

LIFE CYCLE ASSESSMENT COMPARISON BETWEEN PEPFACTANT[®] AND CHEMICAL SURFACTANT PRODUCTION

MASTER THESIS By

Huai HUANG

B.E. (Beijing University of Chemical Technology, China)

School of Chemical Engineering Faculty of Engineering, Computer & Mathematical Sciences

April 2008

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Huai HUANG

04/2008

Acknowledgements

During this 18-month research study period, I have obtained the support and assistance from many people. Firstly, I would like to express the sincerest appreciation to my supervisors, Dr. David Lewis, Prof. Anton Middelberg and Dr. Peter Ashman, for offering me academic supervision, technical assistance, financial support and enthusiastic encouragement. My principal supervisor Dr. David Lewis has spent much time on reviewing my thesis and helping me correcting my English writing as English is not my first language. My external co-supervisor Prof. Anton Middelberg has provided me with collaborative support within his research team, at the Australian Institute for Bioengineering and Nanotechnology, University of Queensland.

The other people I also would like to thank are the research team of Prof. Anton Middelberg, in particular Dr. Robert Falconer. He has supplied me the most important technical information for this project and assisted me in solving the technical problems for this study. Without his help, this project wouldn't be completed as what it is like today. Additionally, Dr. Annett Dexter, Mr. Andrew Malcolm, Ms. Belinda Hartmann and Miss Mirjana Dimitrijev have given me valuable suggestions relating to the research methods and have facilitated the completion of experimental activities.

Last but not least, I will forever be grateful to my parents who support me both financially and mentally to complete this study and pursue a Masters Degree from overseas.

Contents

CONTENTS	Ι
LIST OF FIGURES	IV
LIST OF TABLES ABSTRACT	
1.1 SUMMARY	1
1.2 Peptide Surfactants	2
1.2.1 Novel Surface Theory	2
1.2.2 Novel Peptide Surfactants	4
1.2.3 Pepfactants [®] Manufacture	5
1.3 CHEMICAL SURFACTANTS	8
1.3.1 Definition and Classification of Surfactants	9
1.3.2 Chemical Surfactants Production	10
1.3.3 Applications of Chemical Surfactants	11
1.4 RESEARCH GAP	11
1.5 OBJECTIVES OF THIS RESEARCH	12
2 METHODOLOGY- LCA	13
2.1 STEPS AND PHASES	13
2.2 GOAL AND SCOPE DEFINITION	15
2.3 LIFE CYCLE INVENTORY (LCI)	16
2.4 LIFE CYCLE IMPACT ASSESSMENT (LCIA)	18
2.5 LIFE CYCLE INTERPRETATION	23
2.6 LCA IMPLEMENTATION	23
3 LCA ON PEPFACTANT® AND CHEMICAL SURFACTAN	Т
MANUFACTURE	25
3.1 BACKGROUND	25
3.2 SCOPE OF THE LCA	26

	3.2.1	Function of Surfactants	26
	3.2.2	Functional Unit, Assumptions and Limitations	27
	3.2.3	System Boundaries	29
	3.3 Lift	E CYCLE INVENTORY	31
	3.3.1	Procedures for Data Collection	31
	3.3.2	AM1 Manufacture Model and Process Assumptions	32
	3.3.3	LAS Production Process and Assumptions	41
	3.3.4	Life Cycle Inventory	42
	3.4 Imp	ACTS ASSESSMENT	50
	3.4.1	Impact Categories	50
	3.4.2	Classification and Characterisation	50
	3.4.3	Processing the Inventory and Assessment	53
	3.5 Ext	TENDED LCA FOR PEPFACTANT [®] AM1	63
	3.6 Con	VCLUSIONS	69
4	FOAN	AING TESTS ON SURFACTANTS	70
	4.1 BAG	CKGROUND	70
	4.2 ME	THODOLOGY	71
	4.2.1	Foaming Experiment Overview	71
	4.2.2	Determination of Foaming Experiment Method	72
	4.3 MA	TERIALS AND TESTS	73
	4.3.1	Materials	73
	4.3.2	Tests	74
	4.4 Res	ULTS	76
	4.5 Con	ICLUSIONS	77
5	RESU	LTS AND DISCUSSION	79
	5.1 Com	MPARISON RESULTS TOWARDS LCA PROFILES	79
	5.1.1	Raw Materials	79
	5.1.2	Energy Requirements	82
	5.1.3	Atmospheric and Aqueous Emissions	83
	5.1.4	CO ₂ Emissions (for energy requirements)	86
	5.1.5	LCA Comparison	87
	5.2 FOA	MING ABILITY COMPARISON	89

5.3 LCA IMPROVEMENT	91
6 CONCLUSIONS	93
6.1 Conclusions	93
6.2 FUTURE WORK	95
REFERENCES	
APPENDIX A CHEMICAL SURFACTANTS PRODUCTION	107
APPENDIX B APPLICATIONS OF CHEMICAL SURFACTANTS	110
APPENDIX C SHORT DESCRIPTION OF LCIA METHODS	114

LIST OF FIGURES

Figure 1.1 Flow sheet of purification process of AM1	8	
Figure 2.1 Phases and applications of an LCA (AS/NZS ISO 14040, 1998)	15	
Figure 2.2 A "from cradle to grave" LCA system boundary	16	
Figure 3.1 Assessment Boundary of LCA on Pepfactant® AM1 Manufacture	30	
Figure 3.2 Assessment Boundary of LCA on LAS production	30	
Figure 3.5 Percentage contributions of AM1 production across all LCA impact		
categories	56	
Figure 3.6 Percentage contributions of LAS production across all LCA impact		
categories	61	
Figure 3.7 Direct carbon dioxide emission trace with raw materials	64	
Figure 3.8 Indirect carbon dioxide emission trace with energy depletion	65	
Figure 3.9 Relative public power generation by sources in 2003 (IEA, 2005)	66	
Figure 3.10 Energy reduction potential with highest efficiencies included countries		
(Graus <i>et al</i> , 2007)	67	
Figure 3.11 CO ₂ savings potential with highest efficiencies included countries (C	Graus	
<i>et al</i> , 2007)	67	
Figure 3.12 Scenario of Pepfactant® AM1 manufacture model with recycling wa	ter69	
Figure 4.1 Schematic of apparatus used for foaming tests	74	
Figure 4.2 Experimental set up of foaming tests	75	
Figure 4.3 Concentration dependence of Pepfactant® AM1 foams (25mM HEPE	S pH	
7.4 200µM Zn)	76	
Figure 4.4 Concentration dependence of LAS foams (25mM HEPES pH 7.4)	77	
Figure 5.1 Raw materials depletion for Pepfactant [®] AM1 production	80	

Figure 5.2 Raw materials depletion for LAS production	81
Figure 5.3 Energy requirement comparison between Pepfactant® AM1 and LAS	
production	82
Figure 5.4 Atmospheric and aqueous emissions for Pepfactant [®] AM1 production	83
Figure 5.5 Atmospheric and aqueous emissions for LAS production	84
Figure 5.6 CO ₂ emissions for energy requirements	86
Figure 5.7 LCA comparison between Pepfactant [®] AM1 and LAS production	87
Figure 5.8 Extended LCA comparison between Pepfactant® AM1 and LAS taking	
account of usage	90

LIST OF TABLES

Table 1.1 Classification of chemical surfactants	10	
Table 2.1 LCIA methods and software	19	
Table 3.1 Process Conditions for the production of 1000 kg AM1	39	
Table 3.2 Raw material, energy and products including emissions data for AM1		
manufacture on industrial scale and functional unit	43	
Table 3.3 Raw materials, energy and emissions process data for discrete processes in		
AM1 manufacture	45	
Table 3.4 Breakdown of Electricity Requirements for AM1 Manufacture	46	
Table 3.5 Raw materials, Energy and Emissions Process Data for Discrete		
Operations Involved in LAS Production (Pittinger et al, 1993)	48	
Table 3.6 LCA Characterisation factors for AM1 manufacture (Heijungs, 1992)	51	
Table 3.7 LCA Characterisation factors for LAS production (Heijungs, 1992)	52	
Table 3.8 LCA impact indicators for 1000 kg of AM1 manufacturing process (CM	ſL	
1992)	54	
Table 3.9 LCA impact indicators for 1000 kg of LAS manufacturing process (CML,		
1992)	59	

Abstract

Recently designed Pepfactants[®] are an innovative type of nano-technological products, which could potentially replace conventional surfactants in broad-ranging applications. Currently, Pepfactants[®] technology is still in an initial design period at the laboratory scale. In order to develop the industrial-scale production of Pepfactants[®], the design group has proposed simulated strategies for industrial-scale Pepfactants[®] manufacture and a desire to improve these strategies with regards to sustainability.

This project aimed to assist Pepfactants[®] designers to understand the environmental footprint of simulated Pepfactant® AM1 manufacturing process, using the methodology of Life Cycle Assessment (LCA) – a comprehensive tool to quantify the environmental impacts from products and processes. To find the environmental shortcomings of the proposed manufacturing process for Pepfactant® AM1, the LCA outcomes were compared with published life cycle information of traditional chemical surfactant Lineal Alkylbenzene Sulphonate (LAS) production. Following LCA methodology, a life cycle inventory was compiled based on the simulated AM1 manufacture, which determined the environmental impact assessment for both AM1 and LAS production. In the LCA boundaries disregarding the usage of both surfactants, the quantitative LCA comparison results indicated that raw material and energy requirements of AM1 manufacture were much higher than LAS production, estimated to be 3,186 t/t AM1 against 31.1t/t LAS and 1,564,000MJ/t AM1 against 69,870MJ/t LAS respectively. Additionally, compared with LAS production, enormous water consumption (2,651 t/t AM1) and CO₂ emission (522 t/t AM1) were also shown to be severe environmental problems for AM1 manufacture. Furthermore, the AM1 manufacture presents apparent problems with environmental impacts of nutrification, human toxicity, photochemical oxidant formation and acidification in comparison with LAS production.

Other than providing the optimisation point in the view of environmental impacts for Pepfactant[®] AM1 manufacture, the results of experimental work in this project

showed that as the surfactant concentration increases a greater foam height of Pepfactant[®] AM1 was achieved than when (from 7mm to 52mm between 15 μ M and 100 μ M) compared with LAS (from 8mm to 53mm between 31.3 μ M and 2,000 μ M) in the same aeration duration. This result demonstrated the great potential of AM1 to replace LAS based on the LCA functional unit – 1 tonne of products. The experiments results implied that 1 tonne of AM1 is able to have the same foaming ability as approximate 25 tonnes of LAS. Consequently, the environmental impacts from Pepfactant[®] AM1 manufacture are reduced by 25 times in the extended LCA boundaries linked to the quantitative usage comparison of these two surfactants.