Rainfall Regime and Optimal Root Distribution in the Australian Perennial Grass, *Austrodanthonia caespitosa* (Gaudich.)

A thesis submitted in fulfilment of the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences at the University of Adelaide.

Grant James Williamson

B. Env. Sc (Hons) University of Adelaide

2007
1. Table of Contents

1. Table of Contents 1-3

2. Abstract 2-11

3. Statement 3-14

4. Acknowledgements 4-15

5. Table of Figures 5-16

6. Introduction 6-28

6.1. Climate 6-29

6.2. Plant Root Distribution 6-35

6.3. Root distribution, soil water and climate 6-39

6.4. Plasticity 6-48

6.5. Australian Grasses 6-51

6.6. Use of Australian grasses in salinity control 6-54

6.7. Aims 6-57

7. Rainfall Patterns in Australia 7-59
7.1. Introduction .. 7-59

7.2. Methods ... 7-63

Data Sources and Maps ... 7-63

Walsh and Lawler seasonality index ... 7-65

Vector seasonality .. 7-65

τ (Tau) event-size index ... 7-67

Gap-size index .. 7-69

Markov probability and event length .. 7-69

7.3. Results ... 7-70

Walsh & Lawler Seasonality Index .. 7-70

Vector Seasonality ... 7-71

τ (Tau) event-size index ... 7-73

Gap-size index .. 7-77

Markov (1,1) probability and event length .. 7-80

τ event-size index change over time ... 7-84

Significant correlations of τ event-size with time ... 7-87
7.4. Discussion .. 7-90

7.5. Conclusion .. 7-96

8. NATURAL RAIN POPULATION COMPARISON 8-98

8.1. Introduction ... 8-98

8.2. Methods .. 8-103

8.3. Results ... 8-106

Phenology ... 8-106

Growth ... 8-108

8.4. Discussion ... 8-112

Conclusion .. 8-117

9. PULSE-SIZE GLASSHOUSE EXPERIMENT 9-118

9.1. Introduction .. 9-118

9.2. Methods .. 9-123

9.3. Results ... 9-128

9.4. Discussion ... 9-136

9.5. Conclusion .. 9-143
10. Seasonal Watering Comparison

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Introduction</td>
<td>10-145</td>
</tr>
<tr>
<td>10.2. Methods</td>
<td>10-150</td>
</tr>
<tr>
<td>10.3. Results</td>
<td>10-153</td>
</tr>
<tr>
<td>10.4. Discussion</td>
<td>10-161</td>
</tr>
<tr>
<td>10.5. Conclusion</td>
<td>10-169</td>
</tr>
</tbody>
</table>

11. Evolutionary Algorithm Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Introduction</td>
<td>11-170</td>
</tr>
<tr>
<td>11.2. Methods</td>
<td>11-179</td>
</tr>
<tr>
<td>Model structure</td>
<td>11-179</td>
</tr>
<tr>
<td>Daily plant growth loop</td>
<td>11-184</td>
</tr>
<tr>
<td>Water infiltration</td>
<td>11-185</td>
</tr>
<tr>
<td>Soil water diffusion</td>
<td>11-186</td>
</tr>
<tr>
<td>Respiration</td>
<td>11-186</td>
</tr>
<tr>
<td>Photosynthesis and assimilation</td>
<td>11-187</td>
</tr>
<tr>
<td>Water availability and usage</td>
<td>11-189</td>
</tr>
</tbody>
</table>
Assimilation and Biomass Allocation ... 11-191

Evaporation .. 11-192

Plant reproduction ... 11-193

Soils .. 11-196

Simulation Experiments .. 11-197

11.3. Results .. 11-207

Gene shifts and selection ... 11-207

Soil moisture regime ... 11-212

Pulse Size and Interval, and Soil Texture ... 11-217

Seasonal Rainfall Bias and Soil Texture .. 11-222

Total Weekly Rainfall .. 11-228

Daily Rainfall Record Data .. 11-233

Respiration functions .. 11-235

11.4. Discussion .. 11-241

Model Gene Shifts and Soil Moisture .. 11-241

Pulse size / frequency .. 11-244
Seasonality .. 11-247
Total Weekly Rainfall .. 11-250
Daily Rainfall Data .. 11-252
Respiration ... 11-253
Soil Surface Area ... 11-254
Conclusion .. 11-256

12. Discussion .. 12-258

12.1. Plasticity and Genotypic Differentiation .. 12-258
12.2. Rainfall Event Size ... 12-263
12.3. Interpulse Length and Event Frequency ... 12-268
12.4. Seasonality .. 12-269
12.5. Soil Type .. 12-273
12.6. Deep Drainage Reduction and Utility .. 12-275
12.7. Conclusion .. 12-277

13. References .. 13-279

14. Appendix A – Seed Collection .. 14-299
14.1. Austrodanthonia caespitosa Seed Collection.. 14-299

14.2. Collection and processing of Austrodanthonia caespitosa seed 14-304

15. Appendix B – Pilot Studies and Minor Experiments 15-310

15.1. Pilot “Colander” study .. 15-310

 Introduction.. 15-310

 Methods... 15-311

 Results.. 15-313

 Discussion... 15-319

 Conclusion... 15-320

15.2. Ecophysiology pilot study ... 15-320

 Introduction.. 15-320

 Methods... 15-321

 Results.. 15-322

 Discussion... 15-331

 Conclusion... 15-333

15.3. Water Use Efficiency Determination.. 15-333
Introduction ... 15-333
Methods .. 15-334
Results ... 15-335
Discussion .. 15-337
Conclusion .. 15-337

16. APPENDIX C – INCOMPLETE AND FAILED EXPERIMENTS 16-338

16.1. Pilot seminal root growth angles................................. 16-338

Introduction .. 16-338
Methods .. 16-339
Results ... 16-339
Conclusion .. 16-340

16.2. Paddock experiment .. 16-340

Introduction .. 16-340
Methods .. 16-341

17. MODEL SOURCE CODE ... 17-343

2.
This study aimed to determine whether rainfall regime has driven differentiation in the Australian perennial grass, *Austrodanthonia caespitosa*, resulting in local ecotypes possessing characters, such as deep rootedness or summer activity, that may be particularly useful in reducing deep drainage for salinity mitigation, or whether the species shows a plastic response in root growth to soil water distribution. Rainfall regime varies within a given annual rainfall because size and distribution of rainfall event vary. This can have an important effect on soil water distribution, both spatially and temporally. This study investigates the relationship between rainfall regime and the structure of root systems in local populations of *Austrodanthonia caespitosa* (Gaudich.). Firstly, it examined a number of indices useful in quantifying variation in small-scale rainfall regime, including seasonal bias, event size, event frequency, and the clustering of events, as well as how rainfall event size may be changing over time across Australia. The variation in soil water distribution that results from different rainfall regimes is expected to interact with root distribution in plants, either acting as a selective force and driving genotypic differentiation in response to soil water availability, or through plasticity in root placement. The relationship between rainfall regime and root depth distribution was examined in *Austrodanthonia caespitosa* (Gaudich.), or white-top wallaby grass, a perennial grass common across southern Australia.

Growth and reproductive traits of plants grown from seeds collected from across the range of this species under a single rainfall regime were compared and correlated with
the rainfall indices and soil type in order to establish possible abiotic explanations for trait variability. Phenological characters were found to be particularly variable between ecotypes, but high local variation between ecotypes suggested factors operating on a spatial scale smaller than the rainfall gradients are responsible for population differentiation.

In order to investigate the interaction between rainfall event size and root depth, an experiment was conducted to investigate plant response to watering pulse size and frequency, with plants grown under a range of controlled watering regimes, and root depth distribution compared. The primary response in root growth was plastic, with shallow roots being developed under small, frequent events, and deep roots developed under large, infrequent waterings. Differences between ecotypes were less important, and there was no interaction between ecotype and watering treatment, indicating the same degree of plasticity in all ecotypes.

Plants from a range of populations were grown under a controlled climate, first under winter conditions, then under summer conditions, with summer water withheld from half the plants, in order to determine the response to summer watering and summer drought. Plants that were watered over summer showed a strong growth response, increasing shoot biomass significantly. This effect was particularly strong in South Australian populations, which was unexpected as they originate from a region with low, unpredictable summer rainfall. Root depth was not strongly influenced by summer watering treatment.

Finally, an evolutionary algorithm model was constructed in order to examine optimal
plant traits under a variety of rainfall regimes. The model highlighted the importance of the interaction between rainfall regime and soil type in determining optimal root placement. Variable root cost with depth was also found to be an important trade-off to be considered, with high root loss in the surface soil layers, due to high temperatures, making a shallow rooted strategy less efficient than if root costs were equal throughout the root system.

Overall, no ecotypes of *A. caespitosa* could be identified that had characters particularly suited to deep drainage reduction, as the drought tolerant nature of the species, and the dormancy during times of drought, may lead to low overall water use. However, it may be a useful native component in pasture systems, due to its strong growth response to summer rainfall, a characteristic found to be particularly strong in a number of South Australian ecotypes.
3. Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Grant James Williamson
I would like to acknowledge the advice and guidance of my two supervisors, Associate Professor José M. Facelli, and Professor Victor O. Sadras. I would like to thank Dr. Jennifer Watling for assistance with the ecophysiological experiments. A number of fellow students, past and present, in the department offered outstanding assistance and support, including Dr. Tanja Lenz, Dr. Mansour Mohammadian, Dr. Martin Escoto-Rodriguez, Gregory Hay, Alice Dewar, Gael Fogarty, and Susan Gehrig.

I would like to thank SARDI for providing access to greenhouse and root washing facilities, and the CSIRO for providing top-up funding to support this project.

A number of local and shire councils were extremely helpful in allowing me access to collect specimens from roadsides and other public areas. These include the councils of Naracoorte and Lucindale, Tatiara, Karoonda East Murray, Southern Mallee, Mount Barker, Yankalilla, Victor Harbour, Goyder, Clare and Gilbert Valleys, Copper Coast, Moira, West Wimmera, Buloke, Northern Grampians, Loddon, Berrigan, Jerilderie, Carrathool, Hay, Deniliquin and Bland.

Thankyou to Cathy Waters, the LIGULE project, and Blackwood Seeds for supplying seeds for use in the pilot study. I would also like to thank my wife Skye for her support during this project and on field trips.
5. TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Walsh and Lawler seasonality index across Australia</td>
<td>7-71</td>
</tr>
<tr>
<td>2</td>
<td>Vector seasonality index across Australia</td>
<td>7-72</td>
</tr>
<tr>
<td>3</td>
<td>Correlation between Walsh and Lawler index and vector magnitude index. Both indices are dimensionless.</td>
<td>7-73</td>
</tr>
<tr>
<td>4</td>
<td>t (Tau) event-size index across Australia</td>
<td>7-75</td>
</tr>
<tr>
<td>5</td>
<td>t (Tau) event-size index across Australia for the summer half year</td>
<td>7-76</td>
</tr>
<tr>
<td>6</td>
<td>t (Tau) event-size index across Australia for the winter half year</td>
<td>7-77</td>
</tr>
<tr>
<td>7</td>
<td>Gap-size index across Australia</td>
<td>7-78</td>
</tr>
<tr>
<td>8</td>
<td>Gap-size index across Australia for the summer half year</td>
<td>7-79</td>
</tr>
<tr>
<td>9</td>
<td>Gap-size index across Australia for the winter half year</td>
<td>7-80</td>
</tr>
<tr>
<td>10</td>
<td>Markov (1,1) probability across Australia</td>
<td>7-81</td>
</tr>
<tr>
<td>11</td>
<td>Markov (1,1) probability across Australia for the summer half-year.</td>
<td>7-82</td>
</tr>
<tr>
<td>12</td>
<td>Markov (1,1) probability across Australia for the winter half-year.</td>
<td>7-83</td>
</tr>
<tr>
<td>13</td>
<td>Average pulse length (days) across Australia</td>
<td>7-84</td>
</tr>
<tr>
<td>14</td>
<td>Trend in τ-statistic across Australia, 1920 – 2000, indicating change in</td>
<td></td>
</tr>
</tbody>
</table>
rainfall event size bias. + = trend towards larger events, - = trend towards smaller events, O = no significant change. ..7-85

Figure 15 - Trend in \(t \) during summer across Australia, 1920 – 20007-86

Figure 16 - Trend in \(\tau \) during winter across Australia, 1920 – 20007-87

Figure 17 - Number of days after planting when first flowering was observed for populations in the natural rainfall experiment*. ..8-106

Figure 18 - Lifespan of plants from day of planting for populations in the natural rainfall experiment*. ...8-106

Figure 19 - Number of days between flowering and death for populations in the natural rainfall experiment*. ...8-106

Figure 20 - Linear regression of time from flowering to dormancy versus time from planting to dormancy. ...8-107

Figure 21 - Dry shoot mass for populations in the natural rainfall experiment*......8-108

Figure 22 - Total dry root mass for populations in the natural rainfall experiment*...8-108

Figure 23 - Top:bottom root mass ratio for populations in the natural rainfall experiment*...8-108

Figure 24 - Root mass in top soil layer for populations in the natural rainfall
Figure 25 - Root mass in bottom soil layer for populations in the natural rainfall experiment*...

Figure 26 - Root:shoot mass ratio for populations in the natural rainfall experiment*...

Figure 27 - NMS Ordination of measured plant characters, overload with joint plot of environmental variables. Stress = 6.64. State 1 = SA, 2 = Vic, 3 = NSW.

Figure 28 - Differences in dry shoot mass between populations for pulse-size experiment*...

Figure 29 - Difference in total dry root mass between watering treatments for the pulse-size experiment*.

Figure 30 - Difference in total dry root mass between populations for the pulse-size experiment*.

Figure 31 - Difference in total dry biomass between populations for the pulse-size experiment*.

Figure 32 - Difference in root:shoot ratio between watering treatments for the pulse-size experiment*.

Figure 33 - Difference in top:bottom root mass ratio between watering treatments in the pulse-size experiment*.
Figure 34 - Difference in top:bottom root length ratio between watering treatments in
the pulse-size experiment*. ... 9-132

Figure 35 - Difference in total root length between watering treatments in the pulse-size
experiment*. ... 9-132

Figure 36 - Difference in total root length between populations in the pulse-size
experiment*. ... 9-132

Figure 37 - Difference in fractal dimension between watering treatments for roots in the
top soil layer in the pulse-size experiment*. .. 9-134

Figure 38 - Difference in fractal dimension between populations for roots in the top soil
layer in the pulse-size experiment*. .. 9-134

Figure 39 - Difference in fractal dimension between populations for roots in the bottom
soil layer in the pulse-size experiment* .. 9-134

Figure 40 - Root length versus fractal dimension in the top soil layer. 9-135

Figure 41 - Root length versus fractal dimension in the bottom soil layer............. 9-136

Figure 42 - Dry shoot mass at harvest by population in the seasonal watering
experiment*. .. 10-153

Figure 43 - Dry root mass by population in the seasonal watering experiment*. .. 10-153

Figure 44 - Total dry mass by population in the seasonal watering experiment*. . 10-153
Figure 45 - Root:shoot ratio for watering treatments and populations in seasonal watering experiment. Error bars indicate standard error, and asterisk indicates a difference between watering treatments for the same population as indicated by a Tukey HSD test.

Figure 46 - Top:bottom root ratio by watering treatment in the seasonal watering experiment.

Figure 47 - Top:bottom root ratio by population in the seasonal watering experiment.

Figure 48 - Winter shoot dry mass by population in the seasonal watering experiment.

Figure 49 - Summer shoot growth for watering treatments and populations in seasonal watering experiment. Error bars indicate standard error, and asterisks indicate a difference between watering treatments for the same population as indicated by a Tukey HSD test.

Figure 50 - Summer shoot growth as percentage of total for watering treatments and populations in the seasonal watering experiment. Error bars indicate standard error, and asterisks indicate a difference between watering treatments for the same population as indicated by a Tukey HSD test.

Figure 51 - PSII quantum efficiency (Fq'/Fm') before and after a watering event in the seasonal watering experiment.
Figure 52 - PSII quantum efficiency (Fq'/Fm') for populations in the seasonal watering experiment*. ...10-160

Figure 53 - Total dry mass per mL of water supplied for watering treatments in the seasonal watering experiment*. ...10-160

Figure 54 - Simplified flux diagram of water and photosynthesis model, with soil water storage on the left, and plant biomass allocation on the right.................11-183

Figure 55 - Shift in value of RD1 gene, a gene under strong selective pressure, over 150 model generations. ...11-208

Figure 56 - Shift in value of WUE gene, a gene where higher values always produce greater growth, over 150 model generations.11-209

Figure 57 - Change in the number of different genotypes of the RD0 gene in the population over 100 generations. Dashed lines indicate standard error.11-210

Figure 58 - Shift in value of Germ_T gene, a gene under no selective pressure, over 150 model generations. ...11-211

Figure 59 - Soil water content in three soil layers over one year of model execution, with a 10mm rainfall event every seven days.................................11-212

Figure 60 - Soil water content in three soil layers over one year of model execution, with a 20mm rainfall event every 14 days.11-213

Figure 61 - Soil water content in three soil layers over one year of model execution,
5mm per seven days in the summer half-year, and 15mm per seven days in the
winter half-year. ..11-214

Figure 62 - Soil water content in three soil layers over one year of model execution,
using daily rainfall data from site SA002, year 1956.11-215

Figure 63 - Soil water content in three soil layers over one year of model execution,
using daily rainfall data from site NSW005, year 1970.........................11-216

Figure 64 - Optimal RD0 gene value across a gradient in water pulse frequency, for
loam, sand, and clay soils. ..11-217

Figure 65 - Optimal RD1 gene value across a gradient in water pulse frequency, for
loam, sand, and clay soils. ..11-218

Figure 66 - Optimal RS gene value across a gradient in water pulse frequency, for loam,
sand, and clay soils. Dashed line indicates standard error.11-219

Figure 67 - Total dry weight across a gradient in water pulse frequency, for loam, sand,
and clay soils...11-220

Figure 68 - Proportion of biomass allocated to shoot and root layers across a gradient in
water pulse frequency, for loam soil..11-221

Figure 69 - Proportion of biomass allocated to shoot and root layers across a gradient
in water pulse frequency, for clay soil. ..11-221

Figure 70 - Proportion of biomass allocated to shoot and root layers across a gradient in
Figure 71 - Optimal RD0 gene value across a gradient in seasonal rainfall bias, for loam, sand, and clay soils. ...11-221

Figure 72 - Optimal RD1 gene value across a gradient in seasonal rainfall bias, for loam, sand, and clay soils. ...11-222

Figure 73 - Optimal RS gene value across a gradient in seasonal rainfall bias, for loam, sand, and clay soils. ...11-224

Figure 74 - Total dry weight across a gradient in seasonal rainfall bias, for loam, sand, and clay soils..11-225

Figure 75 - Proportion of biomass allocated to shoot and root layers across a gradient in seasonal rainfall bias, for loam soil. ..11-226

Figure 76 - Proportion of biomass allocated to shoot and root layers across a gradient in seasonal rainfall bias, for clay soil...11-226

Figure 77 - Proportion of biomass allocated to shoot and root layers across a gradient in seasonal rainfall bias, for sand soil. .. 11-226

Figure 78 - Deep drainage loss across a gradient in winter rainfall bias for sand soil..11-227

Figure 79 - Optimal RD0 gene value across a gradient in total rainfall, with a seven day pulse interval, for loam soil. ...11-228
Figure 80 - Optimal RD1 gene value across a gradient in total rainfall, with a seven day pulse interval, for loam soil. ...11-229

Figure 81 - Optimal RS gene value across a gradient in total rainfall, with a seven day pulse interval, for loam soil. ...11-230

Figure 82 - Total dry weight across a gradient in total rainfall, with a seven day pulse interval, for loam soil. ...11-231

Figure 83 - Proportion of biomass allocated to shoot and root layers across a gradient in total rainfall per seven days, for loam soil. ..11-232

Figure 84 - Proportional biomass allocation to shoots and root layers, for rainfall records data for seed collection sites. ...11-233

Figure 85 - Optimal RD0 gene value across a gradient in water pulse frequency, for different respiration functions in loam soil..11-235

Figure 86 - Optimal RD1 gene value across a gradient in water pulse frequency, for different respiration functions in loam soil..11-235

Figure 87 - Optimal RS gene value across a gradient in water pulse frequency, for different respiration functions in loam soil..11-235

Figure 88 - Total dry weight across a gradient in water pulse frequency, for different respiration functions in loam soil...11-236

Figure 89 - Proportional biomass allocation across a gradient in water pulse frequency,
for three respiration functions

Figure 90 - Optimal RD0 gene value across a range of soil surface areas, in loam soil.

Figure 91 - Optimal RD1 gene value across a range of soil surface areas, in loam soil.

Figure 92 - Optimal RS gene value across a range of soil surface areas, in loam soil.

Figure 93 - Total dry weight across a range of soil surface areas, in loam soil.

Figure 94 - Proportional biomass allocation to shoots and root layers, across a gradient in soil surface area for loam soil.

Figure 95 - Seed collection locations in South Australia, Victoria and New South Wales.

Figure 96 - Shallow and deep root counts for populations in colander pilot study.

Figure 97 - Shallow:deep root ratio for populations in colander pilot study.

Figure 98 - Root mass for populations in colander pilot study.

Figure 99 - Shoot mass for populations in colander pilot study.

Figure 100 - Root:Shoot ratio for populations in colander pilot study.
Figure 101 - Total biomass for populations in the colander pilot study.
Figure 102 - Length of longest leaf over time for pulsed treatment
Figure 103 - Length of longest leaf over time for constant watering treatment
Figure 104 - Final longest leaf length for population and watering treatment
Figure 105 - Leaf count over time for pulsed watering treatment
Figure 106 - Leaf count over time for constant watering treatment
Figure 107 - Final leaf count for population and watering treatment
Figure 108 - PSII quantum efficiency (Fq'/Fm') for population NSW004
Figure 109 - PSII quantum efficiency (Fq'/Fm') for population NSW005
Figure 110 - PSII quantum efficiency (Fq'/Fm') for population SA020
Figure 111 - PSII quantum efficiency (Fq'/Fm') for population SA023
Figure 112 - PSII quantum efficiency (Fq'/Fm') for population VIC003
Figure 113 - Fq'/Fm' at day 27 for populations and watering treatments
Figure 114 - Linear regression of dry weight per mL of water available for

Austrodanthonia caespitosa