-bar compliant structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block ... 84
5.6 Compliances due to Hinge 2 ... 85
5.7 $\Delta y_2^{o'}$-displacement caused by the amplification of link with distance l_3. Dashed lines represent initial position of the four-bar compliant structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block ... 88
5.8 $\Delta x_2^{o'}$-displacement caused by the amplification of link with distance l_3. Dashed lines represent initial position of the four-bar compliant structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block ... 90
5.9 Calculation of compliances at Point o. Dashed lines represent initial position of the four-bar compliant structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block 92
5.10 3-RRR compliant micro-motion stage 104
5.11 Parallel spring model of a 3-RRR micro-motion stage 105
5.12 Compliances due to Hinge 1 ... 105
5.13 Δy^1_f-displacement caused by the amplification of link, l_1. Dashed lines represent initial position of the RRR structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block 107
5.14 Δx^1_f-displacement caused by the amplification of link with distance l_4. Dashed lines represent initial position of the RRR structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block. .. 109
5.15 Calculation of compliances at Point o. Dashed lines represent initial position of the RRR structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as a block ... 115
6.1 The FEA model of the four-bar compliant micro-motion stage 131
6.2 ANSYS results of structural deformations of the four-bar compliant mechanism .. 133
6.3 FEA model of the 3-RRR compliant micro-motion stage 140
7.1 Experimental setup - the measurement of the compliances, C_{o,F_o} 150
7.2 Equivalent forces/moment on the end-effector of the 3-RRR micro-motion stage when moments were applied via the loading rod 151
7.3 Histogram of the measurement data of C_{o,F_o} 151
7.4 Experimental setup of the measurement of $C_{o,F_{in}}$ 153
7.5 Histogram of the measurement data of $C_{o,F_{in}}$ 154
7.6 Preload mechanism - compressive load on the piezo-actuator (Handley, 2006). .. 155
7.7 Weights were hung at the input location of the micro-motion stage using a pin .. 155
7.8 Closed-loop PI controller using strain gauge feedback (Handley, 2006) .. 156
7.9 Strain gauge calibration setup ... 157
7.10 Alignment of the fibre-optic sensor with the axis of the preload mechanism .. 158
7.11 Experimental setup of measuring the Jacobian of the 3-RRR micro-motion stage .. 159
7.12 Schematic of the experimental setup to measure the Jacobian (Lu et al., 2004) .. 160
7.13 Histogram of the measurement data of J_{exp} 161
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.14</td>
<td>Side view of the experimental setup of measuring C_{o,F_o}</td>
<td>167</td>
</tr>
<tr>
<td>7.15</td>
<td>Small tilting angle (exaggerated in the diagram) of the end-effector</td>
<td>167</td>
</tr>
<tr>
<td>A.1</td>
<td>Schematic of Michelson interferometer arrangement</td>
<td>182</td>
</tr>
<tr>
<td>A.2</td>
<td>Various types of fringes (Jenkins and White, 1981)</td>
<td>183</td>
</tr>
<tr>
<td>A.3</td>
<td>Intensity distribution of interference fringes</td>
<td>183</td>
</tr>
<tr>
<td>A.4</td>
<td>Attachment of sensor target and mirror on a motorised translation stage</td>
<td>185</td>
</tr>
<tr>
<td>A.5</td>
<td>Sensor calibration setup</td>
<td>185</td>
</tr>
<tr>
<td>A.6</td>
<td>Sensor output voltage versus displacement</td>
<td>186</td>
</tr>
<tr>
<td>A.7</td>
<td>Sensor output voltage versus displacement at the most linear region of eddy-current sensors</td>
<td>188</td>
</tr>
<tr>
<td>A.8</td>
<td>Sensitivity curves of eddy-current sensors</td>
<td>189</td>
</tr>
<tr>
<td>A.9</td>
<td>Sensitivity curve of fibre-optic sensor</td>
<td>191</td>
</tr>
<tr>
<td>A.10</td>
<td>Temperature effects on the eddy-current sensors</td>
<td>196</td>
</tr>
<tr>
<td>B.1</td>
<td>Eddy-current sensor, 3316</td>
<td>200</td>
</tr>
<tr>
<td>B.2</td>
<td>Eddy-current sensor, 3317</td>
<td>201</td>
</tr>
<tr>
<td>B.3</td>
<td>Eddy-current sensor, 3338</td>
<td>202</td>
</tr>
<tr>
<td>B.4</td>
<td>Fibre-optic sensor - near side</td>
<td>204</td>
</tr>
<tr>
<td>B.5</td>
<td>Fibre-optic sensor - far side</td>
<td>205</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Differences between the experimentally determined compliances ($\Delta \alpha_z/M_z$) of Smith et al. (1997) and the analytical compliances of Paros and Weisbord (1965) .. 11

3.1 Weights applied on the three flexure hinges to measure the $\Delta \alpha_z$-compliance ... 41

3.2 Weights applied on the three flexure hinges to measure the Δy-compliance ... 43

3.3 A comparison of FEA results to experimental results (this thesis) 46

3.4 A comparison of FEA results to the experimental results of Smith et al. (1997) ... 46

3.5 Comparisons of various compliance equations to experimental results - First flexure hinge, $t=0.5$ mm, $R=3$ mm. Paros and Weisbord (1965) is referred as PW .. 47

3.6 Comparisons of various compliance equations to experimental results - Second flexure hinge, $t=0.7$ mm, $R=1.87$ mm. Paros and Weisbord (1965) is referred as PW .. 48

3.7 Comparisons of various compliance equations to experimental results - Third flexure hinge, $t=0.84$ mm, $R=1.1$ mm. Paros and Weisbord (1965) is referred as PW .. 48

3.8 Coefficients of polynomial functions for K_x and K_y 58

3.9 Suggested compliance/stiffness equations for a particular t/R range of circular flexure hinges. PW refers to Paros and Weisbord 59

4.1 Parameters of the PRBM of the four-bar compliant structure 66
4.2 Parameters of the PRBM of the 3-RRR micro-motion stage 72
5.2 Material properties, link lengths and flexure hinge dimensions of the four-bar compliant mechanism 98
5.3 Flexure hinge equations chosen for Cases 1 and 2 for the derivation of kinetostatics of the four-bar compliant mechanism 99
5.4 Case studies - Analytical matrices of the kinetostatic model of the four-bar compliant mechanism 100
5.5 Material properties, link lengths and flexure hinge dimensions of the 3-RRR compliant micro-motion stage 124
5.6 Flexure hinge equations chosen for Cases 1 and 2 for the derivation of kinetostatics of the 3-RRR micro-motion stage 125
5.7 Case studies - Analytical matrices of the kinetostatic model of the 3-RRR micro-motion stage 126
6.1 FEA compliance and Jacobian matrices of the four-bar compliant mechanism (with rigid-link deformations) 132
6.2 Analytical results of the four-bar compliant mechanism and their differences compared to FEA results 135
6.3 Analytical compliance results of the four-bar compliant mechanism and their differences compared to FEA results (links are modelled to have high stiffness in the FEA model) 137
6.4 FEA compliance and Jacobian matrices of the 3-RRR micro-motion stage ... 141
6.5 Analytical results of the 3-RRR micro-motion stage and their differences compared to FEA results 142
7.1 Average sensitivities of strain gauges 158
7.2 Sensitivities of the three eddy-current sensors (0 to 10V) 160
7.3 Differences between the two experimental Jacobian matrices 162
7.4 Comparison of analytical and FEA results of $C_{o,Fo}$ with that of the experiments .. 163
7.5 Comparison of analytical and FEA results of $C_{o,F_{in}}$ with that of the experiments .. 164
7.6 Comparison of analytical and FEA Jacobians with the experimental Jacobian .. 165
A.1 Statistical values of each sensor calibration result 194
A.2 Summary of the calibration results of the sensors 197
Abstract

This thesis presents a) a scheme for selecting the most suitable flexure hinge compliance equations, and b) a simple methodology of deriving kinetostatic models of micro-motion stages by incorporating the scheme mentioned above. There were various flexure hinge equations previously derived using different methods to predict the compliances of circular flexure hinges. However, some of the analytical/empirical compliance equations provide better accuracies than others depending on the t/R ratios of circular flexure hinges. Flexure hinge compliance equations derived previously using any particular method may not be accurate for a large range of t/R ratios. There was no proper scheme developed on how to select the most suitable and accurate hinge equation from the previously derived formulations. Therefore, the accuracies and limitations of the previously derived compliance equations of circular flexure hinges were investigated, and a scheme to guide designers for selecting the most suitable hinge equation based on the t/R ratios of circular flexure hinges is presented in this thesis.

This thesis also presents the derivation of kinetostatic models of planar micro-motion stages. Kinetostatic models allow the fulfillment of both the kinematics and the statics design criteria of micro-motion stages. A precise kinetostatic model of compliant micro-motion stages will benefit researchers in at least the design and optimisation phases where a good estimation of kinematics, workspace or stiffness of micro-motion stages could be realised. The kinetostatic model is also an alternative method to the finite-element approach which uses commercially available software. The modelling and meshing procedures using finite-element software could be time consuming. The kinetostatic model of micro-motion stages was developed based on the theory of the connection of serial and parallel springs. The derivation of the kinetostatic model is simple and the model is expressed
in closed-form equations. Material properties and link parameters are variables in this model. Compliances of flexure hinges are also one of the variables in the model. Therefore the most suitable flexure hinge equation can be selected based on the scheme aforementioned in order to calculate the kinetostatics of micro-motion stages accurately.

Planar micro-motion stages with topologies of a four-bar linkage and a 3-RRR (revolute-revolute-revolute) structure were studied in this thesis. These micro-motion stages are monolithic compliant mechanisms which consist of circular flexure hinges. Circular flexure hinges are used in most of the micro-motion stages which require high positioning accuracies. This is because circular flexure hinges provide predominantly rotational motions about one axis and they have small parasitic motions about the other axes. The 3-RRR micro-motion stage studied in this thesis has three-degrees-of-freedom (DOF). The 3-RRR stage consists of three RRR linkages and each RRR linkage has three circular flexure hinges. A Pseudo-Rigid-Body-Model (PRBM), a kinetostatic model and a two-dimensional finite-element-analysis (FEA) model generated using ANSYS of micro-motion stages are presented and the results of these models were compared. Advantages of the kinetostatic model was highlighted through this comparison. Finally, experiments are presented to verify the accuracy of the kinetostatic model of the 3-RRR micro-motion stage.
Statement of Originality

To the best of my knowledge, except where otherwise referenced and cited, everything that is presented in this thesis is my own original work and has not been presented previously for the award of any other degree or diploma in any university. If accepted for the award of the degree of Doctor of Philosophy in Mechanical Engineering, I consent that this thesis be made available for loan and photocopying.

Yuen Kuan Yong

Date
Publications

Publications arising from this thesis

Yong, Y. K., Lu, T.-F. and Handley, D. C., 2007, ‘Review of circular flexure hinge design equations and derivation of empirical formulations’, Accepted to be published in the Precision Engineering

Other publications related to compliant micro-motion stages

Handley, D. C., Lu, T.-F. and Yong, Y. K., ‘A simple and efficient modelling method for planar flexure hinge compliant mechanisms’, Accepted to be published in the Precision Engineering

hinges’, *Journal of the Chinese Society of Mechanical Engineers*, vol. 25, No. 5, pp. 457-464

Many people have contributed to make this Ph.D an interesting part of my life. Firstly, I would like to express my great gratitude to my parents who have been supportive and encouraging throughout my Ph.D candidature, and have been very enthusiastic about my Ph.D work.

I would also like to thank my supervisors, Dr. Tien-Fu Lu and Dr. Ley Chen for their supervisions and proof reading of my work. I express my sincerest thanks to Daniel Handley for his help with the experimental equipment; for helping me with the understanding of the research during my early candidature; and for the generosity of spending his precious time sharing his knowledge with me.

I would also like to thank Professor Colin Hansen for his great advice in various aspects of life, and to those unfortunate enough to share an office with me, in particular James Chartres, Danielle Moreau and Jayesh Minase, who tolerated my jokes and my grumpiness. I also owe many thanks to the electronics and instrumentation staff, George Osborne for his innovative ideas and awesome craftsmanship, Silvio De Ieso and Philip Schmidt for their help with the design and construction of the experimental circuitry. I would also like to thank the workshop staff, Richard Pateman, Bill Finch, David Osborne and Bob Dyer for their help with the construction of my experimental apparatus.

I would like to acknowledge the support of the Optics Group from the School of Chemistry and Physics and the use of its facilities. A special thank you to Professor Jesper Munch for his time and his precious advice during the setup of the Michelson laser interferometer experiment. This experiment would not be realised without his generosity of allowing me to access the laser interferometer facilities. I would also like to acknowledge Aidan Brooks who patiently explained to me the concept of laser interferometers. I would like to greatly thank Shu-Yen Lee for her
useful tips and tricks about optics.

I must also mention Benson, Oliver and in particular Tina Petrohelos, who have given me a lot of laughters during the final stage of the completion of this thesis. They have made the process of completing this thesis much more delightful and unforgettable.

Finally, I would like to extend my great gratitude to my ex-housemates and friends, in particular Timothy Lau, who have given me many enjoyable weekends, who have distracted me from my work, and who have patiently shared my good and bad experiences during my stay in Adelaide.