THE BEHAVIOUR OF STOCHASTIC RUMOURS

By

Selma BELEN

This thesis is presented for the degree of

Doctor of Philosophy of The University of Adelaide

School of Mathematical Sciences

July 2008
Contents

Abstract xiii

Acknowledgements xvii

1 Preliminaries 1

1.1 Structure of the thesis 1

1.2 Rumours in social life and beyond 3

1.3 The beginning of the study of epidemics 5

1.4 The mathematical theory of rumours and epidemics 6

1.5 The differences and similarities between

the spread of rumours and epidemics 7

1.6 The role of deterministic models and stochastic models for some real life

problems 9

1.7 Notation and terminology 10

1.8 The classical methods in rumour models 12
CONTENTS

1.9 More general rumour models .. 16

2 Rumours with a general number of initial spreaders 21

2.1 Introduction .. 21

2.2 The model .. 23

2.3 Evolution of the System .. 26

2.4 Proportion of Ignorants Never Hearing the Rumour 30

2.5 Proportion of Total Population Never Hearing the Rumour 34

2.6 Two types of stiflers .. 35

3 Stochastic rumour process and transitions 45

3.1 Transitions and transition probabilities ... 45

3.1.1 Introduction ... 45

3.2 The number of transitions in [DK] and [MT] models 47

4 Impulsive control of rumours ... 61

4.1 Introduction .. 61

4.2 Impulsive control of rumours for two broadcasts 64

4.2.1 Refinement of the rumour model .. 64

4.3 Results for Scenario 1 .. 69

4.4 Results for Scenario 2 .. 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Conclusions of two broadcasts</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>Multiple broadcasts</td>
<td>81</td>
</tr>
<tr>
<td>4.7</td>
<td>Technical Preliminaries</td>
<td>83</td>
</tr>
<tr>
<td>4.8</td>
<td>Scenario 1</td>
<td>84</td>
</tr>
<tr>
<td>4.9</td>
<td>Scenario 2</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of Scenarios</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Appendix B</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Appendix C</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Appendix D</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Appendix E</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Appendix F</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>149</td>
</tr>
</tbody>
</table>
List of Figures

2.1 The graph of the equation \(x = ye^y \) .. 29

2.2 The behaviour of the function \(\theta \) ... 33

2.3 The graphs of \(\phi_1, \phi_2 \), and their derivatives as functions of \(\alpha \). 38

2.4 The graphs of \(\phi_1 \) and \(\phi_2 \) depicted together. 41

2.5 The dynamical relationship between \(r_1 \) and \(r_2 \) for the case when \(\alpha \to 0 \). ... 43

2.6 The evolutions of \(r_1 \) and \(r_2 \) with respect to \(s \). 43

3.1 Interactions between classes and the number of outcomes 47

4.3.1 \(i_f \) vs \(i_b \) for various values of \(\beta \) under Scenario 1. 72

4.3.2 \(\theta_f \) vs \(\theta_b \) for various values of \(\beta \) under Scenario 1. 73

4.4.1 \(i_f \) vs \(i_b \) for various values of \(\beta \) under Scenario 2. The curve segment starting

with \(\circ \) and ending with \(+ \) corresponds to the case \(\beta \to 0 \); the curve segment

starting with \(\circ \) and ending with \(\times \) corresponds to \(\beta = 0.5 \). The case \(\beta \to 1 \)

is given by a point at the origin. ... 79
4.4.2 \(\theta_f \) vs \(\theta_b \) for various values of \(\beta \) under Scenario 2. 80

4.8.1 An illustration of Scenario 1 with \(\alpha + \beta = 1 \) and 5 broadcasts. In each

simulation \(\beta \) is incremented by 0.2. 91

4.9.1 An illustration of Scenario 2 with \(\alpha + \beta = 1 \) and 5 broadcasts. In each

simulation \(\beta \) is incremented by 0.2. 102

C.1 The Lambert-\(w \) function. 118

C.2 The graph of the equation \(ye^y = x \) 120

C.3 The graph of the equation \(ye^y = x \) 121

C.4 The behaviour of the function \(\theta \) as a function of \(\alpha \) 123

D.1 \(k \)-fold variant of the model 126
List of Tables

3.1 Possible meaningful interactions, transitions and the relative transition probabilities for different transitions at rate ρ and $r = r_1 + r_2$. 55

3.2 Numerical results for extended [DK] model with respect to different sizes of population and arbitrary initial conditions. 56

3.3 Numerical results for extended [MT] model with respect to different size of population and different initial conditions. 56

3.4 Comparison actual values of [MT] and [DK] ignorants and stiflers. 57

3.5 Comparison of actual values of [MT] and [DK] transitions. 58

3.6 Computational results for the extended [DK] model with respect to the population size $n := 10^8$ and $r_{1,0} = 0$ and $r_{2,0} = 0$. 59

3.7 Computational results for the extended [MT] model with respect to the population size $n := 10^9$ and $r_{1,0} = 0$ and $r_{2,0} = 0$. 60

E.1 Convergence for the lower bound of [DK] by DIM-1 127
E.2 Convergence for the lower bound of [DK] by DIM-2 128
E.3 Convergence for upper bound of [DK] by DIM-1 128
E.4 Convergence for upper bound of [DK] by DIM-2 129
E.5 Convergence for upper bound by Newton’s method 129
E.6 Convergence for lower bound by Newton’s method 129

F.1 The [MT] model for different population sizes n, with one initial spreader 132
F.2 i_T/i_0 results for the extended [MT] model 133
F.3 The extended [MT] model with the population $n:=10^9$. 134
F.4 Final results for the extended [MT] model with $0 < \beta < 1$ and population size $n = 10^5$... 136
F.5 Final results for the extended [MT] model with $0 < \beta < 1$ and population size 10^7 (n). ... 137
F.6 Final results for the extended [MT] model with $0 < \beta < 1$ and $n = 10^8$ 138
F.7 The classical [DK] model with first type and second type of stiflers and one initial spreaders ... 139
F.8 i_T/i_0 for the extended [DK] model with $0 < \beta < 0.99$ 140
F.9 i_T/i_0 for the extended [DK] model with $0.999 < \beta < 0.99999$ 140
F.10 The extended [DK] model with $n = 10^6$ 142
F.11 The extended [DK] model with $n = 10^7$ 143
F.12 The extended [DK] model with $n = 10^8$ 144

F.13 The extended [DK] model with $n = 10^9$ 145
Abstract

This thesis presents results concerning the limiting behaviour of stochastic rumour processes.

The first result involves our published analysis of the evolution for the general initial conditions of the (common) deterministic limiting version of the classical Daley-Kendall and Maki-Thompson stochastic rumour models, [14].

The second result being also part of the general analysis in [14] involves a new approach to stiflers in the rumour process. This approach aims at distinguishing two main types of stiflers. The analytical and stochastic numerical results of two types of stiflers in [14] are presented in this thesis.

The third result is that the formulae to find the total number of transitions of a stochastic rumour process with a general case of the Daley-Kendall and Maki-Thompson classical models are developed and presented here, as already presented in [16].

The fourth result is that the problem is taken into account as an optimal control
problem and an impulsive control element is introduced to minimize the number of final ignorants in the stochastic rumour process by repeating the process. Our published results are presented in this thesis as appeared in [15] and [86].

Numerical results produced by our algorithm developed for the extended [MT] model and [DK] model are demonstrated by tables in all details of numerical values in the appendices.
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Signed.. Date.............

"Sevgi sabırdır, sevgi şeykatlidir.
Sevgi kıskanmaz, övensiz, bımbırlenmez.
Sevgi kaba davranmaz, kendi çıkarmı aramaz. Sevgi haksızlığa sevinmez,
gerçek olanla sevinir. Sevgi
her şeye katlamır, her şeye inanır,
her şeyi umut eder, her şeye dayanır."

Tarsus’lu Aziz Pavlus, 1.Korintiler 13, 4-7
Acknowledgements

I would like to thank Charles E. M. Pearce, my supervisor, for his many productive suggestions, guidance and support during the years of my graduate research works.

Especially, I am grateful to him very much, for his suggestions and final work on my thesis during our long meetings in the ICNAAM (International Conference of Numerical Analysis and Applied Mathematics) held in September 2007 in Corfu in Greece.

I would like also to express my thanks to Timothy Langtry for his reading of the manuscript of my thesis and his many useful and valuable suggestions during his co-supervision for about some months while I was visiting UTS for about seven months in 2002 as a doctorate student.

I am also thankful Yalçın Kaya who expressed his interest in my work and shared with me his knowledge of control of the dynamical systems and provided many useful references, encouragement and support through the years of my research.

I would like also to thank to Liz Cousins for her friendly encouragement in the first year of my graduate study and to Peter Gill for his attention and friendly encourage-
Of course, I am grateful to my parents for their warmest support and love. Without them this work wouldn't have come into this stage.

Finally, I wish to thank the following: Yvonne, Tim, Claire and Ito (for their friendships); and my sister (because she asked me to).

Selma Belen

September, Greece 2007