LIFE CYCLE ASSESSMENT COMPARISON
BETWEEN PEPFACTANT® AND CHEMICAL SURFACTANT PRODUCTION

MASTER THESIS
By

Huai HUANG

B.E. (Beijing University of Chemical Technology, China)

School of Chemical Engineering
Faculty of Engineering, Computer & Mathematical Sciences

April 2008
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Huai HUANG

04/2008
Acknowledgements

During this 18-month research study period, I have obtained the support and assistance from many people. Firstly, I would like to express the sincerest appreciation to my supervisors, Dr. David Lewis, Prof. Anton Middelberg and Dr. Peter Ashman, for offering me academic supervision, technical assistance, financial support and enthusiastic encouragement. My principal supervisor Dr. David Lewis has spent much time on reviewing my thesis and helping me correcting my English writing as English is not my first language. My external co-supervisor Prof. Anton Middelberg has provided me with collaborative support within his research team, at the Australian Institute for Bioengineering and Nanotechnology, University of Queensland.

The other people I also would like to thank are the research team of Prof. Anton Middelberg, in particular Dr. Robert Falconer. He has supplied me the most important technical information for this project and assisted me in solving the technical problems for this study. Without his help, this project wouldn’t be completed as what it is like today. Additionally, Dr. Annett Dexter, Mr. Andrew Malcolm, Ms. Belinda Hartmann and Miss Mirjana Dimitrijev have given me valuable suggestions relating to the research methods and have facilitated the completion of experimental activities.

Last but not least, I will forever be grateful to my parents who support me both financially and mentally to complete this study and pursue a Masters Degree from overseas.
Contents

CONTENTS I
LIST OF FIGURES IV
LIST OF TABLES VI
ABSTRACT A
1. INTRODUCTION 1
 1.1 SUMMARY 1
 1.2 PEPTIDE SURFACTANTS 2
 1.2.1 Novel Surface Theory 2
 1.2.2 Novel Peptide Surfactants 4
 1.2.3 Pepfactants® Manufacture 5
 1.3 CHEMICAL SURFACTANTS 8
 1.3.1 Definition and Classification of Surfactants 9
 1.3.2 Chemical Surfactants Production 10
 1.3.3 Applications of Chemical Surfactants 11
 1.4 RESEARCH GAP 11
 1.5 OBJECTIVES OF THIS RESEARCH 12
2. METHODOLOGY- LCA 13
 2.1 STEPS AND PHASES 13
 2.2 GOAL AND SCOPE DEFINITION 15
 2.3 LIFE CYCLE INVENTORY (LCI) 16
 2.4 LIFE CYCLE IMPACT ASSESSMENT (LCIA) 18
 2.5 LIFE CYCLE INTERPRETATION 23
 2.6 LCA IMPLEMENTATION 23
3. LCA ON PEPFACTANT® AND CHEMICAL SURFACTANT MANUFACTURE 25
 3.1 BACKGROUND 25
 3.2 SCOPE OF THE LCA 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Function of Surfactants</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2 Functional Unit, Assumptions and Limitations</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3 System Boundaries</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Life Cycle Inventory</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1 Procedures for Data Collection</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2 AM1 Manufacture Model and Process Assumptions</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3 LAS Production Process and Assumptions</td>
<td>41</td>
</tr>
<tr>
<td>3.3.4 Life Cycle Inventory</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Impacts Assessment</td>
<td>50</td>
</tr>
<tr>
<td>3.4.1 Impact Categories</td>
<td>50</td>
</tr>
<tr>
<td>3.4.2 Classification and Characterisation</td>
<td>50</td>
</tr>
<tr>
<td>3.4.3 Processing the Inventory and Assessment</td>
<td>53</td>
</tr>
<tr>
<td>3.5 Extended LCA for Pepfactant® AM1</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Conclusions</td>
<td>69</td>
</tr>
<tr>
<td>4 Foaming Tests on Surfactants</td>
<td>70</td>
</tr>
<tr>
<td>4.1 Background</td>
<td>70</td>
</tr>
<tr>
<td>4.2 Methodology</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1 Foaming Experiment Overview</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2 Determination of Foaming Experiment Method</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Materials and Tests</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1 Materials</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2 Tests</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Results</td>
<td>76</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>77</td>
</tr>
<tr>
<td>5 Results and Discussion</td>
<td>79</td>
</tr>
<tr>
<td>5.1 Comparison Results Towards LCA Profiles</td>
<td>79</td>
</tr>
<tr>
<td>5.1.1 Raw Materials</td>
<td>79</td>
</tr>
<tr>
<td>5.1.2 Energy Requirements</td>
<td>82</td>
</tr>
<tr>
<td>5.1.3 Atmospheric and Aqueous Emissions</td>
<td>83</td>
</tr>
<tr>
<td>5.1.4 CO₂ Emissions (for energy requirements)</td>
<td>86</td>
</tr>
<tr>
<td>5.1.5 LCA Comparison</td>
<td>87</td>
</tr>
<tr>
<td>5.2 Foaming Ability Comparison</td>
<td>89</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Flow sheet of purification process of AM1 8
Figure 2.1 Phases and applications of an LCA (AS/NZS ISO 14040, 1998) 15
Figure 2.2 A “from cradle to grave” LCA system boundary 16
Figure 3.1 Assessment Boundary of LCA on Pepfactant® AM1 Manufacture 30
Figure 3.2 Assessment Boundary of LCA on LAS production 30
Figure 3.5 Percentage contributions of AM1 production across all LCA impact categories 56
Figure 3.6 Percentage contributions of LAS production across all LCA impact categories 61
Figure 3.7 Direct carbon dioxide emission trace with raw materials 64
Figure 3.8 Indirect carbon dioxide emission trace with energy depletion 65
Figure 3.9 Relative public power generation by sources in 2003 (IEA, 2005) 66
Figure 3.10 Energy reduction potential with highest efficiencies included countries (Graus et al, 2007) 67
Figure 3.11 CO₂ savings potential with highest efficiencies included countries (Graus et al, 2007) 67
Figure 3.12 Scenario of Pepfactant® AM1 manufacture model with recycling water 69
Figure 4.1 Schematic of apparatus used for foaming tests 74
Figure 4.2 Experimental set up of foaming tests 75
Figure 4.3 Concentration dependence of Pepfactant® AM1 foams (25mM HEPES pH 7.4 200μM Zn) 76
Figure 4.4 Concentration dependence of LAS foams (25mM HEPES pH 7.4) 77
Figure 5.1 Raw materials depletion for Pepfactant® AM1 production 80
Figure 5.2 Raw materials depletion for LAS production 81
Figure 5.3 Energy requirement comparison between Pepfactant® AM1 and LAS production 82
Figure 5.4 Atmospheric and aqueous emissions for Pepfactant® AM1 production 83
Figure 5.5 Atmospheric and aqueous emissions for LAS production 84
Figure 5.6 CO₂ emissions for energy requirements 86
Figure 5.7 LCA comparison between Pepfactant® AM1 and LAS production 87
Figure 5.8 Extended LCA comparison between Pepfactant® AM1 and LAS taking account of usage 90
LIST OF TABLES

Table 1.1 Classification of chemical surfactants 10
Table 2.1 LCIA methods and software 19
Table 3.1 Process Conditions for the production of 1000 kg AM1 39
Table 3.2 Raw material, energy and products including emissions data for AM1 manufacture on industrial scale and functional unit 43
Table 3.3 Raw materials, energy and emissions process data for discrete processes in AM1 manufacture 45
Table 3.4 Breakdown of Electricity Requirements for AM1 Manufacture 46
Table 3.5 Raw materials, Energy and Emissions Process Data for Discrete Operations Involved in LAS Production (Pittinger et al, 1993) 48
Table 3.6 LCA Characterisation factors for AM1 manufacture (Heijungs, 1992) 51
Table 3.7 LCA Characterisation factors for LAS production (Heijungs, 1992) 52
Table 3.8 LCA impact indicators for 1000 kg ofAM1 manufacturing process (CML 1992) 54
Table 3.9 LCA impact indicators for 1000 kg of LAS manufacturing process (CML, 1992) 59
Abstract

Recently designed Pepfactants® are an innovative type of nano-technological products, which could potentially replace conventional surfactants in broad-ranging applications. Currently, Pepfactants® technology is still in an initial design period at the laboratory scale. In order to develop the industrial-scale production of Pepfactants®, the design group has proposed simulated strategies for industrial-scale Pepfactants® manufacture and a desire to improve these strategies with regards to sustainability.

This project aimed to assist Pepfactants® designers to understand the environmental footprint of simulated Pepfactant® AM1 manufacturing process, using the methodology of Life Cycle Assessment (LCA) – a comprehensive tool to quantify the environmental impacts from products and processes. To find the environmental shortcomings of the proposed manufacturing process for Pepfactant® AM1, the LCA outcomes were compared with published life cycle information of traditional chemical surfactant Lineal Alkylbenzene Sulphonate (LAS) production. Following LCA methodology, a life cycle inventory was compiled based on the simulated AM1 manufacture, which determined the environmental impact assessment for both AM1 and LAS production. In the LCA boundaries disregarding the usage of both surfactants, the quantitative LCA comparison results indicated that raw material and energy requirements of AM1 manufacture were much higher than LAS production, estimated to be 3,186 t/t AM1 against 31.1t/t LAS and 1,564,000MJ/t AM1 against 69,870MJ/t LAS respectively. Additionally, compared with LAS production, enormous water consumption (2,651 t/t AM1) and CO₂ emission (522 t/t AM1) were also shown to be severe environmental problems for AM1 manufacture. Furthermore, the AM1 manufacture presents apparent problems with environmental impacts of nutrification, human toxicity, photochemical oxidant formation and acidification in comparison with LAS production.

Other than providing the optimisation point in the view of environmental impacts for Pepfactant® AM1 manufacture, the results of experimental work in this project
showed that as the surfactant concentration increases a greater foam height of Pepfactant® AM1 was achieved than when (from 7mm to 52mm between 15μM and 100μM) compared with LAS (from 8mm to 53mm between 31.3μM and 2,000μM) in the same aeration duration. This result demonstrated the great potential of AM1 to replace LAS based on the LCA functional unit – 1 tonne of products. The experiments results implied that 1 tonne of AM1 is able to have the same foaming ability as approximate 25 tonnes of LAS. Consequently, the environmental impacts from Pepfactant® AM1 manufacture are reduced by 25 times in the extended LCA boundaries linked to the quantitative usage comparison of these two surfactants.