To my grandad, Alfred Partridge
for bicycles, dominoes and
wisdom - life is long
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: DATE:
Abstract

The stranding of crude oil on the beaches of southern Australia was first recorded approximately 150 years ago. This material, locally known as coastal bitumen, was used by the early maritime visitors and settlers to caulk their vessels and is the first recorded commercial use of crude oil in Australia. Historical records indicate that the greatest amount of coastal bitumen strands along the coasts of South Australia and western Victoria. The Otway Basin, which straddles part of this shoreline, is one of a series of basins located along the southern passive margin of the Australian continent. These basins formed during the Late Jurassic-Early Cretaceous in response to the rifting and final breakup of eastern Gondwanaland 95 million years ago. The circumstantial evidence of coastal bitumen, and the more recent discovery of offshore gas seeps, have been used to promote petroleum exploration in the Otway Basin. As a result, several small but commercial gas fields and numerous oil shows have been discovered. The moderate success of exploration in the Otway Basin may not be a true indication of its ultimate reserves, given that Australia’s most prolific petroleum province, the Gippsland Basin, lies immediately to the east.

The aims of this study were twofold: to appraise the hydrocarbon potential of the western Otway Basin, and to identify the origin(s) of the coastal bitumen.

Source rocks were identified using an interdisciplinary approach which included wireline log interpretation, lithological descriptions, organic petrology (viz. maceral analysis, vitrinite reflectance) and organic geochemical analyses (viz. TOC and Rock-Eval pyrolysis). Oil-source rock and oil-oil correlations were attempted using carbon isotope mass spectrometry, gas chromatography and gas chromatography-mass spectrometry.

In the western Otway Basin the most important hydrocarbon plays occur within the Early Cretaceous Otway Group (Crayfish Subgroup and Eumeralla Formation). Terrigenous source rocks with potential to generate both oil and gas were identified in the lower Eumeralla Formation. The waxy paraffinic-naphthenic crude oils recovered from Windermere-1 and 2, Lindon-1 and Port Campbell-4 have biomarker signatures that are indicative of a terrestrial source to which conifer resins made a significant contribution. These oils have been correlated with coaly facies of the lower Eumeralla Formation. In the Crayfish Subgroup, lacustrine mudstones in the Pretty Hill Sandstone contain kerogen derived from a mixture of algal and biodegraded plant remains which appears to have generated significant volumes of gas (Katnook-Ladbroke Grove Gas Field; Troas-1) and minor quantities of oil (Sawpit-1).

Reservoir bitumens occur in the Pretty Hill Sandstone at Crayfish-A1 and Zema-1. These bitumens are unlike any other oil found within the Otway Basin. Their distinctive biomarker assemblage indicates that they were derived from algal and bacterial remains preserved in carbonate-evaporite sediments. Although no such rocks have yet been penetrated by any exploration well, it is believed that they may be located within either the lower Crayfish Subgroup or the Casterton beds. These inferred source rocks are likely to be overmature in most areas of the western Otway Basin, precluding any significant future hydrocarbon generation. However, their required presence indicates that hydrocarbons were generated very early in the history of the basin.
A bimonthly survey documenting the stranding of coastal bitumen between Kangaroo Island, South Australia and Cape Otway, Victoria was carried out from September 1990 to September 1991. The physical characteristics of the coastal bitumens collected during this period enabled three categories of beached petroleum to be identified: waxy bitumen, asphaltite and oil slicks. Elemental, isotopic and biomarker analyses of representative samples confirmed that these three categories of petroleum are not geochemically related. Of extreme significance is the fact that they bear no resemblance to oil discoveries in the Otway Basin.

Waxy bitumens are the most common type of coastal bitumen, accounting for 90% of the total beached petroleum. They represent the weathered remains of paraffinic-naphthenic crude oils which have low to moderate sulphur (0.1-2.6%) contents. Their medium to low density (10-40 °API) ensures that they float in sea water. These waxy bitumens contain a unique association of source-specific biomarkers, notably botryococcane, oleanane, isomeric bicadinanes and 4-methyl steranes, which is not found in any indigenous Australian oils. The biological precursor of botryococcane is synthesized only by the freshwater green alga *Botryococcus* sp. and 4-methyl sterols are abundant in dinoflagellates. Oleanane originates from angiosperms which first appeared in the Late Cretaceous. High concentrations of bicadinane are derived from the resins (dammars) of the fossil angiosperm family *Dipterocarpaceae*. In terms of their biogeographic range, both extant and fossil dipterocarps are confined to the tropics of Southeast Asia, although their dammars have been found on South Australian beaches. Together, these biomarkers imply that the waxy bitumens were derived from Tertiary lacustrine source beds which were deposited at low palaeolatitudes. When the effects of extensive weathering and biodegradation are taken into account, the waxy bitumens are similar to bitumens stranded on the coasts of the Northern Territory and Western Australia, and to Tertiary crude oils produced from Sumatra. Hence, it has been deduced that the waxy bitumens originate from oil seeps within the Indonesian Archipelago. These crude oils are transported into southern Australian waters as flotsam by a complex system of surface ocean currents which include the South Equatorial Current, Leeuwin Current and West Wind Drift.

Asphaltite is the least common variety of coastal bitumen. These jet black bitumens are heavy (~8 °API) and characteristically exhibit deep desiccation cracks on their upper surface. The oldest asphaltite analysed in this study was collected before the year 1900 on Kangaroo Island, and the stranding of comparable samples continues to the present day. The asphaltites have a uniform aromatic-asphaltic composition and are rich in sulphur (S = 3-6%). Their unimodal n-alkane distribution centred about C\textsubscript{15}, the predominance of cholestane among their C\textsubscript{27}-C\textsubscript{29} desmethyl steranes and the presence of dinosterane (a marine dinoflagellate biomarker) as the major C\textsubscript{30} 4-methyl sterane, highlight the marine source affinity of the asphaltites. The presence of rearranged steranes and hopanes indicates that their parent crude oils were generated from clay-rich sediments. The asphaltite samples are isotopically light (δ13C\textsubscript{sat} ~ -30.0 ‰; δ13C\textsubscript{arom} ~ -29.5 ‰) relative to the waxy bitumens. These depleted δ13C values, combined with the presence of dinosterane and C\textsubscript{28}/C\textsubscript{29} sterane ratios ranging from 0.7 to 1.2, suggests that their source rocks are of Mesozoic age. The South Australian and Victorian asphaltites are almost identical to asphaltic bitumen which strands on the west and south coasts of Tasmania. The biomarker geochemistry of the asphaltite was compared with those of many other Australian and non-Australian marine sediments and oils. However,
no matching signatures were found and so the source of the asphaltite could not be identified. Nevertheless, the long stranding history of the asphaltite suggests that it is a natural phenomenon.

A third group of "coastal bitumens" represents stranded oil slicks. These films and sheets of liquid oil are of sporadic occurrence and have been linked to local maritime operations. The bitumens assigned to this category have variable geochemical signatures depending on the type of oil discharged; both refined and unrefined crude oils were among the samples collected. The majority of these crude oils originated from either Southeast Asia or the Middle East, the two main provinces from which oil is imported into Australia.

The stranding of coastal bitumen along the southern margin of Australia can be attributed to both natural and anthropogenic causes but not, as first suspected, to oil seepage from the offshore sector of the Otway Basin.
Acknowledgements

This research project was carried out under the supervision of Dr David M. McKirdy, to whom I am indebted for his constant support and painstaking concern for my well-being. Thank you.

I would like to express my gratitude to Dr Roger E. Summons and Andrew P. Murray (Australian Geological Survey Organisation, Canberra) for their hospitality, encouragement, and help with the acquisition and interpretation of MRM data. I also extend my thanks to Dr Chris J. Boreham for undertaking HPLC analyses on selected aromatic and resin fractions.

I wish to thank Dr Robb J. Willink and Neil P. Tupper (SAGASCO Resources Ltd.) and Dr. David I. Gravestock (Department of Mines and Energy, South Australia) for their guidance throughout the project.

Special thanks are due to my colleague Bernd H. Michaelsen. It was only by working together that we were able to furnish, equip and run the Organic Geochemistry Laboratory in the Department of Geology and Geophysics, University of Adelaide. I thank Rick Barrett and Sherry Proferes for their help with photography and computer drafting. Also to Don R. Vinall for his assistance with coastal bitumen collecting, vehicle maintenance and off-road driving lessons.

Technical assistance was provided by Dr Graeme Currie and Yoji Hayasaka (GC-MS facility, Australian Wine Research Institute, Adelaide), Xu Gu and Libby Geary (Adelaide University) and Janet Hope and Zoltan Horvath (Australian Geological Survey Organisation, Canberra).

I also extend my thanks to all of the following for helping me to complete this comprehensive study:

Geoff Wood (SANTOS Ltd.) and Dr Roger Morgan (Morgan Palaeo Associates) for their palynological expertise;

David N. Love (Department of Mines and Energy, South Australia) for information on seismic activity;

Dr John B. Jones (Adelaide University) for help with the interpretation of XRF data on pumice samples;

Dr Steve J. Rowland and David Heath (University of Plymouth, UK) for acquiring high temperature gas chromatograms;

Dr Michael A. Wilson (Division of Coal and Energy Technology, CISRO) for n.m.r. spectra;

Alan Aldrige (Database, UK) for consultation on isotopic procedures;

Dr John A. T. Bye (Flinders University), Dr Ross W. Griffiths and Dr Nigel Wace (Australian National University) for discussions on oceanography;
Brian L. Watson (AMDEL Core Services, Adelaide) for allowing me access to the Leitz microscope for vitrinite reflectance measurements;

South Australian Department of Mines and Energy, SAGASCO Resources Ltd., Oil Company of Australia N.L. and BHP Petroleum Pty. Ltd. for providing samples from exploration wells;

Australian Geological Survey Organisation for supplying samples from RV Rig Seismic Cruise 102;

Roger Sweeney and Tony Ralph (Port Stanvac Refinery) for crude oil samples; Dr Bill Birch (Museum of Victoria) and Gerr Horr (South Australian Museum) who donated samples of archived coastal bitumen and amber; and

the Sykes family from Port Fairy who monitored the stranding of bitumen on the beach opposite Lake Yambuk.

Funding for this project was provided by:

- University of Adelaide Research Grants;
- Australian Research Council;
- SAGASCO Resources Ltd.;
- South Australian Department of Mines and Energy;
- Mobil Exploration Australia Pty. Ltd.; and
- BHP Petroleum Pty. Ltd.

I also acknowledge receipt of a Postgraduate Research Scholarship from the University of Adelaide.

Permission to sample in National Parks and Conservation areas was granted by the National Parks and Wildlife Service (Permit No. U20302) and Victorian Department of Conservation and Environment Research (Permit No. 901/001).

Finally, I would like to thank my family and my fiancé Drue Saint Edwards for enduring our separation and for their faith in me.

“Love is temporary insanity curable by marriage”

Amba Bierce

But I’ll wait and see..
Contents

Abstract i

Acknowledgements .. v

Chapter 1 Introduction .. 3
 1.1 Preamble .. 3
 1.2 Aims ... 3
 1.3 Coastal Bitumen .. 4
 1.3.1 History of Stranding ... 4
 1.3.2 Definition and Descriptions .. 6
 1.3.3 Theories for the Origin of Coastal Bitumen .. 6
 1.3.4. Local (Otway Basin) Submarine Oil Seeps .. 8
 1.3.5. Distant Submarine Oil Seeps ... 12
 1.4 The Otway Basin .. 13
 1.4.1 Geological Setting ... 13
 1.4.2 Tectonic Evolution ... 13
 1.4.3 Stratigraphy .. 16
 1.4.4 Structure .. 19
 1.4.5 Continental Drift and Palaeoclimate ... 22
 1.4.6 History of Petroleum Exploration ... 23
 1.4.7 Exploration Wells, Permits and Hydrocarbon Discoveries 28
 1.4.8 Source and Reservoir Rocks ... 29

Chapter 2 The Study of Sedimentary Organic Matter ... 33
 2.1 Kerogen ... 33
 2.1.1 Organic Petrological Description of the Maceral Groups 33
 2.1.2 Microlithotypes ... 34
 2.1.3 Coalification .. 34
 2.1.4 Vitrinite Reflectance ... 35
 2.1.5 Kerogen Typing .. 36
 2.1.6 TOC and Rock-Eval Pyrolysis .. 36
 2.1.7 Generation of Petroleum ... 38
 2.1.8 Elemental Analysis ... 42
 2.2 Biomarkers ... 42
 2.2.1 Definition of a Biomarker ... 42
 2.2.2 \(n\)-Alkanes .. 43
 2.2.3 Acyclic Isoprenoid Alkanes ... 49
 2.2.4 Bicyclic Sesquiterpanes .. 50
 2.2.5 Diterpanes .. 50
 2.2.6 Steranes ... 51
 2.2.7 Hopanes and Moretanes .. 57
 2.2.8 Gammacerane .. 60
 2.2.9 Oleanane ... 61
 2.2.10 Bicadinanes ... 62
 2.2.11 Aromatic Hydrocarbons: Alkylphenanthrenes ... 63
 2.2.12 Molecular Maturity Parameters .. 63
 2.3 Stable Carbon Isotopes ... 66
Chapter 3 Analytical Procedures ... 71
 3.1 Sampling ... 71
 3.1.1 Cores and Cuttings from the Otway Basin 71
 3.1.2 Hydrocarbons of the Otway Basin.. 71
 3.1.3 Coastal Bitumens ... 71
 3.1.4 Dredge Samples from the Ceduna Sub-basin 72
 3.1.5 Miscellaneous Crude Oil and Source Rock Samples................. 72
 3.1.6 Coastal Amber and Coastal Pumice ... 73
 3.2 Preparation of Samples ... 73
 3.2.1 Core and Cuttings ... 73
 3.2.2 Coastal Bitumens .. 73
 3.3 Organic Petrology ... 73
 3.3.1 Reflected Light Microscopy .. 73
 3.3.2 Fluorescence Microscopy .. 74
 3.3.3 Maceral Analysis .. 74
 3.3.4 Vitrinite Reflectance Measurement ... 74
 3.4 Organic Geochemistry of Sediments, Oils and Coastal Bitumens 74
 3.4.1 Elemental Analysis ... 74
 3.4.2 Total Organic Carbon Analysis .. 75
 3.4.3 Rock-Eval Pyrolysis ... 75
 3.4.4 Solvent Extraction ... 75
 3.4.5 De-asphaltening .. 75
 3.4.6 Liquid Chromatography ... 76
 3.4.7 Thin Layer Chromatography (TLC) ... 76
 3.4.8 Urea Adduction .. 76
 3.4.9 Gas Chromatography (GC) .. 77
 3.4.10 High Temperature-Gas Chromatography (HT-GC) 77
 3.4.11 Gas Chromatography-Mass Spectrometry (GC-MS) 77
 3.4.12 Stable Carbon Isotope Mass Spectrometry 78
 3.5 Organic Geochemistry of Coastal Ambers .. 78
 3.5.1 Pyrolysis ... 78
 3.5.2 Liquid Chromatography ... 79
 3.5.3 Stable Carbon Isotopic Composition of Coastal Ambers, Resinites and Resins ... 79
 3.5.4 Pyrolysis-Gas Chromatography (Py-GC) 79
 3.6 Palynology of Coastal Bitumens ... 79
 3.7 Petrology and Geochemistry of Coastal Pumice 80
 3.7.1 Petrology ... 80
 3.7.2 Geochemistry ... 80

Chapter 4 The Stranding Of Coastal Bitumen On Southern Australian Beaches..... 83
 4.1 Coastal Bitumen Monitoring Programs ... 83
 4.1.1 Previous Work ... 83
 4.1.2 The 1990-1991 Coastal Bitumen Survey 83
 4.2 Description, Location and Abundance of Coastal Bitumen 86
 4.2.1 Introduction ... 86
 4.2.2 Coastal Bitumen Types ... 86
 4.2.3 Waxy Bitumen and Weathered Waxy Bitumen 87
 4.2.4 Asphaltite ... 99
Chapter 6 Hydrocarbon Geochemistry Of The Western Otway Basin .. 163
 6.1 Geochemistry of Eumeralla Formation Sediments from the Chama
 Terrace ... 163
 6.1.1 C. hughesi Coaly Facies ... 163
 6.1.2 C. striatus Lacustrine Facies .. 174
 6.1.3 Lower Eumeralla Formation at Troas-1 (Confidential) 177
 6.1.4 Carbon Isotopic Composition of the Lower Eumeralla
 Formation .. 182
 6.1.5 Depositional Environment of the Lower Eumeralla Formation .. 182
 6.1.6 Oil Source Potential of the Lower Eumeralla Formation 185
 6.2 Geochemistry of Crude Oils, Condensates and Oil Shows 185
 6.2.1 Oils and Condensates Reservoired in the Pebble Point
 Formation, Wangerrip Group (Lindon-1, Wilson-1) 186
 6.2.2 Oils and Condensates Reservoired in the Waarre Sandstone,
 Sherbrook Group (Caroline-1, North Paaratte-2) 191
 6.2.3 Oils and Condensates Reservoired in the Otway Group 195
 6.2.4 Oil Reservoired in Fractured Basement at Sawpit-1
 (Confidential) .. 201
 6.3 Geochemistry of Reservoir Bitumens .. 203
 6.3.1 Crayfish-A1: Previous Work ... 203
 6.3.2 Crayfish-A1: Preliminary Studies .. 204
A3.4 Summary Maps Showing Where Stranded Coastal Bitumen and Coastal Amber Samples were Collected During the Coastal Bitumen Survey, 1990-1991. ... 488

Appendix 4 Rock-eval Pyrolysis Data... 497
A4.1 Rock-Eval Pyrolysis Data, Western Otway Basin .. 497
 A4.1.1 Open File Rock-Eval Pyrolysis Data (Microfiche)............................... 497
 A4.1.2 Confidential Rock-Eval Pyrolysis Data (Microfiche)............................ 497
 A4.1.3 Bibliography to Rock-Eval Pyrolysis Data... 498
A4.2 Rock-Eval Pyrolysis Data of the Potoroo Formation, Ceduna Sub-basin 501

Appendix 5 Organic Petrology ... 505
A5.1 Petrological Information ... 505
 A5.1.1 Glossary ... 505
 A5.1.2 Key to Petrological Descriptions ... 508
A5.2 Organic Petrological Descriptions: Western Otway Basin 509
 A5.2.1 Casterton-1 ... 509
 A5.2.2 Chama-1A .. 512
 A5.2.3 Crayfish-A1 ... 521
 A5.2.4 Geltwood Beach-1 .. 521
 A5.2.5 Mocamboro-11 .. 528
 A5.2.6 Morum-1 ... 531
 A5.2.7 Troas-1 ... 532
A5.3 Organic Petrological Descriptions: Miscellaneous Samples 536
 A5.3.1 Sumatran Source Rock ... 536
 A5.3.2 New Zealand Source Rocks ... 536
 A5.3.3 R/V Rig Seismic Cruise 102: Ceduna Sub-basin 537
A5.4 Maceral Analyses .. 539
 A5.4.1 Geltwood Beach-1 .. 539
 A5.4.2 Chama-1A ... 548
 A5.4.3 Mocamboro-11 ... 564
A5.5 Vitrinite Reflectance Data ... 572
 A5.5.1 Chama-1A ... 572
 A5.5.2 Mocamboro-11 ... 581

Appendix 6 Coastal Bitumen Geochemical Data .. 589
A6.1 Compilation of Coastal Bitumen Geochemical Data 589

Appendix 7 Reports, Published Abstracts And Papers ... 601
A7.1 Reports ... 601
A7.2 Published Abstracts .. 602
A7.3 Published Papers .. 603
List of Figures

Figure 1.1 Historical coastal bitumen stranding sites around the Australian coast...5
Figure 1.2 Location of the Otway Basin...9
Figure 1.3 Structural elements of the Otway Basin (modified from Williamson
et al., 1987 and Robertson et. al., 1988)..15
Figure 1.4 Stratigraphy of the western Otway Basin (modified from Morton,
991)..16
Figure 1.5 Schematic cross section of the western Otway Basin (modified from
Gravestock et al., 1986)..18
Figure 1.6 Time structure mape at base Aptian unconformity level, western
Otway Basin...21
Figure 1.7 Petroleum exploration licence areas in the Otay Basin up to
December 1993. ...24
Figure 1.8 Petroleum exploration wells drilled in the Otway Basin up to
December 1993. ...25
Figure 2.1 Coal microlithotype classification..35
Figure 2.2 Van Drevelen diagram showing the principal types and evolution
paths of kerogen (after Tissot and Welte, 1984)...37
Figure 2.3 Hydrocarbon-generation models from different kerogen types
(after Powell and Snowdon, 1983). ...41
Figure 2.4 Structures of isoprenoid ikanes. ..48
Figure 2.5 Structures of bicyclic sesquiterpanes. ..49
Figure 2.6 Structures of diterpanes. ..51
Figure 2.7 Numbering system for steranes...52
Figure 2.8 The principal isomerisation of 5α(H),14α(H),17α(H) 20R C29
steranes which occurs with increasing maturity (after Seifert and
Moldowan, 1981). ...53
Figure 2.9 Structures of selected steranes. ..55
Figure 2.10 Numbering system of hopanes..57
Figure 2.11 Structures of selected triterpanes based on the hopane skeleton...........58
Figure 2.12 Structures of selected triterpanes ...62
Figure 2.13 Numbering system of alkylphenanthrenes...62
Figure 4.1 The 1990–1991 Coast Bitumen Survey area...85
Figure 4.3 Waxy bitumens collected along the southern Australian coast, September–October 1990. ...91

Figure 4.4 Waxy bitumens collected along the southern Australian coast, September 1991...92

Figure 4.5 Abundances of waxy bitumen collected from 200m beach at selected sites during the 1990–1991 Coastal Bitumen Survey.93

Figure 4.6 Stranding locations of asphaltite during 1990–1991.101

Figure 4.7 Asphaltites collected along the southern Australian coast, September 1990–1991..102

Figure 4.8 Stranding locations of major oil slicks during 1986–1993.105

Figure 4.9 Local surface currents along the coast of southeastern South Australia and western Victoria...117

Figure 5.1 Rock-Eval pyrolysis data for the Dilwyn Formation, western Otway Basin...125

Figure 5.2 Rock-Eval pyrolysis data for the Paaaratte Formation and Timboon Sandstone, western Otway Basin..125

Figure 5.3 Rock-Eval pyrolysis data for the Belfast Mudstone, western Otway Basin...127

Figure 5.4 Rock-Eval pyrolysis data for the Belfast Mudstone at Triton-1, eastern offshore Otway Basin..127

Figure 5.5a Rock-Eval pyrolysis data for the Sherbrook Group in the Gambier Embayment ...129

Figure 5.5b Rock-Eval pyrolysis data for the Shebrook Group on the offshore Crayfish Platform and in the western Voluta Trough.129

Figure 5.6a Rock-Eval pyrolysis data for the upper Otway Group in the and Gambier Embayment and Robe and Penola Troughs.131

Figure 5.6b Rock-Eval pyrolysis data for the upper Otway Group on the offshore Crayfish Platform. ...131

Figure 5.7 Rock-Eval pyrolysis data for the Laira Formation, western Otway Basin...133

Figure 5.8 Rock-Eval pyrolysis data for the Pretty Hill Sandstone, western Otway Basin...133

Figure 5.9 Rock-Eval pyrolysis data for the Basal Unit in the Penola Trough.135

Figure 5.10a Rock-Eval pyrolysis data for the Crayfish Subgroup in the Robe and Penola Trough. ...136

Figure 5.10b Rock-Eval pyrolysis data for the Crayfish Subgroup on the offshore Crayfish Platforms. ...136
Figure 5.11 Rock-Eval pyrolysis data for the Casterton beds in the Penola Trough.

Figure 5.12 Source rock development within the lower Eumeralla Formation on the Chama Terrace, western Otway Basin.

Figure 5.13 Vitrinite reflectance versus depth in key wells on the Chama Terrace.

Figure 5.14a Rock-Eval pyrolysis data, Eumeralla Formation, Geltwood Beach-1.

Figure 5.14b Rock-Eval pyrolysis data, *C. striatus* and *C. hughesi* organic facies, Geltwood Beach-1.

Figure 5.15a Rock-Eval pyrolysis data, Eumeralla Formation, Chama-1A.

Figure 5.15b Rock-Eval pyrolysis data, *C. striatus* and *C. hughesi* organic facies in Chama-1A.

Figure 5.16 Rock-Eval pyrolysis data, Eumeralla Formation, Crayfish-A1.

Figure 5.17 Rock-Eval pyrolysis data, Pretty Hill Sandstone, Crayfish-A1.

Figure 5.18 Rock-Eval pyrolysis data for whole rock and solvent extracted samples, Crayfish-A1.

Figure 5.19 Rock-Eval pyrolysis data, Eumeralla Formation, Troas-1.

Figure 5.20 Rock-Eval pyrolysis data, Eumeralla Formation, Mocamboro-11.

Figure 6.1 Saturates chromatograms of selected lower Eumeralla Formation source rocks.

Figure 6.2 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes *C. striatus* Lacustrine Facies, sample A923.165/7 (2929-2935 m), Geltwood Beach-1.

Figure 6.3 Saturated chromatograms of selected lower Eumeralla Formation source rocks from Troas-1.

Figure 6.4 MRM GC-MS chromatograms comparing the distribution of steranes in shaly coal and mudstone at Troas-1.

Figure 6.5 Carbon isotopic composition of Otway Basin extracts, oils and reservoir bitumens.

Figure 6.6 Bulk composition of Otway Basin oils and reservoir bitumens.

Figure 6.7 Saturates chromatograms of selected crude oils from the Otway Basin.

Figure 6.8 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Windermere-1 crude oil.

Figure 6.9 Saturates chromatograms of selected condensates and crude oils from the Otway basin.
Figure 6.10 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Troas-1 condensate, sample A923.233 (2698 m)...

Figure 6.11 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Sawpit-1 crude oil, sample A923.213 (2514-2546 m)...

Figure 6.13 Saturates chromatograms of reservoir bitumens from the Undifferentiated Crayfish Subgroup at Crayfish-A1...

Figure 6.14 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Family A reservoir bitumen from 1747-1753 m depth in Crayfish-A1...

Figure 6.15 Saturates chromatograms showing increasing biodegradation of Family A reservoir bitumen towards the base-Aptian unconformity at Crayfish-A1...

Figure 6.16 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Family B and Family C reservoir bitumens from the Undifferentiated Crayfish group at Crayfish-A1...

Figure 6.17 Saturates chromatograms of representative reservoir bitumens from the Pretty Hill Sandstone at Zema-1...

Figure 6.18 Saturates chromatograms of representative reservoir bitumens from the Pretty Hill Sandstone at Zema-1...

Figure 6.19 Saturates chromatograms of selected Otway Basin oils and source rock extracts...

Figure 6.20 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in source rock extract, Robertson-1 (1762-1768 m)...

Figure 7.1 Bulk composition of coastal waxy bitumens...

Figure 7.3 Saturates chromatograms of waxy bitumen families...

Figure 7.4 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Family 1 waxy bitumen (sample B-38)...

Figure 7.5 MRM GC-MS chromatograms showing the distribution of bicadinane and methylbicadinane in waxy bitumen families...

Figure 7.6 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Family 2 waxy bitumen (sample CB-28)...

Figure 7.7 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Family 4 waxy bitumen (sample CB31)...

Figure 7.8 Saturates chromatograms showing weathering profiles in Family 1 and Family 3 waxy bitumens...

Figure 7.9 High temperature saturates chromatograms of waxy bitumens...
Figure 7.10 Change in bulk composition of Family 1 waxy bitumens due to weathering. .. 277

Figure 7.11 Saturates chromatograms of coastal waxy bitumens showing the similarity of ancient and recently stranded samples. 278

Figure 7.12 Saturates chromatograms of waxy bitumens collected from inland sand dunes and on the beach in Beachport Conservation Park. 279

Figure 7.13 Ocean currents (adapted from Hughes and Goodall, 1993). 280

Figure 7.14 Location of selected sedimentary basins within Indonesia. 286

Figure 7.15 Saturates chromatograms of Indonesian crude oils and extracts. 291

Figure 7.16 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in Minas-1 crude oil... 292

Figure 7.17 MRM GC-MS chromatograms showing the distribution of bicadinane and methylbicadinane isomers in Southeast Asian crude oils and South Australian coastal waxy bitumens. ... 294

Figure 7.18 Comparison of saturates chromatograms of representative coastal waxy bitumens from Northern Territory, Western Australia, South Australia and Victoria. ... 296

Figure 7.19 Ocean currents which are responsible for the transportation of flotsam from southeast Asia to southern Australia. 297

Figure 7.20 Gas chromatograms of aliphatic hydrocarbons of the 300°C pyrolysates of coastal ambers and reference resin and resinite samples (after Murray et al., 1994) ... 302

Figure 7.21 Saturates chromatograms of Group 1 coastal bitumen from the Seychelle Islands. .. 304

Figure 7.22 Saturates chromatograms of Group 2 coastal bitumens from the Seychelle Islands and a highly weathered South Australian coastal waxy bitumen. ... 306

Figure 8.1 Bulk composition of asphaltite. ... 316

Figure 8.2 Saturates chromatograms of typical asphaltites. 317

Figure 8.3 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in a typical asphaltite (sample CB-32) 320

Figure 8.4 Saturates chromatograms of weathered typical asphaltites 321

Figure 8.5 Change in the C28/C29 ratio of marine-derived crude oils with time (after Grantham and Wakefield, 1988). .. 324

Figure 8.6 Carbon isotopic composition of coastal asphaltite 325

Figure 8.7 Change in the carbon isotopic composition of marine crude oils with time (after Chung et al., 1992). ... 326
Figure 8.8 Saturates chromatograms of atypical asphaltites.327
Figure 8.9 Saturates chromatograms of typical asphaltites showing the similarity between old and recent samples. ..329
Figure 8.10 Stratigraphy of the Bight and Duntroon Basins (after Hibburt, 1992). ..333
Figure 8.11 Saturates chromatograms of selected Potoroo Formation mudstones.337
Figure 8.12 MRM GCMS chromatograms showing the distribution of steranes and triterpanes in a Potoroo Formation mudstone (sample 102DR003). ..338
Figure 8.13 Saturates chromatograms of asphaltites found stranded around the southern hemisphere..339
Figure 8.14 Saturates chromatograms of selected New Zealand oils and sediments from the East Coast Basin. ...342
Figure 8.15 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in an oil seep from Waitangi, New Zealand.343
Figure 9.1 Saturates chromatograms of Australian oils used as feed stocks at port Stanvac refinery. ...353
Figure 9.2 Saturates chromatograms of imported oils used as feed stocks at Port Stanvac refinery. ...354
Figure 9.3 Saturates chromatograms of oil slicks with marine carbonate source affinities...357
Figure 9.4 MRM GC-MS chromatograms showing the distribution of steranes and triterpanes in the Kangaroo Island Oil Slick, December, 1986 (sample A923.149). ...358
Figure 9.5 Saturates chromatograms of the oil slick at Cape Otway in May 1990 and the cargo of the tanker MV Arthur Phillip ..362
Figure 9.6 MRM chromatograms of the oil slick at Cape Otway in May 1990 and the heavy fuel oil from the tanker MV Arthur Phillips.363
Figure 9.7 MRM chromatograms showing the distribution of steranes and triterpanes in an oil slick (sample 149) collected from little Dip Conservation Parks in November 1990. ...365
Figure 9.8 Bulk composition of coastal bitumen...366
Figure 9.9 Carbon isotopic compositions of coastal slicks.366
Figure 9.10 Saturates chromatograms of coastal greasy bitumen and wax ...367
Figure 9.11 MRM chromatograms showing the distribution of steranes and triterpanes in greasy bitumen (sample 373). ...369
Figure A3.4.1 93-1000 Victoria. Waxy bitumen, oil, asphaltite and amber sample locations. ...488

Figure A3.4.2 93-998 Southeast South Australia. Waxy bitumen sample locations. ...489

Figure A3.4.3 93-997 Southeast South Australia. Oil, asphaltite and amber sample locations. ...490

Figure A3.4.4 93-999 Upper southeast South Australia. Waxy bitumen, oil, asphaltite and amber sample locations............................491

Figure A3.4.5 93-996 Kangaroo Island. Waxy bitumen sample locations.492

Figure A3.4.6 93-995 Kangaroo Island. Oil, asphaltite and amber sample locations. ...493

Figure 4.2.1 Rock-Eval Pyrolysis Data of the Potoroo Formation.................................501
List of Tables

Table 1.1 Summary of hydrocarbon and carbon dioxide shows in the Otway Basin
..26

Table 2.1 Maceral classification scheme (modified from AS 2856-1986).........34

Table 2.2 Key to Rock-Eval pyrolysis parameters (after Espitalié et al., 1985; Peters, 1986).................................39

Table 2.3 Summary of criteria used to define a mature source rock (after Peters, 1986)...40

Table 2.4 Key to source-specific biomarker parameters..44

Table 2.5 Key to highly source-specific biomarker parameters........................45

Table 2.6 Key to labelling on saturated hydrocarbon MRM GC-MS chromatograms...46

Table 2.7 Key to labelling on aromatic hydrocarbon SIM GC-MS chromatograms..48

Table 4.1 South Australian beaches monitored in detail for the stranding of coastal bitumen during the 1990-1991 Coastal Bitumen Survey.............84

Table 4.2 The total volume of stranded waxy bitumen, weathered waxy bitumen and barnacle bitumen collected at specific beaches along the coast of South Australia...84

Table 4.3 Specific gravity of coastal ambers..110

Table 5.1 Summary of TOC and Rock-Eval pyrolysis data for western Otway Basin..124

Table 5.2 Summary of Rock-Eval pyrolysis data for individual wells in the Otway Basin...140

Table 6.1 Quantity and bulk composition of extractable organic matter in the lower Eumeralla Formation on the Chama Terrace.................................164

Table 6.2 Alkane parameters of sediment extracts from the lower Eumeralla Formation on the Chama Terrace..168

Table 6.3 Source-dependent biomarker parameters of sediment extracts from the lower Eumeralla Formation on the Chama Terrace................................170

Table 6.4 Maturity-dependent molecular parameters of sediment extracts from the lower Eumeralla Formation on the Chama Terrace..................172

Table 6.5 Carbon isotopic compositions of C12+ saturated and aromatic hydrocarbons in Otway Basin extracts, oils and reservoir bitumens...183

Table 6.6 Physical properties of Otway Basin oil stains, crude oils and condensates...187
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Bulk composition of Otway Basin oil stains, crude oils and condensates.</td>
<td>188</td>
</tr>
<tr>
<td>6.8</td>
<td>Alkane parameters of Otway Basin oil stains, crude oils and condensates.</td>
<td>190</td>
</tr>
<tr>
<td>6.9</td>
<td>Source-dependent biomarker parameters of Otway Basin oil stains, crude oils and condensates.</td>
<td>193</td>
</tr>
<tr>
<td>6.10</td>
<td>Maturity-dependent molecular parameters of Otway Basin oil stains, crude oils and condensates.</td>
<td>194</td>
</tr>
<tr>
<td>6.11</td>
<td>Bulk composition of reservoir bitumens, Crayfish-A1.</td>
<td>209</td>
</tr>
<tr>
<td>6.12</td>
<td>Alkane parameters of reservoir bitumens, Crayfish-A1.</td>
<td>210</td>
</tr>
<tr>
<td>6.13</td>
<td>Source-dependent biomarker parameters of reservoir bitumens, Crayfish-A1.</td>
<td>212</td>
</tr>
<tr>
<td>6.14</td>
<td>Maturity-dependent molecular parameters of reservoir bitumens, Crayfish-A1.</td>
<td>212</td>
</tr>
<tr>
<td>6.15</td>
<td>Effects of biodegradation on molecular composition of crude oil (modified from Peters and Moldowan, 1993).</td>
<td>217</td>
</tr>
<tr>
<td>6.16</td>
<td>Summary biomarker characteristics of reservoir bitumens in the Pretty Hill Sandstone at Crayfish-A1.</td>
<td>221</td>
</tr>
<tr>
<td>6.17</td>
<td>Bulk composition of reservoir bitumens, Zema-1.</td>
<td>223</td>
</tr>
<tr>
<td>6.18</td>
<td>Alkane parameters of reservoir bitumens, Zema-1.</td>
<td>224</td>
</tr>
<tr>
<td>6.19</td>
<td>Source-dependent biomarker parameters of reservoir bitumens, Zema-1.</td>
<td>225</td>
</tr>
<tr>
<td>6.20</td>
<td>Maturity-dependent molecular parameters of oil shows and reservoir bitumens, Zema-1.</td>
<td>225</td>
</tr>
<tr>
<td>6.21</td>
<td>Summary biomarker characteristics of oils reservoired in the Pretty Hill Sandstone at Zema-1.</td>
<td>230</td>
</tr>
<tr>
<td>6.22</td>
<td>Key biomarker characteristics used in oil-oil and oil-source correlations.</td>
<td>232</td>
</tr>
<tr>
<td>6.23</td>
<td>Oil-source correlations in the Otway Basin.</td>
<td>236</td>
</tr>
<tr>
<td>7.1</td>
<td>Bulk composition of waxy bitumens. Samples in each family are ordered from least to most weathered.</td>
<td>245</td>
</tr>
<tr>
<td>7.2</td>
<td>Extent to which weathering has effected oil composition based on appearance of saturates chromatogram.</td>
<td>251</td>
</tr>
<tr>
<td>7.3</td>
<td>Alkane parameters and isotopic composition of waxy bitumens. Samples in each family are ordered from least to most weathered.</td>
<td>252</td>
</tr>
<tr>
<td>7.4</td>
<td>Source-dependent biomarker parameters of waxy bitumens.</td>
<td>259</td>
</tr>
</tbody>
</table>
Table 7.5 Highly source-specific biomarker parameters of waxy bitumens........262
Table 7.6 Diagnostic characteristics of Family 1 to 5 waxy bitumens...........270
Table 7.7 Maturity-dependent molecular parameters of waxy bitumens.........275
Table 7.8 Major elemental analyses of coastal pumice samples and reference pumice...281
Table 7.9 Trace element analyses of coastal pumice samples.........................281
Table 7.10 Published major element analyses of extrusive rocks from selected orogenic belts..282
Table 7.11 Published trace element analyses of extrusive rocks from selected orogenic belts..282
Table 7.12 Palynological analyses of coastal bitumen.....................................284
Table 7.13 Bulk composition of Sumatran oils and sediment extracts............288
Table 7.14 Alkane parameters of Sumatran oils and sediment extracts...........288
Table 7.15 Source-dependent biomarker parameters of Indonesian oils and sediment extracts..289
Table 7.16 Highly source-specific biomarker parameters of Indonesian oils and sediment extracts..289
Table 7.17 Maturity-dependent biomarker parameters of Indonesian oils and sediment tracts...289
Table 7.18 Summary of key geochemical parameters used in oil-oil and oil-source rock correlations for the southern Australian coastal waxy bitumens...290
Table 7.19 Bulk composition of coastal ambers and reference resin samples......301
Table 7.20 Bulk composition of coastal bitumens from the Seychelle Islands.....303
Table 7.21 Alkane parameters and isotopic composition of coastal bitumens from the Seychelle Islands..303
Table 8.1 Bulk composition of asphaltites. Samples are ordered from least to most weathered..312
Table 8.1 Bulk composition of asphaltites. Samples are ordered from least to most weathered..313
Table 8.2 Alkane parameters and isotopic composition of asphaltites. Samples are ordered from least to most weathered.......................314
Table 8.2 Alkane parameters and isotopic composition of asphaltites. Samples are ordered from least to most weathered.......................315
Table 8.3 Source-dependent biomarker parameters of asphaltites..................319
Table 8.4 Maturity-dependent molecular parameters of asphaltites...............322
Table 8.5 Key geochemical parameters used in oil-oil and oil-source rock correlations for the southern Australian coastal asphaltite...............332

Table 8.6 Yield and composition of marine sediment extracts and a marine oil. ..335

Table 8.7 Alkane parameters and isotopic composition of marine sediment extracts and a marine oil. ...335

Table 8.8 Source-dependent biomarker parameters of marine sediment extracts and a marine oil...336

Table 8.9 Maturity-dependent biomarker parameters of marine sediment extracts and a marine oils. ...336

Table 9.1 Bulk composition of beached oil slicks and other petroleum substances...349

Table 9.2 Alkane parameters of beached oil slicks and other petroleum substances...351

Table 9.3 Source-dependent biomarker parameters of beached oil slicks and tanker oils. ..355

Table 9.4 Highly source-specific biomarker parameters of beached oil slicks and tanker oils. ...356

Table 9.5 Maturity-dependent molecular parameters of oil slicks and tanker oils...360

Table A1.2.1 Key to analytical procedures...439

Table A1.2.2 Sediment samples, onshore western Otway Basin..........................439

Table A1.2.3 Sediment samples, offshore western Otway Basin.........................440

Table A1.2.4 Oil samples, Otway Basin..442

Table A1.2.5 Reservoir bitumen samples, western Otway Basin..........................442

Table A1.2.6 Sediment samples from the Ceduna Sub-basin collected during the RV Rig Seismic, Cruise 102 ..443

Table A1.2.7 Miscellaneous oil samples from ships and Port Stanvac Refinery.....443

Table A1.2.8 Non-Australian samples of oil, sediment and coastal bitumen........444

Table A1.2.9 Coastal amber and reference samples of resin and resinite............445

Table A1.2.10 Coastal pumice and reference samples of pumice..........................445

Table A2.3.1 External carbon isotope standards..455

Table A2.3.2 International correlation of carbon isotope values for the hydrocarbon fractions of coastal bitumen samples.455

Table A3.1.1 Historical occurrences of stranded coastal bitumen along the Australian coast line...460
Table A3.1.2 Historical occurrences of stranded coastal amber along the Australian coast line...464

Table A3.1.3 Historical occurrences of algal blooms in South Australian coastal waters. ..464

Table A3.2.1 Key to abbreviations used in Appendix A3.2..465

Table A3.2.2 Miscellaneous samples of coastal bitumen and wax assembled from museums and private collections. ..466

Table A3.2.3 Samples of coastal bitumen collected in South Australia from the South Australian Department of Mines and Energy coastal bitumen survey, 1983. ..469

Table A3.2.4 Samples of coastal bitumen collected in Victoria from the coastal bitumen survey, 1990-1991 ...471

Table A3.2.5 Samples of coastal bitumen collected in southeast South Australia from the coastal bitumen survey, 1990-1991 ..473

Table A2.3.6 Samples of coastal ambers assembled from museums and collected in the coastal bitumen survey, 1990-1991 ..485

Table 4.2.1 Rock-Eval Pyrolysis Data of the Potoroo Formation........................502

Table 5.5.1 Summary of Vitrinite Reflectance Measurements, Chama-1A........571

Table 5.5.2 Summary of Vitrinite Reflectance Measurements, Mocamboro-11....581

Table A6.1.1 Bulk composition of Australian coastal bitumens which have been compiled from reports and papers..590

Table A6.1.2 Alkane parameters and isotopic compositions of coastal bitumens which have been compiled from reports and papers......................593

Table A6.1.3 Source-specific biomarker parameters of coastal bitumens which have been compiled from reports and papers.................................596

Table A6.1.4 Maturity-dependent biomarker parameters of coastal bitumens which have been compiled from reports and papers..........................597
List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>94</td>
</tr>
<tr>
<td>4.2</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>114</td>
</tr>
<tr>
<td>5.1</td>
<td>144</td>
</tr>
<tr>
<td>5.2</td>
<td>150</td>
</tr>
<tr>
<td>6.1</td>
<td>206</td>
</tr>
</tbody>
</table>