Exact Solution to the Stochastic Spread of Social Contagion - Using Rumours

Rowland Ernest Dickinson
B.Sc. Hons (Applied Mathematics)

Thesis submitted for the degree of
Doctor of Philosophy

at

The University of Adelaide

School of Mathematical Sciences
Faculty of Engineering, Computer & Mathematical Sciences

17th December 2007
2.4.3 The Two Rumour Model .. 32
2.5 Concluding Comments to the Mathematical Development of Rumour
Theory ... 35

3 Generalisation of Pearce’s Characterisation 37
3.1 Generalised Form ... 37
3.1.1 Pearce’s Characterisation 37
3.1.2 Extensions of Pearce’s Approach 38
3.1.3 The Total Population - No Introduction of Agents 40
3.1.4 Outcomes of Interactions 40
3.1.5 The Inter-Changeability Principle 44
3.1.6 The Maki-Thompson Model 47
3.1.7 Kolmogorov Equations ... 48
3.1.8 Kolmogorov Equations in the Form of Generating Functions 50
3.1.9 Laplace Transform Representation of the PGF 54
3.1.10 Block Matrix Approach 55
3.2 Singularity of the Coefficient Matrix 63
3.2.1 Coefficient Matrix $C = 0$ 64
3.2.2 Coefficient Matrix $C \neq 0$ 64
3.3 Block Matrix Dimensions ... 66
3.4 General Solution Three Subpopulation Stochastic Spreading Process 66
3.4.1 Generalised Characterisation of the Time Dependent Evolution of the Three Subpopulation Stochastic Spreading Process ... 68
3.4.2 Inverse of Equation 3.4.6 71
3.4.3 Cases Where the Method is Inapplicable 72
3.4.4 Application of the Inter-Changeability Principle 74

4 Inversion of the Laplace Transform of Generalisation of Pearce’s
Characterisation 87
4.1 Introduction .. 87
4.2 Inversion of the Laplace Transform Characterisation of the Solution to the Generalised Stochastic Spreading Process of a Population Partitioned into Three Subpopulations 87
4.2.1 Inversion Theorem ... 87
4.2.2 Factorisation of $Q(s)$.. 92
4.3 Isolation of the Probability of Occurrence of each State-
$P(i, j, k; t)$... 92
4.4 Subpopulation Saturation ... 93

5 Validation of The General Solution 95
5.1 Introduction .. 95
5.2 Theoretical Model ... 95
5.3 Validation/Control Simulation 96
5.4 Exact Discrete Model ... 102
5.5 Validation of Control Simulation 104
5.6 Comparison of Results ... 106
10 Concluding Comments and Areas of Further Research

10.1 Concluding Comments to the Generalisation of the Three Sub-Population Rumour Process

10.2 Future Research - Spreading Processes Among M Subpopulations

10.2.1 Effect of Increasing the Number of Subpopulations

10.2.2 Limitations of Computing Power M-Subpopulations

10.2.3 Alternative Approach to Increasing Computing Power

10.2.4 Subpopulation Saturation M-Subpopulations

10.2.5 Two Competing Mutually Exclusive I-S-R Rumours

10.2.6 Effect on Existing Models

10.2.7 Threshold Problem for Stochastic Spreading Processes

10.2.8 Transition Probability Proposition

10.2.9 Cyclic States

10.2.10 Absorbing and Residual States and Cycles

10.2.11 Limit Values & Zero States

11 Publications by the Author

12 Bibliography
Abstract

This Thesis expands on the current developments of the theory of stochastic diffusion processes of rumours. This is done by advancing the current mathematical characterisation of the solution to the Daley-Kendall model of the simple S-I-R rumour to a physical solution of the sub-population distribution over time of the generalised simple stochastic spreading process in social situations. After discussing stochastic spreading processes in social situations such as the simple epidemic, the simple rumour, the spread of innovations and ad hoc communications networks, it uses the three sub-population simple rumour to develop the theory for the identification of the exact sub-population distribution over time. This is done by identifying the generalised form of the Laplace Transform Characterisation of the solution to the three sub-population single rumour process and the inverse Laplace Transform of this characterisation. In this discussion the concept of the Inter-Changeability Principle is introduced. The general theory is validated for the three population Daley-Kendall Rumour Model and results for the three, five and seven population Daley-Kendall Rumour Models are presented and discussed. The $\alpha - \rho$ model results for pseudo-Maki-Thompson Models are presented and discussed. In subsequent discussion it presents for the first time a statement of the Threshold Problem for Stochastic Spreading Processes in Social settings as well as stating the associated Threshold Theorem. It also investigates limiting conditions.

Aspects of future research resulting from the extension of the three subpopulation model to more than three subpopulations are discussed at the end of the thesis. The computational demands of applying the theory to more than three subpopulations are restrictive; the size of the total population that can be considered at one time is considerably reduced. To retain the ability to compute a large population size, with an increase in the number of possible subpopulations, a possible method of repeated application of the three population solution is identified. This is done through the medium of two competing mutually exclusive rumours. The final discussion occurs on future investigation into the existence of limit values, zero states, cyclic states and absorbing states for the M subpopulation case.

The generalisation and inversion of the Laplace Transform as well as the consequential statement of the threshold theorem, derivation of the transition probabilities and discussion of the limiting conditions are significant advances in the theory of rumours and similar social phenomena.
Acknowledgements

I take the opportunity to express my thanks to my supervisor Professor CEM Pearce of the University of Adelaide School of Mathematical Sciences for his scholarly help, many hours of interesting discussion and patience. I would also like to thank my wife Pamela for her many hours of patience and support during the working on this thesis and my daughters Bronwyn, Elizabeth and Robyn for their understanding when Dad needed the computer or was not available. I also thank Dr J McCarthy of the Australian Defence Science and Technology Organisation for his encouragement and Dr EA (Ted) Catchpole of the Australian Defence Force Academy who during a critical period in my life many years ago revitalised my interest in Mathematics which lead to my eventually undertaking higher degree studies. Finally, I would like to thank Mr Daniel Salmond of the Defence Science and Technology Organisation for his advice and assistance with Mathematica.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Rowland Ernest Dickinson