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ABSTRACT 

 
Historical water quality databases from two South Australian drinking water reservoirs were used, 
in conjunction with various computational modelling methods for the ordination, clustering and 
forecasting of complex ecological data.  Techniques used throughout the study were: Kohonen 
artificial neural networks (KANN) for data categorisation and the discovery of patterns and 
relationships, recurrent supervised artificial neural networks (RANN) for knowledge discovery and 
forecasting of algal dynamics and hybrid evolutionary algorithms (HEA) for rule-set discovery and 
optimisation for forecasting algal dynamics.  These methods were combined to provide an 
integrated approach to the analysis of algal populations including interactions within the algal 
community and with other water quality factors, which results in improved understanding and 
forecasting of algal dynamics.   
 
The project initially focussed on KANN for the patternising and classification of the historical data 
to reveal links between the physical, chemical and biological components of the reservoirs.  This 
offered some understanding of the system and relationships being considered for the construction 
of the forecasting models.  Specific investigations were performed to examine past conditions and 
the impacts of different management regimes, as well as to discover sets of conditions that 
correspond with specific algal functional groups.   
 
RANN was then used to build models for forecasting both Chl-a and the main nuisance species, 
Anabaena, up to 7 days in advance.  This method also provided sensitivity analyses to 
demonstrate the relationship between input and output variables by plotting the reaction of the 
output to variations in the inputs.  Initially one year from the data set was selected for the testing 
of a model, as per the split-sample technique.  To further test the models, it was later decided to 
select several years for testing to ensure the models were useful under changed conditions, and 
that test results were not misleading regarding the models true capabilities.  RANN were firstly 
used to create reservoir specific or ad-hoc models.  Later, the models were trained with the 
merged data sets of both reservoirs to create one model that could be applied to either reservoir.   
 
Another method of forecasting was trialled and compared to RANN. HEA was found to be equal 
or superior to RANN in predictive power, also allowed sensitivity analysis and provided an 
explicit, portable rule set.  The HEA rule sets were initially tested on selected years of data, 



  

University of Adelaide, Australia v

however to fully demonstrate the models potential, a process for k-fold cross-validation was 
developed to test the rule-set on all years of data.  To further extend the applicability of the HEA 
rule-set; the idea of rule-based agents for specific lake ecosystem categories was examined.  The 
generality of a rule-based agent means that, after successful validation on several lakes from one 
category, the agent could then be applied to other water bodies from within that category that had 
not been involved in the training process.  The ultimate test of the rule-based agent for the warm 
monomictic and eutrophic lake ecosystem category was to be applied to a real-time monitoring 
and forecasting situation.  The agent was fed with online, real-time data from a reservoir that 
belonged to the same ecosystem category but was not used in the training process.  These 
preliminary experiments showed promising results. It can be concluded that the concept of rule-
based agents will facilitate real-time forecasting of algal blooms in drinking water reservoirs 
provided on-line monitoring of relevant variables has been implemented.     
 
Contributions of this research include: (1) to offer insight into the capabilities of 3 kinds of 
computational modelling techniques applied to complex water quality data, (2) novel applications 
of KANN including the division of data into separate management periods for comparison of 
management efficiency, (3) to both qualitatively and quantitatively elucidate relationships between 
water quality parameters, (4) research toward the development of a forecasting tool for algal 
abundance 7 days in advance that could be generic for a particular lake ecosystem category and 
implemented in real-time, and (5) to suggest a thorough testing method for such models (k-fold 
cross validation). 
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1. INTRODUCTION 

 
It is well known that the Australian environment, particularly freshwater resources, is currently 
under extreme pressure.  Not the least of which, are the drinking water reservoirs, which provide 
potable water to households and industry.  In many regions, the current drought is considered 
one of the worst on record and consequently low storage levels are being experienced in many 
Australian reservoirs (National Climate Centre 2007).   
The impacts of drought on water quality in reservoirs can be many and varied.  Low storage water 
levels in South Australian reservoirs have been known to create or compound the following: 
increased turbidity, increased metal levels (particularly Manganese and Iron), increased 
phosphorous concentrations, increased dissolved organic carbon, and most relevant to this study, 
increased cyanobacteria presence (CRC – Drought and Water Quality Report 2005).   
 
Under normal circumstances, algal blooms are considered a serious water quality issue but 
during drought conditions they are even more frequent, intense and problematic.  Depending on 
the nature of the bloom and the species involved, blooms can greatly increase water treatment 
efforts and costs, by drastically degrading water quality.  Cyanobacteria blooms are of particular 
concern in drinking water reservoirs due to the nature and competitive advantages of this algal 
group that can enable a bloom to rapidly get out of control resulting in water quality degradation 
from taste and odour compounds, filaments clogging pipes and filters and toxic products among 
other things. 
 
Considering the restricted volumes of raw drinking water currently available in South Australia, it 
cannot be afforded to have reservoirs become temporarily unusable and be taken offline, as there 
is already too much pressure on reservoirs to keep up with demand in their normal service area.  
Consequently, at this time it is more important than ever to be able to forecast potential water 
quality issues to a reasonable level of accuracy.   
 
With some research suggesting that climate change will lead to 25% less precipitation in southern 
Australia by the year 2050, compounded by increased demand due to population growth, water 
resources will be under unprecedented stress (Ragab & Prudhomme 2002).  Not only will there 
be less rainfall, but also increased solar radiation and higher temperatures, which stimulate algal 
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growth.   It is clear that water management must consider new approaches to combat these water 
quality issues.     
Current South Australian practice is to wait for evidence of substantial algal population levels 
before responding with undesirable and controversial CuSO4 dosing – and at this point, it is for 
damage control rather than prevention of a bloom event.  Ideally, optimal management of algal 
populations would be proactive rather than reactive – and aim to avert such water quality 
degradation.  However, reliable short-term forecasts are required to achieve such a management 
style.  Computational and ecological modelling is a way to provide such forecasts. 
 
The value of modelling in environmental management has been recognised for some time.  
Realistic and well validated models are able to predict future states or behaviour of dynamic 
systems, elicit interactions between components of the system and provide data and information 
that traditional field or laboratory techniques could not produce (Howard 1997; Whigham & Fogel 
2003).  The understanding of a system and its stressors that can be gained from a model, 
provides essential input to management and political decisions regarding actions to be taken in 
response to observed or expected conditions (Jorgensen 1994).  Modelling is considered 
essential for any operational enterprise (Steel 1997) and Ferguson (1997) highlights the need for 
scenario analysis in lake management, stating that when a range of control options exist, it is 
necessary to have a predictive capability to enable the options being presented to be explored, 
especially for demonstrating the likely outcome to those who invest in the chosen option.  
Modelling is able to provide this service, as well as analysing past conditions and management. 
 
In this study, complex time-series data from two South Australian drinking water reservoirs will be 
utilised in conjunction with various computational modelling methods for the ordination, clustering 
and forecasting of complex ecological data.  Computational modelling is used in a wide range of 
fields from biology to finance, and basically involves modelling real world occurrences or 
problems on a computer, to gain better understanding and develop solutions.   
More specifically, this study belongs to the emerging and rapidly developing field of Ecological 
Informatics, which aims to analyse, interpret, forecast and manage complex ecological data 
through the design and application of computational techniques (Recknagel 2003).  Data driven 
techniques, such as those to be used in this study, are quite valuable in the field of ecology where 
there may be large and complex data sets available for analysis, but the system or occurrence 
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under study is not completely understood.  Such techniques can utilise and justify long-term data 
collection and monitoring e.g. of water bodies.   
 
To best manage algal dynamics and maximise bloom prevention, the answer cannot be 
prediction and early warning alone.  A thorough understanding of causal relationships between 
physical, chemical and biological factors is imperative so that conditions promoting blooms can 
be avoided. Therefore the study uses several techniques with different focuses and outcomes to 
achieve not only forecasting of algal dynamics but to also offer insight into factors driving and 
controlling them. 
 
Techniques to be used throughout this study are: Kohonen artificial neural networks (KANN) for 
data categorisation and the discovery of patterns and relationships, recurrent supervised artificial 
neural networks (RANN) for knowledge discovery and forecasting of algal dynamics and hybrid 
evolutionary algorithms (HEA) for rule-set discovery and optimisation for forecasting algal 
dynamics.  These methods are combined to provide an integrated approach to the analysis of 
algal populations, including interactions within the algal community and with other water quality 
factors, which results in improved understanding and forecasting of algal dynamics.   
 

Contributions of the study 
The ultimate aim of this research is to provide forecasting tools for algal dynamics in reservoirs 
that are compatible with online real-time monitoring data, thus enabling real-time forecasting.  To 
achieve this several general hypotheses must be investigated: 

• KANN can reveal important relationships between physical and chemical water quality 
factors and algal dynamics, thus explaining seasonality and succession, by classification 
and clustering of temporal patterns. 

• RANN can be used to forecast algal dynamics, whilst also providing sensitivity analysis to 
quantitatively describe underlying relationships. 

• HEA can discover and extract rule-sets from time series water quality data that can be 
used for explanation and reasonably accurate prediction of algal dynamics. 
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During the investigation of these hypotheses, several novel approaches will be explored 
including:  
KANN for the analysis of management regime impacts, KANN for the analysis of conditions 
corresponding with specific algal groups, integrated use of KANN and RANN for qualitative and 
quantitative description of relationships, and HEA rule-set extraction for same category lakes and 
linked stringent testing procedure. 
Ultimately, the questions of most importance which are addressed by this research project are: 
 
Is it possible to train a model to forecast algal dynamics using only electronically 
measurable data, so it could be compatible with a real-time monitoring/forecasting 
situation?  
What inputs are used to train a model is dependent upon many things including availability, 
purpose of the model etc.  For many models during this project, as many inputs as possible will 
be used, as the purpose is to look at relationships between input and output variables, not solely 
forecasting.  However, if a model is to be used in a real-time situation it must only rely on inputs 
that can be monitored in real time.  At the time of the study, accurate nutrient probes are not 
available for data loggers. Nutrient concentrations have traditionally been considered important 
inputs into algal population models, as algal abundance is usually very related to nutrient levels in 
the water – so can an accurate model be created that did not rely on nutrient concentration data 
but only electronically measurable input variables? 

 
Is it possible to develop forecasting rule-sets for algal populations that can be generic 
agents for particular lake ecosystem categories? 
The suitability of an ad-hoc or generic forecasting model is dependent upon the intended use and 
application, and each has pros and cons. Generic models reduce the labour required to develop 
and maintain models to be applied at several different sites and can be used for lakes with 
insufficient historical data to develop an ad-hoc model.  They also allow comparative 
assessments between same category lakes to investigate specific algal population dynamics at 
varying habitat and water quality conditions within the same lake category.  Ad-hoc or lake 
specific models often provide improved predictive results when compared to generic models 
applied to the same test site.  Generality often compromises predictive accuracy; having been 
trained with many very different situations and conditions, clear patterns and relationships can be 
very difficult to observe and learn.  The nature and interactions between factors driving algal 
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dynamics are extremely complex and the significance of each parameter is often catchment 
dependent.  Therefore, similar conditions can have somewhat contradictory effects in different 
locations (Creagh 1992).  To reduce the confusion, increase predictive ability and yet still provide 
a model that can be applied to a large cross-section of water bodies, could a model be developed 
that was generic for a particular set of lake ecosystem characteristics?  Lake ecosystem 
categories defined by circulation type and trophic state, as suggested by Recknagel et al. (2006), 
will be used for this purpose. 
 

Can these forecasting tools be implemented in a real-time environment to provide algal 
population forecasts up to a week in advance?   
Throughout the study, the forecasting models will be tested on historical data that is kept 
separate from the training data, thus the testing data is unknown to the model and the model 
cannot simply replicate the patterns.  This is a simulated real-time situation.  Whilst there is merit 
in the development and testing of models in such a manner for research into model applications 
and underlying relationships driving algal dynamics, ultimately forecasting models are designed 
for practical use in a real-life environment, not a simulated one, and therefore must be tested in a 
real-life situation.  
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2. LITERATURE REVIEW 

 

2.1  Modelling of ecological systems and processes 

Models have long been used as simplified surrogates of real systems or problems, to provide 
improved understanding or solutions.  Models can be used to address questions that often cannot 
be answered solely by experiments or observations, or to conduct experiments that are too 
expensive or impractical in the field.  Basically, ecological modelling involves systems analysis 
and simulation in ecology and natural resource management.  Models of virtually every possible 
type of ecological interaction have been developed (competition, parasitism, disease, mutualism, 
plant-herbivore interactions etc). Ecological models have two major aims: to provide insight into 
the structure and functioning of ecological systems; and to provide predictions about future 
prospects of particular populations, communities, or ecosystems under changing environmental, 
climate and management conditions.  Some models only simulate the density of organisms, 
treating all organisms of any species as identical, also called mass action models. At the other 
extreme, the movement and fate of each individual organism may be followed in a complicated 
computer simulation by means of individual based models (McGraw & Hill 2005).  The application 
of models to freshwater systems also has a long history with classical applications of the Lotka-
Volterra predator-prey model (Parker 1968) for phytoplankton and zooplankton interactions and 
the lake eutrophication model by Vollenweider (1968).  

As ecological research has grown in sophistication, models are increasingly used as decision 
support tools for management and policy-makers.  The value of modelling in environmental 
management has been recognised for some time.  Accurate and well validated models are able 
to predict future states or behaviour of dynamic systems, elicit interactions between components 
of the system and provide data and information that traditional field or laboratory techniques could 
not produce (Howard 1997; Whigham & Fogel 2003).  The understanding of a system and its 
stressors that is gained from a model, provides essential input to management and political 
decisions regarding actions to be taken in response to observed or expected conditions 
(Jorgensen 1994).  Modelling is considered essential for any operational enterprise (Steel 1997) 
and Ferguson (1997) highlights the need for scenario analysis in lake management, stating that 
when a range of control options exist, it is necessary to have a predictive capability to enable the 
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options being presented to be explored, especially for demonstrating the likely outcome to those 
who invest in the chosen option.  Modelling is able to provide this service, as well as analysing 
past conditions and management. 
 
Most ecological modelling applications can be broadly classified into one of 3 categories: the 
statistical approach, the differential equation approach and the computational approach 
(Recknagel 2003).  This research focuses on only the computational approach that belongs to the 
emerging and rapidly developing field of Ecological Informatics. 

2.1.1 Ecological Informatics 
Recknagel (2003) defines Ecological Informatics as an interdisciplinary framework for the 
processing, archival, analysis and synthesis of ecological data by advanced computational 
technology.  It aims to analyse, interpret, forecast and manage complex ecological data and 
systems through the design and application of computational techniques.  Biologically inspired 
computation techniques, such as fuzzy logic, adaptive agents, artificial neural networks and 
evolutionary algorithms are a focus of Ecological Informatics.  The two latter methods are used 
throughout this research and such techniques utilise and justify long-term data collection and 
monitoring of ecological systems.   
Artificial Neural Networks (ANNs) and Evolutionary Algorithms (EAs) are both data driven and 
machine learning techniques, meaning that patterns and relationships are extracted from within 
the ecological data sets, where a priori knowledge is not required, and are able to be memorised 
and recalled.  Data driven techniques, such as those to be used in this study, are quite valuable 
in the field of ecology where there may be large and complex data sets available for analysis, but 
the system or occurrence under study is not completely understood.  Machine learning 
techniques have demonstrated their capacity to overcome many of the restrictions faced by 
conventional modelling approaches in terms of generality, realism and accuracy (Recknagel 
2001). Compared with statistical models they handle non-linearity and high complexity well, and 
also provide valuable insights into data clustering and input–output relationships. Compared with 
deterministic models they can predict and elucidate short-term events and be combined with 
deterministic models to evolve ecosystem structures (Whigham & Recknagel 2001).  Sometimes 
machine learning methods offer modelling and analysis options that cannot be provided by any 
other paradigm (Fielding 1999b).  The methods used within the study can also be classified as 
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data mining techniques, which search for valuable information in large volumes of data, aiming to 
find patterns that can give accurate answers to future states (Weiss & Indurkhya 1998).   
 

2.2  Artificial Neural Networks (ANNs) 
Artificial Neural Networks (ANNs) are computer programs designed for information processing.   
The original inspiration for the technique was the central nervous system, particularly the 
biological neurons in the human brain.  ANNs mimic the connectivity and function of the human 
brain and, similarly, have the ability to learn and be trained from the data presented to them 
(Freeman 2000; Lek et al. 2000).  In a neural network model, simple neurons (alternatively called 
nodes, processing elements, PEs or units) are connected together to form a network, hence the 
term "neural network."  The neurons are tightly interconnected and organised into different layers. 
The input layer receives the input; the output layer produces the final output and usually one or 
more hidden layers are in between the two. 
Many studies have discovered the advantages and superiority of ANNs compared to conventional 
methods and examples include studies by Brey (1996), Lek et al. (1996), Paruelo and Tomasel 
(1997), Scardi and Harding Jr (1999), Karul and Soyupak (2006) and Jeong et al. (2007).  
Advantages of ANNs over conventional methods include:  

• Use of ANNs requires less expert knowledge of the method and of the underlying 
problem being investigated, and are thus suitable for use by more people (Boddy & 
Morris 1999).   

• Unlike statistical methods, the functional form of the model does not have to be specified 
a priori and model complexity can be altered easily by changing the architecture (Bowden 
2003; French 1996). 

• They have the ability to process large amounts of data at high speed (Bowden 2003). 

• They are capable of dealing with incomplete, noisy or limited data and are robust (Burke 
1991; Howard 1997; Kartam et al. 1997; Silvert & Baptist 2000). 

• Unlike conventional statistical methods that are mainly limited to linear relationships and 
are inflexible, ANNs are parallel and distributed information extraction processors that 
have adaptive and self-organising properties that can handle non-linear data and high 
complexity (Chon et al. 2006).  

• Non-linear models, such as ANNs, are best for analysis of temporal data (Chakraborty et 
al. 1992). 
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• ANNs can be used in situations where problem definition is difficult and the primary 
components governing the dynamics, and the interactions between them, are either 
unknown or poorly understood (Fielding 1999b; French 1996). 

• ANNs do not require drastic simplification of a system in order to model it, as traditional 
techniques do (Harris 1996; Wilson & Recknagel 2003).  Some modelling methods such 
as multiple regression assume linear relationships between variables, and in an effort to 
deal with non-linear systems, some variables are transformed. Despite these 
manipulations the results for use of these modelling methods in ecology remain 
disappointing.   

• They can be quickly constructed using available data at a very low cost compared to 
developing conventional expert systems (Sung 1998). 

 
Criticism of ANNs includes the lack of explicit model representation but mainly concerns their 
nature and categorisation as black box models.  Black box models are models where a portion of 
the system is not seen or known by the user and much of the inner workings of the model are 
unknown.  Several authors have commented that the lack of transparency and complicated 
internal workings of ANNs are disadvantageous and mean that one cannot know the exact flow of 
data and can only estimate the form of relations between variables and the output as they are 
given no indication of the processes involved in the modelled system (Fielding 1999b; Schleiter et 

al. 2006; Whitehead et al. 1997).  However, this criticism is waning as new techniques are 
developed which allow the analysis of relationships captured by the trained model (Ball et al. 
2000).  Analysis of network weights has been used to gain some information but in an indirect 
fashion, and sensitivity analyses have been used successfully to gain further information and 
understanding from ANN models (Boddy & Morris 1999). 
In ecological modelling applications, revealing the relationship between input and output variables 
is a very important aspect of the research.  In the case of aquatic systems, knowledge of the 
influence of physical, chemical and biological water quality parameters on algal dynamics is 
desired so the system can be understood and managed as best as possible, and many authors 
have successfully contributed to this using different forms of sensitivity analysis (Goethals et al. 
2006; Jeong et al. 2001; Recknagel et al. 2006c; Scardi 2000).  Further explanation of the 
particular type of sensitivity analysis used throughout this study is in the methods section. 
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ANNs typically start out with randomised weights for all the connections between their nodes. 
This means that they do not ‘know’ anything and must be trained. Basically, there are two 
methods for training an ANN, giving rise to two broad categories: Supervised (SNN) and Non-
supervised (NSNN).   
With SNN, the training of the network or model is guided by many examples and patterns from 
cross-sectional or time-series data for a particular problem.  The patterns are presented to the 
SNN with an associated observed output that the network can use to guide its predicted output 
(thus the learning is supervised), and after numerous repetitions of this during training, the 
network learns to recognise the pattern.  Furthermore, the networks are usually able to generalise 
and will give suitable outputs for patterns that are similar, but not necessarily the same as the 
patterns the network was trained with (Boddy & Morris 1999).   SNN are frequently used for 
classification and prediction of ecological variables. 
NSNN use unsupervised learning and therefore do not focus on measured output data during 
training but classify the data by recognising different patterns.   On most occasions NSNNs have 
been used for ordination and visualisation of complex ecological data.  SNN and NSNN are 
discussed in more detail in the following sections.   
 

2.2.1  Supervised Artificial Neural Networks (SNN) 
The typical structure of a supervised neural network consists of an input layer, hidden layer/s and 
an output layer.  The input layer contains measured data from external inputs such as nutrient 
concentration, density and composition of phytoplankton.  The output layer also consists of 
measured data such as Chl-a (Recknagel 1997).  The neural network then determines weighted 
connections between input and output layers utilising interconnected neurons, located in the 
hidden layer/s.  The neurons feed a non-linear function, such as the sigmoid function, with the 
sum of their inputs in either feed forward or feedback (recurrent) mode.  After this, the resulting 
value of the neuron is multiplied by a weighting factor (Rogers & Vemuri 1994).  Therefore, each 
neuron has an individual weight parameter for each input-output connection.  SNNs are typically 
initialised with randomised weights for all the connections between their nodes. During training, 
where the aim is to minimise the output error with regard to the known desired output, the neural 
network adjusts the interconnecting weights by means of a training algorithm.  Once the 
interconnecting weights are optimised in training, they may remain fixed and the SNN can then be 
used for predictions (Recknagel et al. 1998). 



 
 

The category of SNN can be separated into two further groups: feedforward or feedback SNNs, 
where classification is reliant upon how data is processed through the network, specifically whether 
only external inputs are used or feedback inputs (or looped connections) are considered also. Fig. 1 
shows the basic structure of the two types of SNNs. 
 

 

 
NOTE:  This figure is included on page 11 of the print copy of the 

thesis held in the University of Adelaide Library. 
 

 

 

 

 

 

Figure 1. Basic conceptual structure of the two types of supervised artificial neural network (SNN):  

a) supervised feedforward; b) supervised feedback (from Recknagel and Cao, 2007) 

 
 
 

2.2.1.1 Supervised Feedforward Artificial Neural Network 
Supervised Feedforward Artificial Neural Networks consist of connections that move from the input 
layer, through the hidden layer/s to the output layer only.  Neurons from one layer of the Feedforward 
Network are connected to all neurons in the next layer, but do not include looped connections or 
feedbacks, thus making the supervised feedforward approach faster than the feedback approach 
(Lek et al. 2000). Some of the most popular SNNs belong to this group including the multi-layer 
perceptron (MLP) (Minski & Pappert 1969), often applied with the back-propagation training 
algorithm.  Back-propagation, described and developed by Werbos (1974) and Rumelhardt (1986) 
amongst others, compares the SNN’s output to the desired result and determines the error.  It then 
adjusts the input weights appropriately to reduce the approximation error and repeats this until 
convergence is reached.   
This technique has been employed prolifically in the past in many different fields as it can be used for 
both cross-sectional and time-series data.  Useful applications in aquatic ecology include studies on 
macroinvertebrate and fish communities in streams (Hoang et al. 2003: Lek et al. 
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1996), phytoplankton production in estuaries (Scardi 1996; Scardi & Harding Jr 1999), and 
phytoplankton dynamics in lakes and rivers (Maier et al. 1998; Recknagel et al. 1997). 
Of particular relevance to this study is research by Wilson (2004) aiming to determine whether a 
standardised, generic ANN model representation can be developed to achieve short-term 
forecasts of algal blooms in lakes and rivers.  Mainly multi-layer perceptrons in conjunction with 
the back-propagation algorithm were used, and models were trained with bootstrap samples of 
data to improve prediction error and reduce the likelihood of overfitting.  A sensitivity analysis 
through time approach was used where an input variable is swept over a range of values, while 
the values of the remaining inputs are blocked at each data set value in turn (Wilson 2004).  It 
was found that the generic ANN model was largely driven by the lagged output variable, 
suggesting that previous algal numbers are greatly influential in determining current algal 
population levels.  Results and contributions of this work are discussed further in this chapter, 
specifically section 2.4.2.  

2.2.1.2  Supervised Feedback or Recurrent Artificial Neural 
Networks (RANN) 

Supervised Feedback or Recurrent Artificial Neural Networks (RANN) (Pineda 1987) consider not 
only external inputs but also looped connections feeding back activations from the previous step, 
providing extra information and training.  RANNs are modifications of the typical ANN in that the 
structure is similar, except that the system state for time t is calculated by considering the system 
state at time t-1.  If the activations of neurons in the hidden layer embody the ‘hidden’ state of the 
system, the copied activations of the time t-1 are considered as feedback inputs for the 
determination of weights of neurons at time t.  Therefore the feature and strength of RANN lies in 
the fact that, when calculating the output for a given time, the network considers not only the 
environmental driving variables as input for an algal dynamics forecast, but also the activation 
weights from the time step before.   Fig. 2 demonstrates the structure of RANN for the prediction 
of blue-green algae abundance and considers typical input variables. 
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Using RANN, Jeong et al. (2001) predicted the timing and magnitude of Chl-a in the Nakdong 
River 3 days ahead with high accuracy. Four years of interpolated daily data (1995-1998) from 
numerous meteorological, physico-chemical and biological inputs was used to train the model, 
which was tested on one independent test year (1994).  Only one hidden layer was used, with the 
hyperbolic tangent function selected for both hidden and output layers, and momentum set at 0.7; 
however training time and number of neurons was varied to find optimum results (see 3.5.2.1 for 
definitions of network architecture components).  Visual assessment and linear regression 
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Figure 2. Architecture of a recurrent artificial neural network (RANN) for predicting 
abundance of blue green algae, using typical inputs
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between observed and predicted values was used to evaluate model performance and the best 
RANN was subject to sensitivity analysis where input parameters were disturbed by +/- 1 to 2 
standard deviations to examine interactions between Chl-a and the input variables.  Results (see 
Fig. 3) showed that observed and predicted Chl-a values fitted well giving a r2 value of 0.82, and 
importantly, the major summer peak was well forecast.   

 
Sensitivity analyses demonstrated that Chl-a was particularly responsive to chemical inputs such 
as pH and nutrients (Fig. 4), with further analysis of the impact of disturbed inputs over a range of 
values.  For example, Fig. 5a shows that only changes in solar radiation in the lower range of 
observed values elicited an increase in Chl-a concentrations, whereas higher levels of 
evaporation were obviously very stimulating for algal biomass.  Fig. 5b demonstrates that both 
increases in either pH and DO correspond with increasing Chl-a concentrations. 

 

Figure 3.  Results of RANN forecasting of Chl-a concentration 3 days in advance (Jeong 
et al, 2001) 

Figure 4. Results of sensitivity analysis with disturbance of +/- 1 standard deviation to 
the input data (Jeong et al, 2001) 
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In another study by Jeong et al. (2003) the target output was refined to species level, with RANN 
successfully used to predict the seasonal succession between the nuisance blue-green algae 
species Microcystis aeruginosa and the diatom species Stephanodiscus hantzschii in the 
Nakdong River.  Applying the same approach as the previous study again yielded good results, 
with both Microcystis aeruginosa and Stephanodiscus hantzschii being accurately forecast 4 days 
in advance, giving r2 values of 0.68 and 0.73 respectively.  Again sensitivity analysis was used to 
examine input-output relationships and allowed comparisons between the species.   These 
studies were successful in not only forecasting algal growth events in advance, but also revealing 
information that influenced the algal dynamics.  Accurate algal population predictions from a 
useful forecasting horizon were achieved and sensitivity analyses were demonstrated to be 
valuable for improving understanding of the system and testing hypotheses.   
Another relevant study is by Walter et al. (2001) who used RANN to predict eutrophication 
effects, including algal blooms, in the Burrinjuck Reservoir.  The model was reasonably accurate 
in the prediction of timing and magnitudes of Chl-a for seven days ahead, indicating its potential 
to provide early warning for tactical control of algal blooms in freshwater lakes.  A sensitivity 
analysis during this study interestingly revealed that algal abundance in the Burrinjuck Reservoir 
was not only driven by inorganic nutrients, water transparency and temperature but also, to a 
large extent, by hydrological characteristics such as water depth that is subject to high seasonal 
variations in this water body.  Talib et al., (2005) used RANN to successfully forecast the 
succession of the algal groups Oscillatoria and Scenedesmus in two Dutch lakes, 5 days in 
advance.  Finally, this author used RANN to successfully forecast Chl-a and specific algal 
functional groups in Lake Soyang, a temperate stratified lake (Welk 2003).  In summary, RANNs 
have proved to be very powerful for time-series modelling of Chl-a and specific algal abundance.  
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Figure 5. Results of sensitivity analysis with wide-ranged disturbance of +/- 2 standard 
deviations to the input data: a) evaporation and irradiance; b) pH and DO (Jeong et al. 2001)
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The success of these studies, particularly Jeong et al. 2001 and 2003, were influential in 
determining the ANN approach used for this research project.  Although many researchers have 
produced useful results with feedforward applications, RANN has proven to be particularly 
powerful for time-series modelling.  Successful RANN studies have been able to achieve the right 
balance between accurate forecasting and knowledge discovery.  However, depending on the 
intended use of the models, the lack of explicit model representation could be seen as a limitation 
of RANN, making the model not easily shared or applicable to other situations.  
As with the successful studies described above, initial RANN experiments for this project will use 
daily-interpolated data to train the RANN and independent year/s will be used for testing, by 
means of the leave one out method.  The network architecture will be as described above, with 
optimal training time and number of nodes to be determined for each model.  Sensitivity analyses 
looking at sensitivity about the mean and specific input-output sensitivity will be carried out as 
these techniques have yielded much useful information in previous studies.  Differences in 
approach will include a reduction in input variables used to create the models, as both studies 
discussed used a large number of inputs that are not often consistently available for many water 
bodies; as well as the inclusion of RMSE as a component of model assessment along with visual 
examination and r2 values.   

2.2.2  Non-Supervised Artificial Neural Networks (NSNN) 
NSNN employ unsupervised learning to discover and visualise patterns in data.  NSNN do not 
focus on a desired output but classify complex data by recognising specific patterns or 
similarities, therefore the internal organisation of the network is solely dependent on the input 
stimulus.  NSNN are more often a two-layered network with the first layer being the input layer, 
with one node for each parameter.  The input data then pass to every node in the second layer, 
the two-dimensional grid of nodes.  Each node has a set of weights on its inputs, which are 
modified during the learning phase (Boddy & Morris 1999).  The outcome of NSNN is the 
ordination and clustering of the input data, and this method is capable of discovering significant 
patterns or features in the input data in a way that is comparable to the traditional Principal 
Component Analysis (PCA) or hierachial clustering analysis (Jongman et al. 1987), whilst also 
having the ability to cope with non-linearities (Boddy & Morris 1999).   The features or patterns 
found in the input data are expressed by Euclidean distances, which are calculated between 
inputs and can be visualised as a unified distance matrix (U-matrix) or as a partitioned map (K-
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means).  The U-matrix visualises the relative distances between neighbouring data in the input 
data.  The k-means algorithm simply partitions the input data into a specified number of clusters 
based on the U-matrix (Recknagel et al. 2006b). 
The most popular type of NSNN is the Kohonen Artificial Neural Network (KANN), which has 
been used during this study. 
 

2.2.2.1 Kohonen Artificial Neural Network (KANN) 

KANN (Kohonen 1982, 1984), also know as self-organising maps (SOMs), can be used to give a 
comprehensive view of the patterns within a data set.  KANN allows great insight into the way 
data are distributed and organised in n-dimensional space by mapping the incoming patterns. 
This information extracted from multi-dimensional data is mapped into reduced dimensional 
(usually 2 dimensional) space and visualised in a simplistic fashion, as patterns or clusters 
arranged on a hexagonal lattice or grid (Giraudel & Lek 2006).  KANN use competitive or self-
organising learning, where neighbouring cells within the network interact and adaptively develop 
into detectors of a specific input pattern (Bowden et al. 2006).  This adaptive nature is what gives 
KANN its similarity to processes within the brain and, hence, its place as an ANN.  
KANN have two layers, the input layer and the Kohonen layer (see Fig. 6).  The input and 
Kohonen layers are fully connected.  Neurons in the Kohonen layer are not connected, and 
measure the distance of their weights to the input pattern.  Competitive learning allows the 
neurons to compete with each other in Euclidean map space (Jeong & Joo 2003).  Using this 
principle of competitive learning, the elements compete to respond to an input stimulus, based on 
distance from weights to the input pattern, and the winner, which has the smallest distance, 
adapts itself to respond more strongly to that input stimulus (Maier 1995).  After training, data is 
clustered referring to certain criteria such as seasons of the year or nutrient ranges according to a 
calculated U-matrix, and the result of this is the relational patterning of the data set, which can be 
graphically visualised and compared using component planes.   
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KANN are a very adaptable tool and can be extremely useful for studying ecological communities.  
KANN have shown through numerous studies that they are capable of overcoming the restrictions 
of conventional multivariate statistics and have been proven to be a superior tool for successful 
non-linear ordination and clustering of ecological data (Giraudel & Lek 2006).  Analysis and 
patternising of ecological community data has been successfully carried out in numerous studies 
(Chon et al. 1996; Foody 1999; Lee et al. 2007).  KANN has been productively applied to many 
different areas of aquatic ecology including fish assemblages (Brosse et al. 2001; Kruk et al. 
2007), benthic macroinvertebrate communities (Chon et al. 2000; Park et al. 2006; Song et al. 
2006), and more relevantly, algal dynamics (Oh et al. 2007; Recknagel et al. 2006b).  KANN can 
be used to make comparative assessment of periods of data, for example periods of different 
management regimes within a water body.  Welk (2003) analysed chemical and biological 
differences coinciding with varying intensities of fish farming in Lake Soyang over a 10 year 
period, and later Recknagel et al. (2006b) used this method to examine three distinct 
management periods and facilitate a comparative analysis of two adjacent Dutch lakes regarding 

Figure 6  - Kohonen Artficial Neural Network for non-linear cluster 
analysis of ecological data.  (From Chon et al. 1996)
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short and long tern dynamics in response to bottom-up and top-down eutrophication control over 
18 years.  These two studies utilised whole year data interpolated to give daily values, whereas 
Chan et al. (2007) used 12 years of daily-interpolated data from only June to October to gain 
greater understanding of microcystin occurrence in Lake Suwa (Japan).  The study was able to 
improve the understanding of the relationships between microcystin concentrations, Microcystis 
species abundance and rainfall intensity by revealing that total Microcystis abundance and extra-
cellular microcystin concentrations are much higher in typical dry years than typical wet years.  It 
also showed that high microcystin concentration in dry years was linked to the dominance of 
Microcystis viridis, whereas wet years were dominated by Microcystis ichthyoblabe.  Other 
researchers have used KANN in conjunction with other modelling methods.  Whigham  (2005) 
combined KANN clustering and linear regression for a local modelling approach to algal dynamics 
forecasting, which resulted in improved forecasting of Microcystis aeruginosa.  Recknagel et al. 
(2006c) combined KANN clustering results with input sensitivity graphs from RANN for improved 
understanding of habitat preferences and differences between the dominant genera in two lakes.  
This approach demonstrates relationships qualitatively by using KANN clustering and 
quantitatively by the graphs of the input sensitivity over a range of values obtained by RANN.  
The many successful studies using KANN have shown it to be a very useful tool with a wide 
range of possible applications.   
 

2.3  Evolutionary Algorithms (EA) 
 
Evolutionary computation is a bio-inspired machine learning method that employs principles from 
natural biological evolution, such as cross-over and mutation, to develop solutions to complex 
computational problems.  It searches for suitable models or solutions to a problem by means of 
genetic operators and the principle of survival of the fittest.  The premise behind this is that, as 
natural evolution has created complex systems and successfully discovered novel solutions for 
difficult and extremely complex problems, it should be an effective and appropriate approach to 
modelling of ecological systems (Whigham & Fogel 2006).   
 
Evolutionary methods use an algorithmic statement of evolution to evolve solutions to the target 
problem.  The general process of evolutionary algorithm use is detailed below and demonstrated 
in Fig. 7.  It begins with a randomly generated collection of individuals (a population) where each 
individual is a possible solution to the problem (Bobbin & Recknagel 2003).  If the data refers to a 



 
 

well-understood phenomenon, it can be helpful to begin the search for rules from statements that 
have been proven by past research. These starting solutions are the basis for the search for effective 
predictors (Jeffers 1999). The algorithm, after testing the efficacy of the starting solutions (in this 
study the solutions are in the form of rules), will then modify the rules to improve their ability to predict 
the defined target. Variability is introduced to the individuals by cross-over and mutation, and 
evolution is achieved by these information exchanges by solutions in a population, which creates new 
solutions or modifications of existing solutions (Gibbs 2004). The performance of the individuals (their 
fitness) is evaluated based on available information (in this study RMSE is used), then ranked and 
the best individuals can be used to form a new population (generation) for further testing. This 
selection pressure generally means that individuals in the new generation will produce better 
solutions. This process is repeated many times until a satisfactory rule or rule set has been found 
from the search space (Bobbin & Recknagel 2003; Fielding 1999b; Flood & Kartam 1997). 
 

 

 
NOTE:  This figure is included on page 20 of the print copy of the 

thesis held in the University of Adelaide Library. 
 

 

 

 

 

 

Figure 7- Summary of the process of evolutionary computing (from Morral, 2006) 
 
 
 
 
Evolutionary Algorithms (Holland 1975) (EAs) can be applied to a broad range of problems and are 
especially valuable in finding solutions to problems that are difficult to solve using well-defined 
deterministic strategies or those that can be posed as a search for a set of particular values, 
conditions or structures (Whigham & Fogel 2006). Most often, EAs are used when there is an 
incomplete knowledge of the problem or how to solve it, and when the data set is very large (a 
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large search space), and solution searching using traditional optimisation methods is inefficient 
and ineffective (Morrall 2003).  EAs have been established as a productive method for searching 
complex non-linear adaptive topographies to provide near-optimal solutions in real time 
(Whigham & Fogel 2006). They have the advantage of being able to incorporate quantitative 
variables and qualitative attributes into the same set of rules (Jeffers 1999).   
 

EAs can be used for optimisation, equation and rule discovery, pattern searching and discovery, 
and construction of artificial systems among other things (Morrall 2003; Whigham & Fogel 2006).  
Bäck (1997) and Fogel (1998 and 2000) provide useful summaries of the history and applications 
of evolutionary computation and EAs.  Of the many possible EA applications, of particular 
relevance here is discovery of models, in the form of equations or rule-sets, used to describe a 
natural system.  The discovery of equations or rules by EA, unlike ANN, provides an explicit 
representation of the model.  Whilst some methods and studies focus on the pre-processing of 
the data and the training of the models to get good predictive results, this ignores the opportunity 
to obtain knowledge from the learning algorithm.  The model must have learnt some knowledge of 
patterns within the data in order to make predictions, but the representation of the knowledge is 
usually unavailable for inspection, as with ANNs (Bobbin & Recknagel 1999).  However, 
evolutionary methods allow the development of models with more transparent knowledge 
representations and provide some explanation of how the model understands the system 
functionality.  This can result in an improved understanding of the model predictions and 
behaviour.  Further, it could potentially lead to greater comprehension of patterns and 
relationships existing within the data, which control particular occurrences such as algal blooms. 
Equation discovery by EAs aims to find an equation, usually a differential or difference equation, 
that describes the relationships between variables within a data set and enables modelling of the 
system.  Predictive equation discovery has been applied to aquatic ecology quite successfully in 
numerous studies.  Whigham and Recknagel (1999) used an evolutionary approach based on 
genetic programming to find several time series mathematical equations able to forecast the 
concentration of Chl-a in Lake Kasumigaura, Japan.  Muttil and Lee (2005) also used a genetic 
programming to evolve an equation to forecast chlorophyll fluorescence in real-time, with the aim 
of preventing red tides in Hong Kong.   
Jeong et al. (2003) modelled Microcystis aeruginosa bloom dynamics in the Nakdong River, 
comparing the equation discovery capabilities of multivariate linear regression (MLR) and the 
time-series optimisation genetic programming (TSOGP) system (Whigham & Keukelaar 2001).  
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Daily-interpolated data from 1995 to 1998 was used for equation discovery whilst 1994 data was 
used for model validation.  Meteorological, hydrological, physico-chemical and biological data (a 
total of 19 variables) were available for inclusion in the predictive equation.  The best performing 
equation was then subject to two types of sensitivity analysis, to help understand the dynamics of 
Microcystis aeruginosa.  Results showed that the genetic programming approach produced a 
simpler equation (Eq.1), using only 4 of the available inputs that gave higher predictive accuracy 
than the equation discovered using MLR (Eq.2), which was complex and used all 19 input 
variables.  
Eq.1. Microcystis aeruginosa (t+1) 
 = { 0.49293 x secchi depth(t) + 0.50707 x Anabaena flos-aquae (t) } 
  x { 0.83014 x evaporation(t) + 0.16986 x turbidity (t) } 
 
Eq.2. Microcystis aeruginosa 

 = 47223.339 x rain – 0.009 x wind 
  + 585821.152 x evaporation – 3.057 x 10-5 x discharge 
  - 0.0111 x secchi depth + 13054.426 x turbidity + 85020.205 
  x water temperature + 1102600.058 x pH 
  + 167271.631 x dissolved oxygen – 0.0285 x nitrate + 2124.290 
  x ammonia – 0.001 x phosphate 

  + 62798.045 x dissolved silica + 84.270 x Rotifera – 8.766 x Cladocera 
  - 0.0002 x Copepoda + 2.377 x Anabaena flos-aquae 
  - 1.326 x Oscillatoria limosa – 1.585 x Stephanodiscus  hantzschii 

 
The equations produced results giving r2 values of 0.77 and 0.08 respectively.  Clearly Eq.1, the 
evolutionary approach, provides the best equation which regard to both simplicity and predictive 
accuracy and was therefore chosen to be explored further by sensitivity analyses.  The ‘most 
influencing parameter (MIP)’ sensitivity analysis on showed that Anabaena flos-aquae biovolume 
was the most influential variable, followed by turbidity and evaporation, with secchi depth shown 
to be unimportant.  A ‘sensitivity on wide-ranged disturbance (SWD)’ analysis showed that 
Anabaena flos-aquae biovolume, turbidity and evaporation had positive linear relationships with 
the output Microcystis aeruginosa, whilst secchi depth appeared to have no relationship.  The 
study demonstrated the superiority of evolutionary equation discovery over MLR and that the 
evolutionary approach is very suitable for modelling of this nature.   
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A recent study by Kim et al. (2007a) also used TSOGP to develop on equation to predict the time-
series dynamics of the diatom Stephanodiscus hantzschii in the lower Nakdong River 3 days in 
advance.  Not only was the equation successful in achieving useful forecasts with a test r2 value 
of 0.78, but method also allowed the examination of the relationships between the 8 variables 
included in the equation (Andong dam discharge, Namkang dam storage, evaporation, water 
temperature, dissolved oxygen, pH, secchi transparency and silica).  Four types of sensitivity 
analysis were used; MIP, SWD, sensitivity on time-series (STS) and sensitivity for simultaneous 
movement of parameters (SSMP).  This extremely thorough analysis concluded that water 
temperature was the most sensitive parameter, followed by dissolved oxygen and secchi 
transparency.  The study clearly demonstrated evolutionary computation as a useful approach for 
developing models that are capable of interpreting the complexity of ecosystem behaviour and 
providing accurate forecasts. 
Although the equation discovery evolutionary approach has given positive results in many 
studies, rule discovery is a particularly promising branch of evolutionary algorithms for ecological 
modelling.  Genetic Algorithm For Finding Existing Relationships (GAFFER) (South 1994), as 
described and demonstrated in Jeffers (1999), and Genetic Algorithm for Rule-set Production 
(GARP) (Stockwell 1992) are examples of discovering relationships in data sets and finding rules 
for numerical prediction and classification.       
Whigham and Recknagel (1999) noted that a rule-based approach to forecasting algal dynamics 
may be more suitable than equation based forecasting, as rules allow different phases to be 
recognised and for different equations to be used for each phase.  Jeffers (1999) states that they 
have the advantage of being able to incorporate quantitative variables and qualitative attributes 
into the same set of rules. Kim et al. (2007) compared two algorithms of evolutionary 
computation, an algebraic function model and a rule-based model, both designed to forecast 
Microcystis aeruginosa dynamics in the lower Nakdong River.  Results showed that the rule-
based model outperformed the algebraic function model with regard to predictive performance as 
it correctly forecast both timing and magnitude of the algal blooms, whereas the function model 
could only accurately forecast the timing of the events. Bobbin (2002) proposed a new self-
adaptive, symbiotic model evolution framework (SASME) for evolving rule sets for learning 
problems, with much emphasis on knowledge discovery and being able to gain information from 
the model representation itself.  The SASME method was unique in two main ways: 1) method – 
the evolutionary learning algorithm combined the real-valued optimisation power of self-adaptive 
evolutionary algorithms with a novel self-adaptive strategy for the evolution of discrete structures, 
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and 2) representation – the method evolved entire solutions to problems as rule sets with 
exception lists allowing for the explicit representation of default hierarchies (Bobbin 2002).  The 
SASME framework was applied to produce predictive rules for algal abundance in lakes from 
measured data, and the resulting rule sets were interpreted to discover what they reveal about 
the causes of algal species succession in lakes.  One example discovered a predictive rule for 
Chl-a in Lake Kasumigaura (see Fig. 8), using water quality data from 1984 to 1993.  Results 
show that the method could forecast Chl-a levels to a reasonably accurate level with a RMSE of 
35.76.  Further, the model representation (Fig. 9) gave explanation of the relationship between 
water quality conditions and Chl-a levels.                                                    
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Results of Chl-a forecasting using a predictive rule-set obtained 
using the SASME framework (Bobbin, 2002)
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Bobbin and Recknagel (2003) also discovered rules for the prediction of filamentous blue-green 
algae and Microcystis in Lake Kasumigaura, and found that information gained from the rule-sets 
was consistent with literature on conditions preferred for algal growth.    
Due to the achievements of the previously discussed studies applying the rule discovery aspect 
of evolutionary algorithms to ecological data sets, rule-sets were chosen as the form of model 
representation for this project. Rules are a good form of model representation as they are easy to 
interpret and can be used independently of the system in which they were created (Whigham & 
Fogel 2006). 
 

Whilst the examples above did discover predictive equations and rules for population dynamics, 
they did have some limitations.  Only constant parameters were considered as part of simple 
rules rather than complex functions with multiple attributes, and parameters influencing the output 

Figure 9. An evolved rule set for predicting algae (Bobbin, 2002) 
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values were generated randomly rather than being simultaneously optimised during evolution.  
Although Whigham and Recknagel (2001) performed the hill climbing mutation for the 
optimisation of the random real numbers and Bobbin and Recknagel (2003) used the self-
adapting algorithm to tune the parameters, both struggle with increasing rule complexity (Cao et 
al. 2006). 

2.3.1 Hybrid Evolutionary Algorithms (HEA) 
The Hybrid Evolutionary Algorithm (HEA) (Cao et al. 2004) used in this project differs from and 
improves on the previous EA approaches by using genetic programming to generate and 
optimise the structure of the rule set, and then using a general genetic algorithm to optimise the 
random parameters in the rule set (see Fig. 10).  Rules discovered by HEA are in the form of IF-
THEN-ELSE and their complexity can be controlled.  Fitness of the solutions is assessed using 
the Root Mean Square Error (RMSE) (Cao et al. 2006).  Sensitivity analyses, in a similar manner 
to that carried out in conjunction with RANN, are used to assess the influence of changes in input 
on the output variable.  However, the sensitivity analysis is improved by allowing the examination 
of both the THEN and ELSE sections of the rule separately to give more specific information 
about different phases of algal growth.  
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A study by Cao et al. (2006b) successfully applied HEA to 7-day-ahead forecasting of seasonal 
abundances of blue-green algae and diatom populations in Lake Kasumigaura (Japan) and Lake 
Soyang (Korea), using 9 and 10 years of water quality data respectively, and each tested on one 
independent year of data.    Resulting rule sets provided forecasts of dominant algal genera 
(Microcystis and Cyclotella in Lake Kasumigaura, and Anabaena and Asterionella in Lake 
Soyang) with relatively high accuracy (see Fig. 11), whilst also being explanatory with regard to 
relationships between physical and chemical input variables and the algal abundance output (Cao 
et al. 2006). 
   
 
 
 
 
 
 

Figure 10- Flowchart of the hybrid evolutionary algorithm (from Cao et al. 2006) 
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The sensitivity analysis was able to show the relationships between the algal output and the 
particular variables in the THEN and ELSE branches separately.  For example, Fig. 12 shows 
sensitivity analysis with disturbance (SWD) for both branches of the predictive rule set for 
Microcystis.  Results show that the THEN branch is utilised for smaller Microcystis populations 
and shows positive relationships between the algae and increasing water temperature and 
PO4 concentrations.  The ELSE branch is used for larger Microcystis populations.  The larger 
populations are shown to correlate with high water temperatures above 20ºC and pH levels    

over 8, which is supported by findings from both field observations and laboratory experiments 
(Reynolds 1984; Shapiro 1990).    

Figure 6. Sensitivity analysis with disturbance +/- standard deviation of input data for THEN (left) 
and ELSE (right) branches of predictive rule set for Microcystis (from (Cao et al, 2006) 

Figure 5. 7 day ahead forecasting of Microcystis and Cyclotella in Lake Kasumigaura (left column), and 
of Anabaena and Asterionella in Lake Soyang (right column) using a predictive rule set obtained by 
HEA (from Cao et al, 2006) 

Figure 12. Sensitivity analysis with disturbance +/- standard deviation of input data for THEN (left) 
and ELSE (right) branches of predictive rule set for Microcystis (from (Cao et al, 2006) 

Figure 11. 7 day ahead forecasting of Microcystis and Cyclotella in Lake Kasumigaura (left column), 
and of Anabaena and Asterionella in Lake Soyang (right column) using a predictive rule set obtained 
by HEA (from Cao et al, 2006) 
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Talib et al. (2005) applied HEA and RANN for the forecasting of phytoplankton abundance and 
succession in response to eutrophication control in two shallow Dutch lakes.  This approach 
has also successfully been applied to algal dynamics in Nakdong River system (Cao et al. 
2006a; Kim et al. 2007).   
 

2.4 Summary of past modelling efforts at study sites 
 
Various different types of models have been used over the past two decades to perform 
numerous tasks at either Myponga or Happy Valley reservoirs.  A cross section of these 
applications is summarised below. 

2.4.1 Differential equation based modelling of the 
Myponga Reservoir 

In 1991 a report was written presenting the results of using the mathematical model DYRESM 
(Dynamic Reservoir Simulation Model) (Imberger et al. 1978) to simulate the performance of the 
three submersible mixers in operation at Myponga reservoir (Velzeboer et al. 1991).  The model 
DYRESM is a one-dimensional numerical model for the prediction of temperature and salinity in 
small to medium sized lakes and reservoirs.  It incorporates the layer concept, in which the 
reservoir is modelled as a system of numerous horizontal layers (Velzeboer et al. 1991).  The aim 
of this application of the model was to determine the optimum position and orientation of the 
mixers for reservoir destratification by scenario analysis.  The results from the use of the model 
determined the best timing and position for use of mechanical mixers, however, it was concluded 
that, even at these optimal conditions, although the water quality would improve slightly, the 
mixers only result in partial destratification of the reservoir and could not effectively control the 
growth of Anabaena.    
 
The lake model SALMO (Simulation by means of an Analytical Lake MOdel) (Recknagel & 
Benndorf 1982) was applied to Myponga reservoir.  SALMO is a process-based model that is 
designed to simulate food-web dynamics and nutrient cycles in lakes.  It allows the simulation of 
both the epilimnion and hypolimnion during stratification due to its two-layered structure 
(Recknagel 1989).  In this case it was used to simulate the annual dynamics of limnological 
variables including phyto- and zooplankton, orthophosphate, nitrate, detritus and dissolved 
oxygen.  Manipulation of the input data allowed scenario analysis for the application of a range of 
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different management options to the reservoir.  The scenarios examined were: water colour 
reduction, 50% phosphate elimination from the in-flowing water, biomanipulation, artificial 
destratification and a combination of biomanipulation and destratification.  Besides a drastic 
reduction of external phosphorus loading, the combination of biomanipulation and destratification 
was found to be the best management option for the reservoir.  The biomanipulation successfully 
kept algal populations under control in spring, while the destratification greatly reduced the 
summer peak to the lowest simulated for spring and summer under any management regime 
(Smalley 1996).  However, in Australia biomanipulation does not always fulfil its potential as the 
common native zooplankton are not big consumers of cyanobacteria (Herath 1997).  In the case 
of Myponga reservoir, the study concluded that destratification by itself would still prove to be of 
great advantage (Smalley 1996). 
 

2.4.2 Artificial neural network based modelling of the 
Myponga Reservoir 

Wilson (2004) focused on supervised feedforward artificial neural networks trained to make short 
term forecasts of algal blooms in lakes and reservoirs, to aid decision making for the operational 
management of eutrophication.  The study aimed to address the question of whether a 
standardised, generic ANN model representation can be developed to achieve the above goal.  
Interestingly, the ANN model inputs were represented as summary statistics of sliding time 
windows, which increased the compatibility of typical time-series ANN model structures with data 
sets containing uneven sampling frequency and missing data.  Models were trained with 
bootstrap samples of data to improve prediction error and reduce the likelihood of overfitting, with 
training data coming from six different sites around the world, one being Myponga reservoir.  The 
model validation approach was a blocked leave-k-out cross validation, where the data is divided 
equally into k smaller time series or subsamples which are each used in turn as a validation set 
whilst the remainder are combined for a training set.  Blocked leave-k-out was combined with 
bagging by taking bootstrap samples of the training data and running the entire leave-k-out 
procedure a number of times to get a reasonable bootstrap sample of model predictions on 
validation data (Wilson 2004).  A sensitivity analysis through time approach was used where an 
input variable is swept over a range of values, while the values of the remaining inputs are 
blocked at each data set value in turn (Wilson 2004).  Models were developed for 7 and 14 day 
ahead forecasts, with best results found to be achieved from 14 day ahead models.  Lake specific 
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models were also created, using all available inputs, to compare generic and lake specific model 
performance.   
The generic ANN model structure was applied to forecast Chl-a concentration and the three most 
abundant species for the lake.   The input variables used in the generic structure (Fig. 13) were 
water temperature, secchi depth, phosphorus, nitrogen and a lagged input of the output variable 
(note: secchi depth was not available for the application to Myponga reservoir).  The generic 
model predicting Chl-a achieved a reasonable performance with an r2 value of 0.436 and visual 
inspection showed close correspondence between observed and predicted values (Wilson 2004).  
Every major bloom event was predicted, however there was generally a slight delay and 
underestimation of peak events.  Models of Ankistrodesmus spp. and Dictyosphaerium spp. 
performed poorly (r2 values of 0.118 and 0.029 respectively), with the Scenedesmus spp. model 
performing slightly better (r2 =0.199).  The main finding from the sensitivity analyses was that the 
generic ANN model was largely driven by the lagged output variable, suggesting that previous 
algal numbers are greatly influential in determining current algal population levels.  Overall, 
results from the study showed that site and output specific input layers gave better results than 
generic models and that ANNs generalise better over short term as opposed to long term time 
scales.      

 
Some comparisons can be drawn between Wilson’s work and the approach intended for this PhD 
project.   Both look at developing models for algal population forecasting, with a focus on generic 
models. Relatively few inputs are used, in the hopes of the models being widely applicable to 
water quality databases.  However Wilson used solely SNN for this purpose, whereas this project 
will use a range of machine learning methods, including SNN, in a combined approach for 
knowledge discovery and forecasting. With respect to the application of SNN, Wilson used 
supervised feedforward ANNs based on Multi Layer Perceptrons trained with the back 

Figure 13.  Generic supervised feedforward artificial neural network for 14-days ahead 
forecasts of algal abundance (from Wilson, 2004)
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propagation method in contrast to RANN to be used in this project, belonging to the feedback 
category of SNNs.  He also used non-interpolated data as opposed to the daily-interpolated data 
used for this project.  Although Wilson’s generic model was able to provide reasonable forecasts 
of Chl-a 2 weeks in advance, this project will focus on 7-day ahead forecasts (determined the 
best forecasting horizon through consultation with water management authorities and preliminary 
modelling experiments) and aims to increase accuracy levels.  SNN model representation has 
traditionally been considered ‘black box’ and whilst a lot of this can be overcome by sensitivity 
analyses, HEA derived rule sets will be used to test for more instructive and explanatory model 
representation.   The resulting rule-sets have the additional benefits of being relatively portable 
and easy to apply compared to SNN developed model structures.  Wilson’s models used a 
lagged input of the output variable, however in this work that will not be considered, in an effort to 
test the models’ capabilities and to ensure autocorrelation is not supporting good results, and it is 
acknowledged that the inclusion of this feature would likely improve results significantly.  Finally, 
the sensitivity analyses performed on best performing models are different.  Though both studies 
include sensitivity analyses that suggest the most influential variable and further examine 
sensitivity by varying one input variable over a range of values and hold the others constant, 
there are differences in the method of the analysis and representation of the results.   
 

2.4.3 Empirical based modelling of the Happy Valley 
Reservoir 

A 2003 SA Water report (Ingleton 2003b) was written to describe and demonstrate a quantitative 
evaluation of the potential production of odours and toxins caused by Anabaena circinalis and 
Microcystis aeruginosa in the reservoir, based on a number of scenarios regarding source water 
quality, specifically nutrient concentrations.  The method involved using a series of empirical 
relationships based on published and actual historical data to model the growth potential of 
cyanobacteria and the generation of water quality hazards in the Happy Valley Reservoir.  The 
goal of this report was to allow assessment of current and future risks to the water treatment plant 
caused by increased nutrient pollution in the source water and associated increased algal blooms 
and toxins.  It also allowed the examination of impacts of different reservoir management 
strategies and nutrient reduction programs. 
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2.5  Management history of the study sites 

2.5.1 Myponga Reservoir 
Due to its purpose as a drinking water supply storage; Myponga reservoir is highly managed.  
The reservoir has a history of problems such as large numbers of phantom midge larvae 
(Chaoborus Sp.) in the 1970s, thermal stratification and nuisance growths of cyanobacteria 
resulting in taste and odour problems in the reticulated drinking water since the 1960s (Kelly 
1998; Velzeboer et al. 1991).  Various water quality management techniques have been 
employed throughout the reservoir’s existence in an attempt to manage or prevent such 
problems.  The algicide copper sulphate (CuSO4) was first used in Myponga reservoir in 1963 to 
control the growth of Synura and Microcystis, and later Ceratium and Anabaena.  It was, and still 
is, used specifically to rapidly reduce the biomass of cyanobacteria, and therefore reduce the risk 
of the associated production of geosmin, the cause of taste and odour problems; and prevent the 
release of large amounts of potentially toxic substances (Lewis et al. 2003).   The reservoir has 
been dosed, up to 5 times per year, most years since 1963 and, additionally, the inlet to the 
reservoir was dosed continuously from 1963 to 1977.  In 1980 the Engineering and Water Supply 
Department began using a 30m long aerator, which bubbled compressed air through diffusers, to 
combat these problems.  Phantom midge was successfully controlled using this method but the 
aeration did not destratify the reservoir or control excessive cyanobacterial growth.  Consequently 
the reservoir was regularly dosed with CuSO4 to control algal growth throughout the 1970s and 
1980s (Velzeboer et al. 1991).  In 1988, three submersible Flygt mixers were installed on the dam 
wall to replace the ineffective aeration system (ITT-Industries 1990).  The mixers were to increase 
the dissolved oxygen content of the water and destratify the reservoir, which would prevent the 
development of algal blooms.  The water quality of the reservoir was then monitored over the 
1988 to 1989 summer period, to investigate the effectiveness of the mixers.  From this data, it 
was concluded that the mixers were not successful in totally destratifying the reservoir, with both 
surface heating and weak sub surface structure evident for substantial periods of time, but were 
successful in reducing total algal biomass.  However, CuSO4 dosing was still required on three 
instances throughout the summer to control cyanobacterial blooms, specifically Anabaena.  The 
use of the mixers also led to a layer of anoxic water below them, which contained significant 
concentrations of iron, manganese and nutrients.  The Flygt mixers were also deemed to be not 
economically efficient (Kelly 1998; Smalley 1998; Velzeboer et al. 1991).  
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The Flygt mixers were replaced in 1990 with a new aerator, approximately 400m long, which 
extends out from the dam wall along the sediments of the reservoir and was run continuously 
throughout summer.  However, cyanobacterial blooms still occurred and CuSO4 was still required 
to be used as an additional method to control algal growth, with multiple treatments occurring 
each year.  The aerator only achieved partial destratification and a small thermal gradient was 
found to persist near the surface of the water.  Kelly (1998) suggested that this microstratification 
at the surface could be a contributing factor to the reoccurring algal blooms at Myponga reservoir.  
The microstratification generally causes a decrease in the mixed depth of algae, rather than an 
increase.  This results in a greater gross phytosynthetic:respiration ratio and, consequently, more 
algal biomass. 
Surface mixers (SMDI-5, Water Engineering Research Solutions, QLD Australia) were installed in 
1999 primarily to limit the growth of buoyant cyanobacteria and, additionally, to destratify the 
reservoir.  In order to circulate large quantities of water, physically large surface mixers were 
manufactured for Myponga reservoir.  The blades are 4.9m in diameter and pump the water down 
through a draft tube (diameter 4.9m, length 13m) at a flow rate above 3.5m3/s to a depth of about 
14m.  The surface mixers are powered by 4kW motors (Lewis et al. 2003; Lewis et al. 2002).   
The aerator and mixers are operated between October and March each year (Brookes et al. 
2002a). 
For the remainder of the period considered in the project (1999-2003), water quality management 
at Myponga reservoir consists of artificial mixing, achieved by the use of a multi-diffuser aerator 
and two raft-mounted mechanical surface mixers, as well as CuSO4 application to manage the 
threat of cyanobacterial blooms in particular.  The aerator is located adjacent to the dam wall at 
30m depth.  Its diffuser is over 200m in length, with 160 outlets delivering air at 120L/s via a 
100KW compressor (Lewis et al. 2003).  It was concluded from historical data that the aerator is 
effective in controlling the release of some metals from the sediments, minimally reduces the total 
annual algal biomass and has some destratification abilities.   
Even with a management regime involving the use of an aerator and surface mixers, it is still 
necessary to use CuSO4 dosing in mid-summer to control cyanobacterial growth, particularly 
Anabaena, in Myponga reservoir.   In South Australia, CuSO4 is applied regularly before the 
algae reaches bloom levels, usually at relatively low cell counts often between 1000-2000 cell/mL 
(Kelly 1998), to prevent taste and odour problems.  The CuSO4 is applied at a dose rate of 2mg/L 
and is active for a limited time (<15min) before forming inert complexes that descend to the 
sediment and out of the water column. During the period of algicide treatment, no artificial mixing 
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is carried out.    Although phytoplankton biomass recovery is fast during the summer period, the 
successional development of the phytoplankton community can be altered by the algicide 
treatment.   

2.5.2 Happy Valley Reservoir 
Happy Valley reservoir has a history of persistent water quality problems related to the excessive 
growth of both phytoplankton and zooplankton.  Historically, the major problem genera have been 
Cyclotella, Dictyosphaerium and Oocystis, which regularly dominated the reservoir with very large 
cell numbers or biomass.  The phytoplankton blooms also help give rise to excessive zooplankton 
abundances, particularly Calamoecia and Ceriodaphnia (Burch 1987).  With the completion of the 
adjoining water treatment plant (WTP) in 1991, problems often associated with blooms of the 
above listed plankton became less of a concern.  Although diatom and green algae blooms can 
affect drinking water quality and block filters, the increasing presence of cyanobacteria species 
became most important.  Cyanobacteria blooms negatively affect water quality through the 
production of potentially toxic substances as well as taste and odour compounds.  Two potentially 
toxic species are present in the Happy Valley reservoir, Microcystis aeruginosa and Anabaena 

circinalis.  Microcystis aeruginosa, although occurring infrequently, has long been considered a 
problem species in the reservoir (Burch 1987).  Anabaena circinalis is much more prevalent and, 
consequently, is considered the main nuisance species at Happy Valley reservoir (Ingleton 
2003b). 
The Happy Valley WTP is not equipped to remove high concentrations of algal metabolites 
(>40g/L) such as odours or toxins which is why bloom events, particularly cyanobacterial, must 
be constrained or prevented (Ingleton 2003a). 
Throughout the history of Happy Valley reservoir, two techniques have been used in an effort to 
reduce the frequency and severity of algal blooms.  CuSo4 dosing has been used regularly since 
the 1960s to rapidly reduce specific algae and zooplankton biomass when abundance reaches an 
unacceptable level for the target organism.  Whilst CuSo4 treatment is generally very effective at 
controlling bloom events, on occasions in Happy Valley reservoir it has had little effect on some of 
the problem species (Burch 1987).  
Aeration was employed in 1981 for a number of reasons, namely to attempt to destratify the 
reservoir, thereby disturbing the favourable conditions prompting algal and zooplankton blooms in 
summer, increasing the dissolved oxygen concentration and preventing nutrient release from the 
sediment.  Numerous problems were experienced throughout the reservoir due to the aerator 
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failing to achieve continuous or complete destratification.  Although it did elevate dissolved 
oxygen concentrations, at times it also resulted in greater nutrient levels in the surface waters 
and, consequently, encouraged even more plankton growth (Burch 1987).  
Over the summer of 1998-1999 a surface mounted mixer, similar to that placed in Myponga 
reservoir, was implemented in Happy Valley reservoir (CRCWQT 2003).  In 2003 a new bubble 
plume aerator was installed, designed to destratify the deeper area of the reservoir (CRCWQT 
2005) (Ingleton 2005).  The CuSo4 dosing in this reservoir is carried out when Anabaena 
densities reach 500 cells/ml, as the blooms tend to get out of control very quickly and then require 
even more algicide if not caught early (Daley & Ingleton 2006). 

2.5.3  Key water management issues 
Key management issues in Myponga and Happy Valley reservoirs are largely related to thermal 
stratification during the warmer months of the year (October - March).  Despite management in 
place to destratify the reservoirs, this is not always achieved with weak or micro stratification 
occurring and occasional strong stratification still taking place during periods of high insolation 
and stable conditions (Lewis 2004).   
Stratification is characterised by a warm, mixed upper stratum, called an epilmnion, where 
dissolved and particulate substances are considered to be homogenously distributed.  In this 
layer, oxygen is provided by atmospheric aeration as well as photosynthesis and is therefore at a 
high level.  The epilimnion sits over a cool, dense and undisturbed layer of water, known as the 
hypolimnion, where biological oxygen demand (BOD) is very high but there is no natural source 
of oxygen, thus the hypolimnion gradually becomes anoxic (Recknagel 2002).  The stratum 
between the epilmnion and the hypolimnion is termed the metalimnion and is characterised by the 
thermocline, the plane where the greatest gradient in temperature occurs (Boulton & Brock 1999). 
There are many implications of stratification; most are detrimental to the quality of the water.  The 
main impacts of concern are increased algal growth and release of substances from the sediment 
(McAuliffe & Rosich 1990).  Stratification tends to promote the growth of cyanobacteria and the 
conditions are particularly encouraging for those species with buoyancy regulation abilities.  The 
stability of the water column allows these algae to exploit their ability to gain sufficient light for 
photosynthesis in the epilimnion, and then lower themselves in the water column to gain access 
to nutrient rich water if needed (Brookes & Burch 2006).  Both Myponga and Happy Valley 
reservoirs experience cyanobacteria blooms, predominantly Anabaena circinalis, in the summer 
months and this is a major concern.  This species is problematic due to the potential for release 
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of geosmin, causing taste and odour issues; or saxitoxins that disrupt nerve function and 
transmission by blocking sodium channels in nerve cells, which can result in death by inhibiting 
the muscles essential for respiration (Humpage & Froscio 2006).  Once these substances have 
become dissolved in the water, additional treatment is required for their removal, which increases 
costs and potentially imposes a withholding period on the water.    
Stratification also promotes the release of undesirable substances from the sediment.  The lack of 
oxygen input into the hypolimnion and the consumption of dissolved oxygen (DO) by biological 
processes, including bacterial respiration, steadily depletes the DO levels until the hypolimnion 
becomes anoxic.  Under anoxic conditions, contaminants such as iron (Fe), manganese (Mn), 
phosphorus (P) and ammonia (NH3) are released from the sediment and into the overlying water 
(Brookes & Antenucci 2006; McAuliffe & Rosich 1990).  The release of such substances may lead 
to a variety of water quality issues including clogging of pipes, aesthetic issues and in extreme 
cases, health problems (Kirke 2000).  It can also exacerbate problems with algal growth when the 
nutrient and metal rich water eventually becomes available to the surface layer.  In Myponga 
reservoir, the release of Fe and Mn are of concern because if not removed by an oxidation-
precipitation process, they cause water quality issues when oxidised by chlorine or air in the 
distribution system and cause dirty water at the tap.  And again, increased treatment costs are 
associated with this issue.  In this reservoir, it has been shown that the concentrations of these 
substances in the hypolimnion are correlated to the duration of thermal stratification (Brookes et 
al. 2000). 
 
Artificial destratification is used to prevent the onset or disrupt existing stratification, thereby 
easing the biological and chemical water quality issues associated with it.  Artificial mixing to 
destratify water bodies has two main functions: the control of phytoplankton (particularly 
cyanobacteria) by increasing the mixing depth of the cells, thereby decreasing their time in the 
euphotic zone; and reduction of internal loading caused by an anoxic hypolimnion, by increasing 
DO concentrations throughout the water column.   
Currently, artificial mixing can be achieved through the use of one or both of bubble plume 
aerators and mechanical mixers.  Bubble plume aerators are placed near the bottom of the 
storage, and release air bubbles that rise and entrain water from the lower layer of water.  If 
energy input is sufficient, stratification should be weakened by this turbulence as the bottom 
water reaches the surface and the circulation moves the warm water from the surface layer 
downward.  Mechanical mixers or impellers are a method of circulating and exchanging water 
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between the surface and lower stratums and there is a range of different designs (Kirke 2000; 
Lewis 2004).  
Although artificial destratification has been widely adopted, the success of technique for the 
control of phytoplankton and sediment release is varied.  Generally, much more success has 
been achieved in the reduction of metals and nutrients from the sediment than with the control of 
algae.  In the case of total algal biomass, Imteaz and Asaeda (2000) demonstrate that while 
some authors have reported a decrease (Bernhardt 1967; Robinson et al. 1969), numerous 
authors have reported increases caused by the mixing (Barker 1976; Drury et al. 1975; Knoppert 
et al. 1970).  In some cases where a water body experiences both sediment release and algae 
problems, significant control over sediments has been achieved but algal abundances have 
remained high (McAuliffe & Rosich 1990).  Myponga appears to be one such reservoir.  Several 
studies have shown that the aerator successfully reduced internal loading during 1986 to 1996, 
particularly the release of Fe and Mn (Brookes et al. 2002a; Brookes et al. 2000), yet 
cyanobacteria blooms are still an issue.  Herath (1997) reports of the successful adoption of 
artificial mixing to control algal blooms throughout Europe but states that the Australian 
experience has been that approximately 70% of the reservoirs with destratification systems have 
shown no significant reduction of algal biomass.  In some cases it can even exacerbate water 
quality issues by re-suspending substances like Fe and Mn, making them available in the surface 
layer.  The varied success of artificial destratification for algal population control in Australia is not 
well understood.  Where algal blooms are mainly controlled by light, artificial mixing should be 
able to reduce the problem by increasing the mixing depth of the algae, thereby reducing their 
time in the eupohtic zone (McAuliffe & Rosich 1990).  Light limitation is considered to be the 
controlling factor of algal biomass in Myponga reservoir (Lewis et al. 2003), and therefore artificial 
mixing should be able to reduce phytoplankton biomass.  Considering that, the study sites are 
theoretically prime candidates for algal control by means of artificial mixing and it may be that 
deficiencies in its implementation, rather than the concept as a whole, are the reason for the 
limited success thus far. 
 

2.5.4  Limitations of current management regimes 
The management practices used in Myponga and Happy Valley reservoirs to this point in time 
have not been sufficiently effective in decreasing the frequency and intensity of cyanobacterial 
blooms.  In Myponga reservoir, the primary intention of the artificial mixing was to limit the growth 
of cyanobacteria (Lewis et al. 2003), which appears not to have been successful, although there 



  

University of Adelaide, Australia 39

has been some indication of reduction in sediment release.  Although the mixing is said to 
positively influence the succession of algal species, the reservoirs still experience problematic 
cyanobacteria blooms in the warmer seasons and there has been no significant impact on algal 
biomass.  Thus far, artificial destratification in Happy Valley reservoir has also been unsuccessful 
in reducing the frequency and severity of cyanobacterial blooms. 
Often complete destratification fails to be achieved by the aerators and mixers and the 
environment is still conducive to algal population growth and maintenance, resulting in continued 
reliance on CuSO4 dosing to combat developing blooms.   
The use of CuSO4 is not desirable for a number of reasons and, ideally, other less harmful 
management methods should prevent the occurrence of a situation requiring the use of this 
algicide.  While intracellular toxins in intact cells can be readily removed during the water 
treatment process, once the toxins are released into the water additional treatment may be 
necessary such as adsorption by activated carbon (Burch et al. 2002).  Treating blooms with 
algicide causes cell lysis that releases intracellular toxins or taste and odour compounds into the 
water, potentially enforcing a withholding period onto the reservoir (House & Burch 2002).  The 
toxins and odours degrade with time and, whilst there is little information on required withholding 
times for affected water bodies, it has been suggested that toxin breakdown in lakes could 
surpass 14 days (Jones & Orr 1994). 
CuSO4 is considered the algicide of choice in South Australia and is largely regarded as effective, 
economical and safe for operators to use, however its potential for environmental damage is a 
contentious issue (Burch et al. 2002).  Copper tends to accumulate in the sediments and is 
largely considered to remain permanently bound to the bottom sediments.  However, a number of 
studies (Prepas & Murphy 1988; Van Hullebusch et al. 2003) have demonstrated that a significant 
amount of sediment-borne copper is associated with the organic fraction, which may release back 
into the open water under particular conditions such as low DO concentrations.   Hanson et al. 
(1984) proposed that copper accumulation in sediments may impact negatively on the benthic 
macroinvertebrate community.  The sulphate component of CuSO4 may change the pH of the 
water body and affect any nearby organisms during the initial reaction (Ingleton 2003a).  Pitois 
(2000) concluded that CuSO4 dosing could not be used as a lake management tool without 
degrading the water in terms of dissolved organics.  Most concerning is the fact that CuSO4 is 
non specific, consequently having an extreme ecological impact by also being toxic to potentially 
beneficial non-target organisms such as zooplankton and fish (Burch et al. 2002; Hrudey et al. 
1999; Johnstone 1994).  Impacts of copper on human health are not well established but Sparks 
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and Schreurs (2003) have reported some evidence linking it to Alzheimer’s disease (Ingleton 
2003a).    
 

2.5.5  Potential improvements to management regime 
In order to minimise water quality problems caused by cyanobacteria blooms, it is desirable to 
either operationally control or prevent them. Computational modelling is a way to contribute to 
both.  It enables both the forecasting of growing algal population abundance several days in 
advance and a better understanding of processes and environmental conditions that accelerate 
algal growth. Appropriate measures can then be implemented to control the growth of algal 
populations before they reach bloom proportions.   
The Murray-Darling Basin Commission (1993) suggested that to achieve a better understanding 
of the mechanisms that activate algal blooms, real-time in situ water quality monitoring might be 
required.  Burch (1987) states that effective management of nuisance plankton populations in 
reservoirs is based on the ability to predict the timing and extent of their growth.  The logical 
extension of the prediction of growth is artificial control of the parameters that regulate growth.  
This project ultimately combines both in situ water quality monitoring and computational modelling 
to produce real-time forecasts of algal populations. The use of pattern and sensitivity analysis by 
KANN, RANN and HEA provides information on parameters that significantly influence the algal 
population.  Both RANN and HEA have demonstrated their capability to perform short-term 
forecasting of algal population growth and provide information of factors driving these forecasts in 
many studies (eg. (Bobbin & Recknagel 2003; Cao et al. 2005; Jeong et al. 2003; Recknagel et 

al. 2004; Recknagel et al. 2005; Talib et al. 2005; Welk 2003).  These forecasts should allow the 
timely implementation of an operational control measure to prevent or control an algal bloom. 
 
As previously discussed, the current management regimes at Myponga and Happy Valley 
reservoirs continue to require the use of CuSO4 as they are failing to make an impact upon 
cyanobacteria bloom frequency or intensity using continuous artificial mixing from October to 
March, and therefore a different approach should be tested.  Benefits such as reduced internal 
loading show that artificial destratification can improve water quality in reservoirs, and it is one of 
the most sustainable methods to do so (Brookes et al. 2002a), thus the continuation of this 
technique is suggested, though with some tweaking of the implementation.  Intermittent artificial 
mixing may be a possible solution in these reservoirs and it has numerous benefits over 
continuous mixing.  Reynolds et al. (1984) explains that the alternating mixing and stratification 
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conditions that are achieved by intermittent mixing, will only favour particular species for short 
times before the conditions change and a different group of species is promoted.  This way, no 
group of algae would get to realise its potential before conditions became unfavourable again.  
Furthermore, it has been observed that some algae can adapt to the conditions offered by 
continuous mixing and become able to flourish in an environment initially designed to discourage 
them.  Intermittent mixing would avoid this issue.  A 2003 report into algal mitigation options for 
Happy Valley reservoir found that, of all the management strategies that were modelled for the 
investigation, intermittent operation of mixers and aerators (on a 2 out of 4 day rate) was found to 
achieve very high levels of cyanobacteria growth inhibition (Ingleton 2003a).  However, because 
sediment release is a concern in Myponga and Happy Valley reservoirs, along with 
cyanobacterial blooms (though not as significant) it may not be wise to completely disregard 
continuous mixing, as it appears to be beneficial in reducing the internal loading.  Therefore, 
strategies involving a combination of intermittent and continuous mixing could be suggested.  An 
example of such a regime is found in Lake Nieuwe, the Netherlands where continuous mixing had 
previously been used for the spring/summer period to control cyanobacteria.  During the trial 
intermittent mixing was used in spring, and continuous mixing was initiated in summer.  A 75% 
reduction in energy costs was achieved for the spring period using artificial mixing, and the 
energy costs for the whole spring/summer period were only 27% of the previous year with 
continuous mixing for those seasons.  Importantly, during the period of intermittent mixing there 
were no disadvantageous consequences for the oxygen content of the water (Visser et al. 1996).  
Considering the results of these studies suggest that reduced cyanobacterial growth and an 
oxygenated water column are possible with various regimes of intermittent mixing, potential 
management strategies for Myponga and Happy Valley reservoirs could be: bubble plume 
aerators used continuously and surface mixers only initialised when forecasted abundances are 
above a certain threshold level.    Or perhaps, as with the regime implemented at Lake Nieuwe, 
continuous mixing could be carried out in only Jan-Feb, the most problematic time, and 
intermittent mixing during the other months of concern.  Ideally, the management will keep 
cyanobacterial populations to an acceptable level, thereby reducing the reliance on CuSO4 
treatment.  
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2.6  Online, real-time monitoring and forecasting  
 
In order to minimise expenses to water industries and reduce public health concerns caused by 
harmful algal outbreaks in drinking water reservoirs, appropriate predictive tools and early 
warning systems need to be developed and implemented.  To maintain a consistent supply of 
high quality, safe drinking water reserves, reservoir water quality must be continuously monitored. 
This continuous monitoring can only feasibly be achieved by on-line monitoring (Fogelman 2006).   
Traditional field monitoring uses manual water sampling, often with sampling frequencies limited 
to weekly- monthly sampling.  In the case of low frequency manual sampling, much water quality 
information is missed as hazards can develop at time-scales shorter than the sampling frequency, 
such as algal blooms which can be very dynamic in nature and can occur over a period of days.  
In general there is a need for high frequency data to understand water quality processes and the 
time-scales over which they occur including the changes in water quality in a typical algal bloom 
event, and the conditions leading up to it (Wong 2004).  Online, real-time monitoring could also 
assist in the management of water quality hazards other than algal blooms, including problems 
occurring over different time scales, such as soluble metal release from the sediment which 
develops over a scale of weeks to months (Brookes et al. 2002b).  As well as being able to 
capture more information of water quality and algal dynamics, continuous online monitoring can 
be linked to real-time forecasting.  Current monitoring practices are lab-based and because of the 
time taken for sampling, transportation to the laboratory and analysis of the samples, they are 
inappropriate for on-line monitoring and unable to be linked to real-time forecasting where rapid 
feedback is essential (Fogelman 2004).  Numerous techniques have, and continue to be, 
developed for real-time monitoring, including optical methods through to identification of genetic 
signatures using PCR-based methods (Sellner et al. 2003). Online monitoring of reservoirs has 
not been widely practised in the past, as the real-time continuous information was not regarded 
as useful in operational decision-making (Brookes et al. 2002b).  However, when online 
monitoring is linked to real-time forecasting, it can become very useful for prediction of water 
quality hazards and provide decision support that will enable proactive, rather than reactive, 
intervention and management.   
 
Data from continuous online monitoring systems can be used to develop early warning systems 
for algal blooms, incorporating detection and prediction of dynamics.  Forecasting methods that 
are capable of fast response to highly non-linear and rapid events, and allow preventive and 
operational control are required.  Traditional methods of forecasting have proven to be unsuitable 
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for use in operational management of freshwater / reservoir systems.  Real time forecasting, 
based on continuous in situ measurements of lake water quality and climate data in conjunction 
with forecasting models, will allow the prediction of sudden growth and high abundance of algal 
populations several days in advance.  To optimise the efficiency of algal bloom control methods 
and minimise their impact on the ecosystem, it is essential they be applied preventatively or at a 
very early stage of bloom development, at the appropriate level or dosage.  Early warning at an 
initial stage in algal bloom development based on real time forecasting makes the application of 
alternative operational control options such as intermittent mixing (NRA 1990) or pH shock 
(Klapper 1991) possible, and can be used by water management authorities for decision support 
and to make provisions to alter treatment plant operation in the case of impending blooms (Maier 
et al. 1998).  In recent years, significant advances have been achieved in both the range and 
accuracy of electronic water quality measurements and the predictive modelling of algal blooms, 
confirming that this approach is a viable option for future algal dynamics and water quality 
management. 
Examples in the literature of systems using continuous online water quality monitoring, to be 
linked with modelling methods include: 
Romero et al. (2003) included real-time monitoring, databases, numerical models and 
visualisation tools in a decision support system, Aquatic Real-time Management System (ARMS), 
which was applied to two Sydney water supply reservoirs.  The system had use of large data 
sources of real-time and historical data for both Lake Burragorang and the Prospect reservoir 
including stream data flow rates and water quality, in-lake meteorology and water column 
temperature data, and withdrawal rates (Ewing et al. 2004).  Three process-based models were 
integrated into the system, namely DYRESM, ELCOM (one and three dimensional 
hydrodynamics models respectively) and CAEDYM (an ecological model), with the aim to 
increase understanding of reservoir water quality processes, to evaluate management scenarios 
and to forecast effects of perturbations.   DYRESM was applied to long-term simulations between 
one month and several years, for example a two-year DYRESM-CAEDYM simulation of the 
response of Prospect reservoir to changes in its flow regime.  ELCOM  was used for event 
modelling tasks between one week and one month, such as an ELCOM-CAEDAM simulation of 
the fate of a flood inflow to Burragorang reservoir, tracking contaminants through the weeks after 
a rain event.  DYRESM-CAEDYM was tested on Prospect reservoir (1988-1990), with the aim of 
simulating one-dimensional seasonal dynamics.  It was shown to simulate stratification patterns, 
dissolved oxygen and nutrient levels well in general but simulations of hypolimnetic temperatures, 
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epilimnetic phosphate concentrations and nitrate levels did not match field observations (Romero 
et al. 2003).  ELCOM-CAEDYM simulations were found to be computationally intense, taking 
many hours or days to run.  The three dimensional model ensemble was tested on a flood event 
of 1997 in Lake Burragorang and successfully simulated the primary underflow dynamics in the 
reservoir.  ARMS is available as a desktop software package.  
Wong (2004) linked online, continuous monitoring of two coastal locations in Hong Kong with 
Lagrangian modelling for the prediction of harmful red tide events caused by motile 
dinoflagellates.  A remote automatic measuring and recording system was used to provide high 
frequency data including algal and dissolved oxygen dynamics along with key water quality and 
hydrographic parameters.  In vivo chlorophyll concentration was measured in real-time via 
flurometric measurement and translated to Chl-a for use (Wong 2004).  Wong used several years 
of online data to develop the mathematical model for Chl-a prediction that considered algal 
growth and decay, settling and swimming and vertical turbulent mixing.  With a nutrient 
competition consideration, the type of bloom likely to occur can be predicted of either the non-
motile or the harmful motile species.  The system was shown to be successful in providing quick 
assessment of the likelihood of red tide occurrence and increasing understanding of controlling 
factors of bloom formation. 
Lee et al. (2004) presented real-time monitoring and forecasting of algal bloom dynamics using 
artificial neural networks, based on continuous high frequency measurements of water quality and 
hydro-meteorological parameters at Kat O field monitoring station in Hong Kong.  A feedforward 
supervised artificial neural network was used, specifically a MLP trained with back propagation, to 
forecast chlorophyll fluorescence (representing algal biomass) with different lead times of up to 
three days in advance.  Daily values of chlorophyll fluorescence, dissolved oxygen, water 
temperature, solar radiation and wind speed were used as input variables but multivariate 
statistical analysis of the input variables suggested that the use of past chlorophyll fluorescence 
values alone was sufficient for algal prediction.  Testing was carried out with chlorophyll 
fluorescence data from July 2001 to October 2001 (approximately 120 samples), and the 
remaining samples (between 500 and 700) were used for training.  The most useful model was 
found to use chlorophyll fluorescence measurements at times t, t-1, t-2 and t-7 to give forecasts 
two days in advance, which gave a testing r2 value of 0.74 and an RMSE of 216.  
A study by Muttil and Lee (2005) for the real-time prediction of coastal algal blooms using Genetic 
Programming (GP), has delivered encouraging results for the use of evolutionary algorithm 
techniques in real-time forecasting (Muttil & Lee 2005).  The evolutionary algorithm was designed 



  

University of Adelaide, Australia 45

to discover an equation for forecasting chlorophyll fluorescence at the Kat O field station, Hong 
Kong.  Initially GP was used to identify the most significant input variables for predicting 
chlorophyll fluorescence, at different lead times, from 3 years of high frequency data including 
chlorophyll fluorescence and related hydro-meteorological and water quality parameters with 
different lag periods.  From the available chlorophyll fluorescence data (March 2000 to March 
2003), July 2001 to October 2001 were used for testing (approximately 120 samples) and the 
remainder (about 800 samples) was used as the training set.  The best performing equation (Eq. 
3) was found to use the inputs chlorophyll fluorescence (Chl) at time t and t-1, solar radiation (SR) 
at t-1 and wind speed (WS) at t-4 and provide chlorophyll fluorescence forecasts one day in 
advance.  This model provided a correlation coefficient of 0.85 and an RMSE of 165 on the 
testing data set (Fig. 14).  The authors highlighted the advantage of the GP providing an equation 
relating input and output variables, which facilitates the interpretation of results in comparison 
with ecological reasoning.  It was concluded that GP is a feasible method of algal bloom 
modelling that can be applied in a real-time situation and give predictions with reasonable 
accuracy for one day in advance.    

Eq.3 

Figure 14.  Results of chlorophyll fluorescence forecasts, with 1, 2 and 3 days lead time, 
using a predictive equation (from Muttil and Lee (2005)
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In this study, machine learning methods, RANN and HEA, are proposed to be trialled as potential 
methods to link with real-time water quality monitoring data (or simulated real-time data) in order 
to enable real-time forecasting of algal blooms in two South Australian drinking water reservoirs. 
 

2.7 Summary 
 
Ecological modelling has long been recognised as a very powerful approach for analysis and 
prediction of ecological systems, processes, interactions and occurrences.   In recent years, it 
has been found that computational, data driven methods can successfully be applied to time-
series data from complex, non-linear systems such as freshwaters.  In particular, ANN and EA 
have shown that they can be effectively used to discover and predict patterns within datasets, 
and provide further information and understanding of the causal relationships driving algal 
dynamics.   
Myponga and Happy Valley reservoirs are the study sites for this project.  In the past both 
reservoirs have experienced thermal stratification in summer and nuisance cyanobacteria 
blooms.  Although the incidence and intensity of thermal stratification has decreased since the 
introduction of artificial mixing in the reservoirs, cyanobacteria blooms continue to plague both 
locations.   
This study aims to apply ANN and EA to water quality databases from Myponga and Happy 
Valley reservoirs to develop predictive and explanatory models with focuses including algal 
dynamics, both event based and seasonal, and management regimes.  Information gained from 
such models can be used to assist decision-making and management. 
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3.  MATERIALS, MODEL DESIGN AND APPLICATION 
  

This chapter provides a general overview of the data and methods; however, specific data sets and 
modelling approaches used for each case study or experiment are described in each relevant 
chapter.  
 

3.1 Myponga reservoir site and data summaries 

3.1.1 Myponga reservoir site description 
Myponga reservoir was built as a concrete arch-dam with a ski jump spill way and completed in 
1962 (Government 1962).  It is located approximately 60km south of Adelaide, South Australia, 
on the Myponga river and is a vital water supply to southern metropolitan Adelaide and the 
Fleurieu Peninsula (Lewis et al. 2003).  The reservoir has a storage capacity of 26,800 ML, a 
maximum depth of 35m, an average depth of 15m and the area of water spread is 2.8km2.  The 
mean water retention time based on abstraction is approximately three years and water is 
removed from the reservoir via an offtake valve on the dam wall.    Myponga reservoir has a 
shallow average euphotic depth of 3m, due to its highly coloured nature. The average light 
extinction coefficient is about 1.5m, although Myponga is generally low in turbidity (Lewis et al. 
2003; Velzeboer et al. 1991).   
 
The catchment area covers 124km2 and is located within the Adelaide foothills, accommodating 
an intense dairy and cattle farming community.  Although the dominant land use within the 
catchment is estimated to be 62% livestock grazing and 24% dairying (Thomas et al. 1999), pine 
plantation, grassy pastures and small fragments of native vegetation can be found in the area 
surrounding the reservoir, supported by an average annual rainfall of 750mm (Smalley 1998).  
 
Some of the most dominant phytoplankton types found in Myponga reservoir are Scenedesmus, 
Cryptomonas, Anabaena, Nitzschia, Cyclotella, Chroomonas, Chlamydomonas and 
Monoraphidium (Lewis et al. 2002) (Lewis 2004).  The reservoir is generally well mixed from late 
April to late September, and artificial mixing is employed from October to March in an effort to 
maintain mixed conditions throughout the warmer months, though this is not always achieved.  
Cyanobacteria, such as Anabaena, can usually only dominate during periods of thermal 
stratification, when they can exploit the stable water column by using their buoyancy control to 
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access both light and nutrients. They are therefore restricted to summer and autumn.  Being non-
motile, some of the green algae and diatoms prefer mixed conditions and can therefore 
theoretically dominate at any time in the year.  However, diatoms are highly perceptible to 
sedimentation losses due to their heavy nature and rely on re-suspension via turbulence. 
Therefore they tend to persist during extended periods of strongly mixed conditions.  Green algae 
prefer higher light intensities, even though they can handle variable light conditions and thus 
prefer the warmer seasons with higher solar radiation.  Green algae tend to make up most of the 
algal biomass in Myponga reservoir (Lewis 2004).  Although no serious water quality hazards are 
created by green algae, high abundances can cause problems in the water treatment plant, e.g. 
filter clogging.   
 
Due to the employment of artificial destratification, overall the conditions at Myponga reservoir in 
relation to algal growth can be considered as well mixed with poor light conditions (Lewis 2004).  
However, as discussed above, in the warmer months of most years the reservoir undergoes 
thermal stratification, of varying intensity and duration, due to the increased energy from radiation 
and decreased water inflow from the catchment.  In the past this stratification combined with the 
highly coloured and nutrient rich water has created optimal conditions for the growth of algae, 
particularly cyanobacteria (Kelly 1998).  Major bloom events are often in mid-January, although 
management is on alert from December to March annually (Burch 2005b).  Anabaena circinalis 
has been identified as the key nuisance species at these times. 
 

3.1.2 Historical data from Myponga reservoir 
Data was collected by water quality management authorities since the 1960’s, however much of it 
was too inconsistent for this particular use, thus only 18 years (1986-2003) of data was selected 
to be used in the present study.  The data used was collected from Location 1 in the reservoir, as 
it was nearest the off-take valve on the dam wall and also supplied the longest, most consistent 
dataset.  The dataset contains 14 variables, describing the physical, chemical and biological 
conditions of the water body (see Tab. 1). 
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Table 1.  Water quality data from Myponga reservoir Sampling Location 1  

VARIABLE ABBREVIATION UNIT USEABLE 
DATA 

MEAN MIN MAX STND. 
DEV. 

Chlorophyll-a Chl-a ug/L 1986-2003 7.84 0.2 41.6 6.92 
Water 

temperature 
- °C 1986-2003 16.1 8.4 25 3.81 

Turbidity - NTU 1986-2003 4.4 1.2 30 2.58 
Colour - HU 1986-2003 72.9 28 166 22.71 
Total 

Phosphorus 
Total P mg/L 1986-2003 0.06 0.011 0.218 0.026 

Phosphate PO4 mg/L 1986-2003 0.022 0 0.09 0.019 
Nitrate NO3 mg/L 1986-2003 0.11 0.001 0.37 0.092 

Iron (soluble) Fe mg/L 1986-2003 0.404 0.05 1.11 0.2 
Manganese 

(soluble) 
Mn mg/L 1986-2003 0.025 0.005 0.12 0.028 

Dissolved 
Oxygen 

DO mg/L 1993-2003 8.78 3 13.16 1.31 

Conductivity - uS/cm 1999-2003 620.39 525 781 47.69 

Anabaena - cells/mL 1991-1993 
1995-2003 

185.9 1 5933 667.4 

Scenedesmus - cells/mL 1986-1991 
1996-2003 

8443.9 1 188000 19460.5 

Nitzschia - cells/mL 1996-2003 953.53 1 13100 2205.78 

 
 

3.2 Happy Valley reservoir site and data summaries 
3.2.1 Happy Valley reservoir site description 

Happy Valley reservoir was built between 1892 and 1897, 15km south of Adelaide.  Happy Valley 
reservoir is a key drinking water supply for metropolitan Adelaide as it provides the water for the 
Happy Valley water treatment plant (WTP), completed in 1991, that serves 40% of the 
metropolitan area (SAWater 2002; United-Water 2005).   
 
The reservoir is relatively shallow with an average depth of 6.8m and a maximum depth of 19m.  
The usable capacity of the reservoir is approximately 12,000ML, with the area of water spread 
being 1.88 km2 at full supply level (Burch 1987).  
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In 2002, a rehabilitation project was initiated to ensure Happy Valley met or exceeded national 
and international guidelines for best practice management of dam structures (SAWater 2003).   
These works increased flood storage capacity and reduce risk of failure and leakage.  The dam 
was constructed of earth with a clay core, with the dam wall being approximately 25m high and 
1155m long (SAWater 2002).   
 
Happy Valley reservoir receives water from not only the Onkaparinga Catchment, but also from 
the Murray River.  The Onkaparinga Catchment is a multiple use catchment including settlements 
and agriculture such as dairy farming, grazing, market gardening, and viticulture (Ingleton 2003a). 
 
The most important phytoplankton genera in Happy Valley reservoir, based on their regular 
occurrence as dominants or subdominants, are Cyclotella, Dictyosphaerium, and Anabaena.  
Records show two potentially toxic species, Microcystis aeruginosa and Anabaena circinalis, 
present in the reservoir but Anabaena circinalis is the main species of concern (Burch 1987; 
Ingleton 2003b). 
 
Happy Valley reservoir experiences at least weak thermal stratification for up to 5 months each 
year (November – March).  Whilst well mixed isothermal conditions usually exist during May to 
September, the warmer months often experience intense stratification accompanied by sediment 
nutrient release and cyanobacterial blooms (Burch 1987).  As with Myponga reservoir, the key 
nuisance species during these times in Anabaena circinalis.  Artificial destratification is employed 
from around October to March in an attempt to prevent anoxic conditions at the sediment and 
cyanobacterial bloom events.     
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3.2.2 Historical data from Happy Valley reservoir 
Even though some data was collected in Happy Valley reservoir from the 1940’s onwards, only 8 
years (91, 97-2003) of data was comprehensive and consistent enough for use in the present 
study.  The data used was collected from Location 1 in the reservoir as it provided the longest 
dataset with maximum variables.  The dataset contains 14 variables, describing the physical, 
chemical and biological conditions of the water body (see Tab. 2).     

Table 2.  Water quality data from Happy Valley reservoir Sampling Location 1. 

 

 
 

VARIABLE ABBREVIATION UNIT USEABLE 
DATA 

MEAN MIN MAX STND. 
DEV. 

Chlorophyll-a Chl-a ug/L 1991-2003 9.08 0 66.45 7.81 
Water temperature - °C 1990-2003 16.75 6 36 3.51 

Turbidity - NTU 1990-1991 
1994-2003 

9.04 1.8 41 6.97 

Colour - HU 1990-1991 
1994-2003 

43.54 5 111 24.25 

Total Phosphorous Total P mg/L 1990-1991 
1994-2003 

0.098 0.017 0.246 0.051 

Phosphate PO4 mg/L 1990-1991 
1994-2003 

0.024 0.006 0.076 0.015 

Nitrate NO3 mg/L 1990-1991 
1994-2003 

0.226 0.005 0.63 0.157 

Iron Fe mg/L 1990-1991 
1994-2003 

0.151 0.006 0.433 0.098 

Manganese Mn mg/L 1990-1991 
1994-2003 

0.015 0.005 0.166 0.018 

Dissolved Oxygen DO mg/L 1990-2003 9.24 2.2 21.4 1.33 
Conductivity - uS/cm 1991, 

1995-2003 
650.34 436 1030 80.78 

Anabaena - cells/mL 1991-2003 130.9 0 6660 423.1 
Dictyosphaerium - cells/mL 1990-2003 1008.2 0 26000 2233 

Cyclotella - cells/mL 1990-2003 474.3 0 18600 1486.1 
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3.3 A comparison of study sites 
Both reservoirs are located within 60km south of Adelaide, South Australia (see Fig. 15), and 
experience Mediterranean climate. Both serve as drinking water supplies providing water to on-
site water treatment plants that service large parts of metropolitan Adelaide.  Both reservoirs 
experience problem algae blooms particularly cyanobacteria, and employ aeration and CuSO4 

dosing in an attempt to reduce the frequency and severity of bloom events.   
Both reservoirs can be classified as eutrophic systems that require management to maintain 
water quality.  Forsberg and Ryding (1980) recommend that when classifying trophic state, an 
approach be used that considers multiple variables.  Three methods were used to classify 
Myponga and Happy Valley reservoirs, considering Chl-a, TP, PO4, NO3 and DO measurements, 
with all methods giving a eutrophic outcome (see Appendix A for calculations).  However, 
Myponga was often only slightly over the eutrophic threshold, whereas Happy Valley was 
classified as distinctively eutrophic.  
This study allows comparisons between Myponga and Happy Valley reservoirs as both are 
classified into the same lake ecosystem category, that being warm monomictic and eutrophic. 
 
Aside from the obvious differences of size and volume (see Tab.3), Myponga and Happy Valley 
reservoirs also differ by the origins of water that they store.  Unlike the remaining South 
Australian reservoirs, Myponga is entirely catchment fed and relies only on the Myponga River 
and runoff from the 124km2 surrounding catchment.  Happy Valley, on the other hand, is largely 
isolated from its surrounding natural catchment of only 6km2, but is fed by controlled releases 
from Mount Bold Reservoir (an upstream impoundment of the Onkaparinga River) and also 
receives water pumped from the River Murray when required.  Therefore, flow into Myponga 
reservoir is seasonal and consequently, most rainfall and resulting runoff and nutrient influx are 
received during winter and into spring, with potentially lower water levels and depleted nutrient 
concentrations in summer and autumn.  Flow into Happy Valley, although most often would follow 
a similar seasonal pattern, can be altered by upstream releases of River Murray or Mount Bold 
Reservoir water and therefore can sometimes display patterns (with regard to nutrient levels, 
phytoplankton assemblages and abundances) dissimilar to what would be expected. 

 

 



 
 

Table 1. Comparison of reservoir attributes 

 Myponga Happy Valley 

Surface area 2.8km2 1.88 km2  

Max. volume 26,800 ML 12,700ML 

Max. depth 36m 19m 

Mean depth 15m 6.8m 

Catchment area 124km2 6km2

 

 
 

 
NOTE:  This figure is included on page 53 of the print copy of the 

thesis held in the University of Adelaide Library. 
 

 

 

 

 

Figure 15 - Locations of Myponga and Happy Valley reservoirs in South  

Australian (from SA Water Drinking Water Quality Report 2003-2004) 

 

 
 
 

3.3.1 Water Quality Time-series Graphs of Myponga and 
Happy Valley reservoirs 

 

Data is central to machine learning, data driven techniques used throughout the project, and results 
are influenced by the quality of data used.  Therefore it is desirable to have high quality data, in a 
sufficient quantity, to gain the maximum benefits from the methods. 
Interpolated data is displayed in the form of time-series graphs (Fig. 16-19) to reveal annual 
dynamics and long-term trends of both reservoirs, as well as allow comparisons between the two 
study sites. 
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3.2.2.1 Chl-a 

The time series graph of Chl-a concentrations in Myponga and Happy Valley reservoirs (Fig. 16a) 
shows that both study sites experience similar levels, with Happy Valley having somewhat higher 
concentrations during extreme events.  It appears that there is a slight increase in Chl-a 
concentration over time.  As expected, Chl-a concentrations are maximal during the early part of 
each year, coinciding with warmer weather that stimulates algal growth.  

3.2.2.2 Water temperature 

Fig. 16b shows that both reservoirs have similar water temperatures over the period studied and 
exhibit expected seasonal fluctuations. 

3.2.2.3 Turbidity 

Myponga and Happy Valley reservoirs appeared to have similarly moderate turbidity up until 
1997, where Happy Valley has become significantly more turbid with some extreme events giving 
high turbidity levels.  Fig. 16c reveals that in Myponga reservoir, from 1997 onwards, the turbidity 
appears to have decreased and remained at low levels.  The peak turbidity largely occurs mid-
year.  

3.2.2.4 Colour 

Colour measurements in Fig. 16d show some interesting patterns particularly in Myponga 
reservoir throughout the 1990’s.  The reservoir is characteristically high in colour and levels seem 
to have slightly increased over time.  Happy Valley has lower water colour but appears to also 
slightly increase toward the end of the period (2000’s).   

3.2.2.5 Total Phosphorus  

The concentration of total Phosphorus in Myponga reservoir remains relatively steady throughout 
the study period, with maximal concentrations in the 2000’s (Fig. 17a).  Happy Valley had similar 
total Phosphorus conditions until the mid 1990’s where concentrations began to increase 
significantly.    

3.2.2.6 Phosphate 

Higher phosphate levels were recorded for both reservoirs from the late 1990’s onwards, with 
Myponga appearing to have slightly higher concentrations.  Prior to that, Fig. 17b shows that 
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Myponga and Happy Valley recorded similar phosphate levels with peak values around 0.05mg/L.  
Concentrations appear to peak around August/ September annually.   

3.2.2.7 Nitrate 

The time series graph in Fig. 17c shows that nitrate concentrations are clearly much greater in 
Happy Valley reservoir, with highest levels being recorded in the 1990’s.  It also shows an 
apparent decreasing trend from the late 1990’s in Happy Valley reservoir.   Concentrations 
recorded in Myponga reservoir have largely remained stable, with a few years of noticeably lower 
concentrations (1993, 1994, 1997-1999, 2002).  As with phosphate, nitrate concentrations appear 
to peak around August/ September. 

3.2.2.8 Iron 

Iron concentrations are shown in Fig. 17d to be highest in Myponga reservoir, with maximal 
concentrations from 1986-1993, followed by a drop in concentration levels.  Happy Valley data 
shows a stable level of iron throughout the period.  Annual peak iron concentrations are shown to 
occur at the end of a year and beginning of the next year, i.e. over the summer. 

3.2.2.9 Manganese 

Fig. 18a shows the time series graph for Manganese concentrations in both reservoirs and 
reveals that Myponga has the highest levels of the reservoirs.  There is no clear long-term trend 
in the data for this reservoir, although concentrations are minimal for the first three years (1986-
1988), from then onwards years of high and low concentrations seem to occur with no identifiable 
pattern.  Happy Valley reservoir also recorded relatively low concentrations during the first few 
years of data (1990-1991, 1994-1996), increased to an extreme high level in 1997, then 
decreased to a level that remained consistent for the rest of the period.  Annual peak 
concentrations are shown to occur around March-April. 

3.2.2.10 Dissolved oxygen   

Similar concentrations are shown for dissolved oxygen concentrations in Myponga and Happy 
Valley reservoirs (Fig. 18b).  No long-term trend occurred as the concentrations remain at a 
consistent level for the entire duration of the studied period. 
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3.2.2.11 Conductivity 

From limited conductivity data (Fig. 18c), Happy Valley reservoir is shown to have higher 
conductivity levels than Myponga reservoir, and has maximal values during the 2002-2003 
period. Myponga data is too limited to exhibit any trends.  Seasonal patterns are difficult to 
interpret, however the peak events in both reservoirs occurred over the 2002-2003 summer 
period.   

3.2.2.12 Anabaena 

Anabaena abundance is shown in Fig. 19a to reach higher levels in Myponga reservoir than 
Happy Valley.  No distinct long-term trend can be seen for either reservoir, though seasonally it 
can be seen that peak Anabaena abundance occurs over the summer period each year.  There is 
one major exception to this in Myponga reservoir (2001), where Anabaena abundance 
interestingly peaked in winter.   

3.2.2.13 Green algae 

Of the two green algae used in this study, Scenedesmus in Myponga reservoir is found in much 
greater abundances than Dictyosphaerium in Happy Valley reservoir (Fig. 19b).  Scenedesmus 

does not present a significant long-term trend, instead there are periods of low abundance (1986-
1991,1994-1996, 2000-2001) mixed with periods of high abundances (1992-1993, 1997-1999, 
2002-2003).  Dictyosphaerium does not appear to experience a change in peak abundance levels 
throughout the studied period.  Seasonal patterns are inconsistent for both algae.    

3.2.2.14 Diatoms 

Cyclotella, a dominant diatom in Happy Valley reservoir, is shown to reach slightly greater 
abundances during peak events than Nitzschia in Myponga reservoir (Fig. 19c), though overall 
Nitzschia is more consistently high in abundance.  Cyclotella has quite low populations for most 
years excluding 1989-1991, 1994-1995 and 2002.  No long-term trends are obvious for either 
diatom, though seasonally Nitzschia can be seen to occur mostly between February and July.     
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Figure 16.  Time-series graph of preprocessed water quality data from Myponga and Happy Valley 
reservoirs, specifically a) Chl-a b) water temperature c) turbidity d) colour 
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Figure 17. Time-series graph of preprocessed water quality data from Myponga and Happy Valley 
reservoirs, specifically a) total phosphorus b) phosphate c) nitrate d) iron 
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Figure 18. Time-series graph of preprocessed water quality data from Myponga and Happy Valley 
reservoirs, specifically a) manganese b) dissolved oxygen c) conductivity 
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Figure 19. Time-series graph of preprocessed water quality data from Myponga and Happy Valley 
reservoirs, specifically a) Anabaena b) green algae c) diatoms 
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3.4 Hope Valley reservoir site and data summaries  

3.4.1 Hope Valley reservoir site description 
Real-time monitoring data from the Hope Valley reservoir was used as an independent data set 
for the case study aiming to test rule-based agents developed using Myponga and Happy Valley 
historical data (see Chapter 6).  Hope Valley reservoir falls into the same lake ecosystem 
category as Myponga and Happy Valley reservoirs (Warm monomictic and slightly Eutrophic).  It 
is located within metropolitan Adelaide and also used as drinking water storage.  It is significantly 
smaller than either Myponga or Happy Valley reservoirs, with a maximum capacity of 3,700ML 
and water spread of 0.52 km2.  

3.4.2 Real-time data from Hope Valley reservoir 
In order to test rule-based agents developed during this research with real-time data, a 
preliminary data set was collected (see Tab. 4) in real-time via online monitoring of Hope Valley 
reservoir (CRC for Water Quality and Treatment project no. 2.0.2.2.2.1).  160 days of data was 
available to be used for testing of the agents.  As the real-time monitoring records measurements 
every 60 minutes, the data set initially encompassed overnight measurements.  It was decided 
that, because the data used to develop the models was sampled between 10am and midday, it 
would be best to use an average of the measurements between these times for this application.   

Table 4. Water quality data from Hope Valley reservoir 

VARIABLE ABBREVIATION UNIT USEABLE 
DATA 

MEAN MIN MAX STND. 
DEV. 

Chlorophyll-a Chl-a ug/L 9/11/2006 – 
20/4/2007 

11.1 3.1 67.4 10.75 

Water 
temperature 

- °C 9/11/2006 – 
20/4/2007 

21.5 17.2 25.4 2 

Turbidity - NTU 9/11/2006 – 
20/4/2007 

4.2 0.9 10.3 1.77 

Dissolved Oxygen DO mg/L 9/11/2006 – 
20/4/2007 

6.47 4.3 9.92 1.27 

Conductivity - uS/cm 9/11/2006 – 
20/4/2007 

595.5 504 709 51.48 
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3.4.2.1 Chl-a 

Chl-a concentrations in Hope Valley reservoir showed growth events on three occasions during 
the recorded period (Fig 20a).  Small peaks are shown in January and again in February, 
however the major peak event (up to approximately 70ųg/L) occurred in early-mid April. 

3.4.2.2 Water temperature 

Water temperature in Hope Valley reservoir is shown to start at mid-range temperatures of 
around 17ºC in early November to warm temperatures in the mid-20’s over late December to 
early March, and then returns to mid-range temperatures (Fig.20b).  Obviously the increase in 
water temperature coincides with the summer season. 

3.4.2.3 Turbidity 

Recorded turbidity values seem to be consistently higher at the beginning of the studied period 
(Fig.20c).  The troughs reach lower levels from late December onwards, however the peak levels 
reach high values equal or above those in the earlier in the period.   
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Figure 20.  Time-series graphs of available real-time water quality data from Hope Valley reservoir 
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3.4.2.4 Dissolved oxygen 

Fig. 20d shows that dissolved oxygen dynamics are clearly much higher in the latter half of the 
studied period (around late January onwards), with maximal values achieved at the end of April.   

3.4.2.5 Conductivity 

Conductivity measurements show a decreasing trend throughout the studied period with recorded 
values reducing from approximately 700 to 500ųS/cm (Fig. 20e). 

 
3.5  Methods 

3.5.1 Data Pre-processing 
All historical data was pre-processed before modelling commenced.  This lengthy process aims to 
clean the data and ensure that the data set is free of false or missing values and outliers, and is 
of a reliable quality.  The regularity of the raw data was highly inconsistent, caused by different 
sampling regimes within each reservoir and for physical, chemical and biological water quality 
variables.  To achieve equidistant intervals between all data, as required for the development of 
particular time-series models, the data was linearly interpolated to produce daily values and each 
month was standardised to 30 days.  The use of interpolated data has, in the past, been a 
contentious issue that has been studied extensively in the statistical literature.  More relevantly, 
recent studies have focused on the use of interpolated temporal data for time-series modelling 
using machine-learning methods.  McKay et al. (2006) compared models trained with raw data 
and linearly interpolated data and validated them on the same test data set of raw 
measurements.  It was found that the model trained with linearly interpolated time-series data 
actually performed better than the model trained with raw data.  Cao (2006) also found that 
interpolated data did not increase error levels when used to develop HEA forecasting rule-sets, in 
fact, it gave better results than the raw data. 
 

3.5.2 Recurrent Artificial Neural Network (RANN) 
RANN (Pineda 1987) were used to forecast phytoplankton dynamics in both Myponga and Happy 
Valley reservoirs, using Chl-a data as an indicator of algal abundance or by using the specific 
abundance values of the main nuisance algae in each reservoir, Anabaena.  Sensitivity analyses 
were then used to reveal quantitative relationships between the input variables and the output.  
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For the development and implementation of the SNN models, NeuroSolutions for Excel Version 
4.2 was used.   

3.5.2.1 Model design 

Bowden (2003) formulated a methodology for the successful design and implementation of ANNs 
for the forecasting of water resource variables, designed to be of assistance to the many users of 
ANNs in the water industry who were not experts in the field computational modelling.  It aims to 
harness the full capabilities of the ANNs by preventing the poor modelling practice due to 
unsystematic model development.  The methodology is as follows: establish if ANNs is a better 
approach than more traditional statistical models; divide the available data into training and 
testing subsets for modeling purposes; decide on a suitable data transformation; determine 
optimal model inputs; choose type of ANN and architecture; select an appropriate performance 
measure and training of the network’s weights {Bowden, 2003 #8}. 
Bowden’s methodology was considered as a guide, particularly when developing the SNN models 
in this project, though much of it also applied to HEA.  It can be safely assumed that the 
databases used in this study contain non-linear data that is best suited to use by ANNs or 
machine learning methods rather than more conventional statistical models.  Data division, input 
selection, training and testing methodology is described below, and data transformation was not 
thought to yield significant improvement for this particular application (Maier 2005) and therefore 
was not considered further.  RANN was chosen for all SNN use in this project as it has proven to 
be particularly powerful for time-series modeling (see section 2.2.1.2) and is recommended by 
NeuroSolutions for more difficult temporal problems (NeuroDimension 2003).   When building an 
SNN model numerous decisions have to be made regarding the network architecture.  For 
example, number of hidden layers and number of processing elements in each layer, transfer 
function, learning rule and step size all need to be established.  To clarify the role of some 
architectural components of the network, some definitions may be helpful.  A processing element 
is a neuron-like unit that, together with many other processing elements, forms a neural network.  
The number of processing elements directly affects the overall computing power of the network.  
The transfer function is the component of a processing element through which the sum is passed 
(transformed) to create net output.  Finally, the learning rule is used to calculate the weight 
updates.  It specifies how weights adapt in response to a learning example (NeuralWare 1993).  
Some of these network parameters depend on the type and amount of input data; therefore, 
throughout the project slightly different architectures may have been used from model to model.  
However, some parameters were kept static throughout all experiments.  All RANN were 
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designed with one hidden layer and used the Tanh Axon (hyperbolic) transfer function, with the 
Momentum learning rule set to 0.7.  One hidden layer was considered sufficient for these 
problems, the TanhAxon is largely considered the non-linear axon of choice and was appropriate 
for this research and momentum was chosen as the learning rule although it is not the fastest 
learning rule, it is thought to be generally the most stable (NeuroDimension 2003).  Different input 
layer structures are better suited to certain types of data and applications.  A simple Axon 
structure was predominantly used throughout this work.  The exact architecture of each model will 
be detailed in the relevant chapters. 

3.5.2.2 Input selection 

Optimal input variables can be determined in a number of ways including correlation analysis and 
expert knowledge.  Data-driven methods are largely assumed to be able to identify critical model 
inputs, however it is best not to rely solely on the model to determine significant input, but to do 
some input refining before hand.  Selection of the most relevant variables to include as model 
input can lead to reduced computational effort and easier to manage models (Schleiter et al. 
2006).   
 
In this study, no one specific method was used throughout the project to select the optimal model 
inputs, it was dependent upon the availability of data and the focus of the specific experiment.  In 
some initial cases, there was very limited data and therefore, the variables that were available 
were used as inputs.  In most cases, variables recognised in relevant literature to have significant 
relationships with phytoplankton were selected.  In most cases, the potential input variables were 
first applied to KANN so that obvious relationships and interactions could be seen.  Often a ‘trial 
and error’ technique was applied to find the best inputs, where RANN would be run with all 
potential inputs and then a sensitivity analysis would be carried out and inputs that had little to no 
influence on the output were excluded from the next run.   

3.5.2.3  Data division, training and testing 

A RANN requires two sets of data - one for training and the other for testing.  Data set division is 
important and each sub set must be representative of the same population, though they do not 
have to be the same size.  It is important that the test data be independent from the training data, 
so that the model can be assessed by its performance on new data.  Power (1993) states that the 
testing of a model on new or independent data is clearly the most robust method for testing 
models predictive capabilities.  
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Split-sample validation (see Weiss and Kulikowski, 1991) was used for RANN models where a 
subset of the data is kept separate for testing the model, whilst the remaining data is used for 
training.  This method was selected as it allows testing of the model on an independent data set 
and can be considered as a way of simulating real-time situations i.e. by presenting the model 
with unseen data.  This approach restricts the amount of data available for training and testing, 
which can be a disadvantage when the data set is small, but in this case there is enough data for 
it not to be of concern.  It was considered more appropriate than cross-validation techniques such 
as bootstrapping and leave-one-out, which are particularly useful for small and/or spatial data 
sets, but require the model to be retrained numerous times (Recknagel & Cao 2007 (in press)).  
Depending on the experiment, one or two years of data were selected to be left out of the training 
process so that the model could be tested on independent data.  Selection of testing years was 
based on challenging the model with an event that it was designed to predict i.e. the year must 
contain an algal bloom.  If two test years were being used they should be different in nature, 
further challenging the models applicability to different conditions. 
Length of training necessary for RANN models was mostly discovered using the ‘trial and error’ 
technique.  Criteria upon which ideal training time was determined include reasonably accurate 
results when the model is tested on the training data (extremely good training results often 
demonstrate that the network has been overtrained which results in poor forecasting abilities, 
whilst poor training results likely demonstrate that the network is yet to be trained sufficiently), 
and testing results within an acceptable error range when the network is applied to unseen data.  

3.5.2.4 Performance measures 

Validation or testing of a model is necessary for model acceptance and aims to establish two 
things: whether the model is acceptable for its intended purpose, and how much confidence can 
be placed in the models results and applications in the real world (Rykiel Jr 1996).    Validation 
techniques are many and varied, and there is a lack of agreement upon which, if any, is best.  
Therefore, when possible, it is best to use numerous validation techniques (Mayer & Butler 1993; 
Power 1993).  Validation techniques can be grouped into four categories; subjective assessment 
or face validity, visual techniques, deviance measures and statistical tests (Mayer & Butler 1993).  
For RANN models developed throughout this project, one method from each category has been 
selected for use.  Subjective or face validity involves experts or knowledgeable people in the field 
assessing whether the model and its results are reasonable.  For this study, numerous people in 
the field of freshwater ecology and management, and computational modeling assess the model 
before its selection for inclusion in this thesis.  Visual techniques include the use of graphical 
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displays, in this case, a time series plot of observed data vs predicted data.  This is considered a 
useful and informative method of data presentation (Mayer & Butler 1993; Power 1993)).  Root 
Mean Square Error (RMSE), a deviance measure, was also used and finally, r2 values 
demonstrating the goodness of fit, were selected as an appropriate and well accepted statistical 
performance measure for this type of modeling (Mayer & Butler 1993). 
For forecasting models, the performance criterion is predictive accuracy.  RMSE and r2 values 
are very common prediction accuracy measures used in machine learning but it is also 
recognised that visual inspection of fit and knowledge of the modeled system is still essential in 
assessing a model.  For example, a model that predicts an algal bloom early is a more useful 
model than one that predicts an algal bloom late, yet the error measures do not take this into 
account.    

3.5.2.5 Sensitivity analyses 

Sensitivity analyses can be useful for extracting information on the relationships between the 
input and output variables of an SNN.  Throughout this research two types of sensitivity analyses 
will be used in association with the RANN models, they are ‘most influencing parameter’ (MIP) 
and ‘sensitivity on wide-ranged disturbance’ (SWD).   Both are a product of the ‘sensitivity about 
the mean’ option offered by NeuroSolutions for Excel software.  Using this method, all input 
variables, except the one of interest, are kept constant at their mean value.  The variable being 
investigated is varied within the range of its mean by +/- 1 to 2 standard deviations.  Jeong et al. 
(2001) cites Zar (1984) to explain that +/- 1 standard deviation represents commonly occurring 
variation, and +/- 2 standard deviation covers approximately 95% of total data variation.   
Therefore, sensitivity analyses with +/- 1 standard deviation encompass the general conditions of 
the water body, whereas sensitivity analysis with +/- 2 standard deviations will include specific 
and infrequent events and interactions.   MIP reveals which inputs the output is most sensitive to.  
SWD allows further examination of specific input-output relationships by plotting the behaviour of 
the output variable in response to variations of an input across 2 standard deviations, above and 
below the mean.  Resulting graphs of the input – output relationships over the range of the varied 
inputs demonstrate how the changing environmental parameters impact upon the output.   
Although these methods are very useful in extracting information that, in conjunction with 
ecological knowledge, can give good insight into relationships between input and output 
variables, it must be acknowledged that the methods have limitation.  They only consider the 
relationship between a single input and a specific output.  In ecology, relationships are often not 
isolated in such a way and are rarely as simple, more often variables are interrelated and 
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complex.  This is why results of sensitivity analyses should be interpreted with knowledge of the 
system and bearing in mind that other factors may be related and influencing the demonstrated 
relationship.  

3.5.3 Hybrid Evolutionary Algorithm (HEA) 
HEA  (Cao et al. 2006b) were used with a similar objective as the RANN models; to forecast 
phytoplankton dynamics in both Myponga and Happy Valley reservoirs, using Chl-a data as an 
indicator of algal abundance or by using the specific abundance values of the dominant nuisance 
algae in each reservoir.  However, in addition to forecasts, the actual rule that has been 
discovered from the historical data to produce the forecasts is given as output.  This allows 
further insight into the processes and relationships involved in the modelled system. 
All HEA experiments were performed on a Hydra supercomputer (IBM eServer 1350 Linux) using 
the C programming language.    

3.5.3.1 Model design 

Data division, input selection and training and testing methodology are discussed in detail below.   
Throughout this study all HEA models began with an initial population of 200 (N), with a maximum 
of 100 generations (MAXGEN) and repetitive runs of 50 or 100.  A detailed description of the 
algorithm was given in section 2.3.1, Fig. 10.  The parameter settings of the HEA for rule-set 
discovery are shown in Fig. 21, where FL = the logic function set, FC = the comparison function 
set, FA = the arithmetic function set, MAXK = the maximum size of the rule set, DIF and 
DTHEN/ELSE = the maximum tree depth for the IF and THEN/ELSE trees respectively.  For 
parameter optimisation by GA, M = the number of individuals randomly selected from the old 
population and MAX is the number of iterations comparing the fitness of new individuals to the 
worst individual from the old population.     

 

Figure 21. Parameter settings of HEA for rule set discovery (from Cao et al, 2006) 
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Although the main outcome of the HEA applications was forecasting rule-sets, Chapter 6 
suggests a procedure developed to extract a single rule-based agent for forecasting of Chl-a 

concentrations in both study sites and, potentially, other sites within the same lake ecosystem 
category.   

3.5.3.2 Input selection 

Data-driven methods are largely assumed to be able to identify critical model inputs, and this is 
particularly true for EA applications.  If we assume this is the case, then it should be acceptable to 
make all potential inputs available to the algorithm, which should disregard the unimportant 
variables.  Though in most experiments throughout this research only variables recognised in 
relevant literature to have significant relationships with phytoplankton were supplied to the 
algorithm for consideration.   Some HEA experiments within this research considered only input 
variables that can be electronically measured and relayed to a computer via a data logger and 
telemetry system, thus simulating a real-time forecasting situation.  

3.5.3.3  Data division, training and testing  

Initial HEA experiments used the split-sample method for data division and model training/ 
testing.  This method allows testing of the model on an independent data set and is considered as 
a way to simulate real-time situations i.e. by presenting the model with unseen data.  Similarly to 
RANN applications, the experiments used either one or two years of independent data for model 
validation.  Using the split-sample method for HEA also allowed for comparisons between the two 
forecasting methods, as it was used for RANN experiments also.   
For later HEA experiments, k-fold cross-validation was used in a series of experiments using a 
reduced data set of only electronically measurable inputs.  K-fold testing requires that the data be 
split into k equal sized partitions, in this case, year long blocks of data have been used.  One of 
these sets is used as a test data set, whilst the others form the training data set.  This process is 
repeated so that each set is used for testing once, and measures of performance are gained for 
each test.  The overall performance is then based on an average of these k test data sets 
(Fielding 1999a).  This method allows all data to be used for training at some point, important for 
smaller data sets, and can assess the models capabilities over the entire data set. 

3.5.2.4 Performance measures 

HEA models in this research are subject to the same performance measures as RANN models 
(see 3.5.2.4 for more details).  One method from each of the following four categories has been 
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selected for use: subjective assessment or face validity, visual techniques, deviance measures 
and statistical tests (Mayer & Butler 1993).  Model and result assessment by knowledgeable 
people in the field, time series plots of observed data vs predicted data, RMSE and finally, r2 
values satisfy this criteria. 

3.5.2.5 Sensitivity analyses 

HEA models are subject to two types of sensitivity analysis, for explanation of input-output 
relationships.  SWD is used as well as a measure of MIP, however this MIP analysis is based on 
the number of times each input is selected for inclusion into a predictive rule set.  The HEA is 
considered to be able to identify which inputs are necessary for the accurate forecasting of the 
target variable, therefore the inputs that have been most often included in rule sets are thought to 
be the most influencing parameters.   

3.5.4 Kohonen Artificial Neural Networks (KANN) 
KANN (Kohonen 1984) were chosen as the type of NSNN to be used throughout this project for 
the purpose of ordination, clustering and visualisation of water quality and algal abundance data 
with regard to seasons, water temperature, ranges of nutrients and artificial mixing strategies.  
The KANN were built and visualised by the SOM toolbox with Matlab Version 6.5.1.   

3.5.4.1 Model design 

The features or patterns found in the input data are expressed by Euclidean distances, which are 
calculated between inputs and can be visualised as a unified distance matrix (U-matrix) or as a 
partitioned map (k-means).  The U-matrix visualises the relative distances between neighbouring 
data in the input data space using the colour spectrum, with the blue areas demonstrate 
neighbouring data with small distances and belonging to a cluster, whilst red areas indicate larger 
distances between neighbouring data and suggest borders between clusters.  The k-means 
algorithm, is the most common partitative algorithm and simply partitions the input data into a 
specified number of clusters based on the U-matrix (Recknagel et al. 2006b).  Component planes 
map each input variable relative to the classification criteria.  Figure 22 shows the various outputs 
of KANN.  To interpret the results, compare the component plane to the k-means map to see the 
relationship between the input variable (Chl-a) and classification criteria (seasons), i.e. the input 
variable Chl-a is highest in early and late summer. 
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The method was applied in a number of ways to examine features within the data by clustering 
with regard to seasons to show seasonal dynamics, different nutrient and water temperature 
ranges to show habitat preferences of algae and the novel application of dividing the data into 
distinct management periods, to examine changes in water quality parameters over differing 
management regimes.     
 

 

 

3.2.4.2 Input selection 

Input selection is not as critically important for KANN models as it is with RANN and HEA.  With 
RANN and HEA, the performance of the model depends on the relationship between input and 
output variables, for example, inputs need to be variables that drive or control algal blooms or the 
model won’t predict well.  Whereas with KANN, the inputs do not all necessarily have to be linked 
to the clustering criteria, if they have no relationship this will simply show up in the cluster results.  
This is why KANN is a good starting point for data sets where little is known about the 
relationships between the variables.  Simply enter all variables as input and find whether there 
are distinct relationships or not.  Of course, to examine particular relationships or occurrences it is 
best to prune the input variables appropriately to reduce noise.   This project followed that 
approach by beginning with examinations of seasonal patterns across all data and refining 
experiments down to investigations of particular conditions, using only relevant inputs. 

Figure 22 - Seasonal patterns visualised as a U-matrix, a k-means map and a component plane. 
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3.5.4.3  Data division, training and testing  

Division of data into training and testing subsets is not required in this instance, as all data is 
used in a single data set for the production of KANN.  However, data must be labelled relative to 
the purpose of ordination i.e. a classification criteria, for example when investigating the 
seasonality of the input variables, all input values are labelled and classified by a season.   

3.5.4.4 Performance measures 

Performance of a KANN model was measured by both the quantization and topographic error 
values.  The quantization error measures map resolution by averaging the distance from each 
data vector to its best matching unit (BMU), and the topograohic error measures topology 
preservation by the percentage of data vectors for which the BMU and the second BMU are not 
neighbouring map units.  Again, a visual assessment of how well the classification data was 
grouped into clusters can be useful when assessing the performance of a KANN, when the k-
means clustering algorithm has been used.   

 
3.6 Method integration 

This project applied three data driven, machine learning techniques to water quality data sets 
from two South Australian drinking water reservoirs.  It aimed to better understand the dominant 
algal populations by analysing temporal dynamics and management impacts, and to provide 
forecasting models for Chl-a and algal groups.  It was thought that an integrated approach would 
allow broad examination of the data and provide comprehensive results.  Fig. 23 shows the key 
steps involved in this approach.  KANNs were used to discover and visualise relationships in the 
data set with regard to seasonality, habitat preferences and management impacts.  Results from 
KANN provided information that aided input selection for the forecasting models.  RANNs were 
developed to forecast Chl-a and specific algal populations and sensitivity analysis further 
explained input-output relationships and were even combined with KANN results to express 
relationships both qualitatively and quantitatively.  HEA was also used for forecasting and 
sensitivity analysis and importantly, provided tangible model representations, in the form of 
predictive rule-sets that could potentially be applied to other similar water bodies.  These methods 
combined provide explanation and forecasting of algal dynamics within the two studied reservoir 
systems. 
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Figure 23. Framework for the integrated approach using KANN, RANN and HEA for explanation 
and forecasting of algal dynamics in Myponga and Happy Valley reservoirs
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4. ORDINATION AND CLUSTERING OF WATER 
QUALITY VARIABLES 
 

4.1 Introduction 
Ordination and clustering of ecological data can reveal significant patterns and features.  
Traditionally, multivariate statistics such as Principal Component Analysis (PCA) have been used 
for this purpose.  Van Tongren et al. (1992) used canonical ordination techniques of PCA and a 
hybrid of PCA and Redundancy analysis (RDA) on 8 years of data from the Loosdrecht lakes.  
The aim of the research was to analyse the trends and relationships between environmental 
factors and the planktonic communities.  The study was able to reveal relationships between the 
variables within the data set, particularly the influence of temperature on the annual cycle of 
environmental variables, as well as on the phytoplankton/zooplankton assemblages and 
densities.  Varis (1989) successfully used canonical correlation analysis to examine the influence 
of nutrient loading on the phytoplankton community in Lake Tuusulanjarvi, with particular attention 
to cyanobacteria.  Cyanobacteria was shown to have very strong positive correlations with 
phosphorous and temperature and a negative correlation with dissolved inorganic nitrogen and 
dissolved inorganic phosphorous ratio.   
There are many accounts of statistical analyses on communities using conventional multivariate 
analyses.  However, conventional statistical methods are mainly limited to linear data and are not 
flexible in many aspects, for instance, data handling (Chon et al. 2006).  Ball et al. (2000) 
discusses the poor performance of statistical methods for data modelling and Chon (1996) 
compares KANN to numerous statistical methods, finding KANN to be superior for classifying 
data.   Overall, KANN can cope better than conventional techniques with the complexity and non-
linearity involved with ecological data (Boddy & Morris 1999; Jongman et al. 1987).   
 
In this research, KANN allowed an initial exploration of the data sets before they were used for 
the development of forecasting models.  This permitted the identification of important 
relationships and potential input variables for later modelling applications. 
Throughout this chapter, KANN were applied to time series water quality data from Myponga and 
Happy Valley reservoirs.  Broadly, the aims of this chapter were to examine relationships 
between physical, chemical and biological factors within the reservoirs and to uncover short-term 
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seasonal patterns and long-term dynamics, the latter being specifically in context of management 
regimes.   
Initially, the focus was on the seasonality of major water quality variables and their interactions 
with each other, as well as comparisons of patterns between the two study sites.  Then KANN 
was applied to the more complex task of examining water quality changes between periods of 
different management regimes in Myponga reservoir.  Throughout the long-term databases used 
for the study, both Myponga and Happy Valley reservoirs have attempted to control nuisance 
algal populations using various methods and levels of artificial mixing and aeration, in conjunction 
with CuSO4 dosing (see sections 2.5.1 and 2.5.2 for more details).  The experiment demonstrated 
seasonal shifts as well as changed magnitudes of nutrients, metals and biological components, in 
response to periods of stratification and various methods and intensities of artificial mixing.  
Finally, KANN was applied to determine at which level specific water quality factors seem to 
favour the growth and maintenance of particular algal groups.   
 
Numerous applications of KANN have examined seasonality of various limnological variables, 
however clustering regarding management periods and ranges of physical and chemical factors 
are new concepts. 
   

4.2 Aims and Hypotheses 
The aims of this research include:  
- the examination of the seasonality of water quality variables;  
- discovery of conditions within Myponga and Happy Valley reservoirs which are conducive to 
algal growth: in general by looking at Chl-a, and to different algal functional groups, specifically 
the dominant blue-green, diatom and green algae from each reservoir; and 
- to examine the impacts of management actions.   
These aims will allow the testing of the following hypotheses:    
 
Hypothesis 1 – water quality parameters would maintain natural seasonal patterns and habitat 
preferences as established in general ecological theory i.e. nutrients highest in winter, lowest by 
late summer/autumn; blue-green algae highest abundance in late summer, diatoms prefer 
turbulent conditions (theoretically winter/spring) and green algae, being opportunistic, would fill 
the gaps between the other two functional groups. 
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Hypothesis 2- Continued and updated management throughout Myponga reservoir’s history 
would gradually lead to improved water quality conditions.   
 

4.3 Methods and Materials 

4.3.1 Data 
The maximum amount of data available for each experiment was used to ensure that the 
extracted patterns could be assumed as representative for the whole dataset.  However, the fact 
that less relevant data was available for Happy Valley reservoir meant that, for merged 
experiments, some available data from Myponga reservoir had to be left out to keep the input 
data from each reservoir equal, in accordance with requirements of the modelling software. 
 
Table 5.  Data used for each experiment in this chapter. 

Experiment Years of data used 
Short-term dynamics and seasonal patterns 

4.4.1.1 
1996-2003 

from Myponga and Happy Valley reservoirs 

Long-term dynamics and management regimes 
4.4.2.1 

1986-1987, 1988-1989, 1990-1991, 2000-2001 
from Myponga reservoir 

Relationship to water temperature 
4.4.3.1 

1996-2003 
from Myponga and Happy Valley reservoirs 

Relationship to PO4 concentrations 
4.4.3.2 

1996-2003 
from Myponga and Happy Valley reservoirs 

Relationship to NO3 concentrations 
4.4.3.3 

1996-2003 
from Myponga and Happy Valley reservoirs 

 

4.3.2 Model Design 
The KANN models were developed and visualised using the SOM toolbox with Matlab Version 
6.5.1.  A detailed explanation of the modelling method and process was given in Chapter 3, 
Section 3.3.4.   
For the last series of experiments in this chapter (4.4.3), data from both reservoirs has been 
merged and used as input.  Initial comparative experiments, where data from each reservoir was 
kept separate (including 4.4.1.1. and others not shown), demonstrated that the seasonal patterns 
of water quality parameters in both reservoirs were mostly similar.  It was considered best to use 
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the merged results for this series of experiments as they displayed the same information but were 
able to minimise and simplify the results section.     
All KANN models in this chapter use the k-means algorithm to classify the data into pre-defined 
groups or ranges.  Seasons, ranges of nutrient concentrations and different water temperature 
levels were used to demonstrate how water quality variables associated with such factors.    The 
tables below specify the ranges used for each experiment. 
 

Table 6.  Classification criterion used in 4.4.1.1 and 4.4.2.1 

Seasons Periods 

Summer 1 December – 30 February 

Autumn 1 March – 30 May 

Winter 1June – 30 August 

Spring 1 September – 30 November 

 
 
Table 7.  Classification criterion used in 4.4.3.1, 4.4.3.2 and 4.4.3.3 

Range Myponga and Happy Valley reservoirs 
Lowest range Water temperature: <14°C 

PO4: <0.02 mg/L 
NO3: <0.1 mg/L 

Mid-range Water temperature: >14°C - <19°C 

PO4: >0.02 mg/L- <0.05 mg/L 
NO3: >0.1 mg/L - <0.2 mg/L 

High range Water temperature: >19°C 

PO4: >0.05 mg/L 
NO3: >0.2 mg/L 
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4.4 Results 

4.4.1 Short term dynamics and seasonal patterns 
Many factors determine the distribution and abundance of organisms in freshwater lakes. 
Observed plankton communities are always the product of interactions between abiotic and biotic 
factors (Gower 1980).  The community of pelagic phytoplankton of lakes consists of a diverse 
assemblage of nearly all functional groups.  Despite their differences with regard to taxonomy and 
physiological requirements, many functional groups coexist in the same water volume at the 
same time.  However, phytoplankton communities are usually dominated at a time by one or a 
small number of species, mostly restricted to a fairly precise season.  Dominant genera in 
phytoplankton assemblages change seasonally, as physical, chemical and biological conditions in 
the water body change (Wetzel 1983).  Change in temperature and light, or the balance between 
sinking and resuspension contribute to the seasonality of the phytoplankton community (Sommer 
1989).  This results in continuous changes in both the abundance and composition of the 
communities over the year, occurring in a similar sequence each year in a given lake. 
In monomictic water bodies, such as Myponga and Happy Valley reservoirs, the major physical 
and chemical changes caused by the formation and disruption of the thermocline are thought to 
be an extremely influential factor with regard to both water quality issues and phytoplankton 
dynamics.  Many consider the physical forcing due to water movements as the major influence on 
the particular members of the phytoplankton community i.e. diatoms.  The suspension and 
vertical transport of the algal cells within the euphotic zone, the variations in nutrient loading from 
sediments and inflow, and the fluctuations in light conditions experienced by circulating algal 
cells, are seen to be the key factors in the relationship between hydrodynamics and 
phytoplankton ecology (Capblanq & Catalan 1994).   
Despite the inherent variability of ecological systems and the management imposed on both 
Myponga and Happy Valley reservoirs, seasonal dynamics were able to be extracted from the 
data allowing comparisons between reservoirs.  
 
 
 
 
 



  

University of Adelaide, Australia 79

4.4.1.1 Seasonality of major water quality variables and algal 
functional groups using merged data from both reservoirs 

Fig. 24 shows the ordination and clustering of the water quality variables with regard to seasons.   
To examine the seasonality of the major water quality variables, the k-means map  (Fig. 24a) 
visualised the 4 seasons with the k-means algorithm defining the middle left section as summer, 
the bottom area as autumn, the middle right section as winter and the top area as spring.  The 
quality of the clustering was acceptable, particularly considering the many and varied input data, 
with quantization and topographic errors at 0.29 and 0.047 respectively.   
The ordination and clustering by KANN showed that the water temperature in both Myponga and 
Happy Valley reservoirs was highest in summer and autumn (Fig. 24b).  Turbidity was greatest in 
winter and spring in the Myponga Reservoir and late autumn and winter in Happy Valley, with 
much higher peak values found in Happy Valley (Fig. 24c).  The major cause of turbidity would be 
runoff and mixing in the water column in and around winter (see Appendix B for graph 
demonstrating peak rainfall and turbidity occurring nearly simultaneously in Myponga reservoir), 
and it is thought by management that algae do not contribute significantly to turbidity in Myponga 
reservoir (Burch 2005a).  The substantially higher level of turbidity (26.6 NTU) found in Happy 
Valley may be caused, to some extent, by turbid water from the Murray River which is 
episodically pumped into the reservoir.   
Colour was highest in spring in Myponga reservoir, whilst Happy Valley showed high colour in 
spring and summer, with Myponga having much higher colour (Fig. 24d).  This is in accordance 
with previous knowledge, as Myponga is known to be characteristically highly coloured, though 
not overly turbid (Velzeboer et al. 1991), and has greater mean and max colour values than 
Happy Valley.  Colour in Myponga reservoir is clearly driven by dissolved organic carbon (DOC) 
and both exhibit distinct seasonality with highs in spring (see Appendix C), after DOC inflow and 
accumulation during winter.  Happy Valley does not seem to share the obvious causal 
relationship between DOC and colour.  DOC levels in this reservoir show no clear pattern, 
possibly due to inflow from not only the catchment but also diverted river Murray water at different 
times through the year, and cannot be said to influence colour dynamics.    
Both reservoirs can be classified as eutrophic, based on several trophic state calculations that 
considered Chl-a, total phosphorous, PO4 and NO3 concentrations (see Appendix A).  Happy 
Valley is considered a nutrient rich system as it receives a high nutrient load from not only the 
surrounding catchment, but also the water from the Murray River that enters the system.  
Although nutrient concentrations can mostly be considered as similar between the reservoirs, 
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Myponga has shown slightly higher PO4 levels, whilst NO3 concentrations are generally much 
greater in Happy Valley. 
Clear clusters were shown for peak PO4 concentrations for both reservoirs (Fig. 24e), with levels 
clearly shown to be highest in spring in Myponga and late autumn and winter in Happy Valley and 
at concentrations of 0.0792mg/L and 0.0604mg/L respectively. 
The KANN results showed that in Myponga reservoir, NO3 concentrations clearly peaked in 
spring, whilst in Happy Valley NO3 concentrations appeared to be dispersed throughout winter 
and spring with an accumulation in early summer, with significantly higher levels in Happy Valley 
(0.518mg/L) than Myponga (0.285mg/L) (Fig. 24f).  Perhaps peak NO3 concentrations are 
dispersed throughout several seasons in Happy Valley because of the affect of Mount Bold and 
River Murray water being pumped into it during summer and autumn.  Whereas Myponga 
reservoir follows the seasonal pattern of rain and consequent runoff fuelling the nutrient influx 
largely in and around winter, with an accumulation by early spring; Happy Valley reservoir gets 
nutrient influx, not only in winter and spring as the seasons dictate, but also in summer and 
autumn due to addition Murray water added to the system because of peak water usage around 
that time.  To summarise the difference in seasonal nutrient patterns between the reservoirs; 
Myponga simply experiences a natural seasonal cycle of rain and resulting major nutrient influx, 
but KANN results for Happy Valley are not reflective of solely natural seasonal patterns but also 
the interference of management through the addition of Murray water, increasing nutrient levels 
when not naturally expected. 
 
The seasonal patterns of these major water quality variables predominantly control the 
seasonality of phytoplankton, according to their individual taxonomy and physiological 
requirements.  This experiment considers Chl-a as a representation of algal growth, to make 
general conclusions regarding associations between water quality variables and phytoplankton 
growth. Chl-a concentrations for both reservoirs peaked in summer with significant levels carrying 
into autumn, with Happy Valley having slightly higher peak values of approximately 29ug/L (Fig. 
24g).  This is complies with data set summaries showing that Happy Valley has a slightly higher 
mean Chl-a value and a substantially greater maximum.  These results would suggest that major 
phytoplankton growth in both reservoirs is a result of higher solar radiation and water 
temperatures, periods of water column stability and high nutrient loads at the beginning of the 
growth stage, which is later exhausted  (with KANN showing nutrient depletion coinciding with 
high phytoplankton abundance).  Chl-a is a good representative for general algal growth; 
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however, it is interesting and sometimes necessary to examine further by investigating different 
types of algae. 
 
Three main algae functional groups were examined using the dominant genera found in each 
reservoir.  For blue green algae or cyanobacteria, the dominant genus in both reservoirs was 
Anabaena (Fig. 25a).  Nitzschia and Cyclotella were the dominant diatoms in Myponga and 
Happy Valley respectively (Fig. 25c).  For green algae, Scenedesmus was dominant in Myponga 
and Dictyosphaerium in Happy Valley (Fig. 25b).    In both reservoirs, Anabaena was found to 
prefer the summer season and into autumn, though in Myponga reservoir the higher abundances 
began a little earlier at the end of spring.  This concurs with much literature stating that the 
combination of numerous conditions in summer provides the optimal growth environment for most 
cyanobacteria.  Anabaena is characteristically found in summer, and a preference for high water 
temperatures and pH levels is thought to contribute to this (Reynolds 1984; Shapiro 1990).  
Anabaena is particularly associated with lakes that experience stratified conditions, as Myponga 
and Happy Valley occasionally do, particularly those species that can most take advantage of a 
stable water column.  Especially those species that possess gas vesicles enabling them to move 
vertically through the water column; upward into the surface layer to maximise exposure to light 
and downward to enable nutrient uptake during times of depletion in the surface waters (Moss 
1998).  After the increased phytoplankton growth from late spring, nitrogen levels in the water are 
depleted by late summer, favouring blue-greens with the ability to fix atmospheric nitrogen 
(Sommer 1989), with Anabaena being one such genus.  Anabaena abundance in Myponga 
reservoir is shown to be nearly double that in Happy Valley reservoir (762 and 458 cells/mL 
respectively).  This could be explained by the NO3 concentrations within the reservoirs.  Fig. 24f 
shows that Myponga reservoir has approximately half the NO3 concentration of Happy Valley 
reservoir.   The lower levels of NO3 in Myponga, provide Anabaena with a bigger competitive 
advantage in the reservoir, through their ability to fix atmospheric nitrogen; whilst the higher levels 
of NO3 in Happy Valley reservoir reduce this competitive advantage and therefore the genera 
does not out compete others so successfully, keeping its populations smaller. 
Both diatom genera were shown to favour autumn, which is an interesting result considering they 
are often found to frequent winter and spring.  Turbulence is a requirement of all diatom genera, 
as their cells are surrounded by a hard outer casing composed of silica, making them too heavy 
to remain buoyant in the water column in calm, stable conditions (Harris 1986; Kalff 2002).  
Turbulence is required to transport the diatoms back to the surface layer of the water where they 
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can receive vital sunlight and nutrients.  Diatoms are noted to be quite insensitive to pH change in 
water (Harris 1986), and whilst it has been suggested that there is preference to lower water 
temperatures, the main habitat requirement is turbulence and instability in the water column.  The 
KANN results showing the peak abundances occurring in autumn can be explained by a 
combination of artificial and natural mixing.  The mechanical mixers and aerators used to reduce 
phytoplankton growth in the reservoirs during summer and into autumn are supporting these 
populations by providing the turbulence they require to prevent sedimentation losses.  Sommer 
(1989) cites experiments by Reynolds et al (1984), which have shown that artificial mixing in 
water bodies could prolong the presence of large diatoms populations.  Then toward the end of 
the autumn season, when rain and wind induced turbulence would be more frequent in the lead 
up to winter, the diatoms would also be provided with a suitable environment to support large 
populations.   Fig. 25c shows that Myponga reservoir generally supports larger populations of 
diatoms than Happy Valley reservoir (4880 and 988 cells/mL respectively).  Myponga reservoir is 
more intensively mixed (having two mixers and an aerator, compared with one mixer and an 
aerator at Happy Valley reservoir) and therefore is likely to provide more suitable turbulent 
conditions than Happy Valley reservoir.   
Both green algae, Scenedesmus and Dictyosphaerium, were found in highest abundance 
throughout summer and autumn in Myponga and Happy Valley respectively, although 
Dictyosphaerium appeared slightly earlier in the year, showing increasing levels in spring (Fig. 
25b).  Myponga was shown to support larger populations of Scenedesmus than Dictyosphaerium 
in Happy Valley reservoir.  Green algae are considered to be very opportunistic and can grow 
rapidly under a variety of conditions. They are quite ubiquitous and can form a large component 
of any phytoplankton assemblage from spring through to autumn (Happey-Wood 1988).   
Scenedesmus is a non-motile green algae and therefore prefers some mixing of the water column 
but can maintain reasonably large populations during thermal stratification due to extremely rapid 
growth rates.  Therefore, its growth during the summer and autumn periods in Myponga is not 
surprising as the artificial mixing in use during this period limits the duration of episodes of 
thermal stratification, thought it can still occur regularly.   
 
This experiment shows a general following of natural seasonal patterns one would normally 
expect to occur in water bodies of this nature, although management practices do appear to have 
caused some departures from the expected patterns for some variables.  
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4.4.2 Long-term dynamics and management related 
patterns 

Long-term trends in water quality factors can be the result of many influences on a reservoir or 
the rivers that feed it.  There is no question though that direct, in-lake management of a reservoir 
is significantly powerful in shaping long-term changes and patterns. 
The main use of a water body largely determines the type and extent of water management.  
Management practices can have a wide range of impacts on a water body and have the potential 
to dramatically change the state of the system. 
As both Myponga and Happy Valley reservoirs are used to store water that will be supplied to 
households as potable water, they are very highly managed.  Artificial mixing and CuSO4 dosing 
have been used in both Myponga and Happy Valley reservoirs in an effort to control nuisance 
algal blooms, particularly the potentially toxic Anabaena known to cause taste and odour 
problems.  

Figure 25. Ordination and clustering of dominant algal groups by KANN regarding seasonality 
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In the following section, both short-term seasonal dynamics and long-term patterns of water 
quality and phytoplankton parameters are brought into the context of various management 
periods and regimes. 
 

4.4.2.1 Impacts of mixing regimes on major water quality 
variables using Myponga Reservoir data set  

Ordination and clustering of four 2-years-periods of water quality time series, which differed in 
intensity and methods of artificial mixing, provided insights into effects of management on 
chemical and biological water quality properties.  KANN, applied to this complex task of 
examining water quality changes between periods with different management regimes, indicated 
that both seasonal shifts as well as changed magnitudes of nutrients, metals and Chl-a occurred 
in response to periods with stratification and changed mixing strategies.   
Fig. 26 visualises results of the seasonal ordination and clustering of major water quality variables 
in the Myponga reservoir for four periods with different mixing conditions.  The k-means map 
visualised the four seasons (Fig. 26a), with the algorithm establishing the top left corner as 
summer, the top right corner as autumn, the bottom right corner as winter and the bottom left 
corner as spring. The quality of the clustering was good, particularly considering the many and 
varied input data, with quantization and topographic errors at 0.3 and 0.008 respectively.   
As expected, the highest water temperature occurred in summer and autumn in all periods and 
obviously it is not a factor that can be changed by management (Fig. 26b).  The results show that 
during the period from 1986 to 1987 (Fig. 26, left column), when no artificial mixing was used and 
the reservoir experienced thermal stratification, Chl-a was highest in summer and then autumn 
with a maximum of 15.9ug/L (Fig.26c).  Anabaena reached highest abundance at 1320 cells/ml in 
autumn (Fig. 26d) and PO4 concentration was greatest in winter and spring with a maximum of 
0.057mg/L (Fig. 26e).  The concentrations of Manganese (Mn), which also has implications for 
drinking water quality and is thought to encourage algal growth (Boney 1989), were high in 
summer and autumn with a maximum of 0.034mg/L (Fig. 26g). 
During the period from 1988 to 1989, when 3 submersible mixers were used (Fig. 26, second 
column from left), the abundance of Anabaena was highest in spring with a much lower maximum 
of 852 cells/ml compared to the previous period with stratification.  This result suggests that the 
introduction of artificial mixing succeeded in creating an unsuitable environment for the species, 
leading it to peak in a different season, at a level of half its abundance in the previous period 
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where no mixing was used.  Although Chl-a was lower as well, it still peaked in autumn, and was 
obviously not caused by Anabaena.  The lower Anabaena and Chl-a abundances in 1988 to 1989 
were also reported by Velzeboer et al. (1991), with the conclusion that the mixers were successful 
in reducing total algal biomass.   Interestingly, the results in Fig. 26e indicate a slight decrease of 
PO4 concentrations in 1988 to 1989 compared to the previous period with stratification.  This result 
may hint at lower internal PO4 loading from anaerobic sediments since mixing aims to maintain 
aerobic conditions at the sediment.  In contrast, the Mn concentrations increased in the same 
period and peaked in summer. During the period from 1990 to 1991 (Fig. 26, third column from 
left) an aerator was implemented in the Myponga reservoir, which resulted in an increase of Chl-a 
to similar concentrations as the period with stratification, but different regarding seasonality. 
Maximum concentrations were in autumn and winter whilst maintaining reasonable concentrations 
in summer.  The PO4 and Mn concentrations also increased slightly.  
Finally, the period from 2000 to 2001 (Fig. 26, right column), where a combination of surface 
mixers and aerators was implemented, showed very similar patterns as the period with 
stratification because Chl-a peaked in summer and autumn, PO4 peaked in spring and winter and 
Mn peaked in autumn, though all were at a higher concentrations than the initial period. Mn 
concentration consistently increased throughout the periods and peaked in autumn in all periods.  
This is possibly due to sediment release that may occur during the warmer seasons of summer 
and autumn, when stratification can potentially occur.   
 
The aim of changing and updating management regimes is obviously to continue to improve 
water quality.  Two significant issues in water quality management at Myponga reservoir are the 
discouragement of Anabaena growth and presence by creating an unsuitable environment for 
them; and the prevention or minimisation of internal loading, which will exacerbate the Anabaena 
problem and decrease water quality.  Although the results show that Anabaena abundances have 
not increased over the examined period, they are still present and cause regular, troublesome 
blooms.  Internal loading appears to have been halted with regard in some respects, but has had 
not success in controlling Mn, which is at a level where it must be treated for at the water 
treatment plant.  For aesthetics, a maximum of 0.1mg/L is the guideline value given by the 
Australian Drinking Water Guidelines as taste and staining can occur at this concentration 
(Government 2004).  
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Some of the results produced by this experiment suggest that the management changes at 
Myponga Reservoir have not necessarily resulted in improved water quality across time and it 
certainly does not seem to be the case for all water quality variables.   
This is in contrast to claims from several papers (see section 2.5.3) that artificial mixing had 
convincingly improved water quality at Myponga Reservoir.  Some of these articles used data 
only up until the mid-90’s and therefore have seen trends from a different perspective and came 
to different conclusions.  For example, Brookes et al. (2000) and Lewis et al. (2003) claim that 
aeration by artificial destratification has lowered metal release from the sediment.  However, the 
consistently increasing levels of Mn shown in Fig. 26g suggest that water quality, with regard to 
internal loading of metals, has not completely improved with artificial mixing.  PO4 and Chl-a are 
also shown to have higher maximums at the last period (2000-2001) than they did prior to the 
introduction of artificial mixing (1986-1987).  In support of Brookes et al. (2000), is the reduction 
of Fe that can be observed throughout the years (Fig. 26h).   
In summary, this experiment shows that there did appear to be an initial improvement in most 
water quality factors after the introduction of artificial mixing, however this trend did not 
necessarily continue.  Important variables such as Chl-a, PO4 and Mn were shown to be in higher 
concentrations after years of artificial mixing than they were prior to its inception, whilst NO3 
remained stable and Fe concentrations decreased.  These results suggest that it could be 
appropriate to implement a new management strategy, perhaps as described in section 2.5.5. 
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1986-1987: No mixers were in use at Myponga reservoir,  
                    therefore it was  probably thermally stratified. 
1988-1989: 3 submersible mixers were used. 
1990-1991: 400m long aerator used. 
2000-2001: Surface mixers and 200m aerator used. 

     1986-1987                       1988-1989                    1990-1991                      2000-2001 
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Figure 26.  KANN, using k-means map, with corresponding component planes for major water quality 
variables clustered seasonally and separated into periods of different management at Myponga reservoir.
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4.4.3 Habitat preferences established by clusters 
according to ranges of physical/chemical conditions 
using merged data from both reservoirs 

To look at the relationship between the occurrence of different algae functional groups in relation 
to different physical and chemical habitat attributes, the dominant genera from each of blue-
green, green algae and diatoms, from each reservoir were combined and clustered in comparison 
to 3 ranges of the specific attribute.  
Whilst the word ‘preference’ is used here, it is sometimes more that the algal blooms coincide 
with a certain condition – not specifically prefer it.  It is also acknowledged that it is an 
interconnected set of conditions that often promote and sustain algal growth and maintenance. 
However, this experiment offers a simplified insight into conditions that favour growth of particular 
algal groups, and potentially suggests a means of control of the phytoplankton by manipulating 
the water quality parameter to a level that is not conducive to the growth of nuisance species, and 
that encourages the presence of preferred species.  
     

4.4.3.1 Occurrence of algae functional groups in relation to 
water temperature 

Fig. 27 displays the results for the ordination and clustering of algal occurrence in relation to 
water temperature.  The k-means map visualised the 3 clusters relating to the 3 different ranges 
of water temperature found in the data.  The k-means algorithm identified the top cluster as 
related to low water temperatures of less than 14˚C, the bottom-right cluster as mid water 
temperatures of 14-19˚C and the bottom-left cluster as high water temperatures of above 19˚C 
(Fig. 27a).  The k-means algorithm identified a clockwise transition of clusters with some slight 
overlapping areas at the borders of the clusters.  The quality of the clustering was high, as the 
relatively small number of input variables reduced the likelihood of noise and messy clustering, 
giving low quantization and topographic errors of 0.07.   
The component plane showing Chl-a concentration (Fig. 27b) clearly indicated that highest levels 
were found to coincide with mid water temperatures of 14-19˚C, likely to be caused by green 
algae and/or diatoms.  Anabaena from both reservoirs were shown to clearly favour periods of 

high water temperature from 19° and above, and there is much literature to support this notion.  

The component plane for green algae showed it to be present in reasonable abundance 
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throughout all water temperature ranges, suggesting that it is not dependent on particular 
temperature conditions.  Green algae are considered as opportunistic, and therefore it is likely 
that this genus proliferates whenever resources allow it – not simply under certain water 
temperature conditions (Happey-Wood 1988).  Results for the occurrence of diatoms were 
interesting in that the component plane showed high abundances mainly in the high water 
temperature range.  Often diatoms are associated with the cooler waters of winter and spring, 
though as mentioned in 4.4.1.1, this association with winter and spring is likely to be mostly 
related to the turbulence associated with these seasons rather than the water temperature.  As 
artificial mixing, in the form of mechanical mixers and aerators, takes place throughout summer 
and autumn in Myponga and Happy Valley reservoirs, these warm water seasons can also 
provide the turbulence required to support diatoms populations.  An extension of their suitability to 
summer and autumn is their superior nutrient competition abilities as discussed below in 4.4.3.2. 
 

 

4.4.3.2 Occurrence of algae functional groups in relation to 
phosphate concentrations 

Fig. 28 displays the results for the ordination and clustering of algal occurrence in relation to 
phosphate concentrations.  The k-means map visualised the 3 clusters relating to the 3 different 
ranges of PO4 concentrations found in the data.  The k-means algorithm identified the top cluster 
as related to low PO4 concentrations of less than 0.02mg/L, the middle cluster as mid PO4 
concentrations of 0.02-0.05mg/L and the bottom cluster as high PO4 concentrations of above 
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Figure 27.  KANN, using k-means map showing water temperature ranges, and corresponding 
component planes for dominant algal functional groups in Myponga and Happy Valley 
reservoirs. 
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0.05mg/L (Fig. 28a).  The k-means algorithm identified some slight overlapping areas at the 
borders of the clusters.  The quality of the clustering was high, as the relatively small number of 
input variables reduced the likelihood of noise and messy clustering, giving low quantization and 
topographic errors of 0.062 and 0.052 respectively. 
The component plane showing Chl-a concentration (Fig. 28b) clearly showed that highest levels 
were found to coincide with low PO4 concentrations of less than 0.02mg/L.  As Chl-a is 
representative of algal abundance, it stands to reason that more Chl-a will result in greater uptake 
of PO4, an essential nutrient for phytoplankton growth.  Once phytoplankton growth and 
populations increase significantly, the PO4 is quickly consumed, resulting in rapid depletion of the 
nutrient pool.  This depletion is often compounded by the fact that phytoplankton can not only 
take what is needed of the nutrient for immediate utilisation, but can employ ‘luxury uptake’ of the 
nutrient to levels far exceeding current requirements (Reynolds et al. 1984).  This ‘luxury uptake’, 
which further adds to the speed and magnitude of PO4 depletion, allows cell growth to continue 
for some time after the nutrient levels in the water have become quite low.   
Interestingly, clusters representing high Anabaena abundance correspond with areas of mid and 
high PO4 concentrations.  This is counter-intuitive, as you might expect peak populations to 
require more of the nutrient and therefore deplete the concentration.  However, because 
Anabaena populations are normally prevented from reaching very high numbers for fear of 
blooms and toxicity issues, it is possible that the peak numbers are not often sufficient to impact 
upon the PO4 concentrations. Component planes for both green algae and diatoms showed that 
highest abundances were reached at times of low PO4 concentrations of less than 0.02mg/L. 
These genera reach much higher cells/mL levels than Anabaena and therefore, the PO4 uptake 
required for the growth and maintenance of the peak populations would presumably deplete the 
nutrient levels.  Interestingly, diatoms are recognised as particularly good competitors for 
nutrients, especially phosphorus (Sommer 1989), which also supports their populations through 
out the warmer, nutrient poor seasons in Myponga and Happy Valley reservoirs.  
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4.4.3.3 Occurrence of algae functional groups in relation to 
nitrate concentrations 

Fig. 29 displays the ordination and clustering of algal occurrence in relation to nitrate ranges.  The 
k-means map visualised 3 clusters relating to the 3 different ranges of NO3 concentrations found 
in the data.  The k-means algorithm identified the top cluster as related to low NO3 concentrations 
of less than 0.1mg/L, the mid-left cluster as mid NO3 concentrations of 0.1-0.2mg/L and the 
bottom cluster as high NO3 concentrations of above 0.2mg/L (Fig. 29a).  The k-means algorithm 
identified some slight overlapping areas at the borders of the clusters.  The quality of the 
clustering was high, as the relatively small number of input variables reduced the likelihood of 
noise and messy clustering, giving low quantization and topographic errors of 0.058 and 0.056 
respectively. 
The component plane showing Chl-a concentration (Fig. 29b) clearly showed that highest levels 
were found to coincide with low NO3 concentrations of less than 0.1mg/L.  This result concurs 
with the seasonality of water quality factors as shown in 4.4.1.1, where Chl-a is shown to peak in 
summer, whilst NO3 concentrations peaked in spring and then depleted rapidly in summer to the 
low levels which correspond with high Chl-a concentrations.  As with PO4, NO3 is an essential 
nutrient for phytoplankton growth and therefore the more population growth and maintenance at 
any one time will require more uptake of the nutrient.  However, not all phytoplankton are 
dependent on the NO3 in the water column.  Certain cyanobacteria, including Anabaena, are 
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Figure 28.  KANN, using k-means map showing PO4 concentration ranges, and corresponding 
component planes for dominant algal functional groups in Myponga and Happy Valley 
reservoirs. 
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known to possess to ability to fix atmospheric nitrogen and therefore do not have to rely on the 
NO3 pool in the water (Shapiro 1990).  The component plane for Anabaena showed that peak 
abundance corresponded with mid-high NO3 concentration.  Cyanobacteria as known to have 
high tolerance and even preference to excessive nutrient loading, which would explain the 
presence of Anabaena in high PO4 and NO3 concentrations (Paerl 1988).  As with Anabaena’s 
relationship with PO4 concentrations, although it would usually be expected that peak populations 
would require more uptake and therefore deplete nutrient reserves, the relatively low peak 
abundance values that this functional group is normally reduced to would prevent the depletion 
from occurring as it does with more abundance algal groups.  Also, because Anabaena is able to 
fix atmospheric nitrogen, it may be that little nitrate uptake is occurring due to the use of nitrogen 
fixation, allowing the source pool to be maintained at a high level.  Boney (1989) even states that 
in some habitats, filamentous cyanobacteria make significant contributions to in lake nitrogen 
budgets.   
Component planes for both green algae and diatoms showed that highest abundances were 
reached at times of low NO3 concentrations of less than 0.1mg/L. These genera are not capable 
of fixing atmospheric nitrogen for use and reach much higher population numbers than Anabaena 
and, as with PO4 in section 4.4.3.2, NO3 uptake required for the growth and maintenance of the 
peak populations would presumably deplete the nutrient levels due to reliance on the NO3 in the 
water column.  Happey-Wood (1988) supports this, stating that the growth of numerous types of 
green algae is commonly accompanied by substantial decreases in the inorganic nitrogen pool of 
the surface waters of lakes.   
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Figure 29.  KANN, using k-means map showing NO3 concentration ranges, and corresponding 
component planes for the dominant algal functional groups in Myponga and Happy Valley 
reservoirs. 
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4.5 Discussion  
This chapter used KANN to examine physical, chemical and biological water quality data by 
ordination and clustering.  Results offered insight into short-term dynamics, demonstrating 
seasonality and succession, and long-term trends in the context of management periods.   
The seasonality of major water quality variables showed that, whilst many parameters followed 
the usual natural patterns for water bodies similar in nature to Myponga and Happy Valley 
reservoirs, there were some exceptions.  Whilst many of the physical and chemical parameters 
behaved as expected such as water temperature being highest in summer and into autumn, and 
PO4 and NO3 having highest concentrations mainly in winter and spring, the succession of algal 
functional groups was not exactly as hypothesised.  It was anticipated that blue-green algae 
would occur in highest abundance during summer and into autumn, diatoms would be in greatest 
numbers during winter and into spring and that green algae would mainly fill spring and into 
summer.  Some overlapping was expected but not of peak populations.  However, the 
successional order observed showed that whilst the blue-green algae did occur in highest 
abundance when expected in summer, the green algae peaked in late summer and into autumn 
and the diatoms were interestingly shown in highest abundance during autumn and into winter.  It 
would seem that the management in place slightly disturbs the natural patterns and algal 
succession in these water bodies.  It is known that diatoms require turbulence to move their 
heavy silica structure into the euphotic zone and prevent them from sedimenting out of the water 
column.  Therefore in an unmanaged water body, early autumn would probably not support large 
populations of diatoms, as the water column is still relatively stable for the first part of the month 
until turnover.  However, at Myponga and Happy Valley reservoirs, the artificial mixing and 
destratification means that diatom populations can start to build up in summer and peak in 
autumn due to the mechanical mixing that is providing the necessary turbulence for their survival.  
Management practices throughout summer and autumn are also what suppress blue-green algae 
enough to enable green algae to reach peak abundance at the same time.  Therefore, the impact 
of management can be seen in terms of short-term dynamics as well as longer-term changes.   
The examination of the long-term changes of water quality at Myponga reservoir over a period of 
16 years, in context of the several different mixing regimes used throughout that time, gave 
interesting results.  It was hypothesised that the continued management of the reservoir would 
lead to improved water quality conditions over time.  However, this was not the case for many 
variables and therefore the management strategy employed at Myponga reservoir can be 
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improved.  Particular attention needs to be paid to PO4, Chl-a and Mn concentrations, which had 
higher levels in the last period than they had experienced in any of the previous periods.  
The investigation of algae functional group occurrence in relation to changing levels of a 
particular variable showed that green algae and diatoms coincided with periods of low PO4 and 
NO3 concentrations.  Although the nutrients are probably at reasonable levels to begin with, there 
is rapid uptake and depletion by these functional groups that can reach very high abundances.  
Blue-green algae occurred during times when the nutrients were at mid-to-high concentrations 
(early to mid summer, after the winter-spring accumulation but before the depletion by large 
phytoplankton growth) and because they are managed to quite low population numbers, they did 
not deplete the source pool as the other functional groups did.  The fact that Anabaena is known 
to fix atmospheric nitrogen could further explain the lack of impact on NO3 levels.  These results 
fit in with the seasonality of the functional groups demonstrated in the initial experiment.  When 
blue-green algae begin to build up populations in early summer, there is a high level of nutrients 
due to accumulation over winter and spring from increased input and reduced uptake.  By mid to 
end of summer the nutrients deplete as blue-green and green algae populations climb, resulting 
in low nutrient levels by autumn when green and diatoms are seen to occur in high numbers.  
This last series of experiments demonstrates a method that could potentially reveal how to 
manipulate water quality variables to improve water quality by discouraging particular 
phytoplankton occurrence and encouraging others that are less harmful.    
 
This chapter has demonstrated that KANN is a useful instrument for the exploration of complex 
ecological time-series data.  The method has been shown to allow examination of short-term 
dynamics such as seasonality and succession, and permit comparisons between two study sites.  
Short- and long-term patterns can be viewed in context of management regimes by splitting the 
data into periods based on different management strategies.  This allows the assessment of 
management efficiency and highlights particular aspects where management was successful or 
should be focused and improved.  Examination of the conditions that promote particular groups of 
algae can demonstrate areas that could be manipulated to manage the algal communities for 
better water quality.  This chapter has clearly shown KANN to be capable of being applied to 
ecological data sets in many different manners.  The method seemed to provide ordination and 
clustering in a superior manner than traditional techniques such as PCA, for greater unravelling of 
complexities within the data.  Visualisation of the clusters in a clear and instructive manner was 
also a great advantage compared to the traditional techniques.   
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In summary, KANN can be used to thoroughly explore and examine water quality data and 
providing pattern analysis through time and across periods of different management; highlighting 
important relationships, possible interactions and areas of interest for further research.  It was an 
important and useful first step for this project as the results and information gained from this 
series of KANN experiments provided better understanding of the functioning of the study sites, 
which could then be applied to the development of forecasting models. 
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5. FORECASTING OF CHLOROPHYLL-A AND 
ANABAENA DYNAMICS 
 

5.1 Introduction 
The need for the development of predictive water quality models has increased due to water 
quality deterioration of many of the world’s freshwater sources, along with an increased demand 
for potable water.  Prediction and elucidation of changes in water quality are particularly important 
for water resources relied upon by human populations.  Water industries and government 
agencies in Australia undertake enormous research and management efforts in order to prevent 
algal blooms in lakes and drinking water reservoirs, as manifested by the establishment of the 
CRC for Water Quality and Treatment (www.waterquality.crc.org.au).  As recommended by the 
UK National Rivers Authority (NRA 1990), appropriate predictive tools and early warning systems 
need to be developed and implemented in order to prevent future expenses in the order of 
millions of dollars to water industries by harmful algal outbreaks in drinking water reservoirs, lakes 
and rivers. Early warning of impending algal blooms should facilitate the prevention of major 
bloom events by allowing the timely implementation of operational control measures such as 
intermittent artificial mixing. 
 
Using time-series water quality datasets from Myponga and Happy Valley reservoirs has allowed 
the development of forecasting models for each site, and the performance of sensitivity analyses, 
which give insight into relationships that drive phytoplankton dynamics.  The two datasets also 
allowed comparisons between the dynamics and relationships within the reservoirs, which belong 
to the same category of warm monomictic and eutrophic lakes.   
This chapter discusses the application and comparison of Recurrent Artificial Neural Networks 
(RANN) and Hybrid Evolutionary Algorithms (HEA) methods for predictive modelling of 
phytoplankton dynamics. Both methods enable useful time-series modelling by inducing 
forecasting models from historical data patterns.  Models discovered by the two methods allow 
the conduction of sensitivity analyses in order to reveal quantitative relationships between the 
input variables and the output, which enables the elucidation of causal relationships between 
water quality parameters. 
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The forecasting of phytoplankton dynamics in both Myponga and Happy Valley reservoirs was 
focused on either Chl-a concentration, as an indicator of total algal biomass, or the specific 
abundance of the dominant nuisance species, Anabaena circinalis.   
Models developed by either of the two methods can potentially be applied to real-time monitoring 
data and thus provide real-time forecasting.   
 

5.2 Aims and Hypotheses 
The main aim of this chapter is, quite simply, to accurately predict the timing and magnitude of 
Chl-a concentration or Anabaena abundances within the water bodies.  Through the development 
of single lake models for each study site, the study also aims to make comparisons between the 
reservoirs.  Additionally, the construction of models trained with merged data endeavours to take 
a step towards generic modelling and forecasting.  The use of the two forecasting techniques 
allows the comparison between methods with the intention of determining the best method for 
forecasting phytoplankton dynamics in real time.  In the pursuit of these aims, the validity of the 
following hypotheses will be investigated: 
 
Hypothesis 1 – models developed by RANN and HEA forecast the timing and magnitude of algal 
abundance reasonably well using physical and chemical input variables. 
 
Hypothesis 2 – algal population dynamics are more rapid, distinct and challenging to model than 
algal community dynamics represented by Chl-a, and therefore forecasting models for Anabaena 
will be less accurate than those forecasting Chl-a.   
 
Hypothesis 3- training models with merged data from same category reservoirs would provide the 
model with more patterns of similar nature for learning and thus, improve the generalisation of the 
models. 
 

5.3 Methods and Materials 

5.3.1 Data  
Interpolated daily values of water quality time series data from both reservoirs were used for the 
training and testing of RANN and HEA models, allowing daily forecasts of phytoplankton 
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dynamics.  Data selection was dependent upon what parameters were available at the time of the 
experiments, the duration of their availability and the outcome of sensitivity analyses.  Tab. 8 
shows the years of data used in each experiment. 

Table 8.  Data used for each experiment in this chapter 
 

Experiment 
 

Years of data 
used 

 

Forecasting aim:  7-days ahead Chl-a forecasting in Myponga reservoir 
Section:  5.4.1.1 and 5.4.1.2 

Inputs: 1 test year experiments: PO4, NO3, water temperature, turbidity, colour and DO 
2 test years experiments: PO4, NO3, water temperature, turbidity and DO 

 

1993-2003 
 

 

Forecasting aim:  7-days ahead Chl-a forecasting in Happy Valley reservoir 
Section:  5.4.1.3 and 5.4.1.4 

Inputs: 1 test year experiments: PO4, NO3, water temperature, turbidity, colour and DO 
2 test years experiments: PO4, NO3, water temperature, turbidity and DO 

 

1991, 1994-2003 
 

 

Forecasting aim:  7-days ahead forecasting of Anabaena in Myponga reservoir 
Section:  5.4.2.1 and 5.4.2.2 

Inputs: 1 test year experiments: PO4, NO3, water temperature, turbidity, colour, DO and Chl-a 

2 test years experiments: PO4, NO3, water temperature, turbidity, DO and Chl-a 

 

1995-2003 
 

 

Forecasting aim:  7-days ahead forecasting of Anabaena in Happy Valley reservoir 
Section:  5.4.2.3 and 5.4.2.4 

Inputs: 1 test year experiments: PO4, NO3, water temperature, turbidity, colour, DO and Chl-a 

2 test years experiments: PO4, NO3, water temperature, turbidity, DO and Chl-a 

 

1991, 1994-2003 
 

 

*For merged applications the years listed for each reservoir were combined. 

 

5.3.2 Model Design 
Using each method, single lake models were developed for each reservoir separately.  Later, 
merged lake models were created using merged data from both reservoirs, to see whether the 
accuracy of the forecasts would improve through increased training samples or patterns, or 
decrease in accuracy due to the more generic nature of the model (see Fig.30 for experimental 
progression).   
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Model evaluation, for both methods, was based on r2 and RMSE values along with visual 
assessment of the nearness of the measured and predicted data. 
Time-lagged inputs were used for all RANN and HEA experiments, with a 7-day forecast horizon 
used throughout this chapter.  Time-lagged inputs are considered useful for several reasons, 
including that there is generally a slight lag between the impacts any current conditions will have 
on an algal population and also because it allows the prediction of the output with an advance of 
a pre-determined time frame.  Preliminary experiments examining models using time lags of 3, 7, 
14 and 21 days were carried out.  7-day lags were seen as the ideal time frame for the purposes 
of this work as it is a compromise between the 3-7day lags which are of interest to water 
managers, and longer lags which provide more opportunity to challenge and demonstrate the 
model’s capabilities.  3 and 7-day lags gave the best results and were of a similar accuracy level 
and 7-day lags were chosen as they allowed sufficient demonstration of the models forecasting 
abilities and would provide ample time for water management to decide upon, organise and 
implement the necessary operational control and management strategies. 
In both methods the split-sample validation method (see Weiss and Kulikowski, 1991) was used 
with one or two testing years.  Initially one testing year was selected, however it was later decided 
that this could be misleading regarding the models predictive capabilities and therefore, two 
testing years were used in later experiments.  Selection of the testing years was based on 
providing the model with the greatest challenge and opportunity to prove its use in different 
conditions by the selection of two years that were quite different in timing and magnitude of the 
output (Chl-a or Anabaena). 
As explained in 3.3.1.4, sensitivity analyses are used in association with each method, to provide 
insight into the relationships between the input and output data.  The ‘sensitivity on wide-ranged 
disturbance’ (SWD) approach is used in this research (described in 3.3.2.5).  Using this method, 
all input variables, except the one of interest, are kept constant at their mean value.  The variable 
being investigated is varied within the range of its mean by +/- 1 standard deviation, which is 
thought to encompass commonly occurring variation, and therefore the general conditions of the 
water bodies.  Most influencing parameter (MIP) analysis (described in 3.3.2.5) was also carried 
out on the RANN models, and results are mentioned briefly in text with graphs displayed in 
Appendix E. 
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RANN and HEA: reservoir specific models forecasting Chl-a or Anabaena, 
validated on one independent test year.  Sensitivity by wide-ranged 

disturbance and most important parameter analyses carried out.
One testing year was decided to 
be insufficient, therefore it was 

decided to test on two 
independent years.  Sensitivity 
analyses consistently revealed 

that colour was the least 
important variable for 

forecasting, therefore it was 
removed as an input for RANN.

RANN and HEA: reservoir specific models forecasting Chl-a or Anabaena, 
validated on two independent test years.  Sensitivity analyses results were not 
included as they gave same results as those discussed in experiments using 

one test year.

Data sets from both Myponga 
and Happy Valley reservoirs 
are merged to provide more 
patterns for models to learn 

from.

RANN and HEA: merged data was used to create models for Chl-a and 
Anabaena forecasting that could be applied to either reservoir, validated on two 

test years.
Results from merged models 
were encouraging, therefore 
it was decided to trial merged 

models using only 
electronically measurable 

variables as inputs.

RANN and HEA: merged models for Chl-a forecasting using only 
electronically measurable input variables, validated on two test years.

RANN and HEA: reservoir specific models forecasting Chl-a or Anabaena, 
validated on one independent test year.  Sensitivity by wide-ranged 

disturbance and most important parameter analyses carried out.
One testing year was decided to 
be insufficient, therefore it was 

decided to test on two 
independent years.  Sensitivity 
analyses consistently revealed 

that colour was the least 
important variable for 

forecasting, therefore it was 
removed as an input for RANN.

RANN and HEA: reservoir specific models forecasting Chl-a or Anabaena, 
validated on two independent test years.  Sensitivity analyses results were not 
included as they gave same results as those discussed in experiments using 

one test year.

Data sets from both Myponga 
and Happy Valley reservoirs 
are merged to provide more 
patterns for models to learn 

from.

RANN and HEA: merged data was used to create models for Chl-a and 
Anabaena forecasting that could be applied to either reservoir, validated on two 

test years.
Results from merged models 
were encouraging, therefore 
it was decided to trial merged 

models using only 
electronically measurable 

variables as inputs.

RANN and HEA: merged models for Chl-a forecasting using only 
electronically measurable input variables, validated on two test years.

Figure 30. Experimental progression of Chapter 5 
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5.3.2.1 RANN 

RANN (Pineda 1987) was designed to predict future patterns or values by learning from patterns 
and examples presented to the network.  Being a ‘supervised’ ANN, its learning is guided by 
known outputs, and its recurrent nature means that the activations from the time step before are 
fed back into the network as another form of input to improve accuracy of time-series modelling 
(see Fig.2).  
For the development and implementation of the RANN models, NeuroSolutions for Excel Version 
4.2 was used.   
 
Architecture 

RANN requires the selection of appropriate network architecture (see 3.5.2.1 for descriptions of 
architecture components listed here).  Some of the network architecture parameters of the RANN 
models remained constant for all experiments; others were optimised to suit the particular 
situation.  All RANN were designed with one hidden layer and used the Tanh Axon (hyperbolic) 
transfer function, with the Momentum learning rule set to 0.7 for both the hidden and output layer, 
and a step size of 0.01 and 0.1 for the hidden and output layers respectively.  For most 
experiments a simple Axon input layer structure was used but for the models forecasting 
Anabaena, Laguarre Axon - a memory axon, was found to be necessary to gain acceptable 
results.  The input layer structure, number of processing elements or nodes and training time 
varied between the models and will be indicated appropriately.   
 
Input selection 

Initial input selection was based on knowledge of important factors relating to algal growth and 
population maintenance.  The sensitivity analyses were then examined to see if there were any 
redundant inputs that could be removed to potentially improve the results.  This trial and error 
technique continued and inputs were adjusted accordingly.   
 
Training time 

Optimal training time can differ with each model and the trial and error method was largely used 
to find the ideal amount of training for these models.  Criteria upon which ideal training time was 
determined include reasonably accurate results when the model is tested on the training data 
(extremely good training results often demonstrate that the network has been overtrained which 
results in poor forecasting abilities, whilst poor training results likely demonstrate that the network 
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is yet to be trained sufficiently), and testing results within an acceptable error range when the 
network is applied to unseen data.  

5.3.2.2 HEA 

HEA  (Cao et al. 2006b) was designed to extract predictive rule sets from within the training data 
set in the form of an IF-THEN-ELSE statement.  HEA uses genetic programming to evolve the 
structure of the rule set and then uses a general genetic algorithm to optimise the random 
parameters in the rule set (see Fig.10).    
All HEA experiments were performed on a supercomputer (IBM eServer 1350 Linux) using the C 
programming language.    
 
Design 

HEA model design requires the initial determination of several factors such as initial population 
number, number of generations, rule complexity etc. (see 3.5.3.1 for explanation of all parameter 
settings).  Throughout this study all HEA models began with an initial population of 200, with a 
maximum of 100 generations.  This was thought to allow sufficient searching for the best rule-set.  
The model output was set as a single rule to avoid over-complicating application of the rule set.   
 

Input selection 

For this method the algorithm carried out input selection by determining key driving variables and 
disregarding unimportant inputs; therefore all available input variables were supplied, though not 
all were necessarily used (see Methods 3.3.3.2 for more detail).  
 

5.3.2.3 Chl-a as an input 

Using Chl-a concentration as an input into models predicting Chl-a is a contentious issue.  
Traditionally, Chl-a concentrations have been left out of the input variables as there is the obvious 
effect of auto-correlation.  From a management perspective, the importance is on the accuracy 
and reliability of the predictions, and the fact that the inclusion of Chl-a as an input to models 
predicting Chl-a improves the accuracy of the forecasts cannot be argued.  However, from a 
modelling perspective, the use of Chl-a as an input would not show the power of the methods to 
draw significant causal variables from the input data and extract relationships. The tendency 
would be to largely rely on the Chl-a input data for the predictions.  It is important to make the 
distinction between the intention of predicting Chl-a as a function of other inputs, in which case 
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Chl-a can obviously not be used as an input, or forecasting Chl-a in advance, where Chl-a can be 
an input if there is no interest in causal relationships and model interpretation.  Recent 
applications using Chl-a as an input include Coad et al. (2005), who used only online Chl-a data 
from the previous week to determine the Chl-a concentration 1 – 7 days in advance in the 
Berowra estuary, using SNN.  This study found that the ‘Chl-a input only model’ produced the 
best predictive results (r2 = 0.89) but concluded that the causative parameters for inducing algal 
blooms could not be deduced from the predictive models developed in that manner.  Lee et al. 
(2003) also used solely Chl-a concentrations with time lags of 7 –13 days for input to ANN for 
prediction of coastal algal blooms.  This study concluded that all the ecological information 
required to make accurate forecasts appeared to be embodied by the Chl-a from the week or so 
prior.  This may be the case, but it does not allow any insight into the ecological information.   
Experiments conducted by this author showed that when Chl-a concentration from one week prior 
was offered to the HEA as input, it was heavily relied upon to predict the Chl-a concentration.  
Although the result was good with regard to magnitude and timing, the model mostly suggested 
the Chl-a concentrations from the week before as forecasts of the concentration at any particular 
time which gave a 7-day delay effect (see Appendix D for an example).  
For the purposes of this study, where the relationships driving algal dynamics are also of interest, 
as well as the forecasting results, it was considered best to not include Chl-a concentration as an 
input for models predicting Chl-a concentration.  It was thought that this would enable better 
testing of the abilities of the modelling methods and allow the examination of the driving variables 
for Chl-a concentration.  However, for models developed to forecast Anabaena abundances, Chl-
a was made available as an input. 
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5.4 Results 

5.4.1 7-days ahead forecasting of Chl-a 

5.4.1.1 Myponga reservoir validated for 2001 

The results of Chl-a forecasting in Myponga reservoir using reservoir specific models developed 
by RANN and HEA can be seen in Fig. 31a.  Information on the models developed for this 
application is available in Tab. 9.  The validation results produced from the application of these 
models to Myponga reservoir data from 2001 show that both models do well in forecasting the 
major peak event, with the timing of the maximum values being excellent, although the magnitude 
was underestimated in each case, but slightly more so by the HEA derived model.  The RANN 
model best forecasts the timing and magnitude of the first event, where Chl-a concentrations 
reached a peak of 15ųg/L, while the HEA model gives a delayed forecast of that concentration.  
The lower Chl-a concentrations experienced outside of the peaks are best forecasted by the HEA 
model, which performs well regarding magnitude, where the RANN model forecasts a close to 0 
concentration.  Although this would not be a problem when forecasting for management, as these 
values are not a concerning level; from the assessment of the model purely from a modelling 
perspective, it is not ideal.  The small Chl-a peak of approximately 10ųg/L at the end of the test 
year is predicted by both models, though both are slightly delayed in timing and, whilst the timing 
of the maximum values are correct, the concentration was underestimated in both cases.  The 
HEA derived rule-set gave the best forecasting results with an r2 value of 0.89 and RMSE of 2.88, 
compared with the RANN model which gave of r2 value of 0.77 and an RMSE of 3.85   Overall 
both models were successful in identifying the major peak Chl-a concentrations.   

 

 

RANN HEA 
Input layer structure Axon IF ((NO3*(( NO3*144.294)*(191.268-WT)))>=98.396) 
Processing Elements 25 THEN Chl-a = ((WT/470.057)*((Colour/( NO3*64.755))*WT)) 
Transfer function TanhAxon ELSE Chl-a =((Colour/(189.292-Colour))*WT) 
Iterations 8000 Runs 50 
 

Table 9. Information table for RANN and HEA models developed to forecast Chl-a 
concentration in Myponga reservoir (1test year)
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The sensitivity analyses produced from the methods can be seen in Fig. 31b. Of the six input 
variables, MIP analysis by RANN identified PO4 concentration as the most influential, distantly 
followed by NO3 concentration (see Appendix E).  From the six possible input variables, HEA 
detected that water temperature, colour and NO3 concentrations as driving variables for the 
accurate prediction of Chl-a concentrations in Myponga reservoir.  The sensitivity graph obtained 
by RANN shows that highest Chl-a concentrations coincide with very low PO4 concentrations and 
that increasing PO4 levels occur in conjunction with decreasing Chl-a concentrations.  This occurs 
because PO4 is the limiting nutrient for algal growth and maintenance and as the algal community 
(represented by Chl-a) increases in number, the uptake of the nutrient increases which results in 
depletion of the PO4 concentrations within the water column (Boney 1989).  In fact, the 
concentration of PO4 in a lake can be readily related to Chl-a concentrations (Moss 1998).   
Similarly, NO3 is another important nutrient for most algae and is shown by the sensitivity results 
from both RANN and HEA to follow a similar pattern to PO4.  Again it is due to increasing algal 
numbers placing further demand on the nutrient reserves and the increased uptake resulting in 
depletion of the nutrient to very low concentrations during times of large algal populations.  
Increasing water temperature was shown by both RANN and HEA to stimulate increasing Chl-a 
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Figure 31.  a) Chl-a forecasting results for RANN (left) and HEA (right) models tested on one 
year of data from Myponga reservoir, b) sensitivity analyses results from RANN (left) and HEA 
(right). 
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concentrations.  Water temperature greatly influences the rate of metabolic processes in algal 
cells and warmer water temperature results in much higher levels of photosynthesis (Reynolds 
1989).  Both methods demonstrated a positive relationship between colour and Chl-a 
concentration.  Colour in water can be due to the presence of metallic ions such as Fe and Mn, 
lignin compounds, dissolved organic carbon (DOC) and phytoplankton among other things, and 
Myponga reservoir is characteristically very highly coloured predominantly by DOC (see Appendix 
C).  Increasing turbidity in Myponga reservoir was shown by RANN to correspond with a slight 
decline in Chl-a concentration. Whilst phytoplankton as well as suspended and colloidal matter 
can influence turbidity, in Myponga it is largely non-algal (Burch 2005a).  In light of this, the 
results can be interpreted as showing that increasingly turbid water discourages algal growth, 
probably by light limitation.  The RANN sensitivity graph shows that Chl-a concentration does not 
significantly respond to increasing DO concentrations.  The relationship between DO and 
phytoplankton is a complex one.  Oxygen is a product of algae photosynthesis, and in this way 
increased phytoplankton could result in increased dissolved oxygen in the water column.  
However, respiration and the decomposition of dead algal cells increase the biological oxygen 
demand and reduced dissolved oxygen levels.  In this particular sensitivity result, no significant 
relationship can be determined.       

5.4.1.2 Myponga reservoir validated for 1995 and 2001 

The results of Chl-a forecasting in Myponga reservoir using reservoir specific models developed 
by RANN and HEA can be seen in Fig. 32.  Information on the models developed for this 
application is available in Tab. 10.   The validation results produced from the application of these 
models to Myponga reservoir data from 1995 and 2001 show that both models do well in 
forecasting the major peak event at the beginning of 2001, although the magnitude was 
underestimated in each case, but slightly more so by the HEA derived model.  The timing and 
magnitude of the first event, where Chl-a concentrations reached a peak of 15ųg/L, is best 
forecast by the RANN model.  The RANN model predicts high concentrations at the beginning of 
the 1995 year, which is often the case though the pattern was disturbed by CuSO4 dosing in this 
case.  The lower Chl-a concentrations experienced outside of the peaks are best forecast by the 
RANN model, which does well regarding timing and magnitude, where the HEA model forecasts 
underestimates providing concentrations of close to 0.  Although this would not be a problem for 
forecasting for management, as these values are not concerning, from the assessment of the 
model purely from a modelling perspective, it is not ideal.  The small Chl-a peak of approximately 
10ųg/L at the end of the 2001 test year is predicted well by RANN, whilst HEA indicates some 
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growth at that time but underestimates the concentration.  The RANN model gave the best 
forecasting results both visually and by RMSE of 3.68, with an r2 value of 0.62 compared with the 
HEA derived model which gave of r2 value of 0.66 and an RMSE of 4.17.   Overall both models 
were successful in identifying the major peak Chl-a concentrations.   
 

Table 10.  Information table for RANN and HEA models developed to forecast Chl-a concentration 
in Myponga reservoir (2test years) 

 

5.4.1.3 Happy Valley reservoir validated for 1999 

The results of Chl-a forecasting in Happy Valley reservoir using reservoir specific models 
developed by RANN and HEA can be seen in Fig. 33a.  Information on the models developed for 
this application is available in Tab. 11.  The validation results produced from the application of 
these models to Happy Valley reservoir data from 1999 show that both models do well in 
forecasting the two main algal growth events.  The first of these events has two peaks, the first of 
which is approximately 18ųg/L and is well forecast by the HEA derived model, but not predicted 
by the RANN model.  For the second peak, the opposite is true, as the RANN model predicts the 
correct magnitude in advance, whilst the HEA rule-set does not forecast this event well.  The 
other key growth event of up to 23ųg/L at the end of the test year was clearly identified by both 
models, though the RANN model gives a slightly delayed overestimation, whereas the HEA rule-
set suggests the event is of a smaller magnitude.  The lower Chl-a concentrations between the 
peak events was forecast particularly well by the RANN model, except for a small false peak.   

RANN HEA 
Input layer structure Axon IF (((PO4*30.6)*147.2)>260.186) 
Processing Elements 23 THEN Chl-a = ((WT-1.3)*((PO4+(WT/57.56))- NO3)) 
Transfer function TanhAxon ELSE Chl-a =(Colour*((PO4+(WT/88.7))- NO3)) 
Iterations 4000 Runs 50 
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Figure 32. Chl-a forecasting results for RANN (left) and HEA (right) models tested on two years 
of data from Myponga reservoir 
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The RANN model gave the best forecasting results with an r2 value of 0.81 and RMSE of 3.23, 
compared with the HEA derived rule-set which gave of r2 value of 0.76 and an RMSE of 3.56    
Overall both models were successful in identifying the major peaks in Chl-a concentrations.   

 

Table 11.  Information table for RANN and HEA models developed to forecast Chl-a concentration 
in Happy Valley reservoir (1test year)  

 
The sensitivity analyses produced from the methods can be seen in Fig.33b.  Of the six input 
variables, MIP analysis by RANN identified PO4 concentration as the most influential, distantly 
followed by NO3 concentration (see Appendix E).    From the six possible input variables, HEA 
detected that turbidity, colour and PO4 concentrations were necessary for the accurate prediction 
of Chl-a concentrations in Happy Valley reservoir.  The sensitivity graphs obtained by RANN and 
HEA show that the highest Chl-a concentrations coincide with very low PO4 concentrations and 

RANN HEA 
Input layer structure Axon IF (WT<21.01) 
Processing Elements 17 THEN Chl-a = (((Colour/PO4)+942.33)/412.701) 
Transfer function TanhAxon ELSE Chl-a =((((Colour/PO4)+515.197)+(TURB*68.590))/254.190) 
Iterations 9000 Runs 50 
 

Figure 33.  a) Chl-a forecasting results for RANN (left) and HEA (right) models tested on one 
year of data from Happy Valley reservoir, b) sensitivity analyses results from RANN (left) and 
HEA (right). 
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that increasing PO4 levels occur in conjunction with decreasing Chl-a concentrations.  Results 
from RANN show that NO3 also behaves in this manner.  As in Myponga reservoir, the patterns 
shown by these nutrients are due to increasing algal numbers placing further demand on the 
nutrient reserves and the increased uptake resulting in depletion of the nutrient to very low 
concentrations during times of large algal populations.  In keeping with long established 
ecological theory, rising water temperature was linked by RANN to increasing Chl-a 
concentrations as it stimulates algae growth.  As Chl-a contributes to the colour of a water body, it 
is logical that as Chl-a levels increase so does the colour intensity, and this was demonstrated by 
both RANN and HEA sensitivity analyses.  Turbidity in Happy Valley reservoir was shown by 
RANN and HEA to coincide with increasing Chl-a concentration.  Happy Valley reservoir is more 
productive than Myponga and algae contribute to turbidity more so in this reservoir, and therefore 
as algal abundance increases, so too does turbidity.  As with Myponga reservoir, the RANN 
sensitivity graph shows that Chl-a concentration in Happy Valley reservoir does not significantly 
respond to increasing DO concentrations and, again, no significant relationship can be 
determined.  As with the sensitivity analysis results for Myponga reservoir, here Anabaena was 
found to contribute to Chl-a levels.     

5.4.1.4 Happy Valley reservoir validated for 1997 and 1999 

The results of Chl-a forecasting in Happy Valley reservoir using reservoir specific models 
developed by RANN and HEA can be seen in Fig. 34.  Information on the models developed for 
this application is available in Tab. 12.  The validation results produced from the application of 
these models to Happy Valley reservoir data from 1997 and 1999 show that both models forecast 
the major Chl-a trends.  The first of these events had many peaks, and while neither model 
forecast this variation, they were both successful in identifying the timing of the highest peak, 
although both significantly underestimate it.  Of the 3 remaining events of approximately 20ųg/L, 
the first is not well identified by either method, the second is indicated by both methods, but most 
successfully by the RANN model and the third was also indicated by both, most effectively by 
HEA which forecasts the correct magnitude slightly delayed.  The HEA derived rule-set which 
gave the best forecasting results with an r2 value of 0.55 and an RMSE of 6.44 compared with the 
RANN model which gave an r2 value of 0.48 and RMSE of 7.11.  Overall both models were 
successful in identifying the major trends in Chl-a concentrations.   
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Table 12. Information table for RANN and HEA models developed to forecast Chl-a concentration 
in Happy Valley reservoir (2 test years) 

 

 
 

5.4.1.5 Myponga and Happy Valley reservoirs validated for 2001 
and 1999 respectively 

Models were developed using RANN and HEA and trained by merged data from Myponga and 
Happy Valley reservoirs, then tested on one year of data from each reservoir. 
The results of Chl-a forecasting using the merged models developed by RANN and HEA can be 
seen in Fig. 35.  Information on the models developed for this application is available in Tab. 13.  
The validation results produced from the application of these models to reservoir data from 
Myponga reservoir (2001) and Happy Valley reservoir (1999) show that both models do well in 
forecasting the 3 major peak events at the beginning, middle and end of the testing period.  Both 
RANN and HEA models indicate the timing of the events quite well, thought the prediction of the 
third event is slightly delayed in both cases.   The magnitude is best forecast by the RANN model, 

which forecast concentrations up to 25 µg/L, where as the HEA model underpredicted the major 

events by only forecasting concentrations up to approximately 15 µg/L.  Overall the RANN model 

provided the best results with an r2 value of 0.66 and an RMSE of 4.37, compared with the results 
from the HEA rule-set which gave an r2 value of 0.52 and an RMSE of 5.07. 

RANN HEA 
Input layer structure Axon IF ((Colour+227.534)<=259.087) 
Processing Elements 23 THEN Chl-a = (Colour/((PO4*73.5)+exp(NO3))) 
Transfer function TanhAxon ELSE Chl-a =(Colour/((PO4*227.02)+exp(NO3))) 
Iterations 1000 Runs 50 
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Figure 34. Chl-a forecasting results for RANN (left) and HEA (right) models tested on two years 
of data from Myponga reservoir 

1997 1999 1997 1999 



  

University of Adelaide, Australia 112

 

Table 13. Information table for RANN and HEA models developed using merged data to forecast 
Chl-a concentration in both reservoirs (2 test years) 

 

5.4.1.6 Myponga and Happy Valley reservoirs validated for 2001 
and 1999 respectively, based on electronically measurable data 
only 

The promising results from the merged models designed to forecast Chl-a concentration gave 
encouragement for the concept of developing a merged model to forecast Chl-a concentration 
using only electronically measurable inputs.  The input variables made available to the models 
were: DO, water temperature, turbidity and conductivity.  Information on the models developed for 
this application is available in Tab. 14. 

 
The results of Chl-a forecasting in both reservoirs using merged models developed by RANN, 
using only electronically measurable inputs can be seen in Fig. 36.  The RANN model was clearly 
able to identify the three major Chl-a growth events throughout the two year testing period.  The 
timing of the onset of the first two bloom events were well forecast, with the third event being 
slightly delayed.  The first and last Chl-a spikes were underestimated with regard to magnitude, 
whilst the middle peak was somewhat overestimated.  For the purposes of management and 
decision-making, overestimates of concentrations (within reason) are preferred to 
underestimations, because they at least mean that management will be prepared for the level of 
growth that does eventuate.  The validation results gave an r2 value of 0.22 and an RMSE of 
8.04. 

RANN HEA 
Input layer structure Axon IF (WT>18.076) 
Processing Elements 27 THEN Chl-a = = ln(|(Colour*(Colour*(TURB*Colour)))|) 
Transfer function TanhAxon ELSE Chl-a = ln(|((((-1.068)/PO4)+14.390)*((-1.068)/PO4))|) 
Iterations 15000 Runs 50 
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Figure 35. Chl-a forecasting results for merged RANN (left) and HEA (right) models tested on 
two years of data, one from each reservoir
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The results of Chl-a forecasting in both reservoirs using merged models developed by HEA, using 
only electronically measurable inputs can be seen in Fig. 36.  The HEA model was also able to 
clearly identify the three major peaks in Chl-a concentration.  The timing and magnitude of the 
middle peak event was predicted very well, though the model falsely predicts another peak 
immediately after.  The first and last Chl-a concentration spikes were underestimated as they 
were by the RANN model (r2 value of 0.22, RMSE of 8.04), but were closer to the actual 
concentrations.  Visually the HEA model appears to perform the best out of the two methods and 
this is confirmed by the error values, with an r2 value of 0.5 and an RMSE of 5.3. 
 

Table 14. Information table for RANN and HEA models developed using merged data, with only 
electronically measurable input variables, to forecast Chl-a concentration in both reservoirs (2 test 
years) 

Figure 36. Chl-a forecasting results for merged RANN (left) and HEA (right) models developed 
using only electronically measurable inputs, tested on two years of data, one from each reservoir 

 
Considering the limited input variables of DO, water temperature, turbidity and conductivity, both 
models did well to successfully identify the major trends in the Chl-a concentration over the two 
year testing period.  Compared with the merged models created using additional nutrient data 
(see section 5.4.1.5), the RANN model had lower accuracy, however the HEA model produced 
results of the same standard and quality.   
 
 
 
 
 
 
 

RANN HEA 
Input layer structure Axon IF (WT<18.623) 
Processing Elements 19 THEN Chl-a = exp((WT/((47.394/DO)+3.055))) 
Transfer function TanhAxon ELSE Chl-a = exp((WT/((35.538/DO)+(COND/172.917)))) 
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5.4.2 7-days ahead forecasting of Anabaena abundance 

5.4.2.1 Myponga reservoir validated for 2002 

The results of Anabaena forecasting in Myponga reservoir using reservoir specific models 
developed by RANN and HEA can be seen in Fig. 37a.  Information on the models developed for 
this application is available in Tab. 15.  The validation results produced from the application of 
these models to Myponga reservoir data from 2002 show that both models do well in forecasting 
the major peak event, with the timing being correct, although the magnitude was underestimated 
in each case, but more so by the HEA derived model.  The low Anabaena abundance outside of 
the peak event was best forecast by the HEA rule set.  Although it forecasts the cells/mL at 
approximately 50-100cells/mL above the actual abundance, these levels are not concerning for 
management and the models’ output is therefore acceptable.  The RANN model, however, 
forecasts two false growth events of about 200cells/mL above the actual measured abundance.  
Again, the levels are quite low and would not be of concern to management anyway, but false 
peaks of larger magnitudes could waste management efforts and are therefore not ideal.  
Although the RANN model provided some small false positives, visually it is the best model of the 
two as its forecasts are closer to the actual magnitude.  This is reflected by a lower RMSE than 
the HEA rule set but interestingly not by the r2 values.  The results of validation of the RANN 
model produced an r2 value of 0.36 and an RMSE of 174.95, whereas the HEA rule set produced 
an r2 value of 0.49 and RMSE of 119.38.  

 

Table 15.  Information table for RANN and HEA models developed to forecast Anabaena 
abundance in Myponga reservoir (1test year) 

 

 
 

RANN HEA 
Input layer structure Laguarre 

Axon 
IF (((NO3*(70.856/PO4))+PO4)<=310.669) 

Processing Elements 15 THEN Anabaena = (((NO3*(TURB*23.904))*DO)+83.660) 
Transfer function TanhAxon ELSE Anabaena = (DO*(( NO3*(TURB*18.027))*DO)) 
Iterations 9000 Runs 50 
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The sensitivity analyses produced from the methods can be seen in Fig. 37b. Of the six input 
variables, MIP analysis by RANN identified PO4 concentration as the most influential (see 
Appendix E).  From the six possible input variables, HEA detected that turbidity, DO, PO4 and 
NO3 concentrations were necessary for the accurate prediction of Anabaena abundance in 
Myponga reservoir.  The sensitivity graph obtained by RANN show that highest Anabaena 
concentrations coincide with very low PO4 concentrations and that increasing PO4 levels occur in 
conjunction with decreasing Anabaena populations.  Interestingly, NO3 does not follow this same 
pattern of depletion with increasing Anabaena abundance.  The sensitivity graphs produced by 
both RANN and HEA show that Anabaena abundance and NO3 rise in unison.  It is known that 
Anabaena is one of several cyanobacteria genera that are not solely reliant on the NO3 
concentration in the water, as they can fix atmospheric nitrogen for use.  In fact, Boney (1989) 
states that cyanobacteria can be significant contributors to nitrogen budgets, and it is possible 
that this can occur in Myponga reservoir, explaining why NO3 concentration increases as 
Anabaena populations grow.  Results from the RANN sensitivity analysis show that Anabaena 
abundances increases with increasing water temperature.  This follows what is known regarding 
Anabaena preferring the summer season, predominantly due to the warm water temperature and 
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Figure 37.  a) Anabaena forecasting results for RANN (left) and HEA (right) models tested on one 
year of data from Myponga reservoir, b) sensitivity analyses results from RANN (left) and HEA 
(right). 
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associated thermal stratification.  Both RANN and HEA demonstrate that Anabaena decreases 
with increasing turbidity.  Turbidity, through light limitation, appears to be limiting Anabaena 
growth.  Anabaena populations themselves are most often not large enough contribute 
significantly to the turbidity levels.  The RANN and ELSE HEA analysis results showed no 
significant relationship between Anabaena and DO.  The result from the THEN HEA analysis 
shows a positive relationship between DO and Anabaena.   Colour and Chl-a concentration are 
both also shown to have a positive relationship with Anabaena abundance, as Anabaena can 
contribute to both variables.  

5.4.2.2 Myponga reservoir validated for 1997 and 2002 

The results of Anabaena forecasting using reservoir specific models developed by RANN and 
HEA can be seen in Fig. 38.  Information on the models developed for this application is available 
in Tab. 16.  The validation results produced from the application of these models to reservoir data 
from Myponga reservoir (1997 and 2002) show that the RANN model was most successful in 
forecasting Anabaena abundance.  The RANN model indicates the presence of three large 
populations throughout the testing period, though underestimates two of the three and forecasts a 
false peak.  The HEA model only clearly identifies one growth event, with some unclear indication 
of the first event and no forecast of any elevated population near the second peak event.  
Interestingly, while the HEA model does not appear to be useful it gives better error levels, r2 
value of 0.1 and an RMSE of 823.91, whilst the RANN model is visually much better but gives an 
r2 value of 0.1 and an RMSE of 900.23.  
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Table 16. Information table for RANN and HEA models developed to forecast Anabaena 
abundance in Myponga reservoir (2 test years) 

Figure 38.  Anabaena forecasting results for RANN (left) and HEA (right) models tested on two 
years of data from Myponga reservoir 

 

5.4.2.3 Happy Valley reservoir validated for 1997 

The results of Anabaena forecasting in Happy Valley reservoir using reservoir specific models 
developed by RANN and HEA can be seen in Fig. 39a.  Information on the models developed for 
this application is available in Tab. 17.  The validation results produced from the application of 
these models to Happy Valley reservoir data from 1997 show that both models are able to identify 
where the major growth events occur throughout the year, although the magnitude was largely 
underestimated in each case, but more so by the HEA derived model.  Although the RANN model 
provides a few false positives, visually it is the best model of the two as its forecasts are closer to 
the actual magnitude.  Similarly to the results found for Myponga reservoir, this is reflected by a 
lower RMSE than the HEA rule set but interestingly not by the r2 values.  The results of validation 
of the RANN model produced an r2 value of 0.56 and an RMSE of 858.7, whereas the HEA rule 
set produced an r2 value of 0.63 and RMSE of 1017.9.  
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Input layer structure Laguarre 

Axon 
IF ((Nitrate/PO4)<=3.873) 

Processing Elements 18 THEN Anabaena = (NO3*((DO*(TURB*6.03))*TURB)) 
Transfer function TanhAxon ELSE Anabaena = (DO*( NO3*((DO*TURB)*(WT+TURB)))) 
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Table 17. Information table for RANN and HEA models developed to forecast Anabaena 
abundance in Happy Valley reservoir (1test year) 

 

The sensitivity analyses produced from the methods can be seen in Fig. 39b. Of the six input 
variables, MIP analysis by RANN again identified PO4 concentration as the most influential (see 
Appendix E).  From the six possible input variables, HEA detected that water temperature, 
turbidity, DO, PO4 and NO3 concentrations were necessary for the accurate prediction of 
Anabaena abundance in Happy Valley reservoir.  The sensitivity results for Happy Valley 
reservoir were similar to those for Myponga reservoir.  The sensitivity graph obtained by RANN 
shows that highest Anabaena concentrations coincide with very low PO4 concentrations and that 
increasing PO4 levels occur in conjunction with decreasing Anabaena populations.  As with 
Myponga reservoir, in Happy Valley reservoir NO3 does not follow this pattern of depletion with 
increasing Anabaena abundance.  The sensitivity graphs produced by RANN show that 
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Input layer structure Laguarre 

Axon 
IF ((NO3*WT)>6.557) 

Processing Elements 25 THEN Anabaena = (((35.509/(TURB+PO4))*25.062)+105.758) 
Transfer function TanhAxon ELSE Anabaena = (((189.596/exp(DO))*105.758)+56.489) 
Iterations 25000 Runs 50 
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Figure 39.  a) Anabaena forecasting results for RANN (left) and HEA (right) models tested on one 
year of data from Happy Valley reservoir, b) sensitivity analyses results from RANN (left) and 
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Anabaena abundance and NO3 rise in unison.  Like the results for Myponga reservoir, Anabaena 

populations were shown to increase with warming water temperature and to decrease with rising 
turbidity.  Both RANN and HEA show Anabaena abundance to not be significantly related to DO 
concentrations.  As expected, increasing Anabaena abundance coincides with increasing Chl-a 
concentrations.   

5.4.2.4 Happy Valley reservoir validated for 1997 and 2001 

The results of Anabaena forecasting using reservoir specific models developed by RANN and 
HEA can be seen in Fig. 40.  Information on the models developed for this application is available 
in Tab. 18.  The validation results produced from the application of these models to data from 
Happy Valley reservoir (1997 and 2001) show that both models have difficulty in forecasting the 
spikes in Anabaena populations throughout the two test years.  The RANN model was able to 
indicate slightly elevated abundances at the time of the major growth events, but underestimated 
them so much that the forecasts are useless from a management perspective.  Interestingly, 
whilst RANN produced the best model visually, which gave an r2 value of 0.12 and an RMSE of 
802.3, the HEA model gave better error values of r2 value of 0.46 and RMSE of 794.65 even 
though the models forecasts failed to indicate any of the growth events except the first one. 
 

Table 18. Information table for RANN and HEA models developed to forecast Anabaena 
abundance in Happy Valley reservoir (2 test years) 

Figure 40.  Anabaena forecasting results for RANN (left) and HEA (right) models tested on two 
years of data from Happy Valley reservoir 
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Transfer function TanhAxon ELSE Anabaena = ((Colour/DO)*329.66) 
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5.4.2.5 Myponga and Happy Valley reservoirs validated for 2002 
and 1997 respectively 

The results of Anabaena forecasting using the merged models developed by RANN and HEA can 
be seen in Fig. 41.  Information on the models developed for this application is available in Tab. 
19.  The validation results produced from the application of these models to reservoir data from 
Myponga reservoir (2002) and Happy Valley reservoir (1997) show that both models have 
successfully identified the timing of the major Anabaena bloom, yet RANN significantly 
underestimated the magnitude of the population, whilst HEA was much closer to the actual 
abundance level.  The first small peak of approximately 1000 cells/mL was suggested by both 
models, but RANN was most successful with regard to both timing and magnitude.  The bloom 
event at the end of the testing period was poorly forecast by both methods.   Although the HEA 
rule-set produced the best error statistics of an r2 value of 0.55 and an RMSE of 578.8, visually 
the RANN model provided good results, except with regard to magnitude of the main peak, and 
gave an r2 value of 0.34 and an RMSE of 656.9. 
 

Table 19. Information table for RANN and HEA models developed using merged data to forecast 
Anabaena abundance in both reservoirs (2 test years) 

 

Figure 41. Anabaena forecasting results for merged RANN (left) and HEA (right) models tested on 
two years of data, one from each reservoir 
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RANN HEA 
Input layer structure Laguarre 

Axon 
IF ((Chl-a*(TURB*(TURB*Chl-a)))<=175.333) 

Processing Elements 31 THEN Anabaena = ((((WT*NO3)/TURB)*(Chl-a*(WT*Chl-a)))+243.84) 
Transfer function TanhAxon ELSE Anabaena = ((((WT/TURB)*WT)*((WT* NO3)/TURB))+97.139) 
Iterations 15000 Runs 50 
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5.4.3 Research progression 
This section explains the progression of the research from RANN and HEA forecasting models 
validated on one year of independent data, through to two testing years, merged reservoir data 
sets for training and testing, and models developed using only electronically measurable merged 
reservoir data.   

0.55, 578.80.34, 656.9Anabaena merged 2 test years 
(section 5.4.2.5)

0.46, 794.650.12, 802.3Anabaena Happy Valley 2 test years 
(section 5.4.2.4)

0.63, 1017.90.56, 858.7Anabaena Happy Valley 1 test 
(section 5.4.2.3)

0.1, 823.910.1, 900.23Anabaena Myponga 2 test years 
(section 5.4.2.2)

0.49, 119.380.36, 174.95Anabaena Myponga 1 test year 
(section 5.4.2.1)

0.5, 5.30.22, 8.04Chl-a merged electronically 
measurable inputs only 2 test years 
(section 5.4.1.6)

0.52, 5.070.66, 4.37Chl-a merged 2 test years 
(section 5.4.1.5)

0.55, 6.440.48, 7.11Chl-a Happy Valley 2 test years 
(section 5.4.1.4)

0.76, 3.560.81, 3.23Chl-a Happy Valley 1 test year 
(section 5.4.1.3)

0.66, 4.173.68, 0.62Chl-a Myponga 2 test years 
(section 5.4.1.2)

0.89, 2.880.77, 3.85Chl-a Myponga 1 test year 
(section 5.4.1.1)

HEA
r2, RMSE

RANN
r2, RMSE

0.55, 578.80.34, 656.9Anabaena merged 2 test years 
(section 5.4.2.5)

0.46, 794.650.12, 802.3Anabaena Happy Valley 2 test years 
(section 5.4.2.4)

0.63, 1017.90.56, 858.7Anabaena Happy Valley 1 test 
(section 5.4.2.3)

0.1, 823.910.1, 900.23Anabaena Myponga 2 test years 
(section 5.4.2.2)

0.49, 119.380.36, 174.95Anabaena Myponga 1 test year 
(section 5.4.2.1)

0.5, 5.30.22, 8.04Chl-a merged electronically 
measurable inputs only 2 test years 
(section 5.4.1.6)

0.52, 5.070.66, 4.37Chl-a merged 2 test years 
(section 5.4.1.5)

0.55, 6.440.48, 7.11Chl-a Happy Valley 2 test years 
(section 5.4.1.4)

0.76, 3.560.81, 3.23Chl-a Happy Valley 1 test year 
(section 5.4.1.3)

0.66, 4.173.68, 0.62Chl-a Myponga 2 test years 
(section 5.4.1.2)

0.89, 2.880.77, 3.85Chl-a Myponga 1 test year 
(section 5.4.1.1)

HEA
r2, RMSE

RANN
r2, RMSE

Table 20. Summary of error levels for forecasting models developed in Chapter 5. 
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The Chl-a forecasting results from both 7-days ahead RANN and HEA models tested on one year 
of data were of high-quality.  The results from applying RANN and HEA models to 7-days ahead 
forecasting of Anabaena abundance for one testing year were reasonably successful, particularly 
the model for Myponga reservoir.  Most of the sensitivity analyses results revealed relationships 
complementary to literature findings; however two variables gave some interesting results.  The 
sensitivity analyses suggested differences in the relationships with turbidity between the 
reservoirs.  Increasing turbidity coincided with a decrease in algal abundance in Myponga 
reservoir and an increase in Happy Valley reservoir.  Further research explained this result by 
revealing that turbidity in Myponga reservoir is largely caused by non-algal matter, and that 
turbidity can inhibit algal growth probably through light limitation.  Happy Valley reservoir is a 
more productive system than Myponga reservoir and therefore algae are thought to contribute 
more to turbidity, which could explain why turbidity and algal abundance increase in unison.  The 
sensitivity results looking at the relationship between DO and algal abundance were also 
interesting.  It was shown by both methods that algal abundance was not particularly sensitive to 
changes in DO.  With regard to most influencing parameters, RANN found PO4 concentration to 
be the most important factor by far, regardless of whether the model was predicting Chl-a 
concentration or Anabaena abundance.  NO3 concentrations were also found to be an influencing 
factor.  The least important factor was shown to be colour, though DO and turbidity were also 
shown to have relatively little influence.   
 
After testing models on just one year of independent data, it was decided that this would not be a 
sufficient way of testing a models’ forecasting capabilities.  Results gained from just one test year 
could not give information on the models’ capabilities in different conditions.  In order to further 
test the models, yet maintain several years for training, two years of data were used for testing 
the models developed in this section.  The test year from the original experiments were used in 
addition to another year, selected because of different patterns in the target variable.  The second 
test year was not immediately prior or after the first test year, to ensure that conditions were not 
too similar.   
The results of the RANN sensitivity analyses for models validated on one test year consistently 
showed that colour was the least influencing of all the available input variables.  As such, colour 
was removed as an input from RANN models to be validated on two years of data, in an effort to 
reduce noise within the data set and promote better results.  As HEA selects its own inputs, 
colour was kept available for inclusion.  As a comprehensive sensitivity analysis, incorporating 
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both reservoirs and both Chl-a concentrations and Anabaena, was conducted on the models with 
one test year, and the relationships shown were largely consistent – it was felt unnecessary to 
include another replicated set of sensitivity analyses results for the models tested on two years of 
data.   
Applying models developed by RANN and HEA to two test years showed that accuracy levels 
decreased overall (see Tab. 20).  The models predicting Chl-a concentration continued to give 
useful results, with only slightly increased error levels.  In contrast, the models developed to 
forecast Anabaena abundance lost a significant amounts of accuracy and the models became 
useless from a management perspective. 
 
Developing a model that can be successfully tested on more than one year of data is necessary if 
the model may be used for management purposes.  Whilst the results for the Chl-a models when 
tested on two years were good, the Anabaena forecasting models could not be used without 
improvement and it was thought that the addition of more training data could improve the 
generality of the models, for Chl-a and Anabaena, and allow them to better predict over longer 
test periods.  The maximum amount of available data from each reservoir was already being 
used, so to achieve this increase in training data, the data sets from both reservoirs were 
combined to develop merged models.  It was thought that a model would likely perform better on 
multiple test years if it could be trained with more data, and be able to learn a greater range of 
patterns and conditions.  We have seen in the previous chapter that similar patterns were 
expressed in each reservoir and in this chapter the similarities between causal relationships 
regarding algal abundance could easily be seen by the sensitivity analysis results.   Therefore, it 
was thought that the combination of these data sets would provide more similar patterns for the 
models to learn from and could produce a model with increased accuracy on multiple test years 
from both reservoirs.    The development of merged data models like this require less 
development time than two reservoir specific models and can be applied to either reservoir. 
The results of the models developed using merged data from both reservoirs and applied to a 
testing year from each reservoir were reasonably good, particularly for Chl-a concentration.  The 
Chl-a forecasting results provided encouragement for the concept of creating a forecasting tool 
that would be generic for all lakes within a particular lake ecosystem category.  Whilst the visual 
assessment of the Anabaena forecasting results is reasonably good, the error level indicated by 
RMSE is quite significant, suggesting that it will be more difficult to develop an accurate 
forecasting tool specifically for Anabaena abundance, in lakes similar in nature.   
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The promising results from the merged models designed to forecast Chl-a concentration gave 
encouragement for the concept of developing a merged model to forecast Chl-a concentration 
using only electronically measurable inputs.  Electronically measurable inputs are those that can 
be measured and acquired, in real time, by a data logger and telemetry system for online 
monitoring, which is necessary for real-time forecasting.  Although the RANN sensitivity analyses 
clearly showed that the nutrients, PO4 and NO3, were the most influential input variables, they 
were not able to be electronically measured and therefore could not be included in any model to 
be applied to real-time forecasting.   The increase in training data enabled by the merged models 
could potentially compensate for the lack of nutrient input variables.   The input variables made 
available to the models were: DO, water temperature, turbidity and conductivity. 
Considering the limited input variables of DO, water temperature, turbidity and conductivity, both 
models did well to successfully identify the major trends in the Chl-a concentration over the two 
year testing period.  Compared with the merged models created using additional nutrient data 
(see section 5.4.1.6), the RANN model had lower accuracy, however the HEA model produced 
results of the same standard and quality (see Tab. 20).   
 
 

5.5 Discussion 
Bio-inspired computational methods, RANN and HEA, were used throughout this chapter to 
develop forecasting tools for 7-day ahead predictions of Chl-a concentration and Anabaena 
abundance.  The models were tested on 1 or 2 years of independent data, which had not been 
used during the training of the models.    
Initially, reservoir specific models for both Chl-a concentration and Anabaena abundance were 
created and tested on one year of data.  Results showed that these two variables could be well 
predicted using chemical and biological input variables (hence Hypothesis 1 can be accepted).  
Associated sensitivity analyses showed that relationships between the input and output variables 
were mostly aligned with literature findings and were consistent between reservoirs, bar one 
highlighted difference.  PO4 concentration was unanimously found to be the most influential input, 
which suggested that PO4 management could be an effective means of controlling algal 
abundance in these reservoirs.  Methods such as having inflow pass through phosphorus 
removing filters or the addition of a phosphorus precipitating or binding agent can potentially limit 
phosphorus in the reservoirs, thereby limiting algal growth.  NO3 was also considered influential, 
to a lesser degree, but it was very clear that nutrients were extremely important in the accurate 



  

University of Adelaide, Australia 125

prediction of algal abundance.  This suggested that it would be difficult to develop a forecasting 
tool that could accurately forecast algal abundance without relying on nutrient data.   
 
The ability to trust a model’s overall capability was questioned when the model’s application has 
only been demonstrated for one year of data.  In a compromise between further testing the 
models and keeping sufficient training data, two test years were used to assess the models.  The 
results showed slightly higher error values, but still gave reasonably good forecasts for Chl-a 
concentrations.  Results for Anabaena abundance were poor and demonstrated that the models 
could not be widely applied.  Throughout the chapter it was found that Anabaena populations 
were significantly harder to predict than Chl-a concentrations, therefore Hypothesis 2 can be 
accepted.  Anabaena abundance is more challenging to model as algal population dynamics are 
faster and more distinct than algal community dynamics (represented by Chl-a).  The natural 
pattern of the genera would be to build in early summer for peaks in late summer and early 
autumn whilst warm water and stratification were present.  However, management interrupts this 
by artificial mixing and, more so, by CuSO4 dosing.  For example, the nutrient conditions may 
suggest an impending bloom to the model, but in reality CuSO4 dosing may occur when the 
population is in early stages of growth and the bloom that might have occurred without the 
interference of management does not take place, which introduces substantial error to the testing 
results.  Although the training data involves dosing events there is no pattern the model is able to 
learn.  Even though dosing mostly occurs in summer and autumn, it can happen at any time 
during the year and conditions may be different each time, and this makes the pattern of 
Anabaena occurrence quite different each year.  The addition of some sort of measure of water 
stability to be included as model input could potentially greatly improve the forecasting ability and 
accuracy; however no data on stability of the water column was available at the time.  In an 
attempt to improve the models with the data that was currently available, it was thought that by 
increasing the training data, the likelihood of similar patterns being learnt be the models would be 
increased.  All available data for each reservoir was already being used for each reservoir 
specific model, so the data from the two reservoirs was combined to develop single models that 
could be applied to both reservoirs.  The models developed using the merged data sets gave an 
overall improvement in the forecasting accuracy when tested on two years of data from both 
reservoirs compared to the reservoir specific models tested on two years of data.  Applications to 
Anabaena forecasting in Happy Valley reservoir were significantly improved compared to 
previous applications using only one data set for training.  Pattern analysis by KANN in Chapter 4 
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showed that the major water quality variables exhibit similar patterns in both reservoirs, therefore 
merging the data sets effectively doubled the examples from which the models could learn and 
extract relationships, making the models more robust and improving overall forecasting accuracy 
for application to both reservoirs. 
 
The improvement in the accuracy for models applied to more than one test year offered by the 
merged data set method encouraged the investigation of developing a model that could be linked 
to online, real-time monitoring data.  This required the use of electronically measurable input 
variables only.  Using data from both reservoirs and inputs of water temperature, conductivity, 
turbidity and DO only, models were developed by both RANN and HEA.  Although sensitivity 
analyses from earlier experiments showed that nutrient concentrations were the most important 
factors for algal abundance forecasting, the models using no nutrient data produced useful 
results.  The HEA rule set was particularly successful, and produced equally good results as the 
merged models that included nutrient data as an input.  For this reason, HEA was chosen as the 
best method to employ for the development of a real-time forecasting tool, continued in Chapter 
7.  Additionally, HEA derived rule-sets are explicitly represented, allow sensitivity analyses, are 
easier to implement and more widely functional than an RANN model.  They can be easily 
applied in Excel and therefore do not require any costly specialised software and are easy to 
apply by an untrained user.  Therefore, HEA provides a more simple and user-friendly option for 
application of a forecasting tool, and this is important. 
 
A few interesting points arose from the results found in this chapter.  In all results from RANN 
models, Happy Valley reservoir was always the most successfully forecast.  The patterns in this 
reservoir appear to be easier for the network to learn than those in Myponga reservoir, which is 
interesting because Happy Valley dynamics are sometimes complicated by the addition of River 
Murray water. 
In all RANN sensitivity analyses PO4 concentration was found to be the most influential input 
variable, distantly followed by NO3 concentration, in both reservoirs.   Reservoir specific HEA 
models for Happy Valley reservoir were found to select PO4 concentration to be part of the rule-
set most often and models for Myponga reservoir selected NO3 concentration to be used most in 
the rule-sets.  This is interesting, as Happy Valley has higher levels of NO3 and Myponga has 
higher levels of PO4, therefore the models are selecting the most limiting nutrient as an important 
determining factor with regard to levels of algal abundance.  Management have confirmed this 
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stating that PO4 is the main factor determining the occurrence of a bloom event in Happy Valley 
reservoir (Daley & Ingleton 2006). Colour was found by RANN to be the least important variable, 
and although HEA often included colour in the forecasting rule-sets, it was never used in the 
threshold IF branch as the major determining factor.     
The results in this chapter also highlighted the need to use more than one assessment technique 
or error measure and the importance of visual appraisals.  On occasion, r2 values have been 
high, yet RMSE values are also high.  RMSE penalises errors in peaks and magnitude more than 
r2 value, which explains such results but can make it difficult to rely on the statistics to 
demonstrate which models are superior.   Also there are some aspects that are important to 
forecasting that the statistics cannot take into account.  For example for management purposes, a 
model that forecasts growth events slightly before they occur is better than a slightly delayed 
forecast.  Therefore it is always necessary to consider all error measures in conjunction with a 
thorough visual analysis of the forecast in relation to the actual observed data.    
 
In conclusion, this chapter used RANN and HEA to develop models to forecast Chl-a 
concentration and Anabaena abundance.  Both methods were found to be capable of producing 
useful forecasts 7-days in advance.  Sensitivity analyses by both methods contributed to the 
understanding of relationships driving the algal dynamics.  The progression of the chapter 
culminated in the development of models that required only electronically measurable inputs and 
could be linked to online monitoring data for real-time forecasting.  Split-sample validation was 
useful for the purposes of comparison between reservoirs and forecasting methods, but ultimately 
can only provide snapshot results.  A more thorough approach to model development and testing 
than those demonstrated in this chapter would be required to deliver models that could reliably be 
used operationally.  This line of investigation is continued in Chapter 7. 
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6.  RELATIONSHIPS OF CHLOROPHYLL-A AND 

ANABAENA DYNAMICS WITH PHYSICAL AND 

CHEMICAL INPUT VARIABLES 

 

6.1 Introduction 
This chapter features results from the combination of ordination and clustering by KANN and 
sensitivity analyses by RANN for knowledge discovery of phytoplankton dynamics as 
demonstrated by Welk et al. (2005) and Recknagel et al. (2006d).  The research utilises water 
quality data of five variables from Myponga reservoir from 1997 to 2003 and focuses at 
relationships between water temperature, PO4 and NO3 concentrations and algal dynamics 
demonstrating algal preferences for specific temperature and nutrient ranges. The results 
demonstrate that qualitative relationships between water quality parameters discovered by KANN 
could be quantitatively determined by sensitivity analyses based on RANN.  It can be concluded 
from this study that the combined applications of RANN and KANN provide a useful framework 
for rapidly extracting and explaining complex ecological relationships driving these dynamics.  
The so gained information can facilitate early warning and improve causal understanding of algal 
blooms. 

 
6.2 Aims and Hypotheses 

The aim of this research is to provide an understanding of relationships between algal abundance 
and certain input variables.  Information on inter-variable relationships will be achieved by the 
combined results from two different analyses, utilising KANN and RANN, and results should 
provide convincing support of this technique for knowledge discovery.  
The hypothesis is that qualitative relationships between water quality parameters discovered by 
KANN can be quantitatively determined by sensitivity analyses based on RANN, providing 
convincing information on the interactions between two variables. 
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6.3 Methods and Materials 

6.3.1 Data 
Research in this chapter utilises water quality data of five variables from Myponga reservoir from 
1997 to 2003 (see Tab.21).  The relationship between Chl-a and Anabaena abundance and the 
important water quality variables of water temperature, PO4 and NO3 concentrations was 
examined using this data. 
 

Table 21. Myponga Reservoir database details 
 

Experiment 
 
Years of data used 

 

Relationship:  Water temperature and algal abundance 
Section:  6.4.1 

Inputs:  water temperature, Anabaena, Chl-a 

 

1997-2003 
 

 

Relationship:  PO4 concentration and algal abundance 
Section:  6.4.2 

Inputs:  PO4, Anabaena, Chl-a 

 
1997-2003 

 

 

Relationship:  NO3 concentration and algal abundance 
Section:  6.4.3 

Inputs:  NO3, Anabaena, Chl-a 

 

1997-2003 
 

 

6.3.2 Model Design 
KANNs were developed to ordinate, cluster and visualise Chl-a or Anabaena abundance data with 
respect to water temperature and ranges of nutrients (as developed in 4.4.3).   
RANN models were developed to forecast Chl-a concentration and Anabaena abundance (though 
the forecasting results are not of interest for this particular research and are not shown) and 
comprehensive sensitivity analyses were conducted to discover relationships between the input 
variables water temperature, PO4 and NO3 concentrations and the output variables (as 
demonstrated in Chapter 5). 
The combination of the results from these two methods allows the discovery and analysis of 
relationships between the input and output variables in both a quantitative and qualitative manner. 
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6.4 Results 
Sensitivity analyses produced in conjunction with the RANN models demonstrated relationships 
between the input variables and the output (Chl-a or Anabaena), and were combined with 
qualitative ordination and clustering by KANN.   

6.4.1 Water temperature and algal abundance  
Fig. 42 shows the relationship between Anabaena or Chl-a and water temperature.  Both 
Anabaena and Chl-a are shown to increase with increasing water temperature.   
Cyanobacteria are thought to prefer high water temperatures (Reynolds, 1984) and both the 
KANN (Fig. 42 top) and sensitivity curve (Fig. 42 bottom) confirm this in Myponga Reservoir, 

showing that Anabaena reaches maximum abundance above 19°C in both cases.   

The RANN sensitivity curve (Fig. 42, bottom) also indicates that Chl-a increases steadily between 

13 and 19°C, and levels off at its maximum between 19 and 20°C.  These findings are backed up 

by the KANN-based ordination and clustering of Chl-a regarding 3 temperature ranges (Fig. 42, 

top).  Whilst Chl-a concentration is lowest in the temperature range below 14°C, it reaches its 

maximum in the range above 19°C.  The stimulating effect of temperature can be both direct and 

indirect.  It may not be exclusively the water temperature that attracts the higher algal abundances, 
it may also be other conditions which coincide with the warmer weather.  Thermal stratification 
enables buoyancy regulation by some types of cyanobacteria possessing gas vacuoles, allowing 
them to adjust their vertical position in the water column for access to solar radiation at the surface 
layers and nutrients near the thermocline (Reynolds, 1984).  
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Figure 42. K-means map for temperature ranges (top left) with corresponding component planes for 
Anabaena and Chl-a (top middle and right) in Myponga Reservoir; sensitivity curve for Anabaena 

and Chl-a in response to temperature change (bottom) 
 

6.4.2 PO4 concentrations and algal abundance 
Fig. 43 reflects the relationship between PO4 concentrations and Anabaena or Chl-a 
concentrations.  It reveals that highest Chl-a concentrations coincide with low PO4 concentrations.  
The most probable explanation for this is that the large population of algae (represented by Chl-a) 
consumes large amounts of the nutrient and depletes the source pool.  In Myponga Reservoir, 
minimal nutrient influx from the catchment is obtained during summer due to low rainfall and no 
runoff (Smalley, 1998), so the fact that highest Chl-a occurs at times of low PO4 levels, would be 
based on consumption of the nutrient by algae and no replenishment of supplies due to no inflow.  
Also contributing would be the fact that non-flagellate colonial green algae such as Scenedesmus, 
a dominant species in Myponga reservoir, are known to develop more often at lower phosphate 
levels.    
Anabaena often peaks in summer at low PO4 concentrations, which may be due to their capability 
to maximise nutrient uptake during times of depletion (Sommer, 1989). Fig. 43 shows major peaks 
for Anabaena coincide with low PO4 concentrations in the water.  PO4 is similar to NO3 in that, it is 
much more abundant during the rainy seasons when runoff increases nutrient concentrations and 
the reduced uptake by phytoplankton allows accumulation.  Once phytoplankton growth increases 
significantly phosphate is quickly consumed, resulting in rapid depletion of the nutrient pool.  This 
depletion is compounded by the fact that phytoplankton do not simply take only what is needed of 
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the nutrient for immediate utilisation.  When phosphate levels are high many phytoplankton 
accumulate phosphate reserves greatly exceeding current requirements.  This phenomenon, 
known as ‘luxury uptake’, further adds to the speed and magnitude of phosphate depletion. The 
phosphate reserves facilitated by luxury uptake, allows cell growth to continue for some time after 
the nutrient levels in the water have become very low (Boney, 1989).  Cyanobacteria are known to 
store this excess uptake as polymeric polyphosphate (Paerl, 1988) and use it for maintenance and 
continued growth once phosphate concentrations have become limited, however this does not 
mean populations will continue to increase rapidly, as the new individuals will not have the 
phosphate reserves previously acquired by existing members of the population.  This storage 
capability explains the presence of Anabaena during periods of low phosphate concentrations as 
demonstrated by both the NSNN (Fig.43 top) and the sensitivity analysis (Fig.43 bottom) showing 
maximum Anabaena abundance coinciding with phosphate concentrations below 0.02mg/L.  
 
 
 
 

 
Figure 43. K-means map for PO4 ranges (top left) with corresponding component plane for Anabaena 
and Chl-a (top right) in Myponga Reservoir; sensitivity curve for Anabaena and Chl-a in response to 

PO4 change. 
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6.4.3 NO3 concentrations and algal abundance 
The sensitivity analysis in Fig. 44 (bottom) shows that Chl-a decreases with increasing NO3 

concentrations, and peaks at concentrations of 0.02 to 0.03mg/l.  The corresponding ordination 
and clustering of Chl-a related to 3 ranges of NO3 concentrations (Fig. 44, top) confirms these 
findings with Chl-a abundance peaking in an area corresponding to the lowest NO3 concentration 
range (<0.1mg/L) on the k-means map.  Like PO4, NO3 is an essential nutrient for algal growth, it 
is rapidly depleted when phytoplankton growth increases and peaks in spring and summer, 
causing the concentration in the water column to decrease (Boney, 1989), which is reflected by 
the results.    Happey-Wood (1988) supports this, stating that the growth of numerous types of 
green algae (major contributors to algal composition in Myponga reservoir) is commonly 
accompanied by substantial decreases in the inorganic nitrogen pool of the surface waters of 
lakes.   
However, not all phytoplankton are dependent on the nitrate availability in the aquatic 
environment.  Certain cyanobacteria, including Anabaena, are known to possess the ability to fix 
atmospheric nitrogen and, therefore, do not have to rely on the nitrate pool in the water.  As 
KANN (Fig. 44 top) and sensitivity analysis (Fig. 44 bottom) show, Anabaena peaks in abundance 
during times of high nitrate concentrations of 0.2m/L and above.  It may be that little nitrate 
uptake is occurring due to the use of nitrogen fixation, allowing the source pool to be maintained 
at a high level.  Boney (1989) even states that in some habitats, filamentous cyanobacteria make 
significant contributions to in lake nitrogen budgets.   
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Figure 44. K-means map for NO3 ranges (top left) with corresponding component plane for 
Anabaena and Chl-a (top right) in Myponga Reservoir; sensitivity curve for Anabaena and Chl-a in 

response to NO3 change. 

 
6.5 Discussion 

 
The present study used a new approach for the exploration of ecological time-series both 
qualitatively and quantitatively.  It can be concluded that the combined applications of RANN 
and KANN provide a useful framework not only for forecasting phytoplankton dynamics but 
also explaining complex ecological relationships driving these dynamics.  Thus, the hypothesis 
that relationships described quantitatively by RANN can be illustrated qualitatively by KANN 
can be accepted.  A major criticism of ANNs has been that they are ‘black box’ models, which 
give no indication of the processes involved in the modelled system.  The use of sensitivity 
analyses performed on the training data of RANNs rectifies this issue by revealing how 
changes in the input variables affect the output, thereby giving RANN an explanatory quality in 
addition to predictive capabilities.  The so gained information can facilitate early warning and 
improve causal understanding of algal blooms.   This novel approach has been demonstrated 
in several peer-reviewed publications including Welk et al. (2005), Recknagel et al. (2006c), 
Recknagel et al. (2006d) and Recknagel et al. (2006e).    
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7. DEVELOPMENT OF RULE-BASED AGENTS 
FORECASTING ALGAL DYNAMICS USING HEA 
 

 

7.1 Introduction 
Predictive agents for algal populations have the potential to be powerful tools for early warning 
and operational control of harmful algal blooms in lakes and drinking water reservoirs.   
This research aims to develop rule-based agents that are predictive for specific algal populations 
and generic for a particular lake category.  To achieve this, two concepts are applied for the 
development of predictive rule-based agents of algal populations: 1) rule discovery by means of 
HEA, and 2) rule generalisation by means of merged time series data of lakes belonging to the 
same lake category.   
 
This chapter demonstrates the application of a framework, using HEA and k-fold cross validation, 
for the extraction and development of rule-based forecasting agents from merged limnological 
time series data from Myponga and Happy Valley reservoirs, both classified as warm monomictic 
and eutrophic.  These rule-based agents are created with the intention of operational use within a 
real-time environment, therefore testing of the agents must be thorough.  Previous work 
demonstrated that split-sample validation, whilst useful for some purposes, could only provide 
snapshot results and a more thorough approach would be necessary to produce an agent that 
could confidently be applied to changing conditions (see chapter 5).  This research suggests k-
fold cross validation as a suitable method for this purpose.     
 
Three rule-based agents are validated and discussed, which demonstrate forecasting 7 days 
ahead of Chl-a concentrations and Anabaena abundance in the Myponga and Happy Valley 
reservoirs.  The framework was applied to the following case studies: 10 years of data from the 
eutrophic drinking water reservoirs Myponga and Happy Valley were merged to discover a 
predictive rule for Chl-a concentration, and validated for each year of data from both lakes; 18 
years of data from the reservoirs were merged to discover a predictive rule for the abundance of 
the blue-green algae Anabaena, and validated for each year of data from both lakes.  Chl-a is 
important as it is considered representative of algal growth and biomass within water bodies, and 
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forecasting of Anabaena is important, as it is a toxic nuisance species that needs to be kept to 
low levels. 
The resulting rule-based agents proved to be both predictive and explanatory.  It has been 
demonstrated that the interpretation of these rules can be brought into the context of empirical 
and causal knowledge on Chl-a dynamics as well as population dynamics of Anabaena under 
specific water quality conditions.  The rule-based agents for Chl-a and Anabaena proved to be 
reasonably valid for the lake datasets and years tested in each case study.   
The Chl-a agent developed using Myponga and Happy Valley data sets was applied to real-time 
data from Hope Valley reservoir, a water body from within the ecosystem category but that was 
not used during the training process, to examine possible applications of agents two independent 
data sets and real-time situations.     
 

7.2 Aims and Hypotheses 
The aims of the research in this chapter include:    
- to develop a process to build predictive rule based agents to accurately forecast the timing and 
magnitude of Chl-a concentration or Anabaena abundance for a particular lake ecosystem 
category, to take another step toward generic modelling and forecasting.   
- to use a testing method that is more thorough than those previously used (split-sample);        
and finally    
- to test an agent using real-time data from a reservoir not used during the training process – to 
test not only the models applicability to independent water bodies, but also its applicability to real-
time forecasting.   
 
In the pursuit of these aims, the validity of the following hypotheses will be established: 
 
Hypothesis 1 – predictive rule-based agents developed using HEA with k-fold cross validation will 
give good forecasting results, with regarding to timing and magnitude, when tested on all years of 
historical data from Myponga and Happy Valley reservoirs.  Since algal population dynamics are 
more rapid, distinct and challenging to model than algal community dynamics represented by Chl-
a, the forecasting agents for Anabaena will be less accurate than those forecasting Chl-a.   
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Hypothesis 2 – the use of only electronically measurable input variables means that the rule-
based agent forecasting Chl-a is compatible with real time data acquisition and forecasting, and 
because of this can be successfully applied to real-time data from Hope Valley reservoir. 
 
Hypothesis 3 - the suggested agent development process, including training by merged data sets 
and parameter optimisation, adds generality to the resulting rule-based agents, and therefore the 
predictive rule-based agent developed for Chl-a forecasting can be applied to a reservoir (from 
the same lake ecosystem category) that was not involved during the training process.  
 

7.3 Materials and Methods 
7.3.1 Data 

The agents were developed for potential use in a real-time environment therefore they were 
developed to use only variables that could be electronically measured (i.e. could be obtained form 
a data logger), which reduced the possible input variables substantially (see Tab. 22).  Data 
selection was also dependent upon what parameters were available for a reasonable duration.  
As the experiment used merged data, data was sometimes limited by the duration of availability 
of particular inputs in each reservoir.  The maximum amount (duration) of data possible was used 
for each experiment.   
Conductivity data was limited to only 5 years in the Myponga reservoir database, which is why 
only 1999-2003 data was used for experiments including that variable.   However, this was useful 
in demonstrating that a reasonable rule-based agent can be developed using limited data.    As 
discussed in 5.3.2.3, Chl-a was not made available as an input for the Chl-a forecasting agent, 
however it was offered for input selection for the Anabaena forecasting experiment.  In order to 
examine the influence of the parameter on accurate forecasting of Anabaena abundance, one 
agent was developed using a rule that included Chl-a and another was developed which did not 
include it.  The latter also provides an alternative for situations where real-time Chl-a 
measurement is not available.  
As outlined in section 3.5.1, interpolated daily values were used for used for most modelling 
applications, including the training and testing of the rule-based agents developed throughout this 
chapter, allowing the production of daily forecast values.  However, the final rule-based agent 
developed for Chl-a forecasting, was tested on data collected in real-time via online monitoring of 
Hope Valley reservoir (CRC for Water Quality and Treatment project no. 2.0.2.2.2.1).  As the real-
time monitoring records measurements every 60 minutes, the data set encompassed 
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measurements from overnight.  As the model was developed using data which was sampled 
between 10am and midday, it was thought best to use an average of the measurements between 
these times giving one daily value for this application.   

 

Table 22.  Summary of experiment specific data used throughout the chapter 

 Chl-a Agent  
(1999-2003) 

Chl-a Agent 
(9/11/06 - 
20/4/07) 

Anabaena Agent 
(1996-2003) 

Variable Myponga Happy Valley Hope Valley Myponga Happy Valley 
 mean/min/max mean/min/max mean/min/max mean/min/max mean/min/max 

Water 
temperature 

(ºC) 

16.17 / 8 / 24 17.51 / 9 / 24 21.5 / 17.2 / 
25.4 

16.23 / 8 / 24 17.37 / 9 / 26 

Turbidity (NTU) 3.37 / 0.74 / 8.5 10.81 / 2.8 / 30 4.2 /0.9 /10.3 3.33 / 0.72 / 10 10.7 / 1.7 / 41 
Conductivity 

(µS/cm) 
620.3 / 525.2 / 

781 
642.9 / 436 / 

1030 
595.5 / 504 / 

709 
  

Dissolved 
oxygen (mg/L) 

8.82 / 3 / 12.6 9.03 / 5.1 / 12.8 6.47 /4.3 / 9.92 8.81 / 3 / 13.16 9.16 / 2.2 / 21.4 

Chl-a (µg/L) 7.72 /0.4 / 36 10.4 / 1.1 / 41 11.1 / 3.1 / 67.4 8.55 / 0.5 / 36 10.4 / 0.8 / 66.5 
Nitrate (mg/L)    0.09 / 0 / 0.337 0.22 / 0.01/ 0.63 

Anabaena 
(cells /mL) 

   146.4 / 1 / 
13300 

131.96 / 0 / 
6600 

 

7.3.1  Model Design 

7.3.1.1 Framework for development of generic rule-based 
agents 

A framework was established for the development of rule-based agents for predicting algal 
dynamics in lakes and reservoirs belonging to the same lake ecosystem category.  The 
framework describes the method for the application of HEA (the HEA method is described in 
detail in 2.3.1 and 3.5.3, and is used as demonstrated in chapter 5) to extract predictive rules 
from merged time-series data from same category lakes and features the k-fold cross-validation 
technique.  k-fold cross validation, according to Kohavi (1995) includes k-fold data partitioning 
and the consecutive use of each part of the data for both training and validation, where eventually 
all examples are used for training and validation. 
Initially, HEA technology and k-fold cross validation were used to search for the best performing 
forecasting rule set using merged time-series water quality data.  Subsequent steps involve the 
further optimization of numerical parameters in the rule set and the inclusion of functions of water 
temperature.  The final rule-sets that are extracted from the process are referred to as rule-based 
agents.   
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Fig. 45 shows the framework devised for using HEA to develop rule-based agents from merged 
time series data of same category lakes by means of k-fold cross-validation.   
The framework and process is summarised below: 
(1) determine best performing predictive rule for lakes by iterative k-fold training and validation 
using merged time-series data.  This step begins with a predetermined number of rules being 
discovered, and the best performing rule set is determined by visual analysis and r2 values.  
(2) freeze the structure of best performing rule and determine best performing parameter values 
within the rule by iterative k-fold training and validation.  As with step one, this step produces a 
predetermined number of parameter values. 
(3) determine mean and range of parameter values. 
(4) determine best performing water temperature functions within the established range, by 
iterative k-fold training and validation. 
(5) substitute constant parameter values in rule with best performing water temperature functions.  
(6) freeze generic rule and validate for each year and lake.   

Figure 45.  Development of rule-based agents by means of HEA and k-fold cross validation 
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To expand somewhat on the process summary, firstly HEA technology and k-fold cross validation 
were used to search for the best performing forecasting rule set using merged time-series water 
quality data.  When the best performing rule (based on rule appropriateness and simplicity, 
RMSE, r2 and visual assessment of measured vs predicted data) was found, the structure of that 
rule was frozen.  However the numerical parameter values within the rule set remained variable, 
in order to determine the best performing parameter values via k-fold cross validation.  The range 
and means of the parameter values were also derived from this step.  The parameter values 
within the rule were then substituted with best performing water temperature functions within the 
pre-determined range (if the function gives rise to a value that falls outside the range – the mean 
value is used).  The water temperature functions were derived by HEA and the best performing 
functions were determined by k-fold cross validation.   The resulting form of the rule was frozen 
and is referred to as a rule-based agent, which could be applied to lakes of similar character and 
state.  This concept is, in part, derived from the notion of adaptive agents for simulation of 
evolving species abundance and succession in aquatic environments (Recknagel 2003b), as they 
are agents that can respond to their environment, allowing the rule to adapt to suit the particular 
water body it is being applied to, and can therefore be successfully applied to more than one 
water body within the same ecosystem category.   
 
The decision to replace constant values with temperature functions came after a series of 
preliminary experiments not shown here.  Initially, the process discovered the mean parameter 
values, via k-fold cross validation and froze these values, leaving this as the rule based agent.  
Later it was postulated that the inclusion of water temperature functions, where constant mean 
values originally were, would make the rule more adaptable and better able to reflect conditions in 
the water body as they occur.  Comparisons of results from the application of the rule using the 
mean values vs the results from the application of the rule set using temperature functions 
showed a slight improvement in accuracy.  Although the improvement was only small in this 
instance, it was thought that when the rule set was applied to water bodies that were not included 
in the training process, this feature would increase the likelihood of successful application.  Whilst 
functions of other variables could have potentially been used, it was decided that water 
temperature was the best option for a number of reasons.  Importantly it is readily available for 
most water bodies and it captures seasonality and season-induced change.  Water temperature 
is a very influential variable upon which many in lake processes are dependent or driven by, 
including algal growth.   
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7.3.1.2 Lake ecosystem categories 

Ideally, the rule-based agents for algal population dynamics would be generic to some extent 
and applicable to more than one water body.  As lake ecosystems exist in a broad spectrum of 
structures and functioning determined by climate, morphometry and trophic state, it is near to 
impossible to create a model that can be applied universally.  Therefore it is suggested that 
rule-based agents be developed for application to water bodies that belong to the same 
ecosystem category, as suggested by Recknagel et al. (2007b). This is considered a good 
compromise and contribution toward generic modelling.  Recknagel et al. (2007b) defined the 
lake categories by trophic state and circulation type, assuming that circulation type reflects 
climate conditions and morphometry to some extent, whilst the trophic state indicates habitat 
properties and community structures.  Due to the similarities in key lake characteristics, it can 
be assumed that water bodies within a lake ecosystem category encounter similar ecological 
behaviours, health issues and management options.  In this study only one lake ecosystem 
category (warm monomictic and eutrophic) is investigated, however other work including 
Recknagel et al. (2007b) and Welk et al. (2007) has looked at different categories.  After 
successful validation of rule-based agents on Myponga and Happy Valley reservoirs, it was 
necessary to test the generality of the agent by applying it to real time data obtained from the 
Hope Valley reservoir, a water body that belongs to the same lake ecosystem category, but 
was not used during the training process.  
 

7.4 Results 
As a result of applying HEA within the k-fold cross-validation framework, according to Fig. 44, to 
time series data from two reservoirs belonging to the same lake ecosystem category, three rule-
based agents have been developed.  In accordance with the framework, the structure of the best 
performing rule-set was first discovered, and then the best performing temperature functions were 
determined (represented by P1, P2 etc. in the rule set and expressed in full below the equation).  
A rule-based Chl-a agent and two rule-based Anabaena agents were discovered for the two 
warm-monomictic and eutrophic reservoirs Myponga and Happy Valley.  The agents were 
determined by the best performing IF-THEN-ELSE rule-sets with the best performing temperature 
function for parameters Pi, evaluated by the lowest RMSE, the highest r2, and the visual 
closeness between measured and predicted data. 
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7.4.1 Rule-based Chl-a agent 
A total of ten years of daily interpolated data from Myponga and Happy Valley reservoirs were 
merged to apply HEA with 5-fold cross-validation for developing a rule-based Chl-a forecasting 
agent (see Tab. 21).  Only electronically measurable limnological variables of water temperature 
(WT), turbidity (TURB), conductivity (COND) and dissolved oxygen (DO) were used to develop 
the agent so that the extracted rule-set would be compatible with data obtained from a data 
logger, and therefore could be used to provide real-time forecasting.  In order to design the agent 
for 7-day ahead forecasting, a time lag of 7 days was imposed between the input and output data.  
As a result, the rule-set for 7-day ahead forecasting of Chl-a documented in Fig. 45 was 
discovered and found to perform best.   
The IF condition of the rule provides a threshold value for water temperature.  The rule indicates 
that: 

IF water temperature is less than 17.883°C,  

THEN the Chl-a concentration is calculated by the equation:  
Chl-a = exp( WT / ( P1 / DO + P2 )) 

ELSE, the following equation is used:  
Chl-a =exp( WT / ( P3 / DO + COND / P4 )) 

 
Clearly, the rule distinguishes between conditions of slow algal growth characterised by cooler 
water temperatures and high oxygen concentrations typical for winter in South Australia, and 
conditions of fast algal growth in accordance with the higher water temperatures and low oxygen 
concentrations in summer.  These relationships can also be demonstrated by the input sensitivity 
plots for the then and the else branches of the rule in Fig. 46.  Fig. 46a and b both indicate that 
warmer water temperatures stimulate algal growth. However, Fig. 46a indicates that at water 
temperatures below 17.883°C Chl-a concentrations increase relatively slowly in response to 
increasing water temperatures, whereas at water temperatures above 17.883°C (Fig.45b), Chl-a 
concentration is shown to increase rapidly with increasing water temperatures.  Fig 46a and b 
also show that Chl-a concentrations increase quite rapidly with growing oxygen concentrations 
across the entire spectrum of oxygen levels found in both branches of the rule (7.14-10.26mg/L).  
The oxygen levels during high algal growth (the ELSE branch, Fig. 46b) are shown to be lower 
than those during slow growth, owing to the fact that the larger algal community would have a 
higher biological oxygen demand.  The sensitivity analysis revealed an interesting relationship 
between Chl-a concentration and conductivity, showing that algal biomass is highest when 
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conductivity is lowest.  This could suggest that summer rainfall events bring an influx of nutrients, 
which triggers bloom events (increases Chl-a concentration), whilst also diluting conductivity 
levels, resulting in the described relationship. 

 
Fig. 47 provides the validation results of the rule-based agent for 7 days ahead forecasting of Chl-
a concentrations in Myponga and Happy Valley reservoirs for the years 1999-2003.  Generally 
the agent predicts the timing of peak events very well for both reservoirs.  However on occasion 
the agent overestimates magnitudes of years with relatively low peak events (such as 2000 and 
2003 in Myponga reservoir) and underestimates magnitudes of years with relatively high peaks 
(such as 2002 in Myponga reservoir and 2001 in Happy Valley reservoir).  Despite these 
inaccuracies, the overall r2 value of the linear regression between measured and calculated data 
of all 5 years for Myponga reservoir amounts to 0.42 and for Happy Valley reservoir 0.38.  The 
validation results in Fig. 47 can be considered quite successful, as they have been achieved 
despite the highly stochastic environments in each of the study sites caused by periodic artificial 
mixing and occasional CuSO4 dosing.  These algal management strategies affect the ecology of 
both lakes, with the latter rapidly and drastically impacting upon the algal population abundances.  
The algicide treatment in particular can cause large errors in forecasting accuracy when 
validating the model against historical data.  The agent may detect conditions that would normally 
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Figure 46.  Structure of the rule-based Chl-a agent for Myponga and Happy Valley reservoirs. a) 
input sensitivity of the THEN branch, b) input sensitivity of the ELSE branch. 

a) b) 



  

University of Adelaide, Australia 144

result in a bloom event and forecast algal populations accordingly, however if in reality CuSO4 
dosing has been carried out, there will obviously be a discrepancy between observed and 
predicted conditions.    

 

Figure 47.  Validation results of the rule-based Chl-a agent for Myponga and Happy Valley 
reservoirs for all data (1999-2003) 

 

7.4.1.1 Validation on Hope Valley real-time data 

The rule based Chl-a agent was tested on 160 days of real-time data collected from Hope Valley 
reservoir.  Hope Valley reservoir can be classified as a warm monomictic and eutrophic water 
body, along with Myponga and Happy Valley reservoirs.  The purpose of testing the agent on this 
data set was two-fold: 1) to investigate whether the agent could be generic for lakes that were not 
involved in the training process but belong to the same lake ecosystem category as those used 
for model training and 2) to see how well an agent trained with interpolated data can be applied to 
real-time data. 
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Fig. 48 provides the validation results of the rule-based agent for 7 days ahead forecasting of Chl-
a concentrations in Hope Valley reservoir for 160 days (9/11/2006-20/4/2007).  The overall r2 
value of the linear regression between measured and calculated data of all 160 days amounts to 
0.1.  The validation results show that the agent predicts the moderate Chl-a values well but fails 

to identify peak events of greater than 20µg/L.  It is considered an achievement that a forecasting 

agent, derived from water quality data from other reservoirs, was able to predict Chl-a values 
within the correct range.  It can be seen, particularly in the first 80 days, that the Chl-a values that 
are predicted are reasonably close to the measured values.  In fact, with the exception of the two 
main peaks, the accuracy of the forecast Chl-a values would be acceptable.  Several reasons can 
be proposed for the agents shortcomings.  The largest peak event experienced in Hope Valley 

during the test data reaches a maximum Chl-a value of 67.4µg/L, however the maximum value 

from the training data set consisting of data from Myponga and Happy Valley reservoirs is 

41µg/L.  Therefore, the agent has had no exposure to or experience with the conditions and 

patterns coinciding with any event over approximately 40µg/L, which helps to explain why the 

major peak event is not well forecast.  Obviously training the agent with data that encompassed 
the entire range of conditions experienced in the test lake would provide improved results and this 
may prove to be a problem that arises when an agent is applied to water bodies that were not 
involved during the training process.   
Another challenge presented to the model was to match the real-time daily Chl-a concentrations, 
which are much more dynamic than the daily values derived from interpolated weekly or 
fortnightly data used to train the model.  In order to understand the difference between the 
interpolated data used for training, and the real-time data from Hope Valley, Fig. 49 compares the 
160 days of real-time data from Hope Valley with 160 days of interpolated data from the same 
period in Myponga reservoir.  Obviously, a manual sampling regime giving weekly, fortnightly and 
monthly data points misses much variation within the water quality factors, as opposed to real-
time monitoring.  It can clearly be seen that the data used to train the agent is much smoother 
than the rapid rise and fall of the real time data.  It was thought that this difference in dynamics 
between the training data and the testing data may have created some difficulty for the agent.  
Although the validation results in Fig.48 show that the agent can forecast day to day variations 
well, it is expected that results would improve if real-time data was included in the training data 
set.   
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Although the Chl-a forecasting agent did not appear to achieve the same level of accuracy as 
some other examples of real-time forecasting discussed in section 2.6, the concept has some 
qualities that have the potential to provide a simple and improved alternative concept for real-time 
forecasting, with broader applicability.  For example, Muttil and Lee (2005) used genetic program 
to discover a rule to forecast coastal algal blooms (using Chl-a fluorescence) with reasonable 
accuracy over a test period of approximately 5 months (RMSE of 165 and correlation coefficient 
of 0.85).  However, this application used previous Chl-a as an input, produced a very complex 
rule (see Eq.3, section 2.6) and gave only forecasts only one day in advance.  Subsequent 
testing of the rule for 3 days advanced forecasts showed a drop in accuracy to RMSE = 229 and 
correlation coefficient= 0.70 over the test period.  Furthermore, the rule set has only been tested 
on the one location.  The predictive Chl-a agent from this research has been much more 
stringently tested and achieved an average r2 value of 0.4 for 7-day ahead forecasting of Chl-a 
when tested on ten years of data from the two reservoirs it was trained by, and was also capable 
of forecasting reasonable levels of Chl-a in a completely independent data set.  With continued 
research and development into the suggested concept, the rule based agent for predicting Chl-a 
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Figure 49.  Comparison of real-time and interpolated data for the same period of the year 



  

University of Adelaide, Australia 147

concentrations in numerous sites belonging to a specific lake ecosystem category should become 
a viable option for real-time forecasting.  It could provide one simple rule set that can be applied 
to a number of water bodies to give one weeks warning of impending bloom events with 
reasonable accuracy.    

7.4.2 Rule-based Anabaena agent 
A total of sixteen years of daily interpolated data from Myponga and Happy Valley reservoirs was 
merged used to develop rule-based Anabaena forecasting agents (see Tab. 22).  Only 
electronically measurable limnological variables of water temperature (WT), turbidity (TURB), 
nitrate (NO3), chlorophyll-a (Chl-a) and dissolved oxygen (DO) were used to develop the agent so 
that a rule-set would be extracted that would be compatible with data obtained from a data logger, 
and therefore could be used to provide real-time forecasting.  However, unlike the forecasting 
agent for Chl-a, the Anabaena agents were not tested on real-time data from Hope Valley 
reservoir.   Although NO3 probes are now available for some data loggers, and therefore NO3 can 
be considered an electronically measurable variable, real-time monitoring at Hope Valley did not 
include a NO3 probe and therefore the agent was not able to be tested in a real-time situation. As 
outlined in 7.3.1, Chl-a was offered for input selection for the Anabaena forecasting experiment.  
In order to examine the influence of the parameter, one agent was developed using a rule that 
included Chl-a and another was developed which did not include it.  The latter also provides an 
alternative for situations where real-time Chl-a measurement is not available. In order to apply the 
agent for 7-day ahead forecasting, a time lag of 7 days was imposed between the input and 
output data.  As a result, 2 rule-sets for 7-day ahead forecasting of Anabaena (with and without 
Chl-a concentration as an input) were discovered, as documented in Figs. 50 and 52. 
 

7.4.2.1 Rule-based Anabaena agent, including Chl-a as an 
input 

The IF condition of the rule provides a threshold value determined by Chl-a concentration and 
DO.  The rule indicates that: 
IF (Chl-a*DO)*DO is less than 369.24,  
THEN the Anabaena abundance is calculated by the equation:  

Anabaena = ( DO*((( Chl-a * DO) / TURB)*DO)) 
Otherwise, by the ELSE equation:  
             Anabaena = exp(( WT + NO3 ) / (TURB / NO3 ))) * (( NO3 *(P1)) + P2)) 
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The rule suggests that Chl-a, DO, NO3 concentrations as well as WT and TURB, are all important 
criteria to stimulate the growth of Anabaena.  The causal relationships between these variables 
and Anabaena were further revealed by their sensitivity curves shown in Fig. 50a and b.  The 
THEN branch of the rule encompasses Anabaena abundance of below approximately 
1600cells/mL, whereas the ELSE branch covers abundances of 2200 cells/mL and below, but the 
graph was altered and the range reduced so that all variables could be better seen.  The input 
sensitivity for the THEN branch of the rule (Fig. 50a) indicates that increasing DO and Chl-a 

concentrations coincide with increasing Anabaena abundance, presumably because the algae 
contributes to these variables through photosynthetic activity and presence respectively.  
Alternatively, the input sensitivity for the ELSE branch (Fig. 50b) shows positive relationships 
between NO3 concentrations and WT and Anabaena abundance.  Anabaena species are not 
reliant upon in-lake NO3 concentrations, as they can fix atmospheric nitrogen, and therefore may 
have no negative impact on the levels of the nutrient in the water and, in fact, can contribute 
significantly to the nitrogen budget in the water body.  Increasing WT is known to stimulate algal 
growth and cyanobacteria in particular are known to prefer warm waters (Reynolds 1989).   
Interestingly in both the THEN and ELSE branches, TURB is shown to have a negative 

IF
(Chl-a * DO)*DO < 369.24THEN ELSE

Anabaena = 
( DO*((( Chl-a * DO) / TURB)*DO))

Anabaena  = 
(exp(( WT + NO3 ) / (TURB / NO3 ))) 

* (( NO3 *(P1)) + P2))

P1 = (WT*10.339)
P2 = (WT*15.578)

0

400

800

1200

1600

0 20 40 60 80 100

TURB: 1 - 14.71 NTU

DO: 7.26 - 9.94 mg/L

CHL-A: 1.2 - 4.3 ug/L

150

400

650

900

1150

0 20 40 60 80 100

NO3: 0.0001 - .266 mg/L
WT: 13.48 - 20.91 C

TURB: 0.77 - 12.96 NTU

Input Range (%)

An
ab

ae
na

 (c
ell

s/m
L)

IF
(Chl-a * DO)*DO < 369.24THEN ELSE

Anabaena = 
( DO*((( Chl-a * DO) / TURB)*DO))

Anabaena  = 
(exp(( WT + NO3 ) / (TURB / NO3 ))) 

* (( NO3 *(P1)) + P2))

P1 = (WT*10.339)
P2 = (WT*15.578)

0

400

800

1200

1600

0 20 40 60 80 100

TURB: 1 - 14.71 NTU

DO: 7.26 - 9.94 mg/L

CHL-A: 1.2 - 4.3 ug/L

150

400

650

900

1150

0 20 40 60 80 100

NO3: 0.0001 - .266 mg/L
WT: 13.48 - 20.91 C

TURB: 0.77 - 12.96 NTU

Input Range (%)

An
ab

ae
na

 (c
ell

s/m
L)

Figure 50. Structure of the rule-based Anabaena agent (inc. Chl-a) for Myponga and Happy 
Valley reservoirs a) input sensitivity of the THEN branch, b) input sensitivity of the ELSE branch
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relationship with Anabaena abundance, with the higher Anabaena abundances being related to a 
slightly lower NTU range. From these results it would appear that increase turbidity is a factor that 
limits Anabaena growth, possibly through light limitation.  The results of this sensitivity analysis 
between Anabaena and input variables concur with those discussed in section 5.4.2. 

 
Fig. 51 provides the validation results of the rule-based agent for 7 days ahead forecasting of 
Anabaena abundances in Myponga and Happy Valley reservoirs for the years 1996-2003.  
Generally the model predicts the correct timing of peak events, particularly for Myponga reservoir 
but drastically underestimates magnitudes of events with extremely high peaks (such as 1997 
and 1998/1999 summer peak in Myponga reservoir).  For Happy Valley reservoir, the model 
forecasts the largest peak very well but underestimates all others, for example 2001.  The overall 
r2 value of the linear regression between measured and calculated data of all 8 years of Myponga 
reservoir data amounts to 0.39.  For Happy Valley reservoir, the overall r2 value of the linear 
regression between measured and calculated data of all 8 years amounts to 0.53.  Whilst the r2 
values for the both reservoirs are quite good, particularly Happy Valley, the visual inspection and 
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RMSE shows that the results are not as useful as those obtained from the Chl-a rule-based agent 
(section 7.4.1), even though it had similar r2 values.  Again there is the issue of the impact of algal 
management strategies affecting the Anabaena dynamics in both lakes.  Even though the 
historical data that was used to train the model includes management influenced patterns, to 
some extent it is an unpredictable factor, whilst it most often occurs in summer, there is no set 
pattern that can be learnt or forecast.  But more relatively, Anabaena abundance has a huge 
range and is extremely dynamic.  The species itself can behave in ways not necessarily in 
keeping with its usual pattern of occurrence in summer (ie if conditions are acceptable at other 
times).   
 

7.4.2.2 Rule-based Anabaena agent, not including Chl-a 
as an input 

The IF condition of the rule provides a threshold value determined by WT and DO.  The rule 
indicates that: 
IF WT*DO is greater than or equal to 177.013,  
THEN the Anabaena abundance is calculated by the equation:  

Anabaena = ((( WT / (TURB / DO)) / (TURB / (NO3 * WT))) /  
(TURB * (TURB/ (NO3 * P1)))) 

Otherwise, by the ELSE equation:  
Anabaena = (( P2 / (TURB / (NO3* DO))) + P3) 

 
The rule suggests that DO, NO3 concentrations as well as WT and TURB, are important criteria to 
stimulate the growth of Anabaena.  The causal relationships between these variables and 
Anabaena were further revealed by their sensitivity curves shown in Fig. 52a and b.  The THEN 
branch of the rule examines input sensitivity at Anabaena abundances of 2000 cells/mL and 
below, although the scale of the graph was reduced so that all variables could be better seen.  
The ELSE branch covers conditions of much lower Anabaena populations of below 800 cells/mL.   
Input sensitivity for the THEN branch of the rule (Fig. 52a) indicates that WT, DO and NO3 
concentrations are positively related to Anabaena abundance.  Similarly, the input sensitivity for 
the ELSE branch (Fig.52b) also shows positive relationships between DO and NO3 
concentrations and Anabaena growth.  Again, in both the THEN and ELSE branches, TURB is 
shown to have a negative relationship with Anabaena abundance.  These results support those 
discovered and discussed in sections 5.4.2 and 7.4.2.1. 
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Fig. 53 provides the validation results of the rule-based agent (not including Chl-a as an input) for 
7 days ahead forecasting of Anabaena abundances in Myponga and Happy Valley reservoirs for 
the years 1996-2003. This rule-based agent that does not include Chl-a as an input, largely 
struggles to predict the correct timing of peak events.  Although it does correctly predict the timing 
of the largest event in each reservoir, 1998-1999 summer bloom in Myponga reservoir and early 
1997 peak in Happy Valley.  The agent routinely underestimates magnitudes of peak events, 
however it slightly overestimates the magnitude for the largest peak in the data set (1998-1999 
summer bloom in Myponga reservoir).  Unlike the agent that included Chl-a in the rule set, this 
agent predicts less false peaks throughout the course of each year.  All algal groups contribute to 
Chl-a concentration, and it may be the case that when a different algal genera causes Chl-a 
levels to rise, this results in false peaks in the Anabaena forecasts.   The overall r2 value of the 
linear regression between measured and calculated data of all 8 years amounts to 0.3 for 
Myponga reservoir and 0.49 for all 8 years of data from Happy Valley reservoir.  Again the r2 
values for the both reservoirs are quite good, particularly Happy Valley, but the visual inspection 
and RMSE shows that the results are not as useful as those obtained by the Chl-a rule-based 
agent.  

Figure 52. Structure of the rule-based Anabaena agent (not inc. Chl-a) for Myponga and Happy 
Valley reservoirs a) input sensitivity of the THEN branch, b) input sensitivity of the ELSE branch
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7.5 Discussion 
 

In the context of this study, two concepts have been applied for the development of rule based 
agents of algal populations: 1) rule discovery by means of HEA with k-fold cross validation, and 2) 
rule generalisation by means of merged time-series data of lakes belonging to the same lake 
category.  This chapter aimed to develop a process, using HEA and k-fold cross validation, to 
discover predictive rule-sets in merged time-series water quality data. It aimed to investigate if 
further optimisation of the agent’s parameters could result in predictive agents able to be applied 
to lakes from the same lake ecosystem category, and whether such agents, trained with 
interpolated data, could be applied to real-time situations.  As a by-product of this investigation, 
through interpretation of the rule sets and sensitivity analyses, demonstration of causal 
relationships for algal abundance occurred.   
Hypothesis 1 states that the agents developed for Chl-a and Anabaena forecasting would perform 
well when tested on historical data from Myponga and Happy Valley reservoirs.  Fig. 47 shows 
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Figure 53. Validation results of the Anabaena rule-based agent (not inc. Chl-a) for Myponga and 
Happy Valley reservoirs (1996-2003)
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that the Chl-a forecasting agent performs well overall when tested on 5 years of data from each 
reservoir.  The Anabaena forecasting agents performed to a lesser degree even though the r2 
values were similar if not better than the results from the predictive Chl-a agent, the visual 
analysis shows that the peak events were not as consistently predicted and even when the timing 
is correct, the magnitude is mostly underestimated.  The RMSE values do reflect the difference in 
accuracy with the Chl-a agent having error levels of approximately 6, whilst the Anabaena agents 
gave values of approximately 575 for its application to Myponga reservoir and 315 for its 
application to Happy Valley.  Consequently, Hypothesis 1 can be considered accepted as the 
agents provide acceptable results, with the Chl-a agent being consistently more accurate and 
useful than the Anabaena forecasts.  The combination of reservoir management designed to 
interrupt the natural patterns of Anabaena dynamics and manipulate its occurrence, and the fact 
that algal population dynamics are faster and more difficult to capture than algal community 
dynamics explain this disparity of forecasting aptitude between the Chl-a and Anabaena agents.   
 
The agents used only electronically measurable input variables to determine the algal abundance 
at any particular time so that they could be applied to real-time situations.  Whilst the Chl-a 
forecasting agent was able to be tested using real-time data from Hope Valley, the Anabaena 
forecasting agents included NO3 as an input which, though obtainable via some data loggers, 
was not available using the current data logger installed in Hope Valley and therefore was not 
tested on real-time data.  The results gained from this ‘electronically measurable inputs only’ 
approach were better than expected, considering that nutrients have repeatedly been found to be 
important in accurate modeling of algal abundance (see Chapter 5).  When tested on historical 
data the Chl-a agent, using only electronically measurable inputs, was successful enough to 
suggest that it could be applied to a real-time situation.  To further test the applicability of the 
agent, the agent was applied to real-time data from the Hope Valley reservoir.  Although the 
forecasting results (shown in section 7.4.1.1) failed to forecast peak Chl-a events, it was 
successful in calculating the concentrations outside of peak events with reasonable accuracy.  
For these reasons, it is shown that electronically measurable input variables can successfully 
forecast Chl-a concentrations, and the agent can be applied to real-time data, therefore 
Hypothesis 2 can be accepted.   
 
Hypothesis 3 proposes that the Chl-a agent could be applied to another reservoir that belongs to 
the same lake ecosystem category as Myponga and Happy Valley reservoirs, yet was not used 
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during the training process.  Real-time data from Hope Valley reservoir was used for the purpose 
of testing this assumption.  Results suggested that the ecological conditions within Hope Valley 
for the 160 days tested were not similar enough to those experienced in Myponga and Happy 
Valley to enable highly accurate forecasting.  Clearly the fact that Chl-a values in Hope Valley 
exceeded those found in Myponga and Happy Valley by a substantial amount meant that the 
conditions and patterns coinciding with such large peak events were not in the training data, and 
therefore the model was not capable of learning or accurately forecasting such events.  Models 
are somewhat limited to patterns and events contained within the training data.  There are several 
ways to potentially improve these results.  To begin, only a maximum of 5 years from each 
reservoir was available for the development and training of this agent.  Should this amount be 
increased, more patterns and conditions could be learnt and the likelihood of accurate prediction 
increases.  Also training with more sites would improve the generality.  Training with real-time 
data would also be particularly beneficial.  Although the results were not as accurate as hoped, 
options exist to improve the agents generality and it is felt that the agent has demonstrated the 
potential to be applied to reservoirs that were not involved in the training process, and therefore 
Hypothesis 3 is acceptable. 
 
The rule-based agents that were discovered as an outcome of this research have proved to be 
both predictive and explanatory.  It has been demonstrated that the interpretation of the rules can 
be brought into the context of empirical and causal knowledge on Chl-a dynamics as well as 
population dynamics of Anabaena under specific water quality conditions.  Sensitivity analyses 
were again useful in suggesting the nature of relationships between input and output variables 
and from that management options could be deduced.  For example, a negative relationship was 
consistently shown between turbidity and Anabaena abundance, suggesting that turbidity is a 
limiting factor for Anabaena growth.  The most probable explanation for this is that the turbid 
waters reduce the euphotic depth and this implies the potential for light limitation as a 
management method.  The potential for knowledge discovery by this method was also highlighted 
by the revelation of the relationship between conductivity and Chl-a in 7.4.1, indicating that an 
interesting relationship exists between the variables, which can then be further researched. 
 
The inclusion of Chl-a concentration as an input to the Anabaena forecasting agent appears to 
give slightly better results with regard to identification of growth events.  Although management 
considers there to be no correlation between Anabaena abundance and Chl-a concentration in 
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Happy Valley reservoir (Daley & Ingleton 2006), results showed that this does not appear to be 
the case as forecasting was particularly improved in Happy Valley with the addition of Chl-a as an 
input.   Overall, visually the results look slightly better than those achieved without Chl-a 
concentration (although it produces more small false peaks) and gives better r2 values but there 
is little difference between RMSE.  This discrepancy again highlights the need for different 
measures of fitness and accuracy as some are biased.   
 
The use of k-fold cross validation for testing of the rule-based agents reveals their applicability to 
different conditions, and through this thorough analysis can give confidence in the agents 
suitability and likely performance in the case of operational implementation.  Split-sample testing 
could not provide the same level of trust in the agents’ capabilities as it only shows results from 
limited applications. 
 
In conclusion, this chapter has demonstrated development of rule-based agents that can forecast 
algal abundance, be implemented in a real-time situation and be applied to water bodies of 
similar nature to those the model was trained by.  The agents were demonstrated to be both 
explanatory and predictive with sensitivity analysis describing input-output relationships whilst the 
k-fold cross validation of the agents based on measured data of each year from two similar lakes 
revealed reasonable forecasting accuracy.  The study has shown that using merged limnological 
data of lakes belonging to the same category is a promising direction for generalising rule-based 
agents induced by HEA, and the concept as a whole was concluded to be appropriate for real-
time forecasting. 
In the future, research could focus on the development of agent libraries for specific algal 
populations and lake categories, applicable for early warning and operational control of algal 
blooms. 
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8.  CONCLUSION 

 
The manner in which our water resources are managed has never been more important.  In view 
of the deepening water crisis, globally and particularly in Australia, management must consider 
new approaches to combat water quality problems.  The future of water management is certain to 
include online monitoring as a basic necessity as it offers higher frequency monitoring with 
reduced manpower.  The extensive data that is collected can best be utilised by examining what 
has occurred in the past, but also what will happen in the future.  Accurate forecasting of relevant 
target variables has the potential to reduce water treatment costs and prevent reservoirs from 
being taken offline.  
This study has addressed the issue of developing computational models for forecasting and 
understanding of algal blooms in drinking water reservoirs.  Working on the assumption that 
individuals using the models for forecasting and decision-making may not be experienced in 
computational modelling, the work has focussed on providing simplistic model representations 
and more generic models with the ability to be applied to multiple locations.  Thus reducing the 
number and complexity of models that are required.   
RANN and HEA were both demonstrated as capable of successfully building predictive models 
that enabled 7-day ahead forecasting of both Chl-a concentration and Anabaena abundance with 
good accuracy.  The implementation of such models could allow the timely implementation of 
operational control measures to prevent or reduce the intensity of an algal bloom event.   
The research also highlighted that models developed by KANN, RANN and HEA could be useful 
not just for operational management purposes but also provide information for ecological studies.  
KANN was shown to allow the examination of many different aspects of water quality within an 
ecological time-series data set.  Both short and long term temporal patterns, such as seasonality 
and management related trends respectively, have been discovered and examined by KANN.  It 
allowed comparative studies between the two reservoirs, investigation of the habitat preferences 
of different algal genera with regard to ranges of water temperature and nutrient concentrations, 
and the novel analysis of water quality conditions during different management regimes.   
Sensitivity analyses associated with RANN and HEA provided constructive information regarding 
the relationships influencing the algal community.  This information allowed the refinement of 
model inputs, the revelation of unknown relationships and patterns in the data and offered insight 
into manipulating the reservoir environment to promote desired algal populations.   
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The novel combination of KANN and sensitivity graphs derived from RANN was demonstrated to 
be capable of providing qualitative and quantitative analysis of the relationship between two 
variables.  The technique could be suggested as an initial step in the analysis of large ecological 
databases, enabling rapid visualisation of non-linear relationships, highlighting patterns and areas 
of interest for further research.   
 
The use of the three modelling approaches KANN, RANN and HEA throughout the research gave 
an arrangement that provided explanation and forecasting of algal dynamics.  This approach 
should be considered for use even when the main goal is forecasting, as improved understanding 
of the system and the relationships that influence the output variable can ultimately only improve 
the management.  An integrated approach such as this is capable of providing thorough data 
mining and analysis, and is necessary for the comprehensive investigation of complex and non-
linear ecological processes within freshwaters.   
 
The biggest advance from this study toward the goal of improved water management by real-time 
forecasting was the development of a rule-based Chl-a forecasting agent constructed using HEA 
and k-fold cross validation.  The preliminary experiments showed promising results with regard to 
the models application to real-time data and its relevance to an independent water body. It can be 
concluded that the concept of rule-based agents will facilitate real-time forecasting of algal 
blooms in drinking water reservoirs provided on-line monitoring of relevant variables is 
implemented.    The accurate prediction of algal dynamics as a result of real-time forecasting is 
key to successful management of nuisance algae species and will provide useful early warning 
for managers to consider and implement the most suitable management or mitigation option.  
Further to alerting water resource managers to an impending bloom event, there is the potential 
for this technology to be linked to operational controls.  For example, when the branch of the 
predictive rule set that forecasts the higher levels of growth is activated – an alert is issued.  This 
would mean that at any time when the threshold criteria (the IF branch) for higher growth is met, a 
warning of the potential for problems is released.  In section 2.5.5, it was suggested that 
intermittent mixing linked to a forecasting agent should be trialled. This would go beyond simply 
alerting potential problems and could trigger the implementation of intermittent mixing when a 
pre-determined forecast level is predicted.  This would provide discourage the establishment of 
large algal populations by having alternating stability conditions and would reduce energy costs 
dramatically.  These are just some of the possibilities for the use of this new approach in the 
operational management of reservoirs. 



  

University of Adelaide, Australia 158 

8.1 Summary of findings 
 

• KANN can reveal important patterns and relationships between physical and chemical 
water quality factors and algal dynamics by classification and clustering of complex 
temporal patterns, and allows for comparisons between reservoirs.   

• KANN is a suitable tool for the analysis of water conditions corresponding with the 
presence of specific algal genera.  Results showed the occurrence of the dominant blue-
green, green algae and diatoms in relation to ranges of water temperature, PO4 or NO3 
concentrations, further explaining seasonality and succession. 

• KANN demonstrated that several periods of investigation could be examined and 
compared at once.  In this study water quality patterns were linked to the different 
management regimes in place during four periods. 

• Both RANN and HEA can be used to forecast algal dynamics at different resolutions from 
community (Chl-a concentration) to genera level (Anabaena abundance), 7-days in 
advance.  These methods could provide both reservoir specific lake category generic 
model forecasting options. 

• Both RANN and HEA could also provide sensitivity analyses to quantitatively describe 
relationships underlying algal dynamics.  Two types of analyses, most influencing 
parameter (MIP) and sensitivity on wide ranged-disturbance (SWD) were found to be 
capable of comprehensively scrutinising the relationships between algal dynamics and 
water quality parameters. 

• The combination of KANN and RANN was able to offer both quantitative and qualitative 
analysis and explanation of patterns in the data, and provided very useful visual 
representations of these patterns. 

• HEA induced rule-sets extracted from merged data sets can be developed to use only 
electronically measurable inputs (available from online monitoring and therefore able to 
be linked to real-time forecasting) in order to produce algal population forecasts 7 days in 
advance, particularly for Chl-a concentrations.  K-fold cross validation allowed the 
thorough assessment of the models usefulness under different conditions and results can 
be considered more wholly representative of the models capabilities compared with split-
sample testing. 

• Application of the Chl-a forecasting agent to all years of data from both Myponga and 
Happy Valley reservoirs showed that the agent was consistently successful at forecasting 
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the major trends in both reservoirs.  If real-time data were available from these sites, it 
can be assumed that the agent would be equally useful in a real-time forecasting 
situation.  

• Application of the Chl-a forecasting agent to real-time data from an independent 
reservoir, from which data was not used during the rule extraction process, demonstrated 
that the agent was able to be applied successfully to real-time data and forecast 
reasonable Chl-a values.  Results demonstrated the potential for agents to be applied to 
other water bodies from within the same lake ecosystem category, with further work 
needed.  

• Compared to RANN, HEA proved to be a more informative approach to forecasting and 
understanding of algal dynamics.  Whilst the forecasting results were equal or superior to 
RANN; HEA also offers more information through interpretation of the rule-sets than 
neural networks can provide.  This transparent model representation increases the 
likelihood of model acceptance from potential users.    

• This study has used different modelling techniques and different validation techniques.    
Split-sample validation allowed comparison between two forecasting methods, but was 
not sufficient to provide a model that could reliably be used operationally. Ultimately it 
was found that k-fold cross validation and merged data from same category lakes was 
necessary for the development of operational agents generic for a certain lake 
ecosystem category and to thoroughly demonstrate their application to a wide-range of 
conditions. 

 
8.2 Contributions of the study 

The major contributions of this research include: (1) to offer insight into the capabilities of 3 kinds 
of computational modelling techniques applied to complex water quality data, (2) novel 
applications of KANN including the division of data into separate management periods for 
comparison of management efficiency, (3) to both qualitatively and quantitatively elucidate 
relationships between water quality parameters, (4) research toward the development of a 
forecasting tool for algal abundance 7 days in advance that could be generic for a particular lake 
ecosystem category and implemented in real-time, and (5) to suggest a thorough testing method 
for such models (k-fold cross validation). 
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Ultimately, the questions of most importance which were addressed by this research project 
were: 

Is it possible to train a model to forecast algal dynamics using only electronically 
measurable data, so it could be compatible with a real-time monitoring/forecasting 
situation?  

Nutrients have traditionally been considered as essential inputs for accurate modelling of 
phytoplankton dynamics.  This was supported by sensitivity analyses results discussed in 
Chapter 5, which demonstrated that PO4 and NO3 concentrations were consistently the most 
influencing parameters when forecasting Chl-a concentration and Anabaena abundance.  
However, at this stage, many data loggers and online monitoring systems cannot measure 
nutrients in real-time, therefore they cannot be included in a model to be used for real-time 
forecasting.   

In sections 5.4.1.6 and again in 7.4.1, it was shown that models trained with only electronically 
measurable inputs of water temperature, DO, turbidity and conductivity were able to successfully 
forecast Chl-a concentrations 7 days in advance.  This produced models that are compatible with 
a real-time monitoring and forecasting situation, thus answering this research question. 

Is it possible to develop forecasting rule-sets that can be generic for particular lake 
ecosystem categories? 

Generic models have numerous benefits including reduced labour for model development and 
maintenance as well as increased comparability between and applicability to different sites. This 
study investigated whether it was possible to develop a single forecasting agent that could be 
applied to a cross-section of water bodies, specifically for a particular lake ecosystem category: 
warm monomictic and eutrophic.  Merged data from both Myponga and Happy Valley reservoirs 
was used to discover and extract a forecasting rule using HEA.  The numerical parameters in the 
rule were substituted with functions of water temperature to make the rule more adaptable and 
applicable to different data sets.  Results of the application of the rule set to all years of data from 
Myponga and Happy Valley showed that it consistently provided useful forecasts in these 
locations.  Results of the application of the agent to another water body from the same category, 
Hope Valley reservoir, showed that the notion of a generic forecasting agent for specific lake 
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ecosystem categories was a promising concept and that with some improvements a very 
successful outcome would be achievable.  

Can this forecasting tool be implemented in a real-time environment to provide algal 
population forecasts up to a week in advance?   

Whilst there is merit in the development and testing of models with historical data for research 
into model applications and underlying relationships driving algal dynamics, ultimately forecasting 
models are designed for practical use in a real-time environment, not a simulated one, and 
therefore must be tested in a real-time situation.  

The Chl-a forecasting agent that was developed in Chapter 7 was applied to real-time data from 
Hope Valley reservoir.  Ideally, the agent would have been tested on recent real-time data from 
Myponga or Happy Valley reservoirs, as well as real-time data from an independent reservoir, 
however neither Myponga nor Happy Valley reservoirs have real-time monitoring of any variables 
in the rule-set except water temperature.  Results showed that the agent was able to successfully 
be applied to real-time data and was able to forecast realistic Chl-a concentrations by means of 
electronically measurable inputs only.  Although the agent was unsuccessful in identifying the 
major algal bloom event, this is due to the application of the agent to data from an independent 
reservoir, and is not related to the real-time data.  Therefore it can be concluded that forecasting 
agents developed in this manner are complimentary to online, real-time monitoring to achieve 
real-time forecasting.   

 
8.3 Recommendations  

Throughout the project, ideas emerged regarding how to improve or further the research that 
were not possible to carry out due to time or material constraints.  Below are the major points of 
recommendation:  

• Whilst RANN provided useful forecasts and information regarding algal dynamics, 
predictive rules extracted using HEA can match if not better these results as well as 
providing a simple model representation greater ease of use and understanding.  For 
these reasons, it can be suggested that future work of a similar nature to this study need 
only use HEA for forecasting and sensitivity by wide ranged disturbance.   
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• With regard to the forecasting of algal dynamics, the inclusion of a measure of water 
stability as an input variable could greatly improve the forecasting of species that thrive in 
stable water columns, such as Anabaena during times of thermal stratification.  It would 
indicate when artificial mixing was successfully achieving mixed conditions and thereby 
reducing the risk of Anabaena blooms, even if all other conditions are conducive for 
population growth.  As it stands, the models forecast Anabaena blooms when nutrient 
and water temperature conditions suggest it would occur. Well-mixed conditions may 
actually prevent the impending bloom but as water column stability is not reflected in the 
data the model may forecast a false peak.   

• The study sites involved in this project employ artificial destratification to deter harmful 
algal blooms over summer, but rely heavily on CuSO4 dosing when this fails.  In 
particular, analysis of Myponga reservoir water quality over time showed that, whilst 
management has successfully reduced some water quality issues, some variables are at 
higher levels in the latest period than prior to the implementation of mixing.  This 
suggests that perhaps a new method of implementation could be trialled, as discussed in 
Chapter 2, to reduce the necessity for CuSO4 dosing.  This could include a forecasting 
model linked to intermittent mixing, which is triggered when significant algal population 
growth is forecast.    

• There is much potential for improvement in both accuracy and applicability of rule-based 
forecasting agents.  The method has clearly been shown to be appropriate for the task of 
real-time forecasting of algal dynamics in freshwaters, however further research is 
needed to ensure the model can be widely applied to other water bodies within a lake 
ecosystem category.  The inclusion of more reservoir data sets from which the initial rule-
set is extracted would be helpful in providing the model with a greater range of conditions 
and occurrences for it to consider and potentially incorporate into the rule.  The inclusion 
of high frequency real-time data is also likely to improve the accuracy of the application to 
real-time forecasting.   

 
8.4 The Future 

Rule-based forecasting agents provide simple model representation in the form of an IF-THEN-
ELSE rule which does not require costly software to run and can be simply be applied in a 
spreadsheet.  The explicit nature of the rule-set means that it is reasonably understandable and 
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easy to apply, and the user does not have to be familiar with computational modelling, which is 
what makes it a viable tool for water managers in many situations.  Rule-based forecasting 
agents for certain algal species could, of course, be developed for other lake ecosystem 
categories.  An agent could be set up for real-time forecasting of specific algal dynamics in just 
one reservoir, using incoming real-time data. Or on a larger scale, a library of forecasting agents 
(as suggested by Recknagel 2003b) for numerous lake ecosystem categories could be provided 
online in an integrated intelligent data warehouse and modelling platform, which would enable the 
user to select the appropriate agent for the lake ecosystem category to be applied to incoming 
online water quality data, thus providing real-time forecasting.  And, as earlier discussed, there is 
the potential for the agents themselves to be imbedded in the operational management of 
reservoirs.   
Although there is further effort needed before rule-based forecasting agents for lake ecosystem 
categories are a practical option for water managers and decision makers, this research has been 
the necessary first step towards providing a generic model for warm monomictic and eutrophic 
water bodies that could be implemented for real-time forecasting and a contribution to the 
development of agent libraries for certain species and categories available for shared use.     
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APPENDIX A 
 

Trophic state classifications 
Three lake classification methods were used to identify the trophic state of Myponga and Happy 
Valley reservoirs.   
 
Table 23. Carlson’s trophic state index (TSI) (according to Carlson (1977)) 

Trophic State Trophic state index (TSI) 
Ultra-oligotrophic ≤ 20 

Oligotrophic ≤ 40 
Mesotrophic ≤ 50 

Eutrophic ≤ 70 
Hypertrophic ≥ 70 

 
 
Table 24. OECD lake classification standard (according to Vellenweider and Kerekes (1982)) 

Trophic 
State 

Mean total 
phosphorus 

Mean Chl-a Max. Chl-a Mean secchi 
depth 

Max. secchi 
depth 

Ultra-
oligotrophic 

<4 <1 <2.5 >12 >6 

Oligotrophic <10 <2.5 <8 >6 >3 
Mesotrophic 10-35 2.5-8 8-25 6-3 3-1.5 

Eutrophic 35-100 8-25 25-75 3-1.5 1.5-0.7 
Hypertrophic >100 >25 >75 <1.5 <0.7 
 
 
Table 25. German lake classification standard (according to Ryding and Rast (1989)) 

Quality Class  
Criterion 1 2 3a 3b 4 5 

PO4 (mg/L) 0-0.002 0-0.005 0-0.1 >0.1 >0.5 
Dissolved 
Inorganic 

Nitrogen (mg/L) 

≤ 0.01 ≤ 0.03 ≤ 0.1 >0.1 >0.5 

Chl-a 
(summer mean) 

≤ 3 <10 10-20 20-40 40-60 >60 

Secchi depth 
(m) 

≥ 6 ≥ 4 ≥ 1 ≥ 0.5 >0.5 

pH 6.5-8 7-8.5 7-9 7-9.5 6.5-10 6-11 
Trophic state Oligo- 

trophic 
Meso- 
trophic 

Eutrophic 
stratified 

Eutrophic 
unstratified 

Poly-
trophic 

Hyper-
trophic 
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Table 26. Observed water quality data used for reservoir trophic state classification 

Variable Myponga reservoir Happy Valley reservoir 
Chl-a (ųg/L): mean  7.84 8.87 

                       summer  9.14 14.79 
PO4 (mg/L) 0.022 0.024 

Total phosphorous 0.06 0.098 
NO3 0.11 0.226 

Secchi depth N/A N/A 
pH N/A N/A 

 
 
 
Table 27. Reservoir trophic state classifications 

Trophic state classification Myponga reservoir Happy Valley reservoir 
Carlson’s Trophic State Index 

(TSI) 
  

Secchi depth N/A N/A 
Total phosphorus Eutrophic Eutrophic 
Chl-a Eutrophic Eutrophic 

OECD lake classification 
standard 

  

Total phosphorus Eutrophic Eutrophic 
Chl-a Mesotrophic Eutrophic 
Max Chl-a Eutrophic Eutrophic 
Secchi depth N/A N/A 
Min Secchi depth N/A N/A 

German lake classification 
standard 

  

PO4 Eutrophic Eutrophic 
DIN* Polytrophic Polytrophic 
Summer Chl-a Mesotrophic Eutrophic, stratified 
Secchi depth  N/A N/A 
pH N/A N/A 

All variables are mean values unless otherwise stated. 
* Classified according to NO3 fraction. 
 
Tab. 27 shows that in most cases both reservoirs were classified as eutrophic, although Happy 
Valley reservoir was indicated to be more eutrophic than Myponga reservoir. 
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APPENDIX B 

 
The relationship between rainfall and turbidity 

 
In section 4.4.1.1, a link between rainfall and turbidity is suggested.  The graph below provides a 
snap shot, based on data availability, of the relationship between rainfall (and inflow) and turbidity 
levels in Myponga reservoir.  Only limited data from Myponga reservoir was available for 
exploration of this concept and no rainfall data was available for Happy Valley reservoir, but it is 
assumed that the relationship between turbidity and rainfall demonstrated in the Myponga data 
would be relevant in Happy Valley reservoir also.   
The graph (Fig. 54) shows that there appears to be a link between heavy rainfall and turbidity.  It 
can be seen that turbidity experiences its annual peak during the largest rainfall event of the year, 
giving both variables maximum values during winter.  Small rainfalls do not seem to impact 
turbidity levels as significant rainfall events do. 
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Figure 54. Rainfall and turbidity levels in Myponga reservoir 1993 
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APPENDIX C 

 
The relationship between colour and dissolved organic 

carbon (DOC) 
 
In Chapter 4 (see section 4.4.1.1), there is discussion regarding the difference in colour between 
the study sites, Myponga and Happy Valley reservoirs. It is suggested that DOC is linked to 
colour and that Myponga probably has higher levels of DOC in the water.   These graphs provide 
a snap shot, based on data availability, of the relationship between colour and DOC in the 
reservoirs.  The graphs below confirm that Myponga has higher levels of DOC (up to 14mg/L) 
compared with Happy Valley reservoir (up to 10mg/L).  In the case of Myponga reservoir, the 
influence of DOC on colour can clearly be seen.  Fig. 55 also illustrates the seasonality of the 
variables, with the peak values in each year occurring in early-mid September.  The DOC build up 
from the winter would contribute to this early spring peak.  In Happy Valley reservoir there does 
not appear to be such an obvious link between DOC and colour and there is no clear seasonality 
for the DOC (Fig. 56).  The difference between clear seasonality patterns in Myponga reservoir 
and indistinct patterns in Happy Valley reservoir may be explained by the difference in origin and 
timing of inflows to the reservoirs.  Myponga reservoir is entirely catchment fed and as such 
experiences most inflow in winter and little in other seasons.  Happy Valley reservoir receives 
water from the river Murray throughout the year when reservoir levels are low and demand is 
high, which interrupts the seasonal patterns you might expect to find.    
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APPENDIX D 

 
Chl-a as an input to HEA 

 
Whether to include previous Chl-a concentrations as an input to predict present or future Chl-a 
concentrations is a contentious issue, as discussed in Chapter 5.  Experiments were carried out 
to test HEA forecasting rule extraction if past Chl-a values were included as input to forecast 
future Chl-a levels.  It was found that the algorithm largely ignored other input values and relied to 
heavily on the past Chl-a concentrations (see rule below for an example).  Fig. 57 shows that 
whilst the result is excellent with regard to magnitude, the timing is always approximately one 
week out as the forecasting rule, at any given time, is simply forecasting the Chl-a values from 
one week prior, so the forecasts are always one week behind.  It was decided, for this reason 
among others, that past Chl-a concentrations would not be used as input to predict current or 
future Chl-a concentrations in this project.   

 

IF (Chl-a7day lag<=35.244) 
THEN Observed Chl-a=((Chla7daylag*Chla7daylag)/Chla7daylag)
ELSE 
Observed Chl-a=(DO+23.154) 
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APPENDIX E 

 
Most Influencing Parameter graphs 

 
The column graphs below are the ‘most influencing parameter’ (MIP) sensitivity analyses 
produced in association with RANN models from Chapter 5. 
 
Chl-a forecasting in Myponga reservoir validated for 2001 

  

 
 
 

Chl-a forecasting in Happy Valley reservoir validated for 1999 
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Anabaena forecasting in Myponga reservoir validated for 2002 

  

 
 
 

 

Anabaena forecasting in Happy Valley reservoir validated for 1997 

 
 
 
 
These results show that in all cases phosphate was found to be the most influencing parameter 
followed distantly by nitrate.  In all cases colour was found to be the least influencing parameter. 
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