New Methods for the Synthesis of Diynyl, Diyndiyl and Bis(diyndiyl) Ruthenium(II) Complexes

A Thesis Submitted Towards the Degree of Doctor of Philosophy

By

Nancy Scoleri
B.Sc. (Hons)

July 2008
Contents

Abstract i
Declaration iii
Acknowledgements iv
Abbreviations v
General experimental conditions viii

CHAPTER ONE: Introduction

1.1. The syntheses of diynyl complexes 3
1.1.1. Synthetic strategy one 4
1.1.2. Synthetic strategy two 6
1.1.3. Synthetic strategy three 7
1.1.4. Synthetic strategy four 8
1.1.5. Alternative synthetic strategies 9

1.2. The syntheses of diyndiyl complexes 10
1.2.1. Symmetric diyndiyl complexes 11
1.2.1.1 Synthetic strategy one 12
1.2.1.2. Synthetic strategy two 14
1.2.1.3. Synthetic strategy three 17
1.2.1.4. Synthetic strategy four 18
1.2.2. Asymmetric diyndiyl complexes 19

1.3. The syntheses of trinuclear complexes 24
1.3.1. Organic linkers 24
1.3.2. Organometallic linkers 26

1.4. Molecular wires 30
1.4.1. Evaluation of molecular wires by cyclic voltammetry 33

1.5. Work described in this thesis 41
CHAPTER TWO: The Chemistry of Bis(Diyndiyl) Ruthenium(II) Complexes

2.1. Introduction

2.2. Aim of this work

2.3. Results and Discussion

2.3.1. Symmetric complexes \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_2\text{(dppe)}_2 \)

2.3.2. Asymmetric complexes \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_{\text{C}_4}\text{[Ru(dppe)Cp]}\text{(dppe)}_2 \)

2.3.3. Asymmetric complexes \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_{\text{C}_4\text{[Ru(dppe)Cp*]}}\text{(dppe)}_2 \)

2.3.4. Synthesis of \(\text{trans-RuCl}\{\text{C}_4\text{[Ru(dppe)Cp*]}\}\text{(dppe)}_2 \)

2.3.5. Gold reactions

2.3.5.1. Synthesis of \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_{\text{C}_4}\text{[Au(PPh}_3\text{)]}\text{(dppe)}_2 \)

2.3.5.2. Synthesis of \(\text{trans-Ru}\{\text{C}_4\text{[Ru(dppe)Cp*]}\}_{\text{C}_3\text{[Co}_3\text{(µ-dppm)(CO)}_7\text{]}}\text{(dppe)}_2 \)

2.3.6. Various reactions of \(\text{trans-Ru}(\text{C}_4\text{H})_2\text{(dppe)}_2 \)

2.3.6.1. Reaction with \(\text{AuCl(PPh}_3\text{)} \)

2.3.6.2. Reaction with \(\text{Co}_3\text{(µ-CBr)(µ-dppm)(CO)}_7 \)

2.3.6.3. Reaction with \(\text{TCNE} \)

2.3.7. Synthesis of trinuclear copper(I) and silver(I) alkynyl complexes

2.4. Electrochemistry

2.4.1. \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_2\text{(dppe)}_2 \) complexes

2.4.2. \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_{\text{C}_4}\text{[Ru(dppe)Cp]}\text{(dppe)}_2 \) complexes

2.4.3. \(\text{trans-Ru}\{\text{C}_4\text{[Ru]}\}_{\text{C}_4}\text{H}\text{(dppe)}_2 \) complexes

2.4.4. \(\text{trans-RuCl}\{\text{C}_4\text{[Ru(dppe)Cp*]}\}\text{(dppe)}_2 \)

2.4.5. \(\text{Ru}\{\text{C≡CC}=[\text{C(CN)}_2]\text{CH}=[\text{C(CN)}_2]_2\text{(dppe)}_2 \)

2.4.6. \(\{\text{Cp*}(\text{dppe})\text{Ru}\}\{\text{C≡C}=[\text{M}_3(\mu-dppm)_3]\text{(C≡C)}_2\text{[Ru(dppe)Cp*]}\}\text{[X]} \)

\(\text{(M = Cu, Ag; X = PF}_6\text{, BF}_4\text{)} \)

2.5. Conclusions

2.6. Experimental
CHAPTER THREE: A New Method for the Synthesis of Diyndiyl Ruthenium(II) Complexes

3.1. Introduction

3.2. Aim of this work

3.3. Results and Discussion

3.3.1. The lithiation of [Ru](C≡CC≡CH) ([Ru] = Ru(dppe)Cp*, Ru(PPh₃)₂Cp)

3.3.1.1. Synthetic strategy

3.3.1.2. NMR study

3.3.2. Investigation of the formation of [Ru](C≡CC≡CLi)

3.3.2.1. Synthesis of [Ru](C≡CC≡CTMS)

3.3.2.2. Synthesis of [Ru]{C≡CC≡C[Au(PPh₃)]}

3.3.3. Reactions of [Ru](C≡CC≡CLi) with various metal halides

3.3.3.1. Reaction with (AuCl)₂(μ-dppm)

3.3.3.2. Reaction with cis-PtCl₂(PPh₃)₂

3.3.3.3. Reactions with GeCl₃ and SnCl₃

3.3.3.4. Reaction with [CuCl(PPh₃)]₄

3.3.3.5. Reaction with RhCl(CO)(PPh₃)₂

3.4. Conclusions

3.5. Experimental

CHAPTER FOUR: The reactions of Ru(C≡CC≡CLi)(dppe)Cp*

4.1. Introduction

4.1.1. The reaction of nucleophilic complexes with organic reagents

4.1.2. The reaction of nucleophilic complexes with polyfluoroaromatic reagents

4.1.3. The nucleophilic ruthenium(II) complex Ru(C≡CC≡CLi)(dppe)Cp*

4.2. Aim of this work
4.3. Results and Discussion

4.3.1. Reactions with organic reagents

4.3.1.1. Synthesis of Ru(C≡C≡CMe)(dppe)Cp* 143
4.3.1.2. Synthesis of Ru(C≡C≡C(O)Ph)(dppe)Cp* 145
4.3.1.3. Synthesis of Ru(C≡C≡C(O)Me)(dppe)Cp* 146
4.3.1.4. Synthesis of Ru(C≡C≡C(O)OMe)(dppe)Cp* 147
4.3.1.5. Synthesis of {Ru(C≡C≡C)(dppe)Cp*}_2(CO)_2 147
4.3.1.6. Synthesis of Ru(C≡C≡CCHPh(OH))(dppe)Cp* 148
4.3.1.7. Reaction with TCNE 152

4.3.2. Reactions with polyfluoroaromatic reagents

4.3.2.1. Synthesis of Ru(C≡C≡C_6F_5)(dppe)Cp* 158
4.3.2.2. Synthesis of Ru(C≡C≡C_6F_4NO_2-4)(dppe)Cp* 161
4.3.2.3. Synthesis of Ru(C≡C≡C_6F_4CN-4)(dppe)Cp* 162
4.3.2.4. Synthesis of Ru(C≡C≡C_6F_4OMe-4)(dppe)Cp* 163
4.3.2.5. Synthesis of Ru(C≡C≡C_10F_7-2)(dppe)Cp* 165
4.3.2.6. Further reactions with Ru(C≡C≡C_6F_5)(dppe)Cp* 172

4.4. Electrochemistry

4.4.1. CV of products from the reactions with organic reagents 176
4.4.2. CV of products from the reactions with polyfluoroaromatic reagents 177

4.5. Conclusions 181

4.6. Experimental 182

CHAPTER FIVE: Some Chemistry Involving Azide Reagents

5.1. Introduction 192

5.2. Aim of this work 199

5.3. Results and Discussion 200
5.3.1. Reactions of Ru(C≡C≡CR)(dppe)Cp* (R = TMS, H, Au(PPh₃)) 200
5.3.2. Reactions of Ru(C≡C≡CH)(PPh₃)₂Cp 211
5.3.3. Reactions of Ru(C≡CH)(dppe)Cp* 212

5.4. Conclusions 215

5.5. Experimental 216

General conclusions 220
References 222
Complexes Index 231
Abstract

Chapter One outlines the different methods described in the literature for the synthesis of diynyl, symmetric and asymmetric diyndiyl complexes. The extension to complexes containing a central bridging group within the carbon chain is also introduced with the description of two different linking groups, either an organic or organometallic moiety. A brief overview of molecular electronics and one method of evaluation of electronic communication, cyclic voltammetry, are also addressed.

Chapter Two describes the synthesis of novel symmetric and asymmetric bis(diynyl) ruthenium(II) complexes of general formula \{L_n M\}-C≡CC≡C-\{M"L"_p\}-C≡CC≡C-\{M'L'_{m}\}, featuring two transition metal fragments linked by either a Ru(dppe)_2 moiety or a trinuclear copper(I) or silver(I) cluster M_3(\mu-dppm)_3 (M = Cu, Ag). Through the use of cyclic voltammetry, it was shown that the inclusion of these three particular bridging groups allows electronic communication between the two terminal end-groups. The chemistry of the starting material \textit{trans}-Ru(C_8H_2)(dppe)_2 (1) is also described, forming novel complexes when reacted with AuCl(PPh_3) or TCNE.

Chapter Three describes a new convenient synthetic route to diynyl and diyndiyl ruthenium(II) complexes. Lithiation of the ruthenium(II) diynyl complexes Ru(C≡CC≡CH)(dppe)Cp* and Ru(C≡CC≡CH)(PPh_3)_2Cp with \textit{n}-BuLi yields the lithium complexes Ru(C≡CC≡CLi)(dppe)Cp* and Ru(C≡CC≡CLi)(PPh_3)_2Cp. The most favorable conditions for their formation are examined by using NMR spectroscopy and different assay reactions. These lithium species are further reacted with a range of metal halides to give new asymmetric diyndiyl complexes of general formula [Ru](C≡CC≡C){ML_n} (where [Ru] = Ru(dppe)Cp*, Ru(PPh_3)_2Cp).
Chapter Four investigates the reactivity of the novel lithium complex Ru(C≡C≡CLi)(dppe)Cp* synthesised in Chapter Three. The nucleophilic nature of this complex is assessed with a range of electrophiles such as organic substrates or polyfluoroaromatic compounds. A number of new complexes are prepared and single-crystal X-ray structure determinations are reported for many of the complexes. The electrochemistry of some of these complexes is also described.

Chapter Five summarises the reactions of diynyl ruthenium(II) complexes Ru(C≡C≡CR)(dppe)Cp* (where R = H, TMS, Au(PPh₃)) with three azide reagents TMSN₃, TsN₃ and AuN₃(PPh₃). The reactions are suggested to undergo a Huisgen 1,3-alkyne-azide cycloaddition to generate 1,2,3-triazoles which further react to give the various products. The complexes synthesised are characterised by spectroscopic methods and, where possible, by X-ray structure determination. Furthermore, the reactions of the complexes Ru(C≡CC≡CH)(PPh₃)₂Cp and Ru(C≡CH)(dppe)Cp* with azides to give the ruthenium azido complexes [Ru]N₃ (where [Ru] = Ru(PPh₃)₂Cp, Ru(dppe)Cp*) are described.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of my knowledge, contains no material previously published or written by another person except where due reference has been made.

I give consent for this thesis to be made available for photocopying and loan if applicable.

Nancy Scoleri

Date: 4th of July 2008
Acknowledgements

First, I would like to thank my supervisor, Professor Michael Bruce for giving me the opportunity to work on an interesting and challenging project. It has been a unique experience which I will always remember. I am also grateful for the help of my co-supervisor Dr Marcus Cole throughout the past few years.

Thank you to Professor Allan White and Dr Brian Skelton for the X-ray structures, Professor Brian Nicholson for the ES-MS and Dr. Simon Pike for valuable discussions on NMR spectra and the organic side of my project. I would also like to thank Professor Jean-François Halet and Dr Stéphane Rigaut for running the DFT calculations and for their suggestions on the trinuclear project. Thanks also to Phil Clements, Graham Bull and Peter Apoevis, staff members of our chemistry department who have helped with instrument failures.

Special thanks to Prof. Michael Bruce, Dr Marcus Cole and Dr. Gary Perkins for giving their time to read my thesis. Your corrections and advice were greatly appreciated.

Thanks must go to everyone I have had the pleasure of sharing a lab with: Dr Maryka Gaudio, Dr Natasha Zaitseva, Dr Cassandra Mitchell, Dr Shirley Xíao-Li Zhao, Dr Benjamin Hall, Dr Gary Perkins, Dr David Armitt and Christian Parker. Thank you also to Mable Fong, Renée Morelli, Suzanne Lochet and Alice Granger for their friendship and for giving me distraction outside my PhD.

Finally, special and most important thanks must go to my family. I am grateful to my parents for their ongoing encouragements, love and faith in me. I really appreciate everything you have ever done for me. Thank you also to my brothers, Tony and Gianny for being there when I needed you. Thank you also to Gary for your love and support and keeping me focussed on achieving my goals.
Abbreviations

General:

° Degrees
°C Degrees Celsius
Å Ångstrom
anal. Analysis
Acac Acetylacetonate
av. Average
Bpy 2,2’-bipyridyl
Bu Butyl
ca Approximately
Calcd Calculated
cm Centimetres
Cp Cyclopentadienyl
Cp* Pentamethylcyclopentadienyl
Cy Cyclohexyl
dbu 1,8-diazabicyclo[5.4.0]undec-7-ene
DFT Density-functional theory
dippe 1,2-bis(diisopropylphosphino)ethane
dmpe 1,2-bis(dimethylphosphino)ethane
dppe 1,2-bis(diphenylphosphino)ethane
dppm Bis(diphenylphosphino)methane
e− Electron
EH Extended Hückel theory
eq Equivalent
ESR Electron spin resonance
Et Ethyl, -CH₂CH₃
Et₂O Diethyl ether
EtOH Ethanol
eV Electron volts
Fc Ferrocenyl
FMO Frontier molecular orbital
g Gram
h Hour(s)
HOMO Highest occupied molecular orbital
IR Infrared
LDA Lithium Diisopropylamide, LiNPr₂
LUMO Lowest unoccupied molecular orbital
Me Methyl, CH₃
MeLi Methyl lithium
MeOH Methanol
mg Milligrams
min Minutes
MLn General metal-ligand fragment
mL Millilitres
mm Millimetres
mmol Millimoles
NMR Nuclear magnetic resonance
Na[BPh₄] Sodium tetraphenylborate
Na[Pf₆] Sodium hexafluorophosphate
NaOMe Sodium methoxide
[NBu₄]F Tetrabutylammonium fluoride
NHEt₂ Diethylamine
NEt₃ Triethylamine
OAc Acetate
OTf Triflate, trifluoromethanesulfonate, CF₃SO₃⁻
ORTEP Oak Ridge Thermal Ellipsoid Plot program
Pd(PPh₃)₄ Palladium(0)tetrakis(triphenylphosphine)
ppn Bis(triphenylphosphine)iminium
Ph Phenyl, -C₆H₅
PPh₃ Triphenylphosphine
Pz Pyrazole
Tol Tolyl
R General organic group
[Ref] Reference
r.t. Room temperature
Rc Ruthenocenyl
s Seconds
tBu Tertiary butyl, -C(CH₃)₃
TCNE Tetracyanoethylene
Temp. Temperature
THF Tetrahydrofuran
TLC Thin layer chromatography
tmeda Tetramethylethylenediamine
TMS Trimethylsilyl, -Si(CH₃)₃, SiMe₃
Tp' Hydridotris(3,5-dimethylpyrazolyl)borate
Ts Tosyl
∆ Reflux
µ Micro
X Halide
NMR:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>dt</td>
<td>Doublet of triplet</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>(^nJ_{IJ})</td>
<td>n bond coupling constant between nuclei I and J</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>sept</td>
<td>Septet</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Chemical shift</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation Spectroscopy</td>
</tr>
</tbody>
</table>

IR:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>cm(^{-1})</td>
<td>Wavenumbers</td>
</tr>
<tr>
<td>m</td>
<td>Medium</td>
</tr>
<tr>
<td>sh</td>
<td>Shoulder</td>
</tr>
<tr>
<td>w</td>
<td>Weak</td>
</tr>
<tr>
<td>s</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Mass Spectroscopy:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-MS</td>
<td>Electrospray mass spectrum</td>
</tr>
<tr>
<td>M</td>
<td>Molecular ion</td>
</tr>
<tr>
<td>(m/z)</td>
<td>Mass per unit charge</td>
</tr>
</tbody>
</table>

Electrochemistry:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Potential</td>
</tr>
<tr>
<td>(E_n)</td>
<td>Potential of (n^{th}) redox process</td>
</tr>
<tr>
<td>(E_{1/2})</td>
<td>Half-wave potential</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>Potential difference</td>
</tr>
<tr>
<td>(i_a)</td>
<td>Anodic peak current</td>
</tr>
<tr>
<td>(i_c)</td>
<td>Cathodic peak current</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolts</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammogram</td>
</tr>
</tbody>
</table>