
Chapter 1
Introduction

The management of Water Distribution Systems (WDSs) involves making decisions about
various operations in the network, including the scheduling of pump operations or setting
of disinfectant dosing rates. There are often conflicting objectives in making these op-
erational decisions, such as minimising costs while maximising the quality of the water
supplied. Hence, the operation of WDSs can be quite complex, and there is generally
considerable scope to improve the operational efficiency of these systems by improving
the associated decision making process.

The fact that Genetic Algorithms (GAs) are guided search methods that are capable
of carrying out optimisation in conjunction with any simulation model has allowed them
to be adopted in a wide range of disciplines, such as engineering, numerical optimisation,
robotics, classifier systems, pattern recognition and design (Herrera et al., 1998). In the
vast majority of these and many other applications, the results produced by the GA are
very promising. The optimisation of WDSs is no exception, as identifying the best design
and operation for these networks can be very difficult. Since the first application of a GA
to a WDS optimisation (Simpson et al., 1994) this method has displayed great success
on a range of design and operational problems (Al-Zahrani and Moied, 2003; Munavalli
and Kumar, 2003; Ostfeld and Salomons, 2004b; Prasad et al., 2004; Tolson et al., 2004;
Van Zyl et al., 2004).

While there has been extensive research demonstrating the potential of GAs for im-
proving the design and operation of WDSs, generally the optimisation method has had
limited adoption in practice. While in theory a GA can operate on any objective function
and generally find good solutions, as no special function formulation is required, the pro-
cess of selecting and applying a GA still requires expert knowledge to provide suitable
results. There are a number of reasons that contribute to this lack of uptake, including
difficulty in making decisions that are required to select the most appropriate variant of
the algorithm, determining the most appropriate parameter settings for the algorithm, and
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developing an appropriate fitness function to describe the objective of the optimisation
including all constraints. Therefore, the use of GAs for WDS optimisation is still mainly
limited to the research domain.

While these are all important considerations, the correct selection of GA parameter
values is addressed in this thesis. Common parameters include population size, proba-
bility of crossover, and probability of mutation. Both the absolute value used of these
parameters, as well as their relative values, will determine how the GA finds new solu-
tions and, ultimately, the quality of the final solution found. The values adopted for the
GA parameters will produce a searching behaviour between two possible extremes: ex-
ploitation, where the current best solution is used as a basis for finding better solutions;
and exploration, where solutions are combined and random search is used to explore the
entire search space (Herrera et al., 1998).

While certain operators will be beneficial to certain optimisation problems, in general
it would be expected that a properly calibrated GA would perform better than a specialised
GA with arbitrary parameter values. The setting of the GA parameters may be one of
the reasons why GAs have not been adopted, as they must be selected on a problem by
problem basis, and there is not a single set of parameter values that will be suitable for all
problems (Wolpert and Macready, 1997). Hence, just because a certain parameter set has
been found to perform well on a certain WDS problem, does not imply it will perform
well on another. A poorly selected set of parameter values may lead the GA to converge
prematurely to sub-optimal solutions, or direct it to search the fitness function almost
randomly, without making maximum use of current knowledge to find better solutions.

As the most suitable GA parameters must be found for each individual optimisation
problem, it might be expected that the best parameter values would be related to the
characteristics of the associated fitness function. The goal of this research is to develop
a GA calibration methodology based on the characteristics of the fitness function. It is
proposed that fitness function statistics can be used to provide this information.

The success of GAs in the WDS optimisation field is not unfounded, as it has been
proven using Markov chain modelling that a GA can be guaranteed to converge to the
optimal solution of an optimisation problem (Suzuki, 1995). Generally, this convergence
will not occur in a realistic time frame, and a GA can therefore only provide a good
solution, rather than guarantee that the optimal solution will be found. The trade off
between the time to find a solution and the quality of a solution found must be taken into
consideration in the parameters used for a GA. If the focus is on finding good solutions
quickly and repeatedly (such is the case in an operational situation) parameters may be
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set to speed up the optimisation process, while reducing the likelihood of finding the
very best solutions. However, if the problem is design-oriented and there are large costs
involved, the optimisation process should be tailored to find the best solution, irrespective
of how long it may take. Another goal of this research is to take into consideration the
time available to find a solution in the GA calibration methodology.

The following section outlines the goals of this research in more detail. This is fol-
lowed by the methodology that is proposed to obtain these goals, before the chapter is
concluded with an outline of the layout of the remainder of this thesis.

1.1 GOALS OF THIS RESEARCH

The general goal of this research is to contribute to making GAs more user-friendly, and
assist in their acceptance and application in water utilities. There are many factors that
must be addressed to ultimately achieve this goal, including: how to formulate the ob-
jective function, the most suitable decision variable representation, the best algorithm
operators to use and the parameter values to use for the operators selected. However, if an
algorithm is calibrated correctly, its performance will be maximised for a given problem
formulation, irrespective of operators or decision variable representation used. Therefore,
this research has focused on the parameterisation problem, how to set the algorithm pa-
rameters for a given optimisation problem. The objective of this research is to develop
a methodology to determine the most suitable GA parameter values for a given problem,
with a focus on an application to WDS optimisation.

In order to meet this main objective, the secondary objectives of this research are to:

• Make use of genetic theory and dimensional analysis studies to identify relation-
ships to assist in setting the most influential GA parameter, the population size;

• Determine if the characteristics of the optimisation problem have an influence on
the most effective population size to solve the problem;

• Investigate methods to provide useful information about characteristics of optimi-
sation problems;

• Quantify the relationship between the characteristics of an optimisation problem
and the most effective population size to solve the problem;

• Determine relationships that can be used to determine the most suitable values for
the remaining GA parameters;

• Combine the optimisation problem characterisation and parameter setting relation-
ships into a step-by-step GA calibration methodology;
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• Compare the performance of the proposed methodology against existing state of the
art GA calibration methods; and

• Apply the proposed GA calibration methodology to realistic WDS optimisation
problems.

1.2 PROPOSED METHODOLOGY

As outlined in Section 1.1, the aim of this work is to provide a GA calibration methodol-
ogy that can be applied practically to WDS optimisation problems. In their work develop-
ing simple dimensional models to further the understanding of mixing in GAs, Goldberg
et al. (1993) suggested that:

“There seems to be a growing call for more complex analyses [of GA
behaviour], but it must be remembered that analysis here is the handmaiden
of design; we do analysis to better understand GAs and to make them work
better. The experience of other fields involving complex systems—fluid me-
chanics for example—shows that it is easiest to do the necessary asymptotics
on full equations once one knows where to look. Our approach here is de-
signed to illuminate such nooks, perhaps permitting the now premature calls
for rigor to be answered one day.”

A similar approach is taken in this work. Rather than developing theoretically sound re-
sults that have little applicability, an experimental approach is adopted, with the aim to
provide useful results and further the understanding of the effect of problem characteris-
tics on the most suitable GA parameter values. The methodology proposed in this work
draws on a number of results and observations from different areas of GA research. This
thesis aims to use both modelling results and experimental results to investigate the rela-
tionship between problem characteristics and the optimal number of GA generations. The
use of experiments ensures that the results are realistic, as all GA operators are included
in the analyses, and the use of previous modelling results and a consideration of problem
characteristics provides some generality to the results.

The GA calibration methodology proposed in this thesis is based on a number of ob-
servations regarding GA behaviour. The first observation is that for WDS optimisation,
and most real-world optimisation problems, it is unlikely that the optimal solution will
ever be found. For example, lower cost solutions have recently been found (Maier et al.,
2003) to The New York Tunnels Water Supply optimisation problem (Schaake and Lai,
1969), a benchmark WDS optimisation problem which involves determining the lowest
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cost network expansion to meet increasing demands on the system, even though the prob-
lem was first attempted almost 40 years ago. Therefore, as the optimal solution is most
likely never found for realistic WDS optimisation problems, a GA can only aim to find
the best solution possible in a specified time. Therefore, the proposed approach revolves
around providing the best search behaviour possible, before the GA must provide a solu-
tion.

A second observation is that a larger population size generally locates better solutions
than a smaller population size, provided there is time available for the GA to converge
with the larger population size. A number of dimensional analysis studies, such as those
by Thierens and Goldberg (1994) and Thierens et al. (1998), suggest there is a constant
number of generations before a GA will converge on a given fitness function, and the
number of generations is a function of the problem size, or the length of the solution
string, l. If a GA will converge in a certain number of generations, gconv, for a given fitness
function, and the time before a solution is required, expressed as the number of available
fitness function evaluations (FE), is known, then the most suitable population size, N ,
can be calculated using N = FE/gconv. Therefore, the first hypothesis of this thesis is that
the number of generations before a GA will converge for a given optimisation problem
is constant for changes in the number of fitness function evaluations, and Chapter 3 is
dedicated to testing this hypothesis.

Another observation is that the most suitable GA parameters must be found for each
individual problem. Therefore, the best parameter values might be expected to be related
to the characteristics of the fitness function. However, generally the characteristics of the
fitness function are largely unknown, especially when the fitness function is based on a
simulation model and the precise mathematical relationship between the decision vari-
ables is unknown. Chapter 4 investigates the second hypothesis of this thesis: that fitness
function statistics can be used to provide useful information about the characteristics of
fitness function.

The final hypothesis of this thesis is that the number of GA generations before conver-
gence can be predicted using the information provided by the fitness function statistics.
Chapter 5 is dedicated to quantifying the relationship between the information provided
by the fitness function statistics and the number of generations before convergence is ob-
served for a suite of fitness functions with varying characteristics. From this relationship
and the time available before a solution is required, the most influential GA parameter,
the population size, can be determined. Relationships are also developed to determine
the most effective values for the remaining GA parameters, thereby producing a complete

Page 5



Chapter 1 – Introduction

GA calibration methodology.
While the observations stated above regarding GA behaviour are rather general, the

proposed methodology has a sound basis in Quantitative Genetics. As GAs are derived
from observations of natural selection, it is not surprising that results from Quantitative
Genetics have been applied to the GA field. A number of studies have made use of
the relationship that explains a biological population’s response to natural selection to
investigate GA convergence (Lobo, 2000; Mühlenbein and Schlierkamp-Voosen, 1993;
Rogers and Pruegel-Bennett, 1999; Thierens and Goldberg, 1994; Thierens et al., 1998).
The relationship states that the change in the average fitness value of the population after
selection is equal to the selection pressure multiplied by the standard deviation of the
fitness values. Also due to the influence of selection, the standard deviation of fitness
values decreases by a constant value, k, each generation (Falconer, 1981), producing an
exponential decay of the variance in the fitness function values in terms of the number of
generations. Therefore, the time until the GA converges to a single solution is dependent
on the rate of decay of the population variance.

A study of Quantitative Genetics also provides an insight into the components of the
variance in the fitness values. Falconer (1981) cites a number of components that com-
prise the total fitness variance, namely:

• Breeding or Additive variance (σ2
A);

• Dominance variance (σ2
D);

• Interaction variance (σ2
I ); and

• Environmental variance (σ2
E).

These components of variance that have been identified in Quantitative Genetics the-
ory are analogous to characteristics of fitness functions that have been identified pre-
viously to affect the performance of GAs. σ2

A can be considered to be variance in the
population, which will obviously affect the variance in the corresponding fitness function
values. σ2

D is the variance provided by dominant, or highly salient, variables; where a
highly salient gene has a greater influence on the fitness function value. The impact of
this component on GA convergence has been highlighted in the work by Thierens and
Goldberg (1994) looking at uniformly salient genes, and Thierens et al. (1998) consid-
ering exponentially scaled genes. σ2

I is the variance produced by interactions between
genes, commonly known as epistasis, and a large body of work in this area indicates the
significance of this component on GA performance. σ2

E is the variance produced by the
environment, which can be interpreted as the shape of the fitness function, for example if
it is relatively smooth, or if it is very rough and improved solutions are relatively harder
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to find.
It is proposed that fitness function statistics that provide an insight into these charac-

teristics of fitness functions can be used to provide information about these components
of variance, and in turn can be used to predict the change in standard deviation of fitness
values, k. Therefore, the number of generations before the variance in the fitness function
values decreases to zero can be predicted, and from the time available to find a solution,
the most suitable population size can be obtained.

1.3 LAYOUT AND CONTENTS OF THESIS

Chapter 2 provides the background relevant to the work undertaken in this thesis. Firstly,
a review of WDS optimisation is presented, including different constraint handling meth-
ods, optimisation methods that have been applied to WDS problems, and the different
applications that have previously been considered. This is followed by an in-depth review
of GAs, including the different operators and representations that are available, the differ-
ent theories that have been used to explain GA behaviour, and the approaches that have
been applied to assist in the calibration of GA parameters. This chapter is concluded with
the specific GA that has been adopted to be used in this work, and the assumptions that
have been made to make this work possible.

The flow of work presented in this thesis, and the chapters in which the work is pre-
sented, is depicted in Figure 1.1. Chapter 3 is dedicated to experimentally observing
the hypothesis that there exists a given number of generations before a GA population
will converge to a single solution. A number of function characteristics are identified
that when present validate this hypothesis, and based on this two classes of functions are
identified; Optimal Generation Functions, which are best solved with a constant number
of generations, and Maximal Generation Functions, which are best solved with as many
generations as possible of a small population size. The second part of this chapter consid-
ers a number of controlled changes to the characteristics of a number of fitness functions,
to determine that the number of generations before the population will converge is a func-
tion of the characteristics of the fitness function.

As the number of generations before convergence was found to be dependent on the
characteristics of the fitness function in Chapter 3, Chapter 4 is dedicated to developing a
number of fitness function statistics to provide information about the different character-
istics of fitness functions identified. The first statistics developed is the spatial correlation
measure, used to provide information about the structure and multimodality of a fitness
function. Next, the separability measure is proposed to identify epistatic interactions be-
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Figure 1.1 Flowchart depicting the relationship between the work presented in this thesis.
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tween decision variables, both in terms of the number and the length of the interactions.
The final statistic developed is the dominance measure, used to identify if any of the deci-
sion variables has a much larger influence on the fitness function value than the remaining
decision variables. Each of the statistics was applied to fitness functions with known
characteristics, and each statistic was confirmed to provide accurate information.

Chapter 5 is devoted to developing a relationship between the number of generations
before the GA population converges and the information provided by the fitness function
statistics developed in Chapter 4. A class of fitness functions with controllable charac-
teristics is considered, and the change in population variance due to selection, and the
values of the fitness function statistics, are computed for each variation of the fitness
function considered. From these results an empirical relationship is developed to predict
the change in population variance based on the values determined by the fitness func-
tion statistics. Based on the change in population variance due to selection, the number
of generations before the population will converge can be determined. The final part of
this chapter is dedicated to validating the predictions of both the change in population
variance, and the number of generations before convergence, for the different functions
considered in Chapter 3.

In Chapter 6 a full GA calibration method based on the characteristics of the fitness
function is developed and tested. Based on the number of generations that can be pre-
dicted from the relationship developed in Chapter 5, the population size can be deter-
mined from the time available before a solution is required. However, this is only one
of the GA parameter values, and the first part of this chapter is dedicated to developing
relationship for determining suitable values for the remaining GA parameters. Due to the
computation effort required to compute the value of the fitness function statistics, a GA
calibration method based on the influence of genetic drift on the GA population has also
been proposed. Using this method, a suitable GA population size can be determined from
only the problem size and the time available before a solution is required. Both of the
proposed calibration methods are then tested against other GA calibration methods that
are available. A range of complex fitness functions are used as a basis for the compari-
son, and the results indicate that the GA calibration method developed produced the best
performing GA parameter values.

Chapter 7 applies the GA calibration method proposed in Chapter 6, along with the
other calibration methods that have been considered in Chapter 6, to the optimisation of
WDSs. The first system considered is the Cherry Hill-Brushy Plain network, where the
aim of the optimisation is to minimise the amount of the disinfectant injected into the
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system over a 24-hour period. The second WDS considered is a ‘real-world’ case study
taken from the Woronora WDS located in Sydney, Australia. The objective in this case is
to minimise the costs involved in operating the pumps in the system, with consideration
of the water quality produced by the operations.

Concluding remarks from this work are provided in Chapter 8. Firstly, the contribu-
tions to knowledge that have been made in this thesis are outlined. Secondly, conclusions
based on the results presented in work are made, and finally suggestions for directions for
future work are provided.
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Chapter 2

Background

This chapter provides a review of the relevant background regarding the optimisation of
WDSs, including a detailed review of GAs. The following section reviews the optimisa-
tion of WDSs, including the different applications that have been tackled, and the different
optimisation methods that have been adopted. The remainder of this chapter is dedicated
to background for GAs, firstly a review of the different GA operators, then the theory of
GA behaviour, and finally a review of the different methods that have been proposed to
assist in the calibration of the GA parameters. The chapter concludes with a summary of
the literature covered, and how it is related to the calibration methodology proposed in
Section 1.2.

2.1 WDS OPTIMISATION

WDSs consist of a complex arrangement of reservoirs, tanks, pumps, pipes, valves and
various other control structures. Due to this complexity, the design and management of
these networks can be extremely complicated. In order to gain a better understanding of
a WDS, engineers and operators make use of computer models to simulate the network.
Quite often these models are used in a trial and error environment to test out different
scenarios to determine the impact they will have on the system. While this approach can
find suitable solutions, they will generally be of poor quality compared to the best pos-
sible solution, as only a limited number of alternatives can be evaluated, and the quality
of the solutions implemented will be driven by the operator’s experience. By applying
an optimisation algorithm, this process of evaluating different potential solutions can be
automated to some extent, allowing the algorithm to select which solutions to test based
on the problem and previous solutions.
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2.1.1 Constraint Handling

Before a WDS problem can be optimised, the problem must be presented as a suitable
function to be used by the optimisation algorithm to compare different solutions. The
main issue to be considered when developing this function is how to account for the
constraints placed on the distribution network. Many of these constraints are not on the
decision variables themselves, so it is not known if a solution is feasible before a simu-
lation of the network takes place. For the example of a network expansion problem, it is
not known if a solution will satisfy all pressure constraints just by looking at the different
pipe diameters that have been proposed. Coello Coello (2002) provides an in-depth re-
view of the different constraint handling methods that are avaliable, and the most common
methods used for constraint handling are detailed below.

In cases where the constraints are the decision variables, or when it is clear that a
constraint can be met by changing a certain decision variable, repair methods can be
used. An example may be when optimising pumping trigger levels based on the water
level in a tank, where the lower trigger level must be below the upper trigger level, and
both levels are decisions to be made by the optimisation algorithm. Once the solution
is repaired, it can be used for evaluation only, or to replace the infeasible solution in the
optimisation algorithm. In terms of GAs, the approach of replacing infeasible solutions
with repaired solutions in the population is called Lamarckian Evolution, which assumes
that an individual improves during its lifetime and that the resulting improvements are
coded back into the chromosome (Coello Coello, 2002) (see Section 2.2). Some studies
have used repaired solutions for evaluation only (Liepins and Vose, 1990), or always
replaced infeasible solutions (Nakano and Yamada, 1991), however, the best results have
been reported using a combination of both approaches, where a probability is used to
select one of the two approaches for each solution that is repaired. Orvosh and Davis
(1993) suggest replacing 5% of infeasible solutions with their repaired values, whereas
Michalewicz (1996) found that a 15% replacement rule was the best choice for numerical
optimisation problems with nonlinear constraints.

If a solution cannot be easily repaired, penalty functions are the most common method
of taking constraints into consideration when optimising WDSs (Murphy et al., 1993;
Simpson et al., 1994; Dandy et al., 1996; Hewitson, 1999; Eusuff and Lansey, 2003;
Maier et al., 2003). In this case, the cost of a solution used for the optimisation process
consists of the real cost, such as pipe and electricity costs, and penalties on any violation
of constraints, such as $20 000 for every metre the pressure at a demand node is below the
required pressure. This allows a lower penalty on solutions closer to the acceptable range,
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as a pressure violation of 2 mm will attract a much lower cost than a pressure violation of
2 m. This can be beneficial to the optimisation process, as the optimal solutions will gen-
erally exist on the boundary between the feasible and infeasible regions (Coello Coello,
2002), therefore information about solutions close to feasibility can be very useful to the
optimisation algorithm.

Often the constraints placed on an optimisation problem will conflict with the objec-
tive. For example, the objective of an optimisation problem may be to minimise the cost
of construction, however to meet pressure or reliability constraints, it may be necessary to
increase the number or size of some pipes, thus increasing the overall cost of the design.
Therefore, the balance of the penalty factors is very important in the optimisation process.
If the penalty factors are too high, extremely high total costs can result for all infeasible
solutions, even those solutions that are very close to the feasible region, which will there-
fore not be considered in future iterations of the optimisation process. Generally high
penalty factors will produce a very rough fitness function (see Section 2.4.1), potentially
making the problem much more difficult to solve. However, if the penalty factors are too
small, the search process will spend most of the time searching the infeasible space, and
the final solutions found may not be feasible.

A number of adaptive penalty methods have been proposed to address the problem of
determining the most suitable penalty values. A number of studies (Joines and Houck,
1994; Michalewicz and Attia, 1994) suggest an increase in the penalty values with the
number of generations. This allows the optimisation method to find low cost solutions
first, and then focus on addressing the constraints as the penalty values are increased.
However, it is just as difficult, if not more so, to determine the most suitable rate at which
to change the penalty values, as it is to set static penalty values. Other methods utilise
feedback from the search progress to adjust the penalty values (Coit et al., 1996; Rasheed,
1998), where the penalty values for constraints that are not being met are increased, while
the penalties are decreased for constraints that are satisfied, in order to encourage explo-
ration. The approach proposed by Rasheed (1998) tracks two key solutions, the solution
that best satisfies the constraints on the problem, and the point that has the best value for
the objective, irrespective of the constraints. The penalty values are then adjusted so that
these two solutions have the same fitness function value, and a multiplicative limit on the
change of the penalty coefficient is included at each increment to prevent abrupt changes
in the penalty values (Rasheed, 1998). This approach has the advantage of automatically
adjusting the penalty values to more appropriate values, increasing them if a certain con-
straint is not being met, or relaxing them if a constraint is satisfied, thereby encouraging
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the optimisation algorithm to explore solutions closer to the constraint boundary.

A different approach to considering constraints on an optimisation problem is to use
a multi-objective optimisation algorithm (Coello Coello, 2000). Rather than finding the
best, or a number of the best solutions to a problem, this method produces trade off curves
between the objectives and constraints on a problem, for example the degree of pressure
satisfaction obtained for a network with a certain cost. The user must then determine
which solution is the most suitable, as factors such as the increase in pressure obtained
by installing a higher cost solution can be taken into consideration. However, it becomes
much more difficult to determine the most suitable solution from the trade off curves once
more than two constraints are considered at a time, as they can no longer be visualised
in three dimensions. Multi-objective methods also become less advantageous when the
constraints are not simply of the upper or lower bound, for example when the disinfectant
residual must be kept within a certain bound. The main advantage of a multi-objective
approach is that the explicit definition of penalty factors is not required, as the importance
of one constraint violation over another is left to the user to decide.

2.1.2 Previous WDS Optimisation Methods

Once the function describing the problem is specified, including all constraints, the prob-
lem can be optimised. The simplest method that can be applied to solve the problem is
complete enumeration, which involves evaluating every possible combination of the deci-
sion variables to find the best. This method has the advantage of not requiring derivatives
of the objective function to be calculated, and guarantees that the best possible solution
is found. However, this approach is very computationally intensive. Savic and Walters
(1997) found that enumeration becomes infeasible when applied to the optimisation of any
realistic-sized water distribution system. Pruning the sets of decision variables evaluated
to those that seem practical, a technique known as partial enumeration, can significantly
reduce computational requirements. However to reduce the problem to a practical size
many solutions must be ignored, which can result in cropping the optimal solution as well
(Dandy et al., 1993).

Virtually every mathematical programming technique developed has been applied to
the WDS optimisation problem (Eusuff and Lansey, 2003). These procedures include
linear and non-linear programming and gradient methods (Gupta et al., 1999). Gener-
ally, these methods required the derivatives of the search space to be calculated, which
can be a computationally demanding process as numerical methods will almost certainly
be required. The main disadvantage of these optimisation methods is the high likeli-
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hood of premature convergence of the solution to a local optimum when solving complex
non-linear optimisation problems (Calegari et al., 1999). Non-linear programming meth-
ods provide some improvements over simpler linear optimisation methods in this regard,
however, they cannot guarantee that near-optimal solutions will be found due to the many
peaks in the optimisation surface. Implementation of linear and non-linear programming
methods may also involve altering the governing hydraulic equations (continuity and en-
ergy) to suit the optimisation technique. This approach leads to an approximation of the
true problem, which may overlook the best area of the true search space.

Recently, developments in stochastic optimisation algorithms have been applied to
WDS problems with great success. Evolutionary Algorithms (EAs) are a group of these
optimisation methods that uses an objective function in a strategic manner to seek a so-
lution to an optimisation problem (Eusuff and Lansey, 2003), and their application to the
optimisation of WDSs is reviewed in the following section.

2.1.3 Evolutionary Optimisation of WDS

EAs are probabilistic optimisation methods that are based on naturally occurring phe-
nomena, and how these natural systems manage to find very good solutions. By far the
most commonly implemented EA is the GA, based on the theory of natural selection. An
in-depth review of GAs is provided in Section 2.2.

The fundamental difference between EAs and traditional deterministic methods is that
EAs work with a set of candidate solutions, generally called the population (Calegari et al.,
1999). EAs improve the quality of the individuals by allowing the population to evolve.
The evolution is usually achieved using information exchanges between individuals in or-
der to create new, or to modify existing, individuals, through a succession of evolutionary
steps (Calegari et al., 1999). As for traditional optimisation algorithms, an objective func-
tion (generally called the fitness function for EAs) is required to associate a value with
each solution set in the population. As new, improved solutions are created from infor-
mation from previous solutions, the process is independent of the slopes of the objective
function being optimised. This provides EAs with the significant advantage of being less
susceptible to becoming trapped in local minima, as is the case with deterministic mathe-
matical optimisation algorithms. This can also be a significant advantage in the case when
the objective function cannot be easily differentiated, which is typically the case for WDS
optimisation problems. Generally, the optimisation process contains a random element
to encourage exploration of the search space, and this reduces the chances of premature
convergence to sub-optimal solutions.
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The main disadvantage in applying EAs is the large number of simulations required
to find a solution. WDS models that consider water quality must be run for an extended
period of time, often requiring simulations of many days to ensure that water has the
necessary time to travel to the end of the network. Even on the fastest computers, this
simulation can take many seconds, even minutes to complete, and when 100 000s of these
simulations are required, the time to find a solution can be in the order of weeks for
some problems. This highlights the need for applying the most effective algorithm to
the problem at hand, as it is necessary to explore the search space comprehensively to
find the best solution, but any more than is required will have a substantial impact on the
computation time taken to find the solution.

2.1.4 Applications of EAs to WDS Optimisation

GAs have been by far the most popular EA used for optimisation in the WDS field. Dandy
et al. (1996), Savic and Walters (1997), Simpson et al. (1994) and various other authors
have applied GAs to determine the optimum design of WDSs. The design has involved
selecting pipe sizes for either a network expansion or a whole new system in order to
identify the minimum cost design while meeting network constraints, which are typically
minimum pressure requirements. Murphy et al. (1994) extended this optimisation proce-
dure further by applying a GA to optimise both how the network was operated as well as
the best pipe sizes required for design.

A number of studies have optimised the operation of WDSs using GAs, as distinct
to determining the optimal design of the system. Generally, the main objectives are to
minimise the electricity cost involved in operating a Water Treatment Plant (WTP), by
scheduling the operation of the pumps in a way that takes advantage of the off-peak
electricity tariffs (Mackle et al., 1995; Van Zyl et al., 2004), or determining the most
cost effective disinfectant dosing regimes (Hewitson, 1999; Munavalli and Kumar, 2003;
Ostfeld and Salomons, 2004b; Prasad et al., 2004), or both (Sakarya and Mays, 2000).
Hewitson (1999) found that when water quality constraints were considered in the opti-
misation process, the optimum solution found was significantly different to that obtained
when only hydraulic constraints were considered.

A great deal of other applications have been considered using GAs for water engi-
neering applications. Reis et al. (1997) used a GA to optimise the locations of control
valves to minimise leakage, Dandy and Engelhardt (2001) used a GA to determine the
optimum replacement schedule for deteriorating pipes in a network, and similarly Halhal
et al. (1997) used a messy multi-objective GA to optimise the benefits obtained from net-
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work rehabilitation methods. The location of monitoring stations has also been optimised
using GAs, either to measure indicators of water quality (Al-Zahrani and Moied, 2003),
or to have the greatest chance of quickly identifying the injection of a foreign agent into
a WDS (Ostfeld and Salomons, 2004a).

EAs other than the GA have also been applied to the optimisation of WDS. Maier
et al. (2003) applied Ant Colony Optimisation Algorithms (ACOAs) to the optimal design
of WDS. The ACOA was applied to two benchmark WDS optimisation problems, a
simple 14-pipe network expansion problem and the New York City Water Supply Tunnels
problem (Schaake and Lai, 1969). The results were compared with those obtained using
GAs, and it was found that ACOAs are an attractive alternative to GAs for the optimal
design of WDSs.

Eusuff and Lansey (2003) developed the Shuffled Frog Leaping Algorithm (SFLA),
and similarly to Maier et al. (2003), applied their algorithm to a number of benchmark
WDS optimisation problems. The SFLA was found to find the minimum known solution
for the Alperovits and Shamir network (Alperovits and Shamir, 1977) in half as many
evaluations as the previous best solution in the literature. However, it performed similarly
to other algorithms for the Hanoi Network Problem (Fujiwara and Khang, 1990) and the
New York City Water Supply Tunnels Problem (Schaake and Lai, 1969).

2.2 GENETIC ALGORITHM OVERVIEW

GAs are probabilistic optimisation methods based on the theory of natural selection.
These algorithms, along with a vast range of other EAs, are best suited to complex com-
binatorial problems where little is known about the fitness function, and are very difficult
or impossible to convert into formulations that can be solved by traditional mathematical
programming methods. A GA begins with a population of solutions with an associated
fitness describing how well they solve the problem being solved. The best solutions in the
population are selected for the next generation of the algorithm, analogous to survival of
the fittest. Operators are then applied to recombine the current solutions to produce new
ones, including most commonly crossover, which simulates mating in the evolutionary
process, and mutation. This process is repeated for a number of generations until some
stopping criteria is met, such as a given number of generations or if the population has
converged to one solution.

The analogy with evolution and survival of the fittest has produced a great deal of dif-
ferent terminology that can be used to describe the different components of the algorithm.
The values describing how well a solution solves a problem has been called the objective
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function value, fitness function value, or the phenotype. The genetic analogy to the so-
lution itself is a chromosome, and the values in the chromosome, genes. The individual
values that make up a solution also have a number of names depending on the encoding
used (see Section 2.2.1), bits for a binary coding, alleles for higher cardinality codings, or
if a real coding is used, decision variables. In this work the terminology fitness function
and decision variables is used, except in cases where there is a more appropriate term, for
example if a binary coding is being described (Section 2.2.1), or if genetic theory is being
reviewed (Section 2.3.3).

Assuming that the fitness function to be optimised is known, the two main decisions to
be made in applying a GA are to select an encoding scheme for the decision variables and
the operators that will alter the encoded values to generate new solutions. The parameters
associated with each of the GA operators must then be calibrated to the fitness function,
and some stopping criteria for the algorithm must be selected. This section begins by
outlining the possible encoding schemes to select from, followed by the GA operators
that exist, broken up into the three main categories of selection, crossover and mutation.
An example of advanced operators that have been developed for GAs are also described.

2.2.1 Encoding Scheme

2.2.1.1 Binary Representation

The traditional representation for GA decision variables is a binary string (Goldberg,
1989b), where each variable is represented by a series of 0s and 1s. The binary bits
are decoded into their actual values and then passed to the fitness function to evaluate
each solution. The main advantage of this simple formulation is that it lends itself to the-
oretical studies of how the GA finds better solutions. Holland (1975) developed Schema
Theory, which states that many small, above average, combinations of 0s and 1s in the
solution string are identified in parallel and reinforced in the population through selec-
tion. As the generations continue, these small combinations are built upon, leading the
algorithm to find better and better solutions. Goldberg (1991) suggested that by having an
alphabet size of only two, the number of schemata per solution in the population will be
maximised, hence a maximum level of efficiency in making use of good solutions, or parts
of good solutions, that have been identified is achieved. The phenomenon of processing
many partial solutions present in the population at the same time is known as implicit
parallelism. Schema Theory is described in more detail in Section 2.3.1.

While there is a significant theoretical base for a binary representation, there are a
number concerns when applying this encoding scheme to real valued decision variables.
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The number of bits for each decision variable must be chosen based on the required accu-
racy of the solution, where greater accuracy requires more bits for each decision variable,
increasing the dimensionality of the problem presented to the GA. Also, if the required
range is not a power of two, redundant codes are introduced, thereby increasing the search
space size unnecessarily.

The GA will consider all bits in the string equally important, however, the more dom-
inant bits for a decision variable will overshadow any arbitrary values that the algorithm
has converged on for less significant bits. For example, if a decision variable is repre-
sented by four bits, the first bit will be more significant than any of the others, and if a
value of 1000 is changed to 0000, only one bit flip occurs, but there is a huge change in the
value for the decision variable, greater than the contribution provided by the combination
of the three following bits.

This property of binary encoding can also lead to the algorithm becoming trapped and
being unable to move to better solutions that are nearby in the solution space. In this case,
a number of bit flips are required to increase the value of the decision variable by the
resolution provided by the encoding, known as hamming cliffs. Using the same four-bit
example, to increase the decision variable from 0111 to 1000, increasing the value by the
resolution provided by the encoding, three bit flips are required, which will be highly un-
likely. A number of authors have suggested the use of Gray codes (Caruana and Schaffer,
1988) to overcome hamming cliff problems, where consecutive decision variables values
are always one bit flip away from each other in the encoding scheme. However, Gold-
berg (1989a) suggests that doing so introduces higher order non-linearities with respect
to recombination, which causes the degree of implicit parallelism to be reduced.

2.2.1.2 Integer Representation

To address some of the concerns with the binary representation above, an integer represen-
tation has been suggested, where each decision variable is encoded to be represented by
an integer value. This will reduce the dimensionality of the problem presented to the GA
compared to a binary representation, and therefore the opportunity for deception (Gold-
berg, 1989b) to take place, which occurs when fit lower order schemata do not combine
to produce fit higher order schemata. Also, with one bit per decision variable, recombi-
nation operators cannot occur in-between a decision variable, breaking up good solutions
that have been identified. This disruption that can occur in a binary representation may
provide a mechanism to explore the whole range of each decision variable, and may need
to be accounted for in an integer representation through the recombination operators with
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increased exploration, for example, a higher mutation rate or mutation range.

As outlined above, the lower cardinal alphabets (binary representation) will produce
more schemata, but more schemata, and more higher order schemata, are required to
find good solutions, due to the higher dimensionality of the representation. Also, it is
not clear how useful many of the inter-decision variable schemata will be, as many of
them may be overshadowed by the more important bits for each decision variable. For an
integer representation, smaller order schemata are between different decision variables,
not intra decision variable which will occur with a binary representation. Consequently,
this encoding scheme may pick up relationships between decision variables much more
effectively, as there are fewer lower order schemata to confuse.

The main disadvantage with an integer representation for real valued decision vari-
ables is that the range of the variable must be discretised, with an associated resolution
for each integer value. Similar to the number of bits for a binary representation, this in-
troduces the problem of how many integers are required for each decision variable, with
more values providing greater accuracy in the final answer, but also producing an increase
in the size of the search space.

2.2.1.3 Real Value Representation

If the decision variables are real valued, is seems logical to apply the GA to operate
directly on real values. This allows the algorithm to operate on the decision variables
themselves, and minimises additional difficulties that can be introduced into the problem
through an encoding scheme (such as hamming cliffs). This may allow the algorithm
operators to perform more efficiently and exploit the graduality of the function (Herrera
et al., 1998). For example, a mutation that changes a decision variable by a small step can
operate as an effective hill climbing mechanism, and will not be prone to the discontinu-
ities introduced by a binary representation.

Goldberg (1991) defined virtual characters and a virtual alphabet for Real Coded Ge-
netic Algorithms (RCGAs). He suggested that a GA will converge quickly to solutions in
basins of above average local optima, each one being a virtual character in the encoding
scheme. The virtual alphabet is then a collection of virtual characters along a given di-
mension. With these definitions, Goldberg (1991) found the RCGA is consistent with the
Schema Theorem developed for binary GAs, also determined by Wright (1991). Gold-
berg (1991) suggested that if a selectionist method is not presented with a low-cardinality
alphabet one will be chosen implicitly, and therefore avoid the precision and aliasing
problems that may occur with low-cardinality representations.
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However, Goldberg (1991) also found RCGAs can be subject to blocking, where the
algorithm will converge to a number of local optima in one dimension based on average
values of the decision variables, but will then become trapped from moving to the better
optimum in later stages as the other decision variables improve, as these better values are
no longer in the population. To reduce the likelihood of the occurance of blocking within
a RCGA, reproduction operators that are capable of producing values of the whole range
of each decision variable may be desirable.

2.2.2 Selection

The selection operator simulates survival of the fittest in the evolutionary analogy, where
the better solutions in the population are reinforced, to be recombined and identify other
improved solutions, and poorer solutions are discarded from the search. While there
are many variations of selection operators available, and the two most commonly used
operators are proportional and tournament selection.

As part of proportional selection (Holland, 1975), solutions for the next generation are
chosen based on a probability calculated from each solution’s quality. However, the prob-
ability of selection for each solution is computed from the relative difference between the
fitness function values and their absolute value, so in the later stages of the optimisation
when all function values are similar, proportional selection provides only a very slight
preference for the better solutions, as all solutions will have a very similar probability of
selection. A number of methods have been developed to address this problem to a certain
extent, such as introducing a selection pressure parameter to increase the difference be-
tween solutions, or ranking selection, where the probability for each solution is based on
its rank in the population, rather than its actual fitness function value.

The other common approach to selecting the best solutions in the population is tour-
nament selection, where a number of solutions are compared, and the best in the group,
or tournament, is selected for the next generation. Hence, the solutions only need to be
able to be compared against each other, and the actual fitness function values are not im-
portant. Typically, a tournament size of two is used, and in this case two copies of the
best solution will appear in the next generation, no copies of the worst solution, and the
number of solutions for the rest of the population will depend on the tournament pairings.
Larger tournament sizes produce a higher selection pressure, and therefore more copies of
the best solutions are present in the population after selection. A larger tournament size,
and therefore higher selection pressure, can lead to a more efficient algorithm, as only
the best solutions survive the selection process, however, it can also lead to premature
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convergence of the GA, as the diversity in the population is decreased much quicker.

2.2.3 Crossover

Crossover is used to simulate mating in the evolutionary process, where the fittest indi-
viduals that have been selected produce offspring with their characteristics for the next
generation. Crossover exploits solutions that have been identified previously by attempt-
ing to combine good parts of a number of solutions to produce new ones, and is therefore
generally regarded the premier search operator for GAs.

The most common crossover operator is simple crossover, where parts of two solutions
are interchanged at a crossover point. If there are two parent solutions, P1 = {c1

1, . . . , c
1
n}

and P2 = {c2
1, . . . , c

2
n}, then the two children for the next generation at random crossover

point i are C1 =
{
c1
1, . . . , c

1
i , c

2
i+1, . . . , c

2
n

}
and C2 =

{
c2
1, . . . , c

2
i , c

1
i+1, . . . , c

1
n

}
. Varia-

tions of the simple crossover operator include multi-point crossover, where there is more
than one crossover point, and uniform crossover, where the value for the child solutions
are randomly allocated from one of the parents’ values. Multi-point crossover has a
greater potential to identify and retain good decision variable values that are not adja-
cent in the solution string, where uniform crossover will ensure good mixing of the values
found, but is likely to break up any higher order schemata that have been identified.

These crossover operators were developed for a binary GA, where each bit in the
solution string can only be one value or the another (0 or 1), and therefore can be very
limited when applied to decision variables that have a larger range (as is the case for
RCGAs). Herrera et al. (2003) provide a review of crossover operators for RCGAs, and
proposed four classes of crossover operators:

• Discrete Crossover Operators (DCOs), which do not alter the parent values, only
recombine them;

• Aggregation-Based Crossover Operators (ABCOs), where the child values are ob-
tained from a combination of the parent values;

• Neighbourhood-Based Crossover Operators (NBCOs), which generate the child
values from a probability distribution defined around the parent values; and

• Hybrid Crossover Operators (HCOs), which can selectively choose from a number
of operators belonging to different crossover classes.

In their empirical study of 18 crossover operators on a suite of 13 test functions, Her-
rera et al. (2003) found that discrete crossover operators performed very poorly when used
with a RCGA. The ABCOs provided the best performance on average, while the NBCOs
presented a favourable behaviour as well. However, many ABCOs use a weighted average
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and produce solutions between the two parent decision variables, and while this is termed
‘exploitation’ by Herrera et al. (2003), the parents do not provide any information about
this area when they are far apart in the search space. Hence, these operators may not be
making good use of the values that have been found, and the good performance identified
by Herrera et al. (2003) may be due to many of the test functions considered having their
optimum in the centre of the search space. The authors identified the Dynamic Heuristic
Crossover as the most promising operator. However, this is a relatively complex operator
which makes use of the fitness function value of the parent solutions, and Beyer and Deb
(2001) argue that the purpose of the recombination operator is to explore the search space,
and use of the function value may lead to premature convergence.

Beyer and Deb (2001) performed a theoretical analysis on the effect of different
crossover operators for RCGAs on the mean and variance of the population values, and
compared their results against experimental simulations. With the task of exploration and
exploitation in mind, the authors suggest that the mean value of each decision variable
in the population should not be changed by the variance operators (both crossover and
mutation). In terms of population variance, Beyer and Deb (2001) suggest that a ten-
dency toward increasing the population variance is beneficial for the variance operators,
depending on the fitness function and crossover operator used.

2.2.4 Mutation

The role of mutation in a GA is to restore lost or identify unexplored solutions into the
population to prevent premature convergence of the GA to suboptimal solutions (Herrera
et al., 1998). Mutation ensures that the probability of reaching any point in the search
space is never zero.

For binary coded GAs, mutation involves a bit flip randomly in the solution string with
a low probability. Creeping mutation can be used to fine tune solutions that have been
identified, where a decision variable’s value is changed up or down, rather than randomly
over the whole range, which is generally the case with a standard mutation operator.

Higher cardinality representations, especially real codings, lend themselves to more
advanced mutation operators. While many variations exist, these mutation operators gen-
erally consist of selecting a new value within a certain range around the original value,
selected from a given probability distribution (uniform or normal for example). In many
cases, this mutation range is decreased with the number of generations, hence initially the
mutation is exploring over the whole range of each decision variable, whereas later in the
optimisation process it is focused on tuning good solutions that have been identified.
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Mutation is generally considered an exploration operator, as a new, random solution
is generated in the search space. However, when combined with selection, mutation can
behave similarly to a hill-climbing local search, where one decision variable is altered,
and if it is an improvement it will be retained through selection, or rejected if it reduces
the fitness of the solution (Goldberg, 1991).

A mutation operator that produces a new value over the whole range of each decision
variable will overcome the blocking problem observed by Goldberg (1991) for RCGAs,
however this can be very disruptive and should generally be used with a low probability.
Also, the more advanced mutation operators usually introduce additional parameters, such
as a mutation step size, which must be calibrated for each optimisation problem.

2.2.5 Advanced Operators

In the proceeding sections, the three main GA operators have been outlined, namely selec-
tion, crossover and mutation. A number of further advancements have been developed in
an attempt to improve the effectiveness of GAs. Some of the more common advanced GA
operators proposed are outlined below including: elitism, local search, niching operators
and linkage learning.

2.2.5.1 Elitism

The most commonly used operator not already outlined in this chapter is elitism (De Jong,
1975). This involves reinforcing good solutions that have been found in the population to
ensure they are not lost, and therefore continue to contribute to the search. In some cases,
this reinforcement can lead the algorithm to areas of the search space that are not optimal.
However, it is possible to prove that a GA will converge to the optimal solution with an
elitism operator, but not without (Suzuki, 1995).

2.2.5.2 Local Search Operators

To be confident that a GA is at least converging to local optima in the search space, deter-
ministic or heuristic hill climbing operators have been included in the GA methodology.
These algorithms have been calledMemetic Algorithms (Moscato, 1999), the analogy be-
ing that the solutions evolve culturally during their lifetime before they evolve genetically,
where a meme is a unit of cultural evolution (Eusuff and Lansey, 2003). Incorporating a
hill-climbing operator will ensure that all solutions in the population are local optima,
however this is achieved at the cost of significantly more function evaluations. This may
be the case early on in the search especially, when the population is well spread and many
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of the local optima identified will not be useful to the search. Also, as mentioned previ-
ously, the mutation—selection combination may provide an effective local search method.
The SFLA (Eusuff and Lansey, 2003) applied to a number of WDS problems contained
elements of Memetic Algorithms.

2.2.5.3 Niching Operators

Niching operators have been developed to retain diversity in the population and identify
a number of suitable solutions to an optimisation problem over the whole search space.
The three main classes of niching methods are sharing, crowding (Mahfoud, 1995) and
clearing (Petrowski, 1996). Sharing methods decrease the fitness of solutions in a similar
area of the search space, or niche, so solutions that are in a highly populated area of the
search space are not seen as fit by the algorithm are moved to other areas of the search
space to increase diversity. A sharing method has been applied to the WDS rehabilitation
problem, however it did not provide any improvement in the best solutions found (Halhal
et al., 1997). Crowding methods organise the selection operator to choose between solu-
tions that are closer together in the search space, in an attempt to maintain the diversity
in the population. Clearing niching methods have a defined niche size, and if more than
a specified number of solutions exist within a niche, the least fit solutions have their fit-
ness value altered to ensure they are removed through selection. While niching methods
attempt to provide a mechanism for the algorithm to continue searching the search space
and identify a number of different solutions, most niching operators introduce a number
of parameters that must be calibrated, such as the niche size, adding to the difficulty in
correctly applying GAs.

2.2.5.4 Linkage Learning

Two crucial factors of GA success – a proper growth and mixing of good building blocks
– are often not achieved (Thierens, 1995). If two interacting decision variables are not
located near each other in the solution string, the building blocks containing good com-
binations of values for the two variables may be continually broken up by a one-point or
multi-point crossover operator. A number of GA operators have been developed in order
to identify these building blocks and retain them in the population so better solutions can
be found. The first operator developed to improve the processing of building blocks was
inversion and other reordering operators (Goldberg, 1989b), where the order of the bits in
the solution string are changed, to bring variables that interact with each other together to
allow them to be mixed more efficiently. However, generally the time required for an in-
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version operator to mix the best partial solutions in the population is much longer than the
time available before the population will converge due to selection (Goldberg and Bridges,
1990). More recent methods have tried to identify the linkage and exploit it, rather than
relying on a random reordering of the solutions, including evolving the representation of
the string along with the solution to the fitness function (Goldberg et al., 1989) or using a
probabilistic representation of the population, and using the joint distributions to estimate
the linkage between genes (Harik, 1999; Pelikan et al., 1999). While the combination of
good gene values is crucial to finding a good solution, identifying and exploiting linkages
has proven to be a difficult undertaking (Harik, 1999).

2.3 GA THEORY

A great deal of theoretical work has been undertaken to understand the inner workings
of GAs. Eiben and Rudolph (1999) provide an overview of the different approaches that
have been adopted for all types of EAs, and suggest that the key topics in evolutionary
computation theory are: the limit behaviour, or whether an algorithm can guarantee to
converge to an optimal solution or prematurely converge to a local optimum; dynamic
behaviour of the population, or the change in the distribution of function values as the GA
run progresses; and predicting the run time of the algorithm. A number of tools have been
used in an attempt to investigate different aspects of these topics, and are outlined in the
remainder of this section.

2.3.1 Schema Theory

Schema Theory represents the first attempt to explain the behaviour of a GAs (Holland,
1975). Schema Theory relies on the idea that a good solution can be constructed by
combining good pieces, or building blocks, from different solutions in the population
(Lobo, 2000). The Schema Theorem was initially defined for binary coded GAs, however
it has since been extended to RCGAs (Goldberg, 1991; Wright, 1991). For the binary
coded case, the schemata are constructed from the values 0, 1, as well as a wild symbol,
∗. For example H ′ = 1 ∗ ∗0 ∗ ∗ represents all strings with a 1 for the first variable, and a 0

for the fourth variable. Therefore, strings 110011 and 100001 both belong to schema H ′,
however 010011 and 100111 do not. Two important definitions arise from this definition
of schemata: the order of the schema, or the number of fixed positions; and the defining
length of the schema, or the distance between the two outermost fixed position. Therefore,
the example schema H ′ has order 2 and defining length 3.

Page 26



GA Theory – Section 2.3

Based on these definitions of schemata, Holland (1975) proposed the Schema Theo-
rem to quantify the change in the number of schemata for each generation:

m(H, t + 1) ≥ m(H, t)
f(H, t)

f(t)

(
1 − pc

δ(H)

l − 1
− pmO(H)

)
(2.1)

where m(H, t) is the number of schema H at time t, f(H, t) is the average function value
of schema H at time t, f(t) is the average function value of the population at time t, δ(H)

is the defining length of schema H , O(H) is the order of schema H , pm is the probability
or mutation, pc is the probability or crossover, and l is the problem size. The Schema
Theorem in Equation 2.1 is specific to GAs with proportionate selection and one point
crossover, however it can be generalised to other variants of the algorithm.

The general implication of the Schema Theorem is that selection emphasises the fittest
schemata, and the variation operators destroy some of these schemata. The main result
from the theorem is that the highly fit schemata that are not too disrupted by the variation
operators, those that are of a short order and defining length, tend to grow from generation
to generation (Lobo, 2000). These short, highly fit schemata are combined with other
short, highly fit schemata to produce even better solutions as the GA search progresses.
This has long been believed to be the advantage of GAs, as every generation many of
these small sub-solutions are evaluated and combined, many more than the N solutions in
the population that have actually been computed. This effect is called implicit parallelism
(Holland, 1975).

The Schema Theory was considered fundamental to the understanding of GAs until
the early 1990s (Eiben and Rudolph, 1999). Eiben and Rudolph (1999) propose a number
of reasons for this change of opinion: the schema theory cannot explain the dynamic or
limit behaviour of GAs; it is implicitly assumed that the problem is separable to some ex-
tent; and the application of Markov chain theory to the field of evolutionary computation
provided a more detailed analysis.

2.3.2 Markov Chain Theory

Since the population of an GA only depends on the state of the previous population in a
probabilistic manner, Markov chains may be used to model and analyse GAs (Eiben and
Rudolph, 1999). Lozano et al. (1999) and Suzuki (1995) used Markov chain analysis to
prove that GAs incorporating an elitist operator are guaranteed to asymptotically converge
to the global optimum of a fitness function. Interestingly, this cannot be done for simple
GAs that do not include elitism (Lozano et al., 1999). Suzuki (1995) and He and Kang
(1999) used Markov Chain Analysis to determine bounds on the convergence rate for
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simple GAs. He and Kang (1999) derived that the convergence rate for a GA with time-
invariant genetic operators is bounded by:

||ut − π|| ≤ (1 − δ)g−1, (2.2)

where ut is the probability distribution of the population at generation g, π is an invariant
probability distribution and 0 < δ ≤ 1.

Although the entire information about the evolutionary process is contained in the
Markov chain transition matrices, the degree of aggregation is too high to allow a simple
derivation of detailed answers to particular questions, for example the expected time of
visiting the optimum solution for the first time (Eiben and Rudolph, 1999). Consequently,
only simple versions of GAs and general results have been successfully produced by this
approach.

2.3.3 Quantitative Genetics

As GAs are derived from observations about natural selection, it is not surprising that
results from Quantitative Genetics have been applied to the GA field. One of the most
common relationships used in GA theories is the response of a population to selection.
Provided that the phenotypic values (fitness function values) are normally distributed, and
the selection is by truncation, the response to selection can be predicted by (Fisher, 1930):

S = iσP, (2.3)

where S is the selection differential, or the difference in the mean phenotypic value be-
tween the offspring and the parents (fg+1 − fg), i is the selection intensity, and σP is the
standard deviation of the fitness function values for the population at time g. Equation 2.3
has been used in a number of studies (Lobo, 2000; Mühlenbein and Schlierkamp-Voosen,
1993; Rogers and Pruegel-Bennett, 1999; Thierens and Goldberg, 1994; Thierens et al.,
1998) to predict the convergence of GAs. Thierens and Goldberg (1994) used this re-
lationship with other types of selection, such as proportionate and tournament selection,
and Thierens et al. (1998) considered fitness functions with more complex distributions
(exponentially distributed), both experimentally validating their approaches. Thierens and
Goldberg (1994) and Thierens et al. (1998) used Equation 2.3 to suggest that the number
of generations before convergence for a particular optimisation problem was a function
of the string length, where the order of the relationship depends on the salience of the
variables. Lobo et al. (2000) extended this analysis to include the number and size of
building blocks into the relationship. A number of these studies resulted in rules for GA
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calibration, and are reviewed in more detail in Section 2.4.3.
Further results from Quantitative Genetics may be useful to explain the dynamic be-

haviour of GAs. Equation 2.3 suggests that convergence occurs when σP = 0, (i.e., when
there is no more diversity in the phenotype values). Due to the influence of selection, σP

changes from generation to generation in accordance with (Falconer, 1981):

σ
′
P = σPk, (2.4)

where k is a constant with 0 < k < 1. Therefore, at any generation, g:

σP,g = σP,0k
g. (2.5)

Falconer (1981) identified a number of components that comprise the total phenotypic
variance. The total variance is the phenotypic variance, as used in Equation 2.3, and is
the sum of the separate components of variance:

• Genotypic variance, (σ2
G);

• Breeding or additive variance (σ2
A);

• Dominance variance (σ2
D);

• Interaction variance (σ2
I ); and

• Environmental variance (σ2
E).

The total variance in the population is the sum of these components, in the form (Fal-
coner, 1981):

σ2
P = σ2

G + σ2
E

= σ2
A + σ2

D + σ2
I + σ2

E . (2.6)

These results concerning the change in genetic variance are the basis for the GA cali-
bration methodology proposed in this work, as outlined in Section 1.2.

2.3.4 Dimensional Analysis

Dimensional analysis has been used to identify the important dimensions, or key features,
of GA behaviour, to establish a functional relationship between them (Eiben and Rudolph,
1999). Features of GAs that have been considered include iterated selection, crossover,
and mutation operators, which are put into a functional relationship and generally vali-
dated by simulations. A number of studies using a dimensional analysis approach have
produced rules and relationships for GA calibration, which are considered in more detail
in Section 2.4.3.
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2.4 GA CALIBRATION METHODS

As outlined in Chapter 1, before a GA can be applied, the user must specify a number
of parameter values, such as population size, probability of crossover, and probability of
mutation. Several studies have shown that a GA can tolerate some variation in its param-
eter values without dramatically affecting overall performance (Lobo, 2000). However,
even though the GA is quite robust with respect to some parameters settings, it does not
imply that the GA will work well regardless of the settings. If a poor choice of val-
ues is made, the GA will not perform well. The No Free Lunch Theorem (Wolpert and
Macready, 1997), stipulates that a global set of GA parameters that will be effective for
every optimisation problem does not exist.

Typically, GA parameter values are found using a trial-and-error approach. This in-
volves manually tuning the parameter values, where all parameters are initially given
typical values, and then one parameter at a time is changed until a suitable set of values
is identified. However, the GA operators will interact with each other, and therefore the
behaviour produced by the value of one parameter will be dependent on all the others,
and therefore cannot be considered separately. Due to computational requirements, only
a limited number of parameter combinations can be trialled; therefore it is unlikely that
sensitivity analyses will identify parameter values close to those that will produce the
best performance from the selected algorithm. As the GA parameter values are generally
different for each problem, it might be expected that the best values would be related to
characteristics of the problem.

A number of problem characteristics have been identified that affect the difficulty of a
problem in the context of GAs. These include (Naudts and Kallel, 2000): isolation or de-
ception, where the global optimum is not located near the best of the set of local optima;
multimodality, or the number of local optima present in the fitness function to potentially
trap the GA at sub-optimal solutions; and epistasis, or the degree of interaction between
decision variables, requiring accurate processing of combinations of values in the popula-
tion. A highly epistatic problem has many interactions between a number of the decision
variables. If something was known about these characteristics, this knowledge could be
used to determine appropriate GA parameters. However, often these characteristics are
unknown, and GA parameters must be found using other methods.

A number of alternate approaches have been developed in an attempt to provide in-
formation on the best GA parameters to use for a given problem. The different methods
typically fall into three categories: i) empirical experiments; where results from GA ex-
periments are use to develop empirical relationships, ii) dimensional analysis; where sim-
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ple models are used to represent how certain aspects of a GA will behave, or iii) parameter
control; where the GA parameter values are changed as the GA is solving the problem.
A number of comprehensive GA calibration methodologies have been proposed based on
results from some of these approaches.

Firstly in this section, methods that have been developed to measure characteristics
of the fitness function are outlined, followed by an outline of the different approaches
that have been developed to calibrate GAs to optimisation problems. The GA calibration
methods that arise from a number of these studies are outlined in Section 2.4.6.

2.4.1 Measuring Optimisation Problem Difficulty

A number of statistics have been developed to measure different characteristics of fitness
functions. Examples include the fitness distance correlation (Jones and Forrest, 1995),
correlation length (Weinberger, 1990), epistasis variance (Davidor, 1991), operator corre-
lation (Manderick et al., 1991), schema variance (Radcliffe and Surry, 1995) and hyper-
plane ranking (Mathias et al., 1995). However, for each example that indicates that any of
these measures provide information about the difficulty of an optimisation problem, there
appear to be as many counter examples displaying that statistic’s unreliability.

One of the main reasons that these measures have been so unreliable is that no rigorous
definition of the concept of difficulty is available in the framework of GAs (Kallel, 1998).
Early attempts to characterize difficulty in the context of GAs propose criteria based on
isolation, deception, and multimodality. It is clear that isolation and deception contribute
to problem difficulty, regardless of the algorithm chosen (Naudts and Kallel, 2000). How-
ever, there exist examples that show that epistasis and multimodality are neither necessary
nor sufficient to make a problem difficult (Naudts and Kallel, 2000).

The main reason for the ambiguity of the term ‘problem difficulty’ is that the perfor-
mance of an algorithm on a problem is dependent on the algorithm itself, and a number
of papers (Culberson and Lichtner, 1996; De Jong et al., 1995; Guo and Hsu, 2003) stress
the futility of speaking of problem difficulty without considering the algorithm, and all
the parameters of the algorithm (Kallel, 1998). For example, on a given problem a GA
coupled with a local search may find the optimum every time regardless of the initial pop-
ulation, while the same GA without the local search operator may find the problem very
difficult. Such differences are unmeasurable by any problem difficulty measure that does
not directly take into account how the selected algorithm finds improved solutions.

Studies that attempt to demonstrate the unreliability of fitness function statistics (in-
cluding Kinnear, 1994; Kallel et al., 1999; Manela and Campbell, 1992; Naudts, 1998;
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Naudts and Kallel, 2000; Quick et al., 1998; Reeves and Wright, 1995a; Rochet et al.,
1998) have drawn conclusions about the convergence of the algorithm, without consid-
ered the calibration of the GA parameters. It might be expected that optimisation prob-
lems with different characteristics would be solved more effectively by GAs that behave
differently, as controlled by the GA parameters. Therefore, it is likely that the best per-
forming GA parameter values are related to the characteristics of the problem, as opposed
to the performance of a GA with arbitrary parameter values.

The characteristics of a certain fitness function are contained in the fitness landscape.
The fitness landscape, first introduced by Wright (1932), describes the search space of an
optimisation problem as a multidimensional landscape defined by the possible solutions,
through which the optimisation moves, mapped to the corresponding fitness value (Smith
et al., 2002). The fitness landscape can be visualised as all the possible solutions to a
problem mapped into the x-y plane, with solutions that are close together in this plane
being those that are most likely to be created from one another through the application
of the genetic operators employed (Kinnear, 1994). The fitness of each of these solutions
is plotted on the z-axis, creating a surface where the peaks are the locations of solutions
with poor fitness, and the basins show the locations of the better solutions (for a minimi-
sation problem). Discovering the best solution to the problem then becomes equivalent to
searching over this landscape for the deepest basin (Kinnear, 1994). This is opposed to
the fitness function, which is a more traditional way to consider the optimisation problem,
where variables of similar values are mapped next to each other, as opposed to values that
are most likely to be created from the GA operators. However, for many GA operators, it
might be expected that the fitness function and fitness landscape are very similar.

The parameters used by the algorithm will affect how solutions are mapped next to
each other in the fitness landscape, and therefore will have a large impact on the char-
acteristics of the landscape. An effective parameter set may produce a relatively smooth
landscape, while a comparatively poor parameter set will produce a very rough landscape,
making it very difficult to locate the lowest basin and producing a high likelihood that the
algorithm will become trapped in a local optimum. Properties of the fitness landscape
such as these are directly related to the difficulty of the optimisation problem, which
many researchers have attempted to define and characterise.

While the characteristics of fitness landscapes are a function of the GA implemented
and its corresponding parameter values, there will be characteristics of the fitness function
that will have an impact on what is required by any algorithm. Unless a particularly
problem specific algorithm is applied, characteristics such as the roughness of the fitness
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function and the number and size of local minima present in the fitness function could be
expected to have an impact on the search progress, irrespective of the algorithm used.

A number of statistics have been proposed to provide information about the charac-
teristics of a fitness function that have been identified to affect GA performance, such as
isolation, deception, multimodality and epistatic interactions. It is unlikely that any statis-
tics will be useful in determining isolation or deception in a problem, as there is no useful
information about this characteristic in the function. In fact, an optimisation algorithm
will only find the best solutions that are isolated from other good areas in the search space
by chance. The different statistics that have been developed can be grouped into what
they provide information about, either the structure or multimodality of the landscape, or
the degree of epistasis between the variables.

2.4.1.1 Fitness Function Structure

Eremeev and Reeves (2002) set out to characterize the roughness of a function by esti-
mating the total number of local optima from a sample of local optima found in the search
space. From the estimated total number of local optima in the search space, the average
basin size of the local optima can be derived, to provide an indication of the roughness
of the search space. For Memetic Algorithms, Merz (2004) proposed a local search es-
cape analysis by the use of random walks, to estimate the effectiveness of recombination
relative to that of mutation, based on the structure in the fitness function.

The most common statistics to provide information about the structure of the fit-
ness function are correlation measures. Correlation measures are known to be closely
related to the ‘ruggedness’ of a fitness function (Manderick et al., 1991; Stadler and Hap-
pel, 1999; Weinberger, 1990). A number of correlation measures have been proposed,
most notably the autocorrelation function (Weinberger, 1990) and the Fitness Distance
Correlation (FDC) (Jones and Forrest, 1995). The FDC computes the correlation between
the fitness function values of local optima that are a similar distance from the global opti-
mum. In computing this statistic, the location of the global optimum must be known, and
therefore it is not practical use it used prior to the optimisation of an unknown function.
Also, the location of a number of local optima in the fitness function must be known,
resulting in a high computational demand to compute the statistic.

The autocorrelation function (Weinberger, 1990) can be easily applied to any function,
does not require any prior knowledge of the fitness function (such as location of the global
optimum as for the FDC), and does not require a large number of function evaluations,
which would be the case for identifying local optima. The autocorrelation of a function
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is calculated from a set of fitness function values, correlated in relation to their arrange-
ment in the search space. The traditional approach to express this arrangement is by a
time series, where function values are sampled along a random path through the fitness
landscape, producing a ‘time series’ of function values. This approach to computing the
autocorrelation of a function has been termed the temporal autocorrelation function in this
work, to provide a distinction to the spatial methods proposed in Chapter 4. The series of
function values can then be correlated using the standard autocorrelation function:

ρ(i) =

n−i∑
j=1

(xj − x) (xj+i − x)

n∑
j=1

(xj − x)2

, (2.7)

where n is the number of samples, xj is the j th value in the series of function value
samples, and x is the average of the samples. An important assumption made in this
analysis is that the fitness landscape is statistically isotropic (Hordijk, 1997), so regardless
of the direction taken by the random walk, the autocorrelation calculated will be the same.

The correlation length is the average distance between points in the search space where
a positive correlation is still only just detectable. This statistic provides an indication of
the average roughness of the landscape, as a long correlation length indicates a smoother
landscape on average, and vice versa. The correlation length may also provide an indi-
cation of the average size of the basins of attraction of the local optima, which will be
inversely related to the number of local optima. For example, a short correlation length
may indicate that there are many local optima, each with a small basin of attraction.

This approach to computing the autocorrelation of a fitness function has a number of
shortcomings, including: (i) only a small portion of the search space may be covered;
and (ii) the potential exists for values to be a large number of steps apart in the generated
time series, but actually be very close to each other in the search space. A fundamental
shortcoming of the time series approach is that spatial data have to be converted into
a representative sequence of temporal data. Originally, Weinberger (1990) defined the
correlation of a function in terms of the distance between points, and in practice this
distance was computed using random walks, and the relationship between the correlation
values produced using the two different approaches was defined for AR(1) functions.
However, most optimisation problems do not fall into this class of functions. In order to
address some of the concerns raised when using random walks to determine the distance
between points, the use of spatial autocorrelation statistics, based on the true distance
between points in the search space, is introduced in Chapter 4.
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2.4.1.2 Epistatic Interactions
The other problem characteristic that fitness function statistics have attempted to quantify
is the degree of epistatic interactions between variables. An epistatic function is more
complex than a simple summation of the relationship between each decision variable and
the fitness function value, and is therefore derived from combination of the decision vari-
able values. Davidor (1991) proposed epistasis variance to measure the epistasis of a
problem, which in simple terms is a measure of the distance between a separable approx-
imation to the fitness function and the fitness function itself. Reeves and Wright (1995b)
improved upon the epistasis measure proposed by Davidor (1991), by using Walsh Trans-
forms to perform the linear decomposition of the fitness function. These methods have
only been applied to fitness functions composed of binary strings, however Mason (1991)
used Partition Coefficients to extend the Walsh Transformation approach to non-binary
alphabets. There are a number of concerns regarding the application of epistasis variance
to quantify the epistasis of a fitness function, namely: i) the statistic can only provide
information about the presence of epistasis, not a measure of the degree of epistasis; and
ii) the epistasis measure is sensitive to nonlinear scaling of the fitness function, something
a GA with tournament or ranking selection is entirely insensitive to (Naudts and Kallel,
2000).

Seo et al. (2003) proposed a method to measure interactions between decision vari-
ables based on entropy (Shannon, 1948). The measure is called gene epistasis, and it
provides an indication of the combined effect of two decision variables on the fitness
function value.

Entropy provides a measure of how much uncertainty, or randomness, there is in a
signal or random event. The Mutual Information (MI) between two variables can be
computed by considering the entropy of each random variable and their joint entropy,
to determine the reduction in uncertainty (Cover and Thomas, 1991). The MI of two
random variables provides a measure of the dependence between the two variables, and
is calculated using:

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.8)

where X is the alphabet of x, p(x) is the probability density function (pdf) of x, Y is
the alphabet of y, and p(x, y) is the joint pdf of x and y. If X and Y are independent,
then X contains no information about Y and vice versa, so I(X; Y ) = 0. If X and Y

are identical, then all information conveyed by X is shared with Y , therefore the mutual
information is the same as the information conveyed by X (or Y ) alone, hence I(X; Y ) =

Page 35



Chapter 2 – Background

Figure 2.1 Representation the interaction between decision variables in terms of Mutual
Information.

H(X), where H(X) is the entropy of X . This relationship is depicted in Figure 2.1,
where the interaction between decision variables is represented by the dark shaded region,
I(Xi; Y ) + I(Xj; Y ) − I(Xi, Xj; Y ).

In terms of an optimisation problem, if the relationship between one decision vari-
able, Xi, and the fitness function value, Y , is independent of another decision variable,
Xj , then I(Xi; Y )+I(Xj; Y ) = I(Xi, Xj; Y ). Otherwise, there is an epistatic interaction
between the two decision variables Xi and Xj , and their mutual information regions over-
lap, as shown in Figure 2.1. For this case, I(Xi; Y ) + I(Xj; Y ) > I(Xi, Xj; Y ), and the
degree of interaction is given by the difference between the sum of the individual mutual
information values, I(Xi; Y )+I(Xj; Y ), and the joint mutual information, I(Xi, Xj; Y ).

Based on the MI terms, the gene epistasis can be computed using (Seo et al., 2003):

εij =

{
1 − I(Xi;Y )+I(Xj ;Y )

I(Xi,Xj ;Y )
if I(Xi, Xj; Y ) �= 0

0 otherwise.
(2.9)

It can be seen that the gene epistasis only considers pairs of decision variables, and there-
fore larger building blocks are not identified. However, if an interaction is detected be-
tween all combinations of three variables, xi, xj , xk, then it would be expected that there
is a building block of order 3 between these variables. The analysis can be continued to
identify building blocks of higher orders. Seo et al. (2003) defined the problem epistasis,
η, to be the mean absolute value of the gene epistases of all gene pairs:

η =
1

l(l − 1)

l∑
i=1

i−1∑
j=1

|εij|. (2.10)
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2.4.2 Empirical Studies of GA Parameters

While it is generally accepted that the characteristics of the fitness function affect the
performance of GAs, the link between function characteristics and GA theory has not
yet been well developed (Merz, 2004). The simplest method for determining useful re-
lationships considering all aspects of a GA is to perform empirical analyses on a range
of test functions. De Jong (1975) performed a systematic parametric test on five fitness
functions with different characteristics, such as unimodal and multimodal, separable and
epistatic, concave and convex, and deterministic and noisy. The parameters included in
the study were the population size, probability of crossover, probability of mutation and
generation gap, which allowed for a certain percentage of the population to remain intact
over each generation. Based on the results of the study, De Jong (1975) recommended a
population size of 50 − 100, probability of crossover of 0.6, probability of mutation of
0.001, and generation gap of 1.0 (the whole population should be evolved every genera-
tion). These results were subsequently applied to a large number of applications, and lead
to the ‘standard settings’ for GAs (Lobo, 2000).

Schaffer et al. (1989) performed a similar analysis on the five functions used by
De Jong (1975), as well as five more functions. Somewhat similar recommendations
were made, where a population size of 20 − 30, probability of crossover of 0.75 − 0.95,
and a probability of mutation of 0.005 − 0.01 produced the best results. Schaffer et al.
(1989) also observed a relationship between the population size and the probability of
mutation, where a small population size performed the best with a large probability of
mutation, and vice versa.

Empirical relationships provide realistic results for the situations they have been ap-
plied to, however, the applicability of the results is limited to the situations that have been
considered, and may not extend to the general case. Whitley et al. (1995) provide an
example of this, where test functions that have previously been used in empirical experi-
ments are separable functions, where there are no epistatic interactions between decision
variables. Without the epistatic interactions between the decision variables, each decision
variable can be optimised independently of the value of the other decision variables. Sep-
arable functions are often readily solved by local search methods (Whitley et al., 1995),
and are most likely unrepresentative of more realistic problems that would be tackled in
GA applications. At best, empirical analyses can provide some useful results about the
classes of functions that have been considered in the analyses.
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2.4.3 Dimensional Analysis

A number of theoretical modelling studies have been performed to provide an insight into
the complex mechanisms at work in a GA run, to assist with the calibration of certain
parameters. To enable any meaningful results to be drawn, generally the models can
consider the effect of only one or two aspects of a GA. Some of the more important
studies consider convergence due to genetic drift (Mühlenbein and Asoh, 1994; Rogers
and Pruegel-Bennett, 1999), convergence due to selection (Thierens and Goldberg, 1994;
Thierens et al., 1998), the interaction between selection and crossover (Goldberg et al.,
1993; Lobo, 2000), population sizing (Goldberg et al., 1992; Harik et al., 1999), and the
effect of mutation alone (Bäck and Schwefel, 1993; Mühlenbein, 1992).

Due to the repetitive application of a selection operator in GAs, the population will
eventually converge to a single solution. This process is termed genetic drift. Mühlenbein
and Asoh (1994) determined that the number of generations before the population will
converge to an arbitrary solution due to genetic drift was gdrift ≈ 1.4N , where N is the
population size. However, the genetic drift model used does not include a mutation oper-
ator to introduce new values into the population, and the constant value in the relationship
gdrift ≈ 1.4N is the expected value with a large variance (Thierens et al., 1998). Rogers
and Pruegel-Bennett (1999) present a method of calculating the rate of genetic drift in
terms of the change in population fitness variance, σ

′
P = kσP , similar to that outlined

in Section 2.3. k is found in terms of the population size, N , and for a simple GA with
tournament selection k = 1 − 1

N
.

Goldberg et al. (1993) developed two simple models in terms of the selection pres-
sure, s, and probability of crossover, pc: one to represent the time required by crossover
to mix the population and locate the optimal solution, the other to represent the time until
the population will converge due to selection. Therefore, if the selection time is greater
than the mixing time, it is expected that the GA will have time to form good solutions,
otherwise the GA will converge prematurely. Based on these models, Goldberg et al.
(1993) developed control maps for values of s and pc, where combinations of values for
s and pc inside the boundaries on the map lead to good GA performance. Lobo (2000)
observed that the growth of building blocks is given by s(1 − pc). Therefore, in order to
satisfy the Schema Theorem (Section 2.3.1), any combination of values that provides a
growth greater than one will ensure that the number building blocks in the population will
grow at each successive generation.

The relationship governing the convergence of a population during selection, given
in Equation 2.3, has been used in a number of studies (Lobo, 2000; Rogers and Pruegel-
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Bennett, 1999; Mühlenbein and Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994;
Thierens et al., 1998) to predict the convergence of GAs. Thierens and Goldberg (1994)
and Thierens et al. (1998) used simple models of GA convergence to relate the number
of generations before convergence occurs, gconv, to the length of the solution string, l.
Thierens and Goldberg (1994) considered normally distributed fitness functions to derive
that the number of generations before convergence, gconv, is of the order O(

√
l), where l

is the length of the solution string. As a specific case, the OneMax problem is consid-
ered, where expressions can be derived for f(g) and σg as a proportion of the genes that
have converged to the optimal value, 1. The relationship gconv = π

2

√
πl is derived for this

problem with a tournament size of two, and validated experimentally with tournament
selection and uniform crossover.

Thierens et al. (1998) provided a similar analysis for arbitrarily distributed fitness
functions, where some building blocks have a higher marginal fitness contribution than
others. As an extreme case, exponentially scaled fitness functions were considered. For
these functions, there exists a convergence window in the solution string of decision vari-
ables that are converging at a given time during a GA run, where decision variables before
the convergence window have fully converged to a single value, and decision variables
after the convergence window do not contribute enough to the fitness function value to
experience selection pressure, and have not yet started to converge (Thierens et al., 1998).
Therefore, the decision variables converge in order of their position along the solution
string, a phenomenon known as domino convergence. For exponentially scaled fitness
functions, it was determined by Thierens et al. (1998) that the number of generations be-
fore convergence, gconv, is of the order O(l). The BinInt problem is considered as a specific
case, as relationships can be derived for f(g) and σg, and the relationship gconv = 1.76l is
derived for this problem. The model is experimentally validated, however, an upper limit
to gconv must be taken into consideration, which occurs when the population prematurely
converges due to genetic drift.

Goldberg et al. (1992) modelled the supply of building blocks in the initial population,
along with making the correct decision between building blocks during a GA run, to
determine a relationship for the optimal population size. The relationship proposed by
Goldberg et al. (1992) was later refined by Harik et al. (1999). The relationship was
derived by drawing an analogy between a random walk in one dimension and the initial
supply and correct selection of building blocks in a GA population. The analogy uses the
gamblers ruin model in the analysis, and the following relationship was obtained (Harik
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et al., 1999):

N = −2kBB−1 ln α
σBB

√
πmBB

d
, (2.11)

where N is the population size, kBB is the building block size, α is the probability that the
GA selects a sub-optimal building block, σBB is the building blocks’ fitness variance, mBB

is the number of building blocks, and d is the building blocks’ fitness signal. The relation-
ship was validated experimentally for relatively simple test functions where the required
parameter values could be determined. However, generally this is not the case, and little
is known about the parameters in Equation 2.11 for most optimisation problems. Also,
the derivation assumed that all building blocks must be present in the initial population,
and that mutation and crossover do not create new building blocks but only align them.
However, the relationship does identify a number of fitness function characteristics that
affect the most suitable population size.

Mühlenbein (1992) and Bäck and Schwefel (1993) performed separate theoretical in-
vestigations on the effects of the mutation operator. Both studies concluded that for a
fixed mutation rate throughout the run, the optimal mutation rate in the case of a uni-
modal problem is 1/l, where l is the length of the solution string.

While theoretical dimensional analyses can provide useful insights into certain aspects
of GA behaviour, the approach is limited to relatively simple algorithms and problems
(Merz, 2004). Conclusions must be drawn based on simplified models, while ignoring
beneficial GA attributes. Also, the vast majority of GA modelling has been conducted
using binary coding, as it is much simpler to perform the analyses when each bit in the
solution string can only be in one of two states. For problems where the decision variables
are real values, each decision variable can take any value over a specified range, making
the modelling of these algorithms much more complex. Similarly, the inclusion of all GA
operators, for example both crossover and mutation, as well as other operators that have
shown potential, such as elitism, further complicates the modelling, and it very quickly
becomes extremely difficult, if not impossible, to develop realistic models.

2.4.4 Parameter Control

Parameter control methods have been developed to address some of the shortcomings in
attempting to preset parameter values, where the GA parameters are adjusted during the
optimisation process in an attempt to provide a more efficient search (Beyer and Deb,
2001). As the parameter values can change, the reliance on finding the ‘optimal’ set of
parameters before applying a GA is reduced, and it allows different GA behaviour at
different stages of the optimisation. Also, self adaptive GAs have been shown to adapt to
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changing fitness landscapes, displaying the ability to quickly escape the current optimum
found and proceed towards the new global optimum when the fitness landscape changes
(Beyer and Deb, 2001). This property may be useful in the case of a constrained problem
with dynamic penalty functions, where the values of the penalty constraints are changing
during the evolutionary process, and therefore so is the fitness function.

A review of parameter adaptation methods is provided in Eiben et al. (1999). The
authors divide the parameter control methods into three classes: deterministic parameter
control, where the values change in accordance with a predetermined rule; adaptive pa-
rameter control, where the values are changed based on the performance of the algorithm;
and self-adaptive parameter control, where the parameters are built into the optimisation
problem for the GA to determine along with solving the optimisation problem itself. The
major advantage of parameter control is that it allows the parameter values to change as
the GA is solving a problem. It might be expected that different GA behaviour will be
suitable at different times in the optimisation run, for example a large amount of mutation
may be required at the beginning of a GA run to explore the search space, however toward
the end this may be disruptive to the search progress, and smaller amounts may be more
beneficial. Each of the classes of parameter control are described in more detail in the
remainder of this section.

2.4.4.1 Deterministic Parameter Control
The most common method for adjusting parameter values online is to use a deterministic
function, usually dependent on the number of generations. While many alternatives exist,
Bäck and Schütz (1996) proposed:

pm(g) =

(
2 +

l − 2

G
· g

)−1

, (2.12)

where the probability of mutation is decreased from pm(0) = 0.5 initially to pm(G) =

1/l, producing the ‘optimal’ static value found by Mühlenbein (1992), where g is the
generation number, G is the maximum number of generations, and l is the string length.

The main advantage of dynamic function parameter control is that the changes to the
parameters are predetermined and predictable. However, this can also be a disadvantage,
as changes are caused by a deterministic rule triggered by the number of generations,
without taking any consideration of the actual progress in solving the problem (Eiben
et al., 1999). Also, the form of the parameter control rule must be defined, and a suitable
selection of the functional form may be just as difficult as selecting a static value in a
parameter tuning case. However, Eiben et al. (1999) suggest that sub-optimal selection
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of a deterministic parameter control rule often leads to better results than a sub-optimal
selection of a static parameter value.

2.4.4.2 Adaptive Parameter Control

Adaptive parameter control methods take the actual search process into account by incor-
porating feedback from recent population changes into the parameter adaptation method.
One of the most common adaptive methods is Rechenberg’s 1/5 success rule (Rechen-
berg, 1971), which was developed for use with Evolution Strategies and has been adapted
to RCGAs in some cases. The rule states that the ratio of successful mutations should be
one in five, and if the ratio is greater than this the mutation step size should be increased,
or decreased if there are not enough successful mutations.

Recently, a number of feedback based adaptive methods have been developed to al-
ter the population size. Eiben et al. (2004) proposed a method to adjust the population
size based on how frequently improvements in the best solution were found. They con-
cluded that their method was the most effective population adjustment method available,
however, it introduces four more parameters that must be calibrated, the increase factor,
decrease factor, minimum and maximum population sizes.

Feedback based adaptive parameter control methods are designed to supervise the op-
timisation process, generally by monitoring improvements in the fitness of the solutions
found. It is also possible to consider other measures, such as the diversity of the popula-
tion and whether it is converging or diverging (Beyer and Deb, 2001). While this approach
would be expected to provide a more robust algorithm that can recalibrate itself if it is un-
der performing, rules must be developed to determine which parameters to change, how
much to change them by and how often the changes should occur. This can be a difficult
task, as the impact of each GA parameter is not well understood and suitable values will
be different for different optimisation problems.

2.4.4.3 Self-adaptive Parameter Control

Setting GA parameter values can be considered a poorly structured, poorly defined, com-
plex problem, and GAs are generally considered to perform better than other methods on
these types of problems (Eiben et al., 1999), therefore there may be an advantage in al-
lowing a GA to calibrate itself. This can be achieved by incorporating the GA parameters
into the solution to the problem, so each individual in the population contains values for
the set of decision variables for the optimisation problem, as well as a set of parameter
values for the GA. As the optimisation progresses, the good solutions are retained in the
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population, as well as the good parameters that produced these solutions, enabling the
algorithm to find better solutions with the most effective parameters. The most common
method involves including the probability of mutation or mutation step size in the solution
(Bäck, 1992; Hinterding, 1995; Srinivas and Patnaik, 1994), which is then applied to the
solution it is attached to, and evolved along with the decision variable values.

Eiben et al. (1999) suggested that it is likely that using self-adaptation methods such
as this is the most promising method of control, as the evolution itself will determine the
beneficial interactions among the GA operators, while also finding a near-optimal solution
to the problem. However, this is also the major drawback to the self-adaptive calibration
approach, entrusting the algorithm to make the best choices for itself. It is not clear how
effective a GA will be at addressing both the calibration and optimisation problems in
parallel. The effect of constantly changing the parameter values over a large range is also
unclear. Incorporating the parameter values into the solution will increase the number
of decision variables to be optimised, increasing the size of the search space, making it
more difficult to find the optimal solution to problems which are most likely already very
difficult. Also, even though a self-adaptive methodology provides the mechanism for
different parameters values at different times during a GA run, it is unlikely to produce
different parameter values to perform better later in a GA run, after the algorithm has
converged to one set of values initially.

2.4.5 Supervisory Algorithms

In a similar approach to self-adaptive parameter control, optimisation algorithms have
been used to optimise the parameters for a GA that is applied to an optimisation problem.
A meta-GA approach has been proposed (Grefenstette, 1986), where a higher-level GA is
used to identify a good set of parameters for a lower level GA. The higher level GA runs
on a population consisting of parameter values, while the lower level GA is a regular GA
that uses the settings found by the higher-level GA (Lobo, 2000).

However, this approach introduces the problem of what parameters are used for the
meta-GA? It would be expected that setting GA parameters would be a more straight
forward optimisation problem than optimising the fitness function itself, hence Boeringer
et al. (2005) implemented a supervisory gradient type algorithm to adapt the number of
crossover points, mutation rate and mutation range to maximise the fitness improvement
each generation. The authors found their method required fewer function evaluations
compared to a calibrated static GA for the fitness functions considered.
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2.4.6 GA Calibration Methodologies

Based on a number of the results outlined in Section 2.4.3, Harik and Lobo (1999) pro-
posed the ‘Parameterless GA’. The relationship between selection pressure and the prob-
ability of crossover to ensure the growth of building blocks, outlined in Section 2.4.3,
is used to set s = 4, and pc = 0.5, producing a net growth of building blocks of 2. A
mutation operator is not included in the GA implemented. The population sizing algo-
rithm proposed by Harik et al. (1999) was not implemented in this calibration method, as
the parameters in Equation 2.11 are not able to be estimated for arbitrary problems. To
remove the population sizing problem from the user, the initial population size is set to a
very small value, such as N = 4, and after the population converges, the population size
is doubled and reinitialised, with a copy of the best solution found in the previous GA
run inserted into the population. The process is then repeated until no improvement in
solution quality is observed from one GA run to the next, or a user specified criterion is
met.

However, the process of doubling the population size can suffer from genetic drift,
and if one population size is slow to converge, this can disadvantage the search. To
overcome this problem, Harik and Lobo (1999) proposed a race against concurrent GAs
with different population sizes, and if a bigger population size finds a better solution than
a smaller population size, the GA run with the smaller population size is stopped, and
reinitialised with an even bigger population size. More function evaluations are given
to the GAs with smaller population sizes, until they converge or are overtaken by the
GAs with larger population sizes. The authors found the Parameterless GA to be an
effective self-calibrating method, however significantly more computational effort than
for an optimally calibrated static GA was required.

A similar GA calibration approach is proposed by Minsker (2005). The major differ-
ence is how the initial population size is determined. Instead of an arbitrary small initial
population size (N = 4), the initial GA population size is determined using a combination
of the relationships gconv = 1.76l (Thierens et al., 1998), in the form of gconv = 2l, and the
number of generations before the population will arbitrarily converge due to genetic drift,
gdrift ≈ 1.4N (Mühlenbein and Asoh, 1994). By setting gconv = gdrift, the initial population
size is then given by N = 1.4l. A relationship between s and pc that is similar to that
suggested by Harik and Lobo (1999) is used, however, tournament selection with s = 2 is
used, and the maximum allowable value of pc to ensure building block growth is used (i.e.,
pc = 0.5). After the initial GA has converged, the population size is doubled, however the
race against concurrent GA runs with different population sizes to avoid excessive fitness
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function evaluations is not implemented. Minsker (2005) included a mutation operator in
the approach, with the probability of mutation taking on the maximum value out of 1/l,
as proposed by Mühlenbein (1992) and Bäck and Schwefel (1993), and 1/N .

The calibration methodologies outlined above are based on theory developed for bi-
nary coded GAs. Reed and Yamaguchi (2004) proposed a similar calibration method-
ology for real valued decision variables, specifically Differential Evolution (Storn and
Price, 1997), however, the authors suggest that the approach can be easily adopted for any
RCGA. A similar methodology to those proposed by Harik and Lobo (1999) and Minsker
(2005) is used to set the population size, where a small population size is used initially
(N = 10 is recommended), and the population size is doubled after a minimum number
of generations have been computed, given by g = Nl, and a 1% increase in the best
fitness function value found is no longer obtained. Values for the mating and mutation
operators are adopted from Storn and Price (1997), and are shown to have little affect on
the algorithm’s performance for the test function considered.

The GA calibration methodologies reviewed in this section are the most practical,
comprehensive, and theoretically sound calibration methods available. However, the most
critical GA parameter, the population size, is found from an iterative approach, it is not tai-
lored to each individual problem. A number of studies (Cantú-Paz and Goldberg (2003),
for example) suggest that one GA run with a large population is more likely to find better
solutions than a number of GA runs with smaller population sizes, which is essentially
the approach taken in the case of sequentially doubling the population size. While the
population size does increase as the GA run progresses, the other algorithm parameters
are fixed, no matter what the characteristics of the fitness function are (with the excep-
tion of the mutation rate proposed by Minsker (2005), which is taken as the maximum
value out of 1/l and 1/N ). Hence, the characteristics of fitness functions that affect GA
performance, such as multimodality and epistatic interactions, are ignored.

2.5 SUMMARY AND PROPOSED METHODOLOGY

From the review of the literature presented in this chapter, it can be seen that the applica-
tion of GAs to WDSs is not a new concept, and has been achieved successfully in many
cases. Despite this, a strong background in GAs is still required to apply the methods, and
a great deal of time and effort is spent to calibrate the algorithm to each problem.

This problem is not specific to the WDS field; it is not clear how to calibrate a GA
to any fitness function, not just WDS optimisation. As indicated by the sheer volume of
research invested in GA calibration methods, it is one of the major concerns in applying
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GAs to an optimisation problem. While parameter tuning is by far the most common
approach, it requires a large computational effort to determining parameter values, and
even this approach is unlikely to produce the best possible results. Adaptive and self-
adaptive parameter control methods allow feedback from the GA run to alter the parameter
values, however, a suitable method to adapt the parameters is not available, and it is not
clear how effective a GA is at calibrating itself in parallel to solving an optimisation
problem. A number of the results from dimensional analysis studies have been used in the
GA calibration methodologies proposed by Harik and Lobo (1999), Minsker (2005) and
Reed and Yamaguchi (2004). However, these are not based on the characteristics of the
optimisation problem, and a number of sequential GA runs may not be the most effective
use of the fitness function evaluations that are available before a solution is required.

From the review of the literature regarding GA calibration methods presented in this
chapter, it is clear that a complete GA calibration methodology based on the characteris-
tics of the fitness function does not exist. This is a concern, as practical experience tells
us that each problem is best solved with different GA parameters, or at least that there is
not a global set of parameters that are suitable for all problems. Therefore, it is the aim
of this thesis to provide a practical GA calibration methodology, based on the character-
istics of the function to be optimised. The remainder of this section contains details of
the GA selected for the work undertaken in this thesis, based on the review provided in
Section 2.2, followed by an overview of how the review of the literature presented in this
chapter is related to the calibration methodology proposed in Section 1.2, including some
important assumptions that have been made.

2.5.1 GA Adopted for This Research

Based on the outline of GAs presented in Section 2.2, the following operators have been
selected for the GA used in this research:

• The decision variables are represented by real coding, as all the optimisation prob-
lems considered in this thesis have real valued decision variables. This approach
has avoided any further complexities being added to the problem by the encoding
scheme, such as hamming cliffs, or discretisation issues.

• Tournament selection, as only the absolute difference in objective function values is
considered , thereby producing a constant selection pressure, rather than the relative
difference, which is the case with proportional selection. A tournament size of two
has been used throughout this work.

• A one-point distributed crossover operator has been used, as neighbourhood-based
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crossover operators such as this have been found to exploit the numerical nature of
RCGAs (Herrera et al., 2003). The crossover operator used for this work is similar
to the Simulated Binary Crossover operator Deb and Agrawal (1995) and the Fuzzy
Recombination Crossover operator Voigt et al. (1995). A one-point crossover oper-
ator has been selected, as a statistic to determine tightly linked decision variables is
developed in Chapter 4, and this operator facilitates the processing of epistatic inter-
action between adjacent variables, more so than uniform or multipoint crossover op-
erators. If crossover occurs, a random crossover point is generated, and a new value
of each decision variable is generated from a normal distribution centred around
the first parent’s solution values, p1, before the crossover point, or centred around
the second parent’s solution values, p2, after the crossover point. The spread of
the distribution is determined from a parameter related to the distance between the
two parent solutions. The distribution used for a decision variable can be seen in
Figure 2.2.

• A uniformly distributed mutation operator, producing any value over the range
of each each decision variable. A Gaussian mutation operator is commonly used
for RCGAs, however, this would provide a very similar search mechanism to the
crossover operator adopted for this work. This operator has been selected as it has
the potential to generate values all over the search space, at any time in the search
process and reduce the potential for blocking. Also, a uniform distribution is used
as it does not introduce additional parameters to be calibrated. A range of mutation
probabilities has been considered, thus if uniformly distributed mutation is proving
to be disruptive to the search, a small or zero probability of mutation will be the
most effective.

• An elitist strategy to preserve good solutions, as Markov chain modelling of GA
behaviour suggests that an elitist operator is necessary to ensure convergence to
the global optimum. While convergence to the global optimum may not occur in
practice, the results indicate that the operator is beneficial to the search process.

Many more operators could be considered, such as those outlined in Section 2.2.5,
and may provide a greater search potential. However, the main focus of this research
is to reduce the effort and knowledge required for the calibration of GAs, and more ad-
vanced operators will make the application of these methods even more difficult for the
non-expert, and introduce even more parameters to be calibrated for each optimisation
problem. Therefore, for the operators that have been selected, the following parameters
are produced:
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Figure 2.2 Probability distribution used for crossover

• Population size, N ;
• Probability of crossover, pc;
• Number of elite solutions, e;
• The probability of mutation, pm, used as the probability that mutation is applied to

a solution string. If mutation is applied, the decision variable to be mutated in that
string is randomly chosen. Therefore, pm = 1 for each string corresponds to the
empirical mutation rule for a binary-coded GA under bitwise mutation, pm = 1/l

(Mühlenbein, 1992);
• The standard deviation of the distribution to be used for the crossover operator, σ,

taken as a fraction of the distance between the two parent values, c. A smaller frac-
tion of c will produce a tighter distribution around the parent values, and therefore
greater exploitation of current solutions. A crossover distribution using the value
c = 6 is presented in Figure 2.2, and therefore the Gaussian standard deviation used
for the crossover operator was σ = |p2 − p1|/6.

2.5.2 Relevance of the Literature

The main theories that the proposed methodology is based on are reviewed in Section 2.3
and Section 2.4.3. Most importantly, Equation 2.5 is used, which states that the variance
in the fitness function values will decrease by a constant value each time the selection op-
erator is applied. This relationship is derived from Quantitative Genetics, however it has
also arisen from theoretical studies of GAs, including in Markov chain analysis studies
(He and Kang, 1999), as well as the results of Rogers and Pruegel-Bennett (1999). There-
fore, there is a strong theoretical basis for making use of this relationship. The outcome
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from this relationship is that a GA will converge in a certain number of generations for
a given fitness function; that there is an optimal number of generations to solve a given
problem. Chapter 3 is dedicated to experimentally validating this observation.

The other result that the proposed methodology draws upon is that the best GA param-
eter values are related to the characteristics of the fitness function. This can be observed
in a number of the relationships that have been reviewed in Section 2.4.3. The results
of Thierens and Goldberg (1994) and Thierens et al. (1998) suggest that the number of
generations is related to the size of the problem, and that the order of the relationship is
related to the salience of the variables in the fitness function. Therefore, a novel domi-
nance measure, based on the mutual information between the decision variable values and
the fitness function value, is proposed in Chapter 4.

Equation 2.11, proposed by Harik et al. (1999), suggests that the population size is a
function of the size and number of the interactions between the variables, and the signal
to noise ratio in the fitness function. The signal to noise ratio is expected to be quantified
by the proposed spatial correlation measure, and to provide information regarding the
interactions between the variables, a novel separability measure is proposed.

Equation 2.11 suggests that there is an optimal population size for a fitness function
with certain characteristics, as opposed to a constant number of generations, as proposed
in this work. However, this difference can be explained by the α parameter in Equa-
tion 2.11, the probability that the GA will make a mistake when selecting building blocks.
If the number of function evaluations is increased, and a constant number of generations is
used, the population size will increase proportionally. If N is increased in Equation 2.11
there is a corresponding increase in − ln α, and therefore a decrease in α, suggesting
that the GA will have a lower probability of selecting the incorrect building blocks, and
therefore finding better solutions. This result agrees with one of the observations that
the proposed methodology is based on; that a larger population size will locate better
solutions provided there is time for the population to converge.

It is reassuring that the characteristics of fitness functions that have been identified to
influence the most suitable GA parameter values also correspond to the components that
influence the genetic variance (Falconer, 1981), outlined in Equation 2.6. The develop-
ment of the statistics necessary to quantify these components is given in Chapter 4. The
relationship between these statistics and the optimal number of generations is considered
in Chapter 5, where the functional form of the relationship is developed based on the
relevant dimensional analysis results (Harik et al., 1999; Thierens and Goldberg, 1994;
Thierens et al., 1998).
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In order to undertake the necessary investigations, a number of important assump-
tions must be made. The first assumption is that the fitness function is a reasonable rep-
resentation of the fitness landscape, where the difference between the two is discussed
in Section 2.4.1. It is believed that this is a reasonable assumption, as it is more likely
that solutions close together in decision variable space will be generated by the genetic
operators that have been adopted.

It is assumed that the fitness function is relatively regular, that is that a statistic com-
puted as an average from samples taken over the whole search space provides a reasonable
representation of the fitness function. The statistics are computed using the same infor-
mation that the GA has to solve the problem, namely a random sample of solutions in
the search space, consequently it is assumed that the statistics provide useful information
about the fitness function the GA is applied to.

Another important assumption is that selection is the only operator that will influence
the change in variance of the population. This assumption is based on the fact that the
crossover operator used in this work is normally distributed around the original values,
and therefore on average the variance will not be changed by this operator. For the other
operators that may alter the population variance (mutation increasing the variance and
elitism decreasing the variance) the operators are applied with a low probability, and
therefore will not have a significant impact on the population variance.

The proposed methodology is focused on the population size, in terms of the number
of generations before the population will converge. While rules are used to determine
the values of the remaining GA parameters, it is assumed that the population size has the
greatest influence on the performance of the GA. This assumption is based on a number
of previous results (Lobo, 2000; Sadegheih, 2006), and is verified to have the greatest
effect on the quality of the solutions found using the results from the empirical studies
undertaken in Chapter 6.

This chapter has presented the background relevant to the work proposed in this thesis.
Based on this review, the need for a GA calibration methodology based on the character-
istics of the fitness function is evident, and the theory behind the proposed methodology
has been outlined. Chapter 3 is dedicated to the experimental validation of the first hy-
pothesis of the proposed methodology: that there exists a given number of generations to
solve a certain fitness function.
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The Number of Generations Until
Convergence

For WDS optimisation, and most real-world optimisation problems, it is unlikely that the
optimal solution is ever found due to an extremely large, complex, search space. There-
fore, a GA can only aim to find the best possible solution in the time available to find a
solution. Therefore, the calibration methodology proposed in this thesis revolves around
providing the best search behaviour possible, before the GA must converge.

It is generally accepted that for GA optimisation, a larger population size will locate
a better solution than a smaller population size, provided there is time available for the
GA to converge. Therefore, as the number of available function evaluations to solve the
problem, FE, increases so does the best population size, N . As the number of genera-
tions g, is give by g = FE/N , if FE and N increase at the same rate, this observation
suggests that the most efficient number of generations of the GA population to solve the
problem may perhaps be constant. The relationship g = FE/N assumes that every so-
lution is evaluated every generation, irrespective of whether the solution has been subject
to crossover or mutation or not.

A number of dimensional analysis studies, such as those by Thierens and Goldberg
(1994) and Thierens et al. (1998), support this observation, suggesting that gconv ∝ √

l

and gconv ∝ l, respectively. The result of their work was that there is a constant number
of generations before a GA will converge on a given fitness function, and the number of
generations is a function of the problem size, l. A number of other theoretical results,
reviewed in Chapter 2, also support this observation (He and Kang, 1999; Mühlenbein
and Schlierkamp-Voosen, 1993; Rogers and Pruegel-Bennett, 1999).

If a GA will converge in a certain number of generations, gconv, for a given fitness
function, and the time available to find a solution, expressed as the number of available
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fitness function evaluations (FE) is known, then the most suitable population size can
be calculated using N = gconv/FE. The ability to predict the number of generations
before convergence, gconv, would therefore be extremely beneficial to assist GA calibra-
tion, as the most appropriate population size could then be determined using the number
of function evaluations that are available. The population size is widely regarded as the
most influential GA parameter, so obtaining an accurate estimate for the most efficient
population size is the basis of the GA calibration methodology proposed in Chapter 6.

The first hypothesis of this thesis is that the number of GA generations before a GA
will converge for a given optimisation problem is constant for changes in the number
of fitness function evaluations. The first section of this chapter is dedicated to testing
this hypothesis on a number of mathematical optimisation problems. The second part of
this chapter investigates if the number of generations before convergence changes with
controlled changes to the characteristics of a number of fitness functions.

3.1 OBSERVING AN OPTIMAL NUMBER OF GENERATIONS

The aim of this section is to empirically test the hypothesis that there exists a constant
number of generations, gconv, to most efficiently solve a given optimization problem, irre-
spective of the convergence criteria. In this work, to ‘most efficiently solve’ an optimisa-
tion problem is defined as locating the best values observed for a given value of FE. All
the problems considered in this work are minimisation problems, therefore the best value
observed is the lowest value found.

A large parametric study has been conducted to allow the best performing GA pa-
rameters to be identified. By considering the results for a number of different function
evaluations, the best population size, and therefore the optimal number of generations,
can be identified for different convergence criteria. If the observed number of generations
is similar for different convergence criteria, then the hypothesis of a constant number of
generations is validated for the cases considered.

As this thesis has focused on the calibration of GAs to the optimisation of WDSs, it
would be desirable to perform this analysis on WDS optimisation problems. However,
the simulation of WDSs for extended periods of time is extremely computationally inten-
sive for systems of any realistic size. Therefore, the computer run times involved in the
proposed analysis renders the direct application to WDS optimisation prohibitive, even if
run simultaneously on many of the fastest processors available. Therefore, in order to al-
low the proposed hypothesis to be tested, mathematical optimisation functions have been
used. By considering problems with different characteristics, for example different de-
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grees of epistatic interactions and multimodality, it is proposed that the results generalise
to a wide range of optimisation problems, including WDS optimisation problems. Differ-
ent problem sizes are also considered to investigate if there is a relationship between gconv

and the problem size, l. The following section outlines the methodology used to test the
hypothesis, including the test functions and GA parameter values used.

3.1.1 Methodology

An empirical approach has been adopted to test if there exists a constant number of gener-
ations before convergence, gconv, for selected test functions with different characteristics.
This approach allows for realistic results to be obtained, and, by considering the character-
istics of the test functions, the results obtained are likely to extend to other problems with
similar characteristics. To determine gconv, the GA used throughout this research, outlined
in Section 2.5.1, has been calibrated by means of a large-scale parametric study. The
number of generations before convergence has been determined by identifying the best
performing GA parameter values every 1 000 function evaluations, as it is assumed that
the best solutions are identified by the GA converging to them, as opposed to randomly
locating a good solution by chance. To support this assumption, each set of GA parameter
values that has been tested was run with 30 different sequences of random numbers, with
the average fitness function value found from these runs taken as the solution found.

3.1.1.1 Test Functions

Table 3.1 lists the test problems that have been adopted for this research. In an attempt to
cover a range of problem types, the analyses have been applied to test functions with dif-
ferent characteristics. F1 is the sphere function (De Jong, 1975), F2 is the Rastrigin Func-
tion (Mühlenbein and Schlierkamp-Voosen, 1993), F4 is a variation of Griwank’s Func-
tion (Whitley et al., 1995), F5 and F6 are functions proposed by Rochet et al. (1998), and
F7 is the sine-envelope sine-wave function (Schaffer et al., 1989). These functions have
been selected as they provide a diverse mix of problem characteristics, including: struc-
ture toward the optimal solution, such as ‘big bowl’ problems (e.g., F1 and F2), compared
with relatively flat search spaces (F7); differently scaled contributions from each decision
variable (F5 and F6); and separable (e.g., F1 and F2) and non-separable functions (F4
and F7). All functions are simply scaled into higher dimensions, with the exception of
F7, which has been extended into higher dimensions by summing sub-functions of the
original 2-dimensional problem.

Along with these common benchmark optimisation problems, F3 has been constructed
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Table 3.1 The test functions used in the parametric study, and the interval used for the
decision variables.

Function to be Minimised Interval

F1
l∑

i=1

x2
i [−5.12, 5.11]

F2 10l +
l∑

i=1

(
x2

i − 10 cos (2πxi)
)

[−5.12, 5.11]

F3

l−1∑
i=1

((
xi + xi+1

2

)2

− 10 cos

(
2π

xi + xi+1

2

))
[−5.12, 5.11]

+x2
l − 10 cos (2πxl) + 10l

F4 1 +
1

4000

l∑
i=1

x2
i −

l∏
i=1

cos

(
xi√

i

)
[−512, 511]

F5
l∑

i=1

i |xi| [−100, 100]

F6
l−1∑
i=1

ixi + x2
l [0, 100]

F7
l

4
+

l/2∑
i=1

(
sin2

(√
x2

2i−1 + x2
2i

)− 0.5

1 + 0.001
(
x2

2i−1 + x2
2i

)
)

[−100, 100]

using the guidelines proposed by Whitley et al. (1995). The guidelines allow a non-linear,
non-separable, scalable function to be developed, which provides a realistic challenge to
any optimisation algorithm. The Rastrigin Function (F2) has been used as a basis, and
to produce the non-separable component of the function, which introduces interactions
between the decision variables, the xi terms have been replaced with (xi + xi+1)/2. The
final function developed can be seen in Table 3.1 as F3, where the sub-function in variable
l has been included to ensure that there is a unique solution to the problem. This function
allows for a direct comparison with F2 to investigate the effect of epistatic interactions on
the optimal GA parameters.

The interval considered in the optimisation for each function can be seen in Table 3.1,
which has been taken from the relevant studies outlined above for each function. Four
different problem sizes have been considered for each of the seven functions in Table 3.1,
namely l = 5, 10, 20, and 30 dimensions.
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Table 3.2 The GA parameter values used for the parametric study.

Parameter Values

Population Size, n 10, 50, 100, 200, 400, 800

Probability of Mutation, pm 0, 0.2, 0.4, 0.6, 0.8 , 1.0

Probability of Crossover, pc 0.7, 0.85, 1.0

Distance for the Standard Deviation of Crossover, c 6, 18

Elite Solutions per Generation, e 0, 1

3.1.1.2 Parametric Study

To determine the most efficient number of generations for the GA for each problem con-
sidered, a large-scale parametric study has been undertaken. While the values for the GA
parameters other than population size do not influence the number of generations required
to solve the problem, they must be included in the calibration of the GA to ensure that they
are not biasing the results toward a certain population size. The parameter values tested
are given in Table 3.2. Each combination of parameter values was tested 30 times with
different sequences of random numbers to evaluate the performance. This resulted in a
total of 12 960 GA runs for each problem size considered for each function. Four problem
sizes have been considered for each of the seven test functions tested, resulting in a total
of 362 880 separate GA runs required to produce the results presented in Section 3.1.2.

Each individual GA was run until a solution within 10−6 of the actual solution (F (x) =

0) was found, or a maximum of 500 000 function evaluations. The analysis for a set of GA
parameter values concluded once the average from the 30 different runs was within 10−4

of the optimum solution, as this slightly higher convergence criterion (compared to 10−6

used for individual GA runs) allowed for some random effects, such as one initial pop-
ulation for a combination of GA parameters taking especially long to converge. There
were two functions that did not converge to the optimal solution in the permitted function
evaluations, bounded by the GA parameter values used in the parametric study. The first
was F3, where, as the number of function evaluations was increased, the optimal popula-
tion size increased until the maximum tested, N = 800, performed the best. In this case,
the analyses were stopped once the optimal population size had reached this maximum
population size, as it would be expected that beyond this, larger population sizes would
outperform those considered. The second function was F7, which did not converge to
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the optimum solution for the problem sizes considered. Consequently, the convergence
criterion was the 500 000 function evaluations that were available to solve the problem.

The average and standard deviation of the fitness function values of the best solution
found over the 30 different GA runs for each GA parameter set were recorded every 1 000

function evaluations. A 2-tailed Student’s t-test with a 95% confidence interval was used
to compare parameter sets and identify those that were statistically the best as the GA
solved each function. Of the best performing population sizes found by the Student’s
t-test, the median was used as the optimal population size. From the optimal population
sizes identified, the optimal number of GA generations can be computed from the number
of function evaluations that have been made. The hypothesis of this section is that as FE

is increased, N will increase proportionally, producing a constant gconv. The following
section presents results from the parametric study for the four problem sizes considered
for each of the test functions.

3.1.2 Parametric Study Results

A graphical illustration of the method used to determine the optimal number of gener-
ations for F3 with l = 5 is shown in Figure 3.1(a). All of the parameter combinations
that find the current best solution (not necessarily the optimal solution), as determined
from the Student’s t-tests, are plotted as box plots against the number of function evalua-
tions made. The median of each box plot has been taken as the optimal population size.
The variations in population size are produced by different combinations of the other GA
parameters (probability of crossover or probability of mutation, for example) producing
statistically similar results. The inverse of the slope of the straight line fitted between
the optimal population sizes (the median of the box plots) and the number of function
evaluations produces the optimal number of generations to solve the problem.

Two different relationships were observed from the parametric study for the test func-
tions considered, the results of which are given in Table 3.3 and Table 3.4. For the func-
tions that are presented in Table 3.3, the hypothesis that there exists a constant gconv is
confirmed, as there is an approximately constant number of generations that most effi-
ciently solves the problem for different convergence criteria. For these functions, there
was a clear relationship between N and FE: as FE is increased, N also increased. This
linear relationship produces an optimal number of generations, gconv, to solve the problem,
as gconv = FE/N .

The optimal number of generations, gconv, for each problem size, l, of the functions
considered that follow this relationship, namely F3, F4, and F6, can be seen in Table 3.3.
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Figure 3.1 The different results obtained for the Optimal Generation Functions and the
Maximal Generation Functions.

Table 3.3 Optimal Generation Function results.

Function l FE gconv gconv/l gconv/
√

l

F3

5 − 75 15.0 33.5

10 − 107 10.7 33.8

20 − 219 11.0 49.0

30 − 325 10.8 59.3

F4

5 61 000 121 24.2 54.1

10 41 000 109 10.9 34.5

20 63 000 121 6.1 27.1

30 89 900 236 7.9 43.1

F6

5 13 000 91 24.6 49.2

10 36 500 240 23.6 52.8

20 76 000 408 19.3 60.9

30 117 000 660 17.9 80.3
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Table 3.4 Maximal Generation Function results.

l F1 F2 F5 F7

5 4 000 11 000 4 000 −
10 8 000 19 000 5 000 −
20 18 000 48 000 5 000 −
30 26 000 74 000 7 000 −

The number of function evaluations, FE, taken to find the optimal solution and the propor-
tionality constants for the gconv ∝ l and gconv ∝

√
l relationships, as proposed by Thierens

and Goldberg (1994) and Thierens et al. (1998) are also given in Table 3.3. This set of
functions has been termed Optimal Generation Functions, as the most efficient way to
solve the functions is to use a constant number of generations, and adjust the population
size based on the number of function evaluations that are available.

For the remaining test functions considered, F1, F2, F5, and F7, a different relation-
ship between N and FE was observed. The best performance for these functions was
obtained with the smaller population sizes, irrespective of the number of function eval-
uations. The number of function evaluations, FE, required to solve each function for
the different problem sizes considered is shown in Table 3.4. The optimal N for F1 with
l = 5 can be seen in Figure 3.1(b), where the best performing population sizes every 1 000

function evaluations is given, until the optimal solution is found after FE = 3 000. For
FE ≤ 2 000 it can be seen that only N = 10 performs the best, and for FE = 3 000,
N = 50 also performs well. The horizontal line at N = 10 is fitted through the optimal
population sizes, as determined from the median of the box plots, indicating that N = 10

is the most suitable population size for this function. Similar optimal population size plots
were also obtained for the other test functions shown in Table 3.4 which display this re-
lationship. This set of functions has been termed Maximal Generation Functions, as the
most efficient way to solve the functions is to use the smallest possible population size,
maximizing the number of generations available to update the population.

Section 3.1.2.1 discusses the characteristics of the Maximal Generation Functions,
before a similar discussion on the Optimal Generation Functions in Section 3.1.2.2. The
effect of increasing the size of an optimisation problem on the optimal number of gen-
erations is considered in Section 3.1.2.3, before Section 3.1.2.4 discusses the effect of
epistatic interactions on the optimal number of generations. These results lead to the
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(a) 2–dimensional plot of F1 (b) 2–dimensional plot of F2

Figure 3.2 Functional form of F1 and F2.

identification of four classes of fitness function characteristics, that each have an opti-
mal number of generations to solve the problem. These calibration classes are defined in
Section 3.1.3, along with a discussion of the wider implications of these results.

3.1.2.1 Maximal Generation Functions
The functions that were most efficiently solved with the smallest population sizes consid-
ered in the parametric study were F1, F2, F5, and F7 (Table 3.4). The problem character-
istics that lead to this result are discussed in the remainder of this section.

F1 A two–dimensional plot of F1 can be seen in Figure 3.2(a). This function has an
equal contribution from each decision variable to the fitness function value, therefore it
might be expected that the gconv ∝ l relationship would be observed, as proposed by
Thierens and Goldberg (1994). However, from Figure 3.3, it can be seen that the smallest
population size always produced the best results, irrespective of the number of function
evaluations made for all problems sizes considered. As F1 does not have any interactions
between decision variables, each decision variable can be optimized independently of the
others. Therefore, it is not necessary to store combinations of the decision variable values,
and function evaluations are wasted on poor quality solutions stored in a large population.
Also, as each decision variable has the same contribution to the fitness function, a change
in any of the decision variables will affect the fitness function value, and therefore there
is no need to retain a large degree of diversity, potentially contained in a large population.
Hence, it is more efficient to have a smaller population size, which is updated frequently
through more generations, for this completely separable function.
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Figure 3.3 Optimal populations sizes for F1 for different function evaluations.

F2 The fitness function for F2 is similar to F1, the difference being the local optima
produced by the sum of the cosine terms, seen in the plot of F2 in Figure 3.2(b). The
results presented in Figure 3.4 indicate that the presence of these local optima did not
affect the best population size to solve the problem, which was again always the smallest
of the sizes tested. However, the presence of local optima did increase the number of
function evaluations required to locate the optimal solution, requiring approximately 2.6

times the number of function evaluations taken to solve the same size problem with F1
(as seen in Table 3.4).

F5 Unlike F1 and F2, F5 does not have an equal contribution from each decision vari-
able, as there is an increasing contribution from each decision variable to the fitness func-
tion value. This can be seen in Table 3.1, where the value for each decision variable is
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Figure 3.4 Optimal populations sizes for F2 for different function evaluations.

multiplied by its position in the solution string. However, the different contributions from
the decision variables were not enough to alter their convergence rates, and again, the
smallest population size produced the best results, as seen in Figure 3.5.

F7 The optimal population sizes found for the four problem sizes considered for F7
can be seen in Figure 3.6, and again the line fitted between the optimal population size
for different number of fitness evaluations corresponds to the smallest population size
considered. This result is for a different reason than for the other Maximal Generation
Functions described. The fitness function for F7 suggests that there are strong interactions
between adjacent pairs of decision variables, and therefore it might be expected that a
larger population size would be more efficient at evaluating these combinations of values.
However, this is not the case, because of the characteristics of the fitness function. A 2–
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Figure 3.5 Optimal populations sizes for F5 for different function evaluations.

dimensional version of F7 is shown in Figure 3.7(b). Essentially, the search space is flat,
with large changes in the fitness function value around the optimum solution of F7(x) = 0

at x= 0. There is no structure in the fitness function to guide the GA, and therefore the
algorithm is randomly searching the solution space. Hence, the parameters have very
little impact on GA performance. This can be seen in Figure 3.6(c) and Figure 3.6(d),
where all the population sizes considered in the parametric study find the best solution, as
indicated by the bars and outliers on the box plots spanning the whole range of population
sizes. However, there are more occurances of the smaller population sizes, and therefore
N = 10 is computed as the optimal population size. For the smaller problem sizes of
l = 5 and 10 from Figure 3.6(a) and Figure 3.6(b) it can be seen that only N = 10 located
the best solutions, due to more updates of the population through more generations for
the smaller population sizes, with elitism in place to continually evaluate and improve the
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Figure 3.6 Optimal populations sizes for F7 for different function evaluations.

(a) 2–dimensional plot of F5 (b) 2–dimensional plot of F7

Figure 3.7 Functional form of F5 and F7.
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(a) 2–dimensional plot of F6 (b) 2–dimensional plot of F3

Figure 3.8 Functional form of F6 and F3.

best solution found so far.

3.1.2.2 Optimal Generation Functions
As seen in Table 3.3, the functions that are best solved with an optimal number of gener-
ations are F3, F4, and F6. Similarly to the Maximal Generation Functions, this result can
be explained by the characteristics of these problems.

F6 A 2–dimensional plot of F6 can be seen in Figure 3.8(a). Initially, the x2
l term

in the fitness function dominates the fitness function value, and therefore this decision
variable must converge close to the optimal value before any of the remaining decision
variables can significantly contribute to the fitness function value. The fitness function for
F6 suggests that it is a completely separable function, and therefore each decision variable
can be optimized independently, so it might be expected that a smaller population size
would perform the best, similar to that observed for the Maximal Generation Functions
described previously. However, an increase in population size as the number of function
evaluations increased was the most efficient method to solve F6, as seen in Figure 3.9.
This result is due to the phenomenon of genetic drift. Larger population sizes will preserve
more diversity for all decision variables, so once the lth decision variable has converged
enough for the remaining decision variables to contribute to the fitness function value,
there is still some diversity in the population for the others to also converge to their optimal
solution. The results for F6 make for an interesting comparison with those obtained for
F5. The consequence of the inclusion of the x2

l term into the fitness function is that an
optimal number of generations is required to solve the problem (F6). However, without
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Figure 3.9 Optimal populations sizes for F6 for different function evaluations.

the x2
l term, and even with the inclusion of the modulus of the decision variable values,

the smallest population size is the most suitable (F5).

F3 A very strong relationship between the optimal N and FE was observed for F3, as
seen in Figure 3.10. F3 has an equal contribution from each decision variable to the fit-
ness function value (although there is a slightly higher contribution from the lth decision
variable). A 2–dimensional plot of the function can be seen in Figure 3.8(b). Conse-
quently, it might be expected that the gconv ∝ √

l relationship found by Thierens and
Goldberg (1994) would be observed. This is the case for the two smaller problem sizes
(l = 5, 10), where the gconv ∝ √

l relationship occurs with a proportionality constant of
approximately 34, as seen in Table 3.3. However, for the problem sizes of F3 with l ≥ 10,
the relationship between gconv and l changes to the domino convergence relationship pro-
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Figure 3.10 Optimal populations sizes for F3 for different function evaluations.

posed by Thierens et al. (1998), gconv ∝ l. This relationship can be seen in Table 3.3, with
a proportionality constant of approximately 11. For the larger problem sizes of F3, there
are more decision variables, and due to the random nature of the GA, it is more likely
that the decision variables will converge at different rates. When this is the case, the
decision variables, or small combinations of decision variable values, will have different
contributions to the fitness function value. Hence, the decision variables that have values
that are most distant from the optimum, and therefore have the biggest contribution to the
fitness function value, must be improved first before the contribution from other decision
variables is significant again. Hence, for the larger problem sizes, it is more likely that
there will be variations in the rate of convergence of the different decision variables, and
therefore domino convergence occurs, and the gconv ∝ l relationship is observed.
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Figure 3.11 Optimal populations sizes for F4 for different function evaluations.

F4 F4 has a similar contribution from each decision variable to the fitness function, the
only difference being that the xi/

√
i terms alter the frequency of the local optima pro-

duced by the cosine term in each dimension. From Figure 3.11 it can be seen that again
a strong relationship between N and FE was observed for F4, producing a constant gconv

value for this function. On first inspection of Table 3.3, it appears as though neither of
the two relationships between gconv and l occurred, and, unexpectedly, that the number
of function evaluations required to locate the optimum solution does not increase with
the size of the problem. This result is due to changes in the form of the fitness func-
tion as the problem is scaled into higher dimensions. In Figure 3.12, F4 is plotted in
l = 2 dimensions, as well as l-dimensional cross sections of the function taken along the
diagonal of the hypercube of the search space for the function in l = 5, 10, and 20 dimen-
sions (Whitley et al., 1995). From the plots it can be clearly seen that as the dimension
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Figure 3.12 Plot of F4 in l = 2, 5, 10, and 20 dimensions. The higher dimensional plots are
1–dimensional cross-sections of the function taken along the diagonal of the hypercube.

of the problem increases, the size of local optima in the fitness function, produced by the
product of the cosine term, decreases compared to the ‘big bowl’ structure of the fitness
function produced by the x2 term.

This change in the characteristics of the fitness function can be seen to influence the
results for F4 in l = 5 and 20 dimensions, which are solved in a similar FE of 61 000

and 63 000, respectively. As the size of the problem increases, it would be expected
that the FE required to solve the problem would also increase. Also, a decrease in the
influence of the local optima on the fitness function value will produce a decrease in FE

required to solve the problem. This was observed between F1 (Sphere) and F2 (Rastrigin),
where F2 had a number of local optima introduced into the fitness function, and therefore
required approximately 2.6 more FE than to solve F1. Thus, the result of a combination
of increasing the problem size and decreasing the size of local optima is that for F4,
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both cases are solved in a similar number of FE. For the case of F4 in l = 5 and 10

dimensions, the effect of reducing the size of the local optima outweighs the effect of the
increase in problem size, and reduces the FE required to locate the optimal solution for
the larger problem size. Therefore, as the problem size is increased, the characteristics
of the fitness function change, and a different number of GA generations performs best.
From Figure 3.12, it can be seen that the cosine term has a negligible impact on the fitness
function for F4 in l = 20 dimensions, thus the change in fitness function as the problem
size is increased is much less prominent. Therefore, for the case of F4 in l = 20 and 30

dimensions, a relationship of gconv ≈ 7l is produced, as seen in Table 3.3.

3.1.2.3 Problem Size Effects

For the separable functions with similar contributions to the fitness function from each
decision variable, F1, F2, and F5, the size of the problem does not affect the optimal
population size, as seen in Figure 3.3, Figure 3.4 and Figure 3.5, respectively. For these
functions the optimal population size was always the smallest population size that was
considered. This result indicates that it is more efficient to have a smaller population size
updated more frequently through more generations for the completely separable function,
and the most efficient way to locate better solutions is through more generations for the
small population size. Therefore, for these cases, and possibly for all separable functions
with similar decision variable contribution to the fitness function, better results are ob-
tained by increasing the number of generations, as opposed to increasing the population
size.

For two of the Optimal Generation Functions considered, F3 and F6, the problem size
had an effect on the optimal number of GA generations. As noted above, the optimal
gconv increases in proportion to

√
l for the smaller problem sizes of F3, increasing to

gconv ∝ l for the larger problem sizes of F3, as well as for all problem sizes of F6. For F4,
the optimal number of generations is very consistent for the first three problem sizes
considered (l = 5, 10, 20), which on first inspection may suggest that there is an optimal
number of generations to solve this function, irrespective of its size. However, this is
due to the combination of the local optima in the fitness function becoming smaller, and
therefore decreasing the optimal gconv (as outlined in Section 3.1.2.2), and at the same
time the increase in problem size increasing the optimal gconv. This is reinforced by the
results for F4 in l = 20 and 30 dimensions, as shown in Table 3.3 and Figure 3.12, where
the optimal number of generations increases from gconv = 121 to 236. From Figure 3.12,
it can be seen that the local optima for F4 are already very small for l = 20. Therefore,
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the increase to l = 30 increases the optimal number of generations required to solve the
problem, without the corresponding decrease in the roughness of the fitness function that
occurred for the smaller problem sizes. Hence, the optimal number of generations to solve
the problem increases with problem size, as would be expected for this function, but for
this case the effect is being offset by changes in the fitness function as it is scaled into
higher dimensions.

The results indicate that the effect of problem size on the most suitable number of GA
generations is dependent on the problem characteristics. For the functions considered,
if the problem was a Maximal Generation Function then the best results were always
obtained with the smallest population size and maximizing the number of generations,
irrespective of problem size. However, from Table 3.3 it can be seen that if the fitness
function is an Optimal Generation Function, then an increase in the problem size, l, results
in an increase in the optimal number of generations, gconv. The relationship between gconv

and l ranged from O(
√

l) for the smallest problems sizes considered, up to O(l) for the
larger problem sizes.

3.1.2.4 Epistasis Effects

The effect of the epistatic interactions on the optimal gconv to solve the problem can be
directly investigated from the results for F2 and F3, as the only difference between the
two functions is the introduction of interactions between the decision variables in F3 by
the (xi + xi+1)/2 terms. Even though both fitness functions have a similar form, the
introduction of the interactions produces vastly different optimal GA parameter results.
The difference in results can be explained by the efficient use of function evaluations.
For F3, there are interactions between decision variables, and combinations of decision
variable values must be stored and evaluated to solve the problem. For a GA, this is done
using a large N , and better solutions are found using a larger population size, provided
there is time for the GA to process the information in the population and converge to a
solution. Hence, as the number of function evaluations increases, so does the optimal
population size. However, these larger population sizes do not find the best results for
fewer function evaluations, as there is insufficient time to process all the combinations of
decision variable values in the population and thus to converge on a near optimal solution.

As outlined in Section 3.1.2.3, for F2, which does not have any interactions between
decision variables, it is more efficient to have a smaller N with more generational up-
dates, as opposed to an optimal gconv, which was the case for F3. Functions F1 and F5
also fall into this class, where each decision variable has a similar contribution to the fit-
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ness function and can be optimised independently of the other decision variable values.
F6 is also a separable function without any epistatic effects between decision variables,
however, as outlined in Section 3.1.2.2, the lth decision variable has a much higher con-
tribution to the fitness function value and therefore a larger N is required to ensure that
there is enough diversity in the population for the remaining decision variables once the
lth decision variable has converged close to the optimal value.

As was case for F3, epistatic effects between decision variables are produced in the
fitness function for F4, this time by the product of the cosine terms. Therefore, each
decision variable cannot be optimised separately, and a large N must be used. A similar
relationship between gconv and l to that found for F3 is not observed for F4, due to the
changes in the fitness function characteristics as the problem size increases. F7 also has
epistatic interactions between pairs of adjacent decision variables, so it might be expected
that there would also be a strong relationship between the optimal gconv and l. However,
for F7, there is no useful information in the fitness function to guide the GA toward better
solutions, and the GA parameters had very little effect on the solution found. While
there was little difference between the GA results obtained using different GA parameter
values, the best results were achieved using a small N , and improving the best solution
found through as many generational updates as possible.

3.1.3 Discussion of Parametric Study Results

The results presented in this section suggest that there were four classes of fitness function
characteristics, each of which required different GA behaviour in order to obtain the best
solutions most efficiently. The different calibration classes identified are depicted in the
flow chart shown in Figure 3.13. The first class of problem characteristics is where there
is no structure in the fitness function to lead the GA to better solutions. F7 belongs to
this class, and for this class of problems the results suggest that the GA parameters have
little effect on the solution found. However, the best results were obtained with a small
population size with as many generational updates of the population as possible. The
second class of problem characteristics is where there is structure in the fitness function
to lead the GA toward the optimal solution, and there are epistatic interactions between
decision variables. Functions F3 and F4 belong to this class, and the results suggest that
there is an optimal gconv to most efficiently solve these problems. There is also an optimal
gconv to solve problems in the third class, where there is structure in the fitness function and
significantly different contributions to the fitness function value from at least one decision
variable. F6 belong to this class, due to the x2 term dominating the fitness function value.

Page 71



Chapter 3 – The Number of Generations Until Convergence

��
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Structured
Fitness

Function

Yes

No

��
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Decision
Variable

Interactions

Yes

No

�

Optimal
Generation
Function
(F3, F4)

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Highly
Salient

Variable(s)

Yes

No

�

Optimal
Generation
Function

(F6)

�
Maximal

Generation
Function

(F1, F2, F5)

�
Maximal

Generation
Function

(F7)

Figure 3.13 Flow chart depicting the fitness function calibration classes.

The final class of problem characteristics seen in Figure 3.13 is where there is structure
in the fitness function, there are no epistatic interactions between decision variables, and
each decision variable has a similar contribution to the fitness function value. Functions
F1, F2, and F5 belong to this class, and in this case, the problem is most efficiently solved
with a small population size, updated through as many generations as possible.

Figure 3.13 does not consider the possibility of a function belonging to both classes 2
and 3, where a function has both epistatic interactions between decision variables and at
least one decision variable with a significantly higher contribution to the fitness function
value than the others. For this case, it is expected that the function would be an Optimal
Generation Function, however, a function with these characteristics was not included in
the set of test functions considered.

The calibration classes that have been identified are useful in the case where the equa-
tion of the fitness function is known, and therefore some information can be inferred about
the problem characteristics. However, often this is not the case, for example, if the fit-
ness function is constructed from the results of a simulation model, which is the case for
WDS optimisation. This highlights the potential usefulness of fitness function statistics.
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For example, a gene significance measure (Seo et al., 2003) could detect a difference in
the contribution from each decision variable, an epistasis measure (Davidor, 1991) could
detect interactions between decision variables, and a correlation measure (Weinberger,
1990) could detect the size of local optima relative to the global structure of the fitness
function.

A correlation measure such as this would provide useful information about the changes
in F4 as it is scaled into higher dimensions. In 2 dimensions (Figure 3.12(a)), a relatively
low degree of correlation would be expected, as the local optima produced by the cosine
term are of a similar magnitude as the structure in the fitness function, leading to the global
optimum produced by the x2 term. However, for F4 in 20 dimensions (Figure 3.12(d)), a
much higher correlation measure would be expected, as the size of the local optima are
negligible compared to the strong global structure leading to the optimal solution.

Statistics to determine these characteristics of fitness functions are proposed in Chap-
ter 4. However, before these statistics are introduced the remainder of this chapter con-
siders controlled changes to the characteristics of the Optimal Generations Functions, to
investigates if these changes have an influence on the observed value of gconv.

3.2 THE EFFECT OF FUNCTION CHARACTERISTICS ON THE NUM-
BER OF GENERATIONS

The hypothesis to be empirically tested in this section is that if a function is an Optimal
Generation Function, a change in the characteristics of the function will produce a change
in the value observed for gconv. The methodology used to test this hypothesis is outlined
in the following section.

3.2.1 Methodology

A similar methodology to that used in the previous section is also adopted here. Again,
an empirical approach has been used, in this case to test if the value of gconv observed in
Section 3.1 can be related to the characteristics of the fitness function. In order to achieve
this, the three Optimal Generation Functions identified in Section 3.1 have been tested
with different characteristics, to investigate the impact of the change in characteristics on
the value of gconv.

The same conditions have been adopted for this analysis as Section 3.1: every combi-
nation of the GA parameter values outlined in Table 3.2 have been used; each combination
has been run for 30 different sequences of random numbers; the GA has been applied to
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Table 3.5 The test functions with controllable characteristics used in the parametric study.

Function to be Minimised

F3A
l∑

i=1

l∑
j=i

⎧⎨
⎩

(xi+xj

2

)2 − A cos
(
fπ

xi+xj

2

)
+ A if i,j interact,

0 otherwise.

F3B
l−1∑
i=1

((
xi + xi+1

2

)2

− A cos

(
fπ

xi + xi+1

2

))
+ x2

l − A cos (fπxl) + Al

F3C
l−1∑
i=1

((
xi + xi+1

2

)2

− 10 cos

(
2π

xi + xi+1

2

))pi

+ x2
l − 10 cos (2πxl) + 10l

F4A
1

4000

l∑
i=1

ipx2
i − A

(
l∏

i=1

cos

(
xi√

i

)
− 1

)

F4B
lpx2

l

4000
+

1

4000

l−1∑
i=1

ip
(

xi + xj

2

)2

− A

(
cos

(
xl√

l

) l−1∏
i=1

cos

((xi+xj

2

)
√

i

)
− 1

)

F6A
l−1∑
i=1

iAxi + xp
l

F6B
l−2∑
i=1

iA
(

xi + xi+1

2

)
+

(
xl−1 + xl

2

)p

each variation of each test function for problem sizes of l = 5, 10, 20, and 30; and the best
performing GA parameters were stored every 1 000 function evaluations as the algorithm
solved each function.

3.2.1.1 Test Functions
The Optimal Generation Functions identified in Section 3.1 have been used to test the
effect of different fitness function characteristics on the observed value of gconv. These
functions were F3, F4, and F6, and the changes to their characteristics that have been
adopted are given in Table 3.5.

For F3, different degrees of interaction, roughness in terms of the size and frequency
of the local optima, and the scaling of the variables have all been considered. F3A allowed
for changes in the degree of epistasis of the problem to be altered. All the functions con-
sidered have pair-wise interactions, however if one decision variable is included in more
than one interaction, larger building blocks are produced. The different cases that have
been considered are presented in Table 3.6. Not all combinations of the two parameters
are possible, for example one interaction, mBB = 1, between adjacent variables, δBB = 1,
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Table 3.6 The function values used for F3A.

δBB

mBB 1 l/2 l − 1

1 x x x

l/2 x x

l − 1 x

Table 3.7 The function values used for F3B.

Parameter Values

A 10, 20

f 2, 5

between variables half the solution string apart, δBB = l/2, and the complete solutions
string apart, δBB = l − 1 have been tested, however, it is not possible to have all of the
decision variables interacting with the distance between all the interactions the whole
solution string apart, which would produce values of mBB = l and δBB = l − 1. The
interaction cases that have been tested are marked with an ‘x’ in Table 3.6.

Variations in the multimodality and roughness of the Rastrigin Function have been
considered in function F3B. The values considered for the parametric study can be seen
in Table 3.7, where all combinations of A and f have been tested. The effect of changes in
these values on the characteristics of the function can be seen in Figure 3.14. An increase
in the value of A, and therefore the roughness of the function, can be seen in the difference
between the two–dimensional plots of F3B in Figure 3.14(a) and Figure 3.14(c), as well
as Figure 3.14(b) and Figure 3.14(d). Similarly, the effect of an increase in the value of f ,
and subsequently an increase in the multimodality of the function, can be seen between
Figure 3.14(a) and Figure 3.14(b), as well as Figure 3.14(c) and Figure 3.14(d).

Variations in the salience of the decision variables for the Rastrigin Function, or the
contribution of each variable on the fitness function values, have been considered in the
different cases considered for F3C. The different cases tested in the parametric study for
F3C are presented in Table 3.8. Case 1 is the original version of F3, with each variable
having the same contribution to the fitness function value. Case 2 of function F3C has
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(a) A = 10, f = 2 (b) A = 10, f = 5

(c) A = 20, f = 2 (d) A = 20, f = 5

Figure 3.14 Plots of the effect of parameters A and f on the characteristics of F3B

the sub-function of the Rastrigin Function in terms of (x1 + x2)/2 squared, with p1 = 2,
and a linear contribution from the remaining pairs of variables, which all have the value
pi = 1. Case 3 has the contribution of the first two terms squared, as opposed to only
the first term for Case 2. To provide a comparison with Cases 2 and 3, Case 4 has the
contribution of all variables squared.

The effect of this change in the salience on the fitness function characteristics can be
seen in Figure 3.15, where x2 has a much larger effect on the values of F (x) than x1,
and hence values for x2 close to the optimal values must be found before x1 contributes
enough to the fitness function values to also be optimised. Note that Figure 3.15 does
not include the interactions between the variables for F3C seen in Table 3.5, as only two
dimensions of the function can be plotted, and is used for demonstration only.

Two parameters have been introduced into F4 to allow the effect of changes to the
degree of roughness and the degree of salience to be tested. These parameters can be
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Table 3.8 The function values used for F3C.

Case Parameter Values

1 pi = 1 ∀i ∈ 1 . . . l

2 p1 = 2, pi = 1 ∀i ∈ 2 . . . l

3 p1 = p2 = 2, pi = 1 ∀i ∈ 3 . . . l

4 pi = 2 ∀i ∈ 1 . . . l

Figure 3.15 The effect of increasing the salience of x2 relative to x1 for F3C

seen in Table 3.5, where the A parameter can be used to change the roughness of the
function, and the p parameter can be used to alter the salience of the variables. The values
used for this function in the parametric study can be seen in Table 3.9. The effect of the
change in these variables on the fitness function characteristics can be seen in Figure 3.16,
where an increase in A, and therefore increases in the roughness of the function, can be
seen between Figure 3.16(a) and Figure 3.16(b), Figure 3.16(b) and Figure 3.16(d), and
Figure 3.16(e) and Figure 3.16(f). Changes in p are also evident in the changes in the
fitness function characteristics, where both x1 and x2 have the same contribution to the
fitness function in Figure 3.16(a) and Figure 3.16(b), with p = 0. In contrast, it is clear
from Figure 3.16(e) and Figure 3.16(f) with p = 2 that x2 has a much larger effect on the
fitness function value than x1.

The effect of interactions on the values of gconv can also be investigated by the differ-
ence in values obtained for F4A and F4B. From Table 3.5, it can be seen that additional
pair-wise interactions have been introduced into the function between adjacent decision
variables for F4B compared to F4A. The same range of values for parameters A and p are
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Table 3.9 The function values used for F4A and F4B.

Parameter Values

A 1, l

p 0,1,2

Table 3.10 The function values used for F6A and F6B.

Parameter Values

A 2, 3

p 2, 3

also tested for F4B as those presented in Figure 3.16 for F4A.

For F6, changes to the salience of the variables and degree of interaction have been
considered. From Table 3.5 it can be seen that the parameter A can be used to change
the size of the incremental dominance of each adjacent variable. Parameter p can be used
to control the salience of the last decision variable in the solution string, xl, by altering
the magnitude of the order of its relationship with the fitness function value. The effect
of parameter p on the characteristics of the fitness function can be seen in Figure 3.17,
where in Figure 3.17(a) p = 2 and the linear increase in x1 can be seen against the
quadratic increase in x2. However, in Figure 3.17(a) with p = 3, the effect of x1 on the
fitness function can hardly be noticed compared to that of x2. It is not until the value for
x2 has converged close to the optimal value that x1 will have a significant contribution to
the fitness function value and be able to be optimised. As was the case for F4 above, the
effect of interactions on the values of gconv can also be investigated by the difference in
values obtained for F6A and F6B, where pair-wise interactions have been introduced into
the function between adjacent decision variables for F6B compared to F6A.

Problems sizes of l = 5, 10, 20, and 30 have been considered for every variation of
each function. Every combination of each of the variables in Table 3.7, Table 3.9, and
Table 3.10 has been tested. Therefore, a total of 136 functions have been tested in this
section. The same GA parameters and convergence criteria used in Section 3.1.1.2 have
been used, resulting in a total of 1 762 560 GA runs to produce the results presented in
Section 3.2.2.
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(a) A = 1, p = 0 (b) A = l, p = 0

(c) A = 1, p = 1 (d) A = l, p = 1

(e) A = 1, p = 2 (f) A = l, p = 2

Figure 3.16 Plots of the effect of parameters A and p on the characteristics of F4A
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(a) A = 1, p = 2 (b) A = 1, p = 3

Figure 3.17 Plots of the effect of parameter p on the characteristics of F6.

3.2.2 Function Characteristics Results

In this section, the results from changing the characteristics of the Optimal Generation
Functions on the value of gconv are presented. This is followed by an explanation of
the results and how they relate to the changes in the function characteristics, before a
summary of the investigation into the relationship between function characteristics and
gconv is presented.

3.2.2.1 F3
F3A Function F3A considered variations in the degree of interaction between the deci-
sion variables for the Rastrigin Function. The values for gconv obtained from the paramet-
ric study for each function considered are presented in Table 3.11. From Table 3.11 it can
be seen that an increase in the number of interactions between pairs of variables, mBB,
produced a slight increase in gconv for all cases considered. The only exception occurs for
F3A in 30 dimensions with δBB = 1 and mBB = 1, with gconv = 385. An increase in δBB,
or an increase in the distance between the interacting decision variables, also produced
an increase in gconv. Again, the only exception to this observation occurred for F3A with
l = 30, δBB = 1 and mBB = 1.

F3B Variations in the multimodality and the roughness of the Rastrigin Function have
been investigated in function F3B. In this case, an increase in A produces larger local
optima in the function, and therefore a rougher function. An increase in f increases the
frequency of the local optima, producing an increase in the multimodality of the function.
The values for gconv produced from the parametric study for the variations of F3B consid-
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Table 3.11 gconv values observed for F3A.

mBB mBB

δBB l 1 2 l − 1 l 1 2 l − 1

1

5

57 63 75

20

191 212 219

2 65 78 - 201 237 -

l 83 - - 229 - -

1

10

63 108 107

30

385 260 325

2 60 115 - 268 284 -

l 68 - - 269 - -

Table 3.12 gconv values observed for F3B.

A A

f l 10 20 l 10 20

2
5

68 101
20

191 228

5 64 88 145 225

2
10

113 210
30

314 435

5 113 225 225 338

ered are presented in Table 3.12. The results indicate that an increase in the roughness of
the function, or an increase from A = 10 to A = 20, results in a much larger value of gconv.
From Table 3.12, it can be seen that an increase in the multimodality of F3B, produced
by an increase in f , generally resulted in a slight decrease in the values of gconv to most
efficiently solve the problem. This result was consistent over all the cases considered,
apart from a slight increase in the value of gconv for F3B with l = 10 and A = 20.

F3C Changes to the salience of the variables for the Rastrigin function have been con-
sidered in the function F3C. For Cases 1 and 4, all variables have an equal contribution
to the fitness function. It can be seen from Table 3.13 that these two functions have very
similar values of gconv for all problem sizes considered.
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Table 3.13 gconv values observed for F3C.

Case

l 1 2 3 4

5 80 112 144 63

10 139 161 196 135

20 233 245 298 225

30 346 267 349 336

For the two cases with varying salience between variables, Cases 2 and 3, from Ta-
ble 3.13 it can be seen that the more dominant the variables that are present in the fitness
function, the higher the values of gconv. In general, the value of gconv for Case 2 is higher
than that found for Cases 1 and 4 for all dimensions considered, with gconv for Case 3
higher again.

3.2.2.2 F4

For both F4A and F4B an increase in the difference in each decision variable’s effect on
the fitness function values is produced by an increase in the value of p, as seen in the
functional form of F4A in Figure 3.16. From Table 3.14 it can be seen that for most of
the functions considered, an increase in p produced an increase in gconv.

The results for F3B suggest that an increase in the roughness of a function produced
an increase in gconv. This result was not observed as convincingly for changes in the A

parameter for F4A and F4B. The effect of A on the characteristics of F4A was relatively
obvious in the two dimensional plots shown in Figure 3.16, and it was expected that as l

increased with the problem size, the roughness produced by A = l would also increase.
However this was not the case, as the roughness produced by the product of the cosine
terms decreased as l increased, similarly to the case shown in Figure 3.12. Consequently,
the result was that a change in A had little effect on the characteristics of F4A and F4B in
higher dimensions, and therefore there was no definitive effect on the values of gconv for
changes in A, as seen in Table 3.14.

The effect of the introduction of extra epistatic interactions between the decision vari-
ables in the fitness function can be seen by comparing the results for F4A and F4B with
the same values for A and p in Table 3.14. The results indicate that in most cases, an
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Table 3.14 gconv values observed for F4A and F4B.

F4A F4B

p p

A l 0 1 2 0 1 2

1
5

121 62 83 60 70 77

l 59 78 89 56 62 87

1
10

109 142 162 79 87 110

l 98 166 145 101 81 124

1
20

121 128 159 121 122 206

l 138 125 155 113 119 201

1
30

236 283 300 168 241 222

l 281 297 313 153 237 201

increase in the number of interactions produced a slight decrease in the value of gconv.
The result was more convincing that the effect of A outlined above, as only 4 of the 24
comparable functions tested produced a larger gconv for F4B compared to F4A.

3.2.2.3 F6

The salience of the decision variables for F6A and F6B was changed by both the A and
p parameters. An increase in A produced an increase in the dominance of each deci-
sion variable over the variables preceding it in the solution string, and an increase in p

increased the order of the dominance of the final variable in the solution string. The re-
sulting values of gconv for changes to A and p for F6A and F6B can be seen in Table 3.15.
The results indicate that, in general, an increase in the salience of the variables, through
either an increase in A or p, produces an increase in gconv.

The effect of introducing interactions into F6 can be seen by comparing the results for
F6A without interactions, and F6B, which has had pair-wise interactions introduced into
fitness function. From Table 3.15, it can be seen that there is very little difference between
the value of gconv for F6A and F6B with the same values for A and p, indicating that the
introduction of epistatic interactions between the decision variables for F6 did not have a
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Table 3.15 gconv values observed for F6A and F6B.

F6A F6B F6A F6B

p p p p

A l 2 3 2 3 l 2 3 2 3

2
5

80 116 84 109
20

319 323 338 321

3 117 127 130 124 403 350 339 344

2
10

166 174 179 175
30

529 483 473 462

3 166 168 167 163 459 493 499 510

significant effect on the best performing GA parameter values.

3.2.3 Observed Effect of Characteristics on the Number of Generations

3.2.3.1 Roughness and Multimodality

An increase in the roughness of a fitness function was considered for functions F3B, F4A
and F4B, through changes to the A parameter. The degree of ‘roughness’ of a function is
related to the global structure of a function; a very rough function has no global structure,
and therefore there is less information in the fitness function to guide the GA to find
better solutions; however, for a function with less roughness it will be easier for the GA
to proceed to the global optimum of the function, provided there is structure in the fitness
function to lead toward the better solutions. In general, it was observed that an increase
in the roughness of a function produced an increase in gconv. The implication of this
result is that a smaller population size is more effective for functions that have a greater
roughness. For rougher functions, the GA is relying on mutating the best solutions, as
there is no structure in the fitness function to benefit the search, and a larger population
size will only waste function evaluations. The effect of a change in the roughness of F4,
produced by a change in the A parameter for F4A and F4B was not as substantial as the
effect seen by a change in the roughness of F3B. The reasons for this are outline above
in Section 3.2.2.2, where changes in A had little effect on the problem characteristics in
higher dimensions.

Changes to the multimodality of a function were considered for function F3B, by
making changes to the f parameter. The result observed was that an increase in the multi-
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modality of the function produced a slight decrease in the value of gconv. For a given FE,
a decrease in gconv indicates that a larger population size performed better for functions
with more local optima. This result can be explained by the fact that a larger population
size will contain more solutions distributed over the search space, and therefore will be
less likely to become trapped in the local optima that are present. Therefore, a larger
population size is more likely to and allow the search to proceed to the better regions of
the search space.

3.2.3.2 Salience of Variables

Variations in the salience of one or more of the decision variables was considered for all
three of the Optimal Generation Functions identified in Section 3.1. For all the variations
of the test functions considered, it was observed that an increase in the salience of the
decision variables produced a increase in gconv. The consequence of this result is that for an
available number of FE, a smaller population size is better for functions that have a higher
salience of at least one decision variable. This may not have been the most expected result,
as it might be assumed that a larger population size would be more beneficial for a more
salient problem, as an increased diversity in the population would avoid the occurance of
genetic drift once the more salient decision variables have converged. However, mutation
can be used to inject diversity into the population, and when only a small percentage
of the decision variables have a significant effect on the fitness function value, function
evaluations are wasted when a large population size is used.

This result is in agreement with the modelling results of Thierens and Goldberg (1994)
and Thierens et al. (1998), where it is proposed that for a uniformly distributed function,
gconv will scale O(

√
l), and a function with exponentially scaled variables gconv will scale

O(l). Therefore, as the problem size grows more generations are expected for functions
with higher salience, as observed in the results presented here.

3.2.3.3 Epistatic Interactions

The effect of epistatic interactions between the decision variables has also been consid-
ered for all three of the Optimal Generation Functions. The results for F3A in Table 3.11
suggested that an increase in gconv occurred with an increase mBB or δBB, however, in gen-
eral, gconv decreased when pair-wise interactions were introduced to F4B when compared
to F4A. A change in the degree of epistatic interaction for these functions may also pro-
duce a change in the roughness of the function, which may account for the conflicting
observations. The results presented in Table 3.15 for the introduction of interactions into
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Figure 3.18 The effect of interactions on the solution found for F3A with l = 30.

F6 indicate that for this case, the interactions have very little effect on the observed value
of gconv. Therefore, the results presented in Section 3.2.2 suggest that a change to the
degree of interaction between variables did not have a significant effect on gconv for the
cases considered.

While the results suggest the degree of interaction between the decision variables had
little effect on gconv, this characteristic did have a large effect on the solution quality found.
In Figure 3.18 the best solution found from the average of the 30 different initial popula-
tion runs for the parametric study for different FE has been plotted for each variation of
interactions considered for F3A in l = 30 dimensions. It must be noted that the solutions
plotted for different FE do not necessarily come from the same set of GA parameter val-
ues. For example, the solution plotted for F3A with mBB = l − 1 and δBB = 1 at 10 000

function evaluations was produced from a GA run with a population size of N = 10, how-
ever, the solution plotted for FE = 100 000 for the same function was produced from a
GA run with a population size of N = 800.

From Figure 3.18, it can be seen that the number of interactions, mBB, has a large
impact on GA performance, where for more interactions, the GA found it much more
difficult to find better solutions. For the function with mBB = 1 and δBB = 1, the GA
found a solution of F (x) = 0.30 after FE = 100 000. In contrast, for the function where
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mBB is increased to mBB = l− 1, the best parameter values for the GA could only find an
average best solution of F (x) = 8.33. δBB also had a slight impact on GA performance,
where the GA was able to find slightly better solutions when the distance between the
interacting variables was shorter. However, the difference was negligible when compared
to the impact of an increase in mBB.

3.2.3.4 Problem Size

Every variation of every function considered has been optimised in problem sizes of l = 5,
10, 20, and 30. The results presented in Section 3.2.2 indicate that of all the problem
characteristics considered, problem size has by far the largest effect on the value of gconv.
This is an expected result, as the GA will require more generations to effectively process
the larger number of decision variables, and is in agreement with a number of theoretical
modelling results, for example the population sizing rule (Harik et al., 1999) outlined in
Section 2.4.3, in the form of the number or size of building blocks.

3.2.4 Discussion of Characteristics Results

The hypothesis tested in this section was that, if a function is an Optimal Generation
Function, the value of gconv is related to the characteristics of the function. The results
presented in Section 3.2.2 validate this hypothesis for the cases considered, where a num-
ber of the function characteristics considered produced a change gconv observed from the
parametric study.

Both the roughness and multimodality resulted in predictable changes in gconv, how-
ever, changes to the roughness of the function produced the largest changes in gconv. Sim-
ilarly, highly salient decision variables had a large effect on the most suitable value for
gconv, where the more salient one or more of the decision variables were, the larger the
value of gconv.

Somewhat surprisingly, introducing epistatic variables did not have a significant effect
on the value of gconv for the cases considered. However, this function characteristic did
have a large effect on the solution quality found. Both changes to the number of inter-
actions, and distance between the interactions in the solution string, affected the solution
quality found. However, the number of interactions had a much larger influence on the
ability of the GA to find good solutions compared to the distance between the interac-
tions. This was also a somewhat surprising result, as the GA used in the parametric study
used a one point crossover operator, which would be expected to process adjacent inter-
actions very well, but would be expected to be quite disruptive to interactions between
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variables far apart in the solution string. However, from Figure 3.18 it can be seen that the
GA found solutions of very similar quality for these two cases, with the solution found
for functions with epistatic interactions between adjacent decision variables only slightly
better than the solution found for similar functions with interactions between variables
further apart in the solution string.

3.3 SUMMARY

The first part of this chapter has investigated the hypothesis that under tournament selec-
tion, there exists a constant number of GA generations to most efficiently solve a given
optimisation problem. A suite of test functions has been considered, each for a range of
problem sizes. Two different function types have been identified, each having an identifi-
able GA calibration method for making the most efficient use of the function evaluations
that are available. The function types identified were: Maximal Generation Functions,
where the most efficient method to solve the problem uses a small population size up-
dated as many times as possible; and Optimal Generation Functions, where there is an
optimal number of generations to efficiently solve the problem, irrespective of the num-
ber of function evaluations available.

Therefore, the Optimal Generation Functions that have been identified have validated
the initial hypothesis, where if the test function has a characteristic that benefits from be-
ing solved with a larger population size (such as interactions between decision variables,
or significantly different contributions from the decision variables to the fitness function
value), a constant number of generations exists that will locate the best solutions possible
for the problem.

The second part of this chapter has investigated the hypothesis that the constant num-
ber of generations to most efficiently solve a problem is related to the characteristics of the
fitness function. The function characteristics considered were those identified to effect the
different function types in the first section, namely: multimodality or roughness, salience,
epistatic interactions and problem size. A number of variations of the functions belong-
ing to the Optimal Generation Functions identified were considered, each with different,
controllable characteristics.

The second hypothesis tested in this chapter was also validated for the cases consid-
ered, with strong relationships identified between all the characteristics considered and
the observed number of generations from the parametric study. The only exception was
the effect of changing the degree of epistatic interactions between the variables, which
did not significantly change the number of generations until convergence. However, this
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characteristic was observed to have a large effect on the solution quality found.
Therefore, this chapter has presented two important results regarding GA calibration:

1. that for functions with certain characteristics, there exists a constant number of
generations to most efficiently solve the problem, irrespective of the convergence
criteria; and

2. that the actual number of generations is related to the characteristics of the problem.

Hence, it is proposed that the characteristics of the function can be used to predict the
number of generations to most efficiently solve an optimisation problem.

For the problems considered in this chapter, the fitness function characteristics can
be inferred by the mathematical form of the function. However, for many ‘real-world’
optimisation problems, such as WDS optimisation problems, the characteristics of the
fitness function are largely unknown. For fitness functions such as this, the following
chapter develops a number of statistics that can be applied to provide information about
the characteristics of the fitness function.
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Chapter 4
Development of Fitness Function
Statistics

In Chapter 3, it was determined that the number of generations before the GA popu-
lation converged for certain types of fitness functions considered was a function of the
characteristics of the function. However, for WDS optimisation, as well as many other
optimisation problems, the fitness function is derived from results of a simulation model,
and the characteristics of the fitness function are largely unknown. For cases such as this,
it is proposed in this chapter that statistics computed from a sample of fitness function
values can be used to provide information about the characteristics of the fitness function.

A number of studies (Kinnear, 1994; Naudts, 1998; Naudts and Kallel, 2000) have
indicated that fitness function statistics are a poor indicator of GA performance. However,
these studies did not consider the calibration of the algorithm, and hence the convergence
observed was rather arbitrary. For example, a GA with one set of parameters may perform
poorly, however with different parameters the algorithm may find the optimum every
time. This research proposes that the most suitable GA parameters are a function of
the characteristics of the problem, and the fitness function statistics provide information
about these. This approach is different to that generally adopted when making use of these
statistics, which typically attempts to relate fitness function statistic results to how closely
a GA will converge to the optimum solution. However, this is not only a function of the
fitness function characteristics, but also the GA parameter values and the convergence
criterion.

The fitness function characteristics that were identified to affect the values of gconv

in Chapter 3 were roughness and multimodality, salience of the decision variables and
problem size. The problem size is known for any fitness function, and is given by the
solution string length. The roughness of the function can be estimated by a correlation
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measure, such as the autocorrelation measure (Weinberger, 1990). However, concerns
regarding the most common method used to calculate this measure, by the use of a ‘time
series’ of fitness function values, were outlined in Chapter 2. To more accurately charac-
terise fitness function characteristics, a spatial correlation measure is proposed and tested
in Section 4.1. The method proposed by Seo et al. (2003) to estimate the salience of
variables by the use of MI is tested in Section 4.3.

The degree of epistatic interactions was not observed to affect the most suitable GA
calibration in Chapter 3, however, this characteristic had a large effect on the solution
quality found. If the interaction between variables could be detected, then the solution
string could be rearranged to allow for more efficient processing of the best combination
of values in the GA population. A number of common statistics for estimating epistasis,
such as the epistatic variance, cannot detect the degree of interaction, only the presence of
an interaction (Naudts, 1998). The gene epistasis measure proposed by Seo et al. (2003)
is tested on simple test functions, and limitations in estimating the necessary parameters
in a real parameter space are identified. A new sampling method is introduced in Sec-
tion 4.2.2 to address these limitations, and the sampling method is tested on a number of
test functions with known characteristics.

4.1 SPATIAL CORRELATION

The spatial autocorrelation technique is based on the statistic known as Moran’s I
(Moran, 1948), and has been adopted to overcome the problems associated with using a
series of fitness function values to represent a l–dimensional search space. For the spatial
autocorrelation, the arrangement of the function values is expressed using a weighting
function. A spatial weighting function consists of a set of rules for assigning values to
pairs of sample values to represent their arrangement in space. The most common spatial
weighting function for a data set specifies that the weight for a pair of points i and j is
one if i and j are nearby in the search space, and zero otherwise (Odland, 1988).

Typically, the weighing function is used to locate which pairs of sample points are
a similar Euclidean distance apart from each other in the search space, to allow their
function values to be correlated to provide information about the surface. The advantage
of the weighing function is that it relates the actual position of points in the search space
to each other. This is different from the traditional time series approach, which uses the
number of steps between points where the function is sampled. This has the potential to be
misleading, as only a small portion of the search space may be covered and the potential
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exists for values to be a large number of steps apart in the generated ‘time series’, but
actually to be very close to each other in the landscape.

The weighting function can be sequentially altered to provide more information about
the landscape further away than the closest neighbours. By changing the weighting func-
tion to identify pairs of data points further and further apart from each other, the correla-
tion between function values can be calculated for a number of distances, and a typical
autocorrelation curve of distance against correlation can be produced.

Once the weighting function has been defined, the spatial correlation (Rs) is computed
by:

Rs(d) = n

n∑
i=1

n∑
j=1

wij,d (xi − x) (xj − x)

n∑
j=1

wij,d

n∑
i=1

(xi − x)2

, (4.1)

where n is the number of samples; x is the mean value of the function values; xi is the ith

function value sampled; and wij,d is the value of the weighting function, for values i and
j that are d apart in the search space. Rs has an expected value of −1/(n − 1) (Odland,
1988), which tends toward zero as the number of samples increases. If the xi values are
independent of the xj values at neighbouring locations, the calculated value of Rs should
equal this expected value, within the limits of statistical significance. In this case, the
function values are unrelated to each other on average, and it would be expected that there
is no information in the fitness landscape to guide the GA toward better solutions. Values
of Rs that exceed the expected value indicate positive spatial autocorrelation, for which
fitness values of xi tend to be more similar to neighbouring values compared to the average
of the samples. When this is the case, there may be some useful structure in the landscape
to guide the algorithm toward better solutions. Correlation values below the expectation
indicate negative spatial autocorrelation, where pairs of values are dissimilar. A negative
correlation may also provide useful information to guide the optimization algorithm, as
this indicates that on average, function values are significantly different from one another.

The weighting function used here correlates objective function values that are similar
distances apart in the objective function search space, which is not necessarily the fitness
landscape the GA is operating on. However, in this work, it is assumed that the fitness
function is a reasonable approximation to the fitness landscape, the assumption being that
the distance between points is a suitable surrogate for the GA fitness landscape, as it is
more likely that a GA operator will produce new solutions that are close to the solutions
that were used in the operation. Also, in the previous chapter it was found that character-
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istics of the fitness function itself affected the most suitable value of gconv, implying the
fitness function provides a useful approximation to the true fitness landscape.

4.1.1 Methodology

To investigate the accuracy of the existing and proposed correlation measures, a number
of experiments have been performed. In order to compare the accuracy of the correlation
measures, functions with a known autocorrelation have been used. The Wiener–Khinchin
Theorem (Bracewell, 1965) provides that the autocorrelation of a function, R(d), is given
by the Fourier Transform of the power spectrum of the Fourier Series of the function. The
theorem can be used to determine the exact form of the correlation function for a series
of sine waves, as if:

f(x) =
m∑

i=1

Ai sin(fix + φi), (4.2)

then the autocorrelation function is given by (Bracewell, 1965):

R(d) =

∫ ∞

−∞
f(x)f(x + d)dx∫ ∞

−∞
(f(x))2dx

, (4.3)

=
1

m∑
i=1

A2
i

m∑
i=1

A2
i cos(fid), (4.4)

where: m is the number of sine terms that compose the function; d is the correlation lag, or
distance between points; and Ai, fi, and φi are the amplitude, frequency, and phase shift of
each term i, respectively. Using this relationship, the true autocorrelation of the function
is known, and therefore a direct comparison between the exact correlation structure of a
fitness function, and that estimated by the correlation statistics, can be made.

The above relationship is only defined for functions in one dimension, however op-
timization problems are generally highly multi-dimensional. To test both the temporal
and spatial correlation measures, the autocorrelation function in Equation 4.4 has been
extended into two dimensions. To achieve this, each sine function in the Fourier Series
has been rotated into the second dimension, thus projecting each sine wave along a line
trajectory in two dimensions. Each sine function can be rotated by a different angle,
producing complex multi-modal functions. As the function is still comprised of superim-
posed sine waves, the Fourier Transform of the function provides the true autocorrelation
of the function. Note that the autocorrelation function does not take the form of an ex-
ponential decay, as suggested by Weinberger (1990). This can be explained by the fact
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(a) Two 1D sine waves rotated to produce a 2D
function.

(b) The method used to compute the correlation of
the 2D functions.

Figure 4.1 Extension of the Wiener–Khinchin Theorem into two dimensions.

that the functions are not first order autoregressive functions, which was assumed in that
work.

An example of the superposition used can be seen in Figure 4.1(a), comprised of two
simple sine waves; y = sin(x) with a line of trajectory of x2 = x1, and y = sin(2x)

with a line of trajectory of x2 = −x1. Even from this simple example, it can be seen that
complex, multi-modal functions can be constructed in this fashion. However, by using
the approach outlined above, the autocorrelation of this function is known.

Similarly to the one dimensional case, the autocorrelation along the line of the rotated
function is known, as defined by Equation 4.4. However, it is necessary to compute the
average correlation in all directions, not just along the line of trajectory of the function.
Perpendicular to the line of trajectory of the function, the contribution from each sine
wave to the fitness function value is the same, therefore the autocorrelation due to each
individual wave perpendicular to its line of trajectory is R = 1. In directions between
these two extremes, the correlation is also between the corresponding correlation values.
The value of the correlation function for a given distance can therefore be computed by
taking the average value in all directions for a given correlation distance.

The method used to compute the correlation can be seen in Figure 4.1(b), where the
correlation is computed for the distance, d. To compute the correlation in the direction
of B, the distance, d, is projected to give a distance, dt, along the line of the function.
Therefore, the correlation computed using dt in Equation 4.4 produces the correlation for
the function in the direction of B for a distance of d. From Figure 4.1(b), it can be seen
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that perpendicular to the line of the function, dt = 0, producing R = 1, as expected.
The correlation for distance d is computed by taking the average of the correlation val-
ues calculated at a distance d for a sample of points in all directions for all sine waves.
128 samples have been used to compute the average autocorrelation for a given distance
in this work. While a two dimensional function such as this has a much lower dimension-
ality than the highly dimensional problems typically tackled with GAs, the methodologies
tested are based on the Euclidean distance between two points, and therefore can be di-
rectly extended to higher dimensions.

Using this technique, the correlation computed using the temporal and spatial autocor-
relation functions can be compared with the true autocorrelation of the function. Fourier
Series functions composed to approximate the variations of the Rastrigin Function used
for function F3B in Chapter 3 have been used as the functions to test the correlation statis-
tic. Two tests can be conducted by making use of these functions; 1) the accuracy of the
temporal and spatial correlation statics can be compared against the known autocorre-
lation, and 2) the results from different functions can be compared to determine if the
statistic can identify changes to the function characteristics.

As the functions of known autocorrelation are comprised of sine waves, the x2 term in
the Rastrigin Function must be approximated by a sine wave. Given that the range of the
decision variables was [−5.12, 5.12], a frequency of f = 2π/(5.12 − −5.12) = 0.6136

must be used. Similarly, A = 5.122

2
= 13.1072 has been implemented to provide the

correct amplitude. In order for the resulting sine wave to produce the ‘big bowl’ structure,
a phase shift of φ = −π/2 was also used. A subsequent sine wave is then used to provide
the roughness and multimodality on the function, and both waves are also applied in the
second dimension. Therefore a total of four sine waves are used to produce the function
shown in Figure 4.2(a), and this is compared against the true Rastrigin Function with
parameters A = 10 and f = 2, shown in Figure 4.2(b). Note that the minimum of the
approximated function is not F (x) = 0, as is the case for the true Rastrigin Function.
However as the correlation statistic is based on the difference between function values,
this will not affect the results. As was the case for function F3B, values of f = 2 and 5

have been tested for the roughness sine term, along with A = 10 and 20.

For the temporal autocorrelation statistic, a random walk has been used, as proposed
by Weinberger (1990). If a random sample of points is taken in the search space to com-
pute the spatial correlation statistic, the resulting distribution of distances between the
sample points is close to normal. Therefore, there are many samples of fitness function
values that can be used to compute the correlation for points that are approximately half
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(a) Fourier Series Approximation (b) True Rastrigin Function

Figure 4.2 The Rastrigin function and Fourier Series approximation to the Rastrigin Func-
tion used to compute the correlation statistics.

the extent of the search space away from each other, but many fewer are available to be
used to compute the correlation between points that are very close together or very far
apart in the search space. To characterize a search space, we may only be interested in
points that are relatively close together, where some correlation is still detectable. Hence,
a random sampling method may be very inefficient in this instance, as most pairs of points
to be correlated are further apart in the search space than the correlation length, or the de-
tectable correlation in the fitness function.

A structured sampling approach has been adopted to overcome this problem, and to
sample the necessary data to compute the spatial correlation. This approach involves
randomly generating an initial nc samples, as given by:

nc = n/

(
1

step size
+ 1

)
, (4.5)

where n is the total number of samples required, nc is the number of samples used for
each correlation computation, and step size is the percentage of the extent of the search
space to use as the distance between points for each correlation value. From each of the nc

initial sample points, another sample point is generated one step size away, producing nc

function values to be correlated for the initial distance of one step size. Then, another set
of points is generated two step sizes from the initial nc sample points, to be correlated for
the next distance. The process continues until the whole search space has been covered.
In this way, the specified number of samples, n, is still used, however only nc samples are
used to compute each correlation value.

For the analyses conducted, a step size of 0.05% of the extent of the search space has
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(a) A = 10, f = 2
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(b) A = 10, f = 5
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(c) A = 20, f = 2
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(d) A = 20, f = 5

Figure 4.3 Temporal (Rt) and spatial (Rs) correlations compared to the true correlation
(R).

been adopted. As the range of each decision variable is xi = [−5.12, 5.12], the step size
corresponds to a distance of d = 0.05

√
(5.12 −−5.12)2 + (5.12 −−5.12)2 = 0.724.

The sample sizes tested were n = 500 and 5000 samples.

4.1.2 Results

Results for both the temporal and spatial correlation statistics, as well as the analytic au-
tocorrelation, are presented for the four functions considered (Figure 4.3). Rs indicates
the correlation computed using the spatial correlation statistic, and Rt indicates the corre-
lation computed using the temporal correlation statistic. R provides the true correlation
of the function, as given by Equation 4.4 extended into two dimensions.

For points very close together in the search space, all the methods considered produce
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correlation values very close to the true autocorrelation. For distances further apart than
the first two or three steps, the temporal methods can be seen to overestimate the true
correlation value. This result can be attributed to using the order that points are sampled
in as a surrogate for the distance between two points, as for points further than a few step
sizes apart, it is unlikely that this approach will provide a reasonable representation of
the true distance between points. The overestimation of the autocorrelation of a function
will in turn suggest a longer correlation length than the function actually has. This over-
estimation may be a significant concern when using the temporal correlation statistic for
function characterisation, as it provides misleading information about the characteristics
of the function.

Generally, the spatial correlation statistic provides a very close approximation to the
true autocorrelation for the functions considered. It can be seen from Figure 4.3 that for
n = 500 samples, the spatial correlation statistic produces a very noisy approximation to
the true correlation. In this case, each correlation value is being computed using nc =

500/( 1
0.05

+ 1) = 23 samples, producing large errors in each calculation. However, when
the sampling is increased to n = 5000 samples, then nc = 5000/( 1

0.05
+ 1) = 238

samples are used to compute each correlation value, and accurate approximations to the
true autocorrelation can be seen for all the functions considered.

The other information that can be obtained from these results is whether the statis-
tics can actually provide useful information about changes in the characteristics of the
function. The correlation computed using the spatial correlation statistics with n = 5000

for the four functions considered is presented in Figure 4.4. The results indicate that the
spatial correlation statistic can in fact provide very useful information about changes in
the roughness of a function, where the correlation computed with A = 10 is significantly
higher than that computed for the functions with A = 20. The statistic is less able to
predict changes in the multimodality of the function, produced by a change from f = 2

to f = 5. However the increase in multimodality does produce a slight decrease in the
correlation detected. It was found in Chapter 3 that the increase in multimodality only
produced a slight change in the value observed for gconv, and therefore this result is ac-
ceptable.

4.1.3 Discussion

From these analyses, it can be concluded that the traditional temporal correlation statistic
is unable to represent a two–dimensional space as a one dimensional series of function
values. This approach leads to the overestimation of the true correlation of a function.
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Figure 4.4 Comparison of the spatial correlation function computed for variations of the
approximated Rastrigin Function

The proposed spatial correlation statistic provides a more accurate representation of the
search space, and therefore a more accurate estimation of the true correlation of a func-
tion. Hence, the spatial correlation statistic with structured sampling is proposed as an
appropriate method to provide useful information about the structure of a fitness func-
tion. Not only is the statistic accurate, but it can also provide relevant information about
changes to the fitness function that produced changes in the number of GA generations
before convergence.

4.2 EPISTATIC INTERACTIONS

As outlined in Section 2.4.1.2, there are a number of concerns regarding the application
of traditional epistasis variance measures to quantify the epistasis of a fitness function,
namely (Naudts and Kallel, 2000): i) the statistic can only provide information about
the presence of epistasis, not a measure of the degree of epistasis; and ii) the epistasis
measure is sensitive to nonlinear scaling of the fitness function, something a GA with
tournament or ranking selection is entirely insensitive to. Therefore, in this section the
gene epistasis measure proposed by Seo et al. (2003), also outlined in Section 2.4.1.2, is
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Figure 4.5 Representation the interaction between decision variables in terms of Mutual
Information.

tested on two simple problems; one with epistatic interactions, and one without. The main
drawback of the gene epistasis measure is that it requires the joint MI, I(Xi, Xj; Y ), to be
estimated. Computing this value directly requires the three dimensional pdf of a sample
of data, p(xi, xj, y), and therefore a large data set to provide a reasonable estimate, due to
the relatively high dimensionality.

4.2.1 Testing the Gene Epistasis Measure

To avoid the need to estimate a three dimensional pdf, the interaction between decision
variables can also be estimated using the difference between the MI, I(Xi; Y ), and the
conditional MI, I(Xi; Y |Xj). The relationship between these two terms can be seen in
Figure 4.5. If the relationship between Xi and Y is independent of the value of Xj ,
then I(Xi; Y ) = I(Xi; Y |Xj). Otherwise, the degree of interaction between decision
variables can be estimated by the size of the non-overlapping region in Figure 4.5, given
by I(Xi; Y )− I(Xi; Y |Xj). However, this approach is not without its own shortcomings,
as in order to compute the interaction between decision variables using the conditional
mutual information, I(Xi; Y |Xj), the residuals of the fitness function value given one
decision variable, Y |Xj , must be estimated. This is not a straightforward procedure, as
the relationship between Y and Xj is generally unknown.

To investigate the impact of these practical aspects on the accuracy of the gene epis-
tasis measure, both approaches outlined above (estimating the full three dimensional pdf
and estimating the residuals of Y given Xj) have been tested experimentally. To compute
the mutual information terms, the pdfs of a sample of data must be estimated. The most
common approach adopted for non-parametric density estimation is the histogram, and
this approach has been adopted in this work. Nonparametric density estimation methods
such as this can be used to provide a direct approximation to the distribution of a random
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Table 4.1 Gene epistasis test functions.

Function

F1 x1 − x2

F2 (x1 − x2)
2

variable based on structure in the data, without needing to parameterise a model that may
or may not be suitable for the distribution of the data. The classical frequency histogram
is formed by constructing a set of non-overlapping intervals, or bins, and counting the
number of samples that fall into each bin (Scott, 1992). There are two parameters that
determine a histogram, the bin width, h, and the starting point of the first bin, as this
will determine which bin a given sample is allocated to. The bin width, h, is commonly
referred to as a smoothing parameter, as it controls the amount of smoothness in the es-
timator for a given sample size, n. The bin width reference rule for the asymptotically
optimal bin width for normally distributed, multivariate data has been adopted to deter-
mine the size of the histogram bins (Scott, 1992):

ĥi = 3.5σ̂in
−1/(2+l), (4.6)

where ĥi is the bin width in dimension i, σ̂i is the standard deviation of the sample data
in dimension i, n is the number of samples in the data set, and l is the dimension of the
data. The reference rule is based on finding the best trade-off between a large h to reduce
variance, and a small h to reduce bias, producing the minimum Mean Squared Error
(MSE) of the estimates. The approach proposed by Moddemeijer (1989) to explicitly
account for the bias and variance in a histogram estimate for computing entropy and MI
has been adopted in this work.

Two simple test functions have been selected to test the accuracy of the gene epistasis
measure for detecting an interaction between decision variables. The functions considered
are given in Table 4.1. F1 is the difference between two variables, hence no interaction
between the random variables is expected. F2 is calculated from the squared value of the
difference between the two random variables, therefore for this function a strong interac-
tion between variables is expected. To compute the gene epistasis, each random variable
has been generated from the distribution xi ∈ N(0, 1). The values presented for all ex-
periments have been computed using n = 5000 samples, and the results presented have
been averaged over 30 different random data sets.
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Table 4.2 Interactions by mutual information and joint probability.

F1 F2

I(X1; Y ) 0.320 0.071
I(X2; Y ) 0.333 0.074
I(X1, X2; Y ) 1.300 0.456
I(X1; Y ) + I(X2; Y ) − I(X1, X2; Y ) -0.648 -0.310

4.2.1.1 Method 1: Gene Epistasis by Joint Mutual Information
This approach to computing the gene epistasis involves computing the joint MI directly
using Equation 4.7:

I(Xi, Xj, Y ) =
∑

xi∈Xi

∑
xj∈Xj

∑
y∈Y

p(xi, xj, y) log
p(xi, xj, y)

p(xi, xj)p(y)
. (4.7)

From Equation 4.7, it can be seen that the three dimensional pdf, p(xi, xj, y), must be
estimated in order to compute I(X1, X2; Y ). The joint MI can then be used to compute the
interaction by comparing it to the sum of the individual MI terms, I(X1; Y ) + I(X2; Y ).

The results for computing the interaction between decision variables using the joint
MI can be seen in Table 4.2. As expected, I(X1; Y ) ≈ I(X2; Y ), as both random variables
have a similar contribution to the dependent variable, Y . It would be expected that the
difference between the sum of the MI terms and the joint MI would be higher for F2
than F1, due to the interaction between the variables. This is reflected in the results,
with a difference of −0.31 for F2 and −0.648 for F1. The theoretical minimum value
for this difference is zero, occurring when there is no interaction between the decision
variables, and I(X1; Y ) + I(X2; Y ) = I(X1, X2; Y ). However, for both functions, the
value for the joint MI, I(X1, X2; Y ), is significantly higher than the sum of the individual
MI values, I(X1; Y ) + I(X2; Y ). It is likely that the results in Table 4.2 can be attributed
to a poor estimate of the three dimensional pdf that is required to determine the value
of I(X1, X2; Y ), even for these simple functions and a relatively large sample size of
n = 5000.

4.2.1.2 Method 2: Gene Epistasis by Fitness Function Residuals
The previous results suggest that it is not practical to estimate the three dimensional pdf,
p(xi, xj, y), as even for the very simple functions considered, the interaction between
variables cannot be estimated accurately. However, by estimating the MI between one
variable Xi, and the fitness function value given the effect of another variable, Y |Xj ,
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Table 4.3 Interactions by mutual information and residuals.

F1 F2

I(X1; Y ) 0.320 0.071
I(X1; Y |X2) 1.991 0.255
I(X1; Y ) − I(X1; Y |X2) -1.671 -0.184

(I(Xi; Y |Xj)) the effect of both variables, Xi and Xj , on the function value, Y , can be
estimated without the need to estimate the three dimensional pdf.

Y |Xj can be computed by the difference between the best estimate of Y given the
values of Xj (YXj

) and the original values of Y . However, it is difficult to approximate
the series YXj

accurately, as generally the relationship between Y and Xj is unknown.
A simple linear regression could be used to estimate YXj

, however, if the relationship
between Y and Xj is highly nonlinear, this approach will provide poor estimates of YXj

,
and therefore potentially misleading values for I(Xi; Y |Xj).

To avoid assuming a form of the regression equation, the series YXj
has been estimated

using nonparametric kernel regression. The theoretical regression function is defined to
be (Scott, 1992):

r(x) = E(Y |X = x) =

∫
yp(y|x)dy =

∫
yp(x, y)dy∫
p(x, y)dy

, (4.8)

where E(Y |X = x) is the conditional expectation of y for a given observation, x. The
nonparametric kernel regression estimator with kernel K of Equation 4.8 is:

r̂(x) =
1
2

∑n
i=1 yiKhx(x − xi)

1
2

∑n
i=1 Khx(x − xi)

. (4.9)

Then, the series Y |Xj can be computed as:

(Y |Xj)i = Yi − r̂(Xj). (4.10)

To compute Y |X2 for the two test functions, a Gaussian kernel with reference bandwidth
(Scott, 1992) has been adopted. The results for computing the interaction between F1 and
F2 using the residuals of Y given X2 can be seen in Table 4.3. The values presented are
the average values from 30 different random data sets, computed using n = 5000 samples.

From the results, it can be seen that for both functions, I(X1; Y |X2) > I(X1; Y ). For
F1 with independent variables, it would be expected that X1 ≈ Y |Xj , as without the ef-
fect of X2 the value of Y is equal to X1. Therefore, I(X1; Y |X2) ≈ I(X1; X1) = H(X1).
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By definition I(X1; Y ) ≤ H(X1), therefore the result that I(X1; Y |X2) > I(X1; Y ) is
reasonable for F1 in this case. However, this results in a negative interaction term, com-
puted by I(X1; Y )−I(X1; Y |X2), and clearly does not represent the region of interaction
in Figure 4.5. For F2, it would be expected that I(X1; Y |X2) < I(X1; Y ) due to the in-
teraction between X1 and X2. However, a similar result to that observed for F1 can be
seen in Table 4.3, and I(X1; Y |X2) > I(X1; Y ), even for this function with an interaction
between decision variables.

From the results for these two simple test functions, it can be seen that there are
practical shortcomings in computing the gene epistasis measure proposed by Seo et al.
(2003). Major limitations in calculating the statistic have been identified; either a three
dimensional pdf cannot be accurately estimated with a reasonably sized data set, or the
series Y |Xj cannot be determined, and does not reflect the interaction between decision
variables. If the relationship between variables for these two very simple cases cannot
be determined, it is highly unlikely that the measure will be useful for high dimensional
optimisation problems. To overcome these problems and allow the degree of interaction
between decision variables to be estimated, a new sampling method is proposed, leading
to a new statistic, the separability measure.

4.2.2 Separability Measure

While the results from the previous section suggest that the gene epistasis measure may
not be suitable to be used in practice, MI may still be a useful property for determining if
there is an interaction between pairs of decision variables.

Essentially, it should be possible to detect the relationship between decision variables
by sampling the effect of a change in each decision variable on the dependent fitness
function value. A sampling method is proposed to produce two series of function val-
ues, which can be used to determine the magnitude of the interaction between a pair of
decision variables. The sampling method is outlined in the following section, before it
is experimentally tested under the same conditions used for the gene epistasis measure
above.

Consider a function value based on the value of two variables, f(x1, x2). The effect of
x1 on the function value can be determined by comparing the original function value with
that obtained when a different value is used for x1, f(x1+Δx1, x2). Δx1 is not necessarily
a small change in x1, but is used to indicate the function value computed using a different
value for x1, and the same value of x2. Similarly, the effect of x2 can be investigated
by computing f(x1, x2 + Δx2). The effect of both decision variables can be computed
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Figure 4.6 Sampling method used for the separability measure.

by changing both variables at once, f(x1 + Δx1, x2 + Δx2). If there is no interaction
between decision variables, then the sum of the change in each decision variable on their
own should equal the change in both decision variables at once:

fs(x1 + Δx1, x2 + Δx2) = f(x1, x2) + (f(x1 + Δx1, x2) − f(x1, x2))

+ (f(x1, x2 + Δx2) − f(x1, x2)),

= f(x1 + Δx1, x2) + f(x1, x2 + Δx2) − f(x1, x2), (4.11)

where fs is the function value if f is completely separable. This relationship is depicted
in Figure 4.6. Next, the value of fs(x1 + Δx1, x2 + Δx2) computed using Equation 4.11
can be compared with the true value of f(x1 +Δx1, x2 +Δx2), to determine if there is an
interaction between the decision variables. A series of function values can be generated
using this approach for different decision variable values, Y12, for the true fitness function
values, and Ys,12 for the function values if the function is completely separable. If the func-
tions are completely separable, then Y12 = Ys,12, and I(Y12; Ys,12) = H(Y12) = H(Ys,12).
Therefore, a measure of the interaction between decision variables can be obtained using
the proposed separability measure, λij:

λij = 1 − I(Yij; Ys,ij)

H(Yij)
. (4.12)

If the function is completely separable in variables Xi and Xj , then I(Yij; Ys,ij) = H(Yij)

and λij = 0. Otherwise, I(Yij; Ys,ij) < H(Yij) and 0 < λij ≤ 1. λij = 1 occurs
when I(Yij; Ys,ij) = 0, i.e., Yij is completely independent of Ys,ij , indicating a very strong
interaction between the two variables. The statistic can be applied to problems in more
than two dimensions by considering each pair of variables in turn, and holding the other
variables at constant values for each sample of Yij and Ys,ij , but using different values for
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Table 4.4 Separability measure results.

F1 F2

λ12 0.054 0.926

each different sample of Yij and Ys,ij , to provide a suitable representation of the search
space.

The proposed separability measure has been applied to the two simple functions in
Table 4.1, to determine if it can detect the interaction between the variables. As four
function evaluations are required to compute one sample, the number of samples has been
reduced to n = 1250 to ensure the same number of function evaluations are made that
were made for the gene epistasis measure experiments.

The results in Table 4.4 indicate that the separability measure can detect the interaction
in F2, with a value of λ12 = 0.926, and correctly determines that the random variables are
separable for F1, with a very low value of λ12 = 0.054. There is some error introduced
into the estimates by the density estimation procedure, as the separability measure for F1
is not exactly zero.

To demonstrate the accuracy of the separability measure on more complex fitness
functions than the simple test functions in Table 4.1, the statistic has been applied to
the different variations of the test functions considered for F3A in Chapter 3. The 6
variations of the function in l = 5 dimensions have been considered, with mBB = l/2

used as mBB = 2 where necessary, and similarly for the value of δBB. If a value has been
computed to be λ < 0, the value has been presented as λ = 0 in the results, as these
values are only produced by slight errors in the density estimation process.

The results for the separability measure applied to F3A with mBB = 1 and δBB = 1

are presented in Table 4.5. The results indicate that the statistic has accurately detected
a strong interaction between variables x2 and x3 with λ2,3 = 0.699, and correctly deter-
mines that there are no other interactions between the variables. Note that the location of
the interaction between the variables is randomly determined before the samples are col-
lected, so it could be present between any of the adjacent decision variables. The results
for F3A with mBB = 1 and δBB = 2, as well as mBB = 1 and δBB = 4, are presented in
Table 4.6 and Table 4.7, respectively. The separability measure has also correctly clas-
sified these functions, with the interaction detected between x3 and x5 in Table 4.6, and
between x1 and x5 in Table 4.7.

Similar results are observed for the remaining variations of F3A that were considered
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Table 4.5 Separability measure for F3A
with mBB = 1, δBB = 1.

x2 x3 x4 x5

x1 0.0 0.0 0.0 0.0
x2 0.699 0.0 0.0
x3 0.0 0.0
x4 0.0

Table 4.6 Separability measure for F3A
with mBB = 1, δBB = 2.

x2 x3 x4 x5

x1 0.0 0.0 0.0 0.0
x2 0.0 0.0 0.0
x3 0.0 0.694
x4 0.0

Table 4.7 Separability measure for F3A
with mBB = 1, δBB = 4.

x2 x3 x4 x5

x1 0.0 0.0 0.0 0.697
x2 0.0 0.0 0.0
x3 0.0 0.0
x4 0.0

Table 4.8 Separability measure for F3A
with mBB = 2, δBB = 1.

x2 x3 x4 x5

x1 0.0 0.0 0.0 0.0
x2 0.699 0.0 0.0
x3 0.699 0.0
x4 0.0

in Chapter 3, with interactions between x2 and x3, as well as between x3 and x4, for
F3A with mBB = 2 and δBB = 1 in Table 4.8, interactions between x1 and x3, as well
as between x2 and x4, for F3A with mBB = 2 and δBB = 2 in Table 4.9, and between
all adjacent variables in Table 4.10 for mBB = 4 and δBB = 1. Therefore, the results
presented in this section indicate that the proposed seperability measure can accurately
determine the location of any epistatic interactions for these more complex functions.

As the proposed statistic is based on the distribution of data produced by the differ-
ence from changes to pairs of decision variables, it can be accurately applied to any fitness
function. Higher order interactions can be identified by inspecting the results for pair-wise
interactions. For example, if an interaction is detected between variables xi and xj , xk

Table 4.9 Separability measure for F3A
with mBB = 2, δBB = 2.

x2 x3 x4 x5

x1 0.0 0.699 0.0 0.0
x2 0.0 0.694 0.0
x3 0.0 0.0
x4 0.0

Table 4.10 Separability measure for
F3A with mBB = 4, δBB = 1.

x2 x3 x4 x5

x1 0.729 0.0 0.0 0.0
x2 0.732 0.0 0.0
x3 0.739 0.0
x4 0.718
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and xj , as well as xi and xk, it would be expected that there is an interaction of order
kBB = 3 between these three variables. By only considering pairs of variables at a time,
it allows very accurate results to be produced, as it is unlikely that for higher dimensional
problems the effect of one decision variable on the fitness function value will be able to
be detected over the combined effect of all other decision variables from a random sample
of data. However, this can also be a disadvantage, as it dramatically increases the com-
putational requirements to compute the statistic, as the fitness function must be sampled
for each combination of pairs of decision variables. In higher dimensions, the number of
combinations of decision variables increases quickly, as the number of combinations of
decision variables to be sampled is l(l − 1)/2.

4.3 DECISION VARIABLE SALIENCE

So far in this chapter, statistics have been developed to provide information about two of
the function characteristics that were considered in Chapter 3, the roughness and multi-
modality of the function, as well as the interactions between variables. The remaining
characteristic that must be quantified is the salience of the decision variables, where a
highly salient variable has a much larger effect on the value of the fitness function than
the others. The results presented in Section 4.2.2 indicate that MI can be a useful statis-
tic for determining the relationship between variables if the sample data are collected
carefully. The major difference between the methodology for the proposed separability
measure and the gene epistasis measure of Seo et al. (2003) is that only two series of
data need to be considered, as opposed to three, and due to the curse of dimensionality, it
becomes too difficult to estimate the necessary properties in three dimensions.

It is proposed in this section that MI could also be used to determine if there are
any salient variables in the search space. The normalised MI, NI , is proposed for this
purpose:

NI(Xi, Y ) =
I(Xi, Y )

H(Y )
. (4.13)

The value for the statistic ranges from 0 ≤ NI ≤ 1. If I(Xi, Y ) = H(Y ) then
NI(Xi, Y ) = 1, and Xi contains the same information as Y , so variable Xi completely
describes Y and any other decision variables have no effect on the fitness function value.
On the other hand, if I(Xi, Y ) = 0, then Xi has no relationship to Y . Therefore, by
comparing the values of NI(Xi, Y ) for all decision variables, Xi, any salient variables
that have a much larger effect on the fitness function value can be detected.

To investigate if the normalised MI can detect the different contribution of decision

Page 109



Chapter 4 – Development of Fitness Function Statistics

Table 4.11 Salience results for F3C.

Case
1 2 3 4

x1 0.001 0.045 0.008 0.006
x2 0.004 0.050 0.051 0.012
x3 0.008 0.006 0.008 0.020
x4 0.007 0.004 0.000 0.016
x5 0.009 0.000 0.003 0.011

variables on the fitness function values, the statistic has been applied to the variations of
F3C considered in Chapter 3. The functions have been tested in l = 5 dimensions, and
n = 5000 has been used to compute the statistic in each case. The results presented have
been taken from an average of 30 random data sets.

Table 4.11 presents the results for the normalised MI between each decision variable
and the fitness function value for the four cases of F3C considered in Chapter 3. Cases
1 and 4 have similar contributions from each decision variable, with the only difference
being that each sub-function of the Rastrigin Function has been squared for Case 4. From
Table 4.11, it can be seen that the normalised MI between each variable and the fitness
function is very similar for each case, correctly indicating that each variable has a similar
contribution to the fitness function value. Case 2 of function F3C has the first sub-function
of the Rastrigin Function squared, so it would be expected that the term (x1 + x2)/2

would have a much larger effect on the fitness function value than the remaining decision
variables. This is reflected in Table 4.11, with NI(X1, Y ) = 0.045 and NI(X2, Y ) =

0.05, an order of magnitude higher than the next highest value of NI . The value for
NI(X2, Y ) is slightly higher, because it will also contribute to the fitness function value
in the (x2 + x3)/2 term. For Case 3 the first two terms of the fitness function are squared,
as opposed to only the first term for Case 2. The normalised MI values indicate that x2

has by far the largest contribution to the fitness function value, with NI(X2, Y ) = 0.051.
This can be explained by the fact that x2 is involved in both squared terms for Case 3 of
F3C, (x1 + x2)/2 and (x2 + x3)/2, and therefore has a much larger contribution to the
fitness function value than x1 or x3. The results also correctly indicate that x1 and x3 have
a larger effect on the fitness function value for Case 3 than x4 and x5.

The results presented in Table 4.11 correctly reflect the relative relationship between
each decision variable and the fitness function value for the cases of F3C considered.
However, the values of normalised MI are very low for all cases. This can be explained
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Table 4.12 Salience results for F3C without epistatic interactions.

Case
1 2 3 4

x1 0.044 0.670 0.155 0.047
x2 0.048 0.003 0.145 0.051
x3 0.045 0.004 0.001 0.045
x4 0.041 0.000 0.000 0.050
x5 0.044 0.004 0.000 0.053

by the pair-wise interactions that were introduced between the decision variables, as
NI(Xi, Y ) does not provide any information about changes to xi+1, which will also be af-
fecting the values of y for changes in xi. To demonstrate this phenomenon, the normalised
MI statistic has been applied to the four cases of F3A without the pair-wise interaction
between the decision variables. The results from this analysis are presented in Table 4.12,
where the relationship between the decision variables and the fitness function value are
much clearer. For Cases 1 and 4, NI(Xi, Y ) = 0.045 for all decision variables, indicating
that each variable has a similar effect on the fitness function value. For Case 2, x1 has by
far the largest effect on the fitness function values with NI(X1, Y ) = 0.67. For Case 3,
both x1 and x2 dominate the fitness function with NI(X1, Y ) ≈ NI(X2, Y ) ≈ 0.15, as
expected.

The results presented in Table 4.11 and Table 4.12 indicate that the normalised MI
can be used to determine if any highly salient variables exist in the fitness function value.
As the effect of only one decision variable at a time is considered in the normalised MI
statistic, the combination of two variables on the fitness function value was not detected
as well, as indicated by the lower values calculated in Table 4.11 compared to Table 4.12.
However, the results indicate that differences between the normalised MI values com-
puted between each of the decision variables and the fitness function value can be used
to provide very useful information about the salience of the variables for a given fitness
function.

4.4 SUMMARY

Chapter 3 identified a number of fitness function characteristics that affected the number
of generations before a GA population converged when solving a given fitness function.
This chapter has focused on developing statistics to quantify the characteristics that were
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identified. The first characteristic considered in this chapter was the roughness and multi-
modality of a fitness function. The spatial correlation measure was proposed to quantify
these characteristics, and was found to compare very favourably to the true autocorre-
lation for functions with a known autocorrelation. Not only was the spatial correlation
statistic accurate, but it was also able to identify changes in the roughness, and to a lesser
extent multimodality, which were observed to affect the value of gconv in Chapter 3.

After testing the gene epistasis measure, the separability measure was proposed to
identify epistatic interactions between decision variables. By testing the statistic on func-
tions with different numbers of interactions, and distance between the interactions, it was
found that the measure was able to very accurately determine the location of any epistatic
interactions introduced into the fitness function. The proposed measure worked by iden-
tifying interactions between pairs of variables, and by inspecting all pairs of interactions,
higher order interactions can also be identified.

The final statistic proposed in this chapter was the normalised MI to determine the
presence of any highly salient decision variables in the fitness function. The results pre-
sented in Section 4.3 indicate that the normalised MI is a suitable method for comparing
the effect of each decision variable on the fitness function value, as the results agreed with
the expected results for the functions with known characteristics considered.

Therefore, this chapter has presented statistics that can be used to quantify the charac-
teristics of fitness functions that were identified to effect the most efficient number of GA
generations in Chapter 3. The following chapter is dedicated to developing a relationship
between gconv and the values computed by the three statistics proposed in this chapter, to
allow gconv to be predicted for functions with unknown characteristics.
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Predicting the Number of
Generations Before Convergence

In Chapter 3, it was found that for a given fitness function with certain characteristics, the
number of generations before the population converged, gconv, did not change, irrespec-
tive of the convergence criteria. It was also observed that the value of gconv changed with
changes in the characteristics of the fitness function. A number of fitness function statis-
tics to provide useful information about these characteristics were developed in Chapter 4.
However, Merz (2004) recognised that while fitness function measures may provide some
useful information about problem characteristics, the link between GA theory and func-
tion properties has not yet been well developed. The aim of this chapter is to progress this
understanding, by developing a relationship between the values calculated by the fitness
function statistics and gconv for a range of test functions. In the following section, the the-
oretical basis for the proposed analyses is outlined, before the methodology used to derive
an empirical relationship is presented. This is followed by the results obtained using the
derived relationship, and a validation of the relationship by comparing the predicted and
observed values of gconv for a range of test functions.

5.1 BACKGROUND

In this chapter, it is proposed that the fitness function characteristics can be used to predict
when a GA population will converge. This hypothesis appears reasonable, as from experi-
ence we know that the best GA parameters are different, depending on the characteristics
of the fitness function. However, the proposed hypothesis also has a more theoretical
basis, derived from quantitative genetic theory.

A number of GA studies (Lobo, 2000; Mühlenbein and Schlierkamp-Voosen, 1993;
Rogers and Pruegel-Bennett, 1999; Thierens and Goldberg, 1994; Thierens et al., 1998)
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have made use of the Genetical Theory of Natural Selection (Fisher, 1930), which, in GA
terminology, states that the change in the average fitness function value of the population
from the parents to the children solutions produced by the selection operator is equal to
the selection pressure multiplied by the standard deviation of the fitness function values.
The rather intuitive result of this relationship is that there will be no more improvement
in the fitness function values when there is no more diversity in the population.

The selection operator will decrease the variance in the fitness function values, by
replacing the worst solutions by better ones. As outlined in Section 2.3.3, Quantitative
genetic theory indicates that this decrease will be a constant value, k, each generation (Fal-
coner, 1981). This results in an exponential decay of the variance in the fitness function
values in terms of the number of generations. Therefore, the time until the GA converges
to one solution is dependent on the rate of decay of the population standard deviation, and
can be computed by:

σP,g = σP,0k
g

σP,g

σP,0
= kg

log

(
σP,g

σP,0

)
= g log (k)

g log (k) = log (σP,g) − log (σP,0)

g =
log (σP,g) − log (σP,0)

log (k)
(5.1)

where σP,g is the standard deviation of the fitness function values after generation g, σP,0

is the standard deviation of the fitness function values of the initial population, and k is a
constant with value 0 ≤ k ≤ 1. Therefore, if an estimate can be obtained for the value
of k, then an estimate can be obtained for the number of generations before convergence
occurs, gconv.

Quantitative genetic theory also provides an insight in the components that make up
the variance in the fitness values. Falconer (1981) cites a number of components that
comprise the total fitness variance, namely:

• Genotypic variance, (σ2
G);

• Breeding or Additive variance (σ2
A);

• Dominance variance (σ2
D);

• Interaction variance (σ2
I ); and

• Environmental variance (σ2
E).
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The total variance in the fitness function values is the sum of these components, in the
form (Falconer, 1981):

σ2
P = σ2

G + σ2
E

= σ2
A + σ2

D + σ2
I + σ2

E . (5.2)

These components of variance are analogous to characteristics of fitness functions that
can now be quantified by the fitness function statistics that were proposed in Chapter 4.
σ2

A can be considered to be variance in the decision variable values. σ2
D is the variance

provided by dominant, or highly salient, variables; which can be predicted using the nor-
malised MI statistic. σ2

I is the variance produced by epistatic interactions between the
decision variables, as estimated by the separability measure, λ. σ2

E is the variance pro-
duced by the environment, which can be interpreted as the shape of the fitness function,
and useful information about this aspect of the variance of the fitness function can be
provided by the spatial correlation measure, Rs.

Based on these observations, it is proposed in this chapter that the fitness function
statistics can be used along with the standard deviation of the values of the decision vari-
ables in the population, σpop, to predict the change in the standard deviation of fitness
function values due to selection, k. From the predicted value of k, the number of gen-
erations before the variance in the fitness function values decreases to zero can then also
be predicted. Therefore, the following section is dedicated to quantifying the relation-
ship between the information provided by the fitness function measures and the change in
standard deviation due to selection, k.

5.2 THE RELATIONSHIP BETWEEN FITNESS FUNCTION CHARAC-
TERISTICS AND POPULATION VARIANCE

An empirical approach has been adopted to develop a relationship between k and the
information provided by the fitness function statistics. Firstly, the methodology adopted
is outlined, including the test functions selected, and how the information provided by the
fitness function statistics has been used. This is followed by a results section, outlining
the input determination process, the derivation of the functional form of the relationship,
and finally the relationship that has been obtained.
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Table 5.1 Parameters values used for the test functions.

Parameter Values

l 2, 4, 10, 30, 50, 80, 100
Ai 0, 0.5, 1, 2
f1 1
f2 2, 4, 8, 16
f3 3, 5, 9
p 0, 1

5.2.1 Methodology

5.2.1.1 Test Functions
Functions of the form of a Fourier Series have been selected as the test functions. These
functions have been selected as a wide range of characteristics can be generated, and com-
plex functions can be obtained by the superposition of a number of terms with different
amplitudes and frequencies.

Up to three cosine terms have been used to generate the test functions. The functional
form of the test functions is given in Equation 5.3:

F (x) =
3∑

i=1

l∑
j=1

jpAi cos(fixj), (5.3)

where Ai and fi are the amplitude and frequency of each term i. The range considered
for the decision variables was xi ∈ [0, 2π]. The first cosine term has been used to control
the global structure of the fitness function. To do so, each of the amplitudes shown in
Table 5.1 has been implemented, along with a frequency of f1 = 1. This allows the
global structure to change from a ‘big bowl’ with A1 = 2, to totally flat, with A1 = 0.
The remaining two terms for each test function have been used to control the degree of
roughness and multimodality. The amplitude and frequency values considered for terms
two and three are given in Table 5.1. It can be seen from Table 5.1 that terms two and
three can have similar frequencies, to produce complex function characteristics, where the
cosine terms are additive for some of the search space, and negating each other in other
areas of the search space. The p parameter in Equation 5.3 has been included to allow the
salience of the decision variables to be controlled, with values of p = 0 and 1 considered.

Along with the original form of the test function without epistatic interactions between
decision variables, interaction cases of mBB = 1, δBB = l − 1, mBB = 2, δBB = l/2, and
mBB = l/2, δBB = 2 have been considered. Interactions between decision variables were
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(a) No rotation (b) With rotation

Figure 5.1 The effect of applying the rotation matrix.

produced by rotating each of the terms of the test function in Equation 5.3 using the
transformation matrix, M , proposed by Salomon (1996). The transformation matrix is a
pure rotation, and does not change the function’s structure (Salomon, 1996). Any of the
decision variables that have the transformation matrix applied are no longer separable,
and therefore an epistatic interaction is produced between the variables. The rotation
matrix is composed to produce a 45 ◦ rotation of the variables. If there is to be an epistatic
interaction between a number of variables, then their values are transformed using the
matrix such that, xT = xM , where x contains the values of the variables to be transformed.
The effect of applying M can be seen in Figure 5.1, where the original function can be
seen in Figure 5.1(a), and the same function with the rotation applied can be seen in
Figure 5.1(b). The rotation seen in Figure 5.1(b) was produced using Equation 5.4:

[
x1 x2

]
T

=
[

x1 x2

] [ sin(45◦) cos(45◦)
cos(45◦) − sin(45◦)

]

=
[

x1 sin(45◦) + x2 cos(45◦) x1 cos(45◦) − x2 sin(45◦)
]

. (5.4)

The interaction between variables produced by the rotation matrix can be seen very
clearly in Equation 5.4. The effect of the rotation can be seen in Figure 5.1(b), where
the local optima no longer line up along the same value of a decision variable, which is
the case in Figure 5.1(a). For example, a number of local maxima occur for x1 = 0 in
Figure 5.1(b), which also contains the global minimum. However, in Figure 5.1(a) without
the transformation matrix applied, only local minima occur along the line of x1 = 0, and
therefore it is much easier for the GA to solve the problem.
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Figure 5.2 Example of the Fourier Series test functions used.

An example test function is shown in Figure 5.2 which has been produced using pa-
rameter values: l = 2, A1 = 0.5, A2 = 2, A3 = 1, f1 = 1, f2 = 8, f3 = 9, and p = 1.
Every combination of the function parameters considered in Table 5.1 has been tested,
along with each of the different interaction cases, however, combinations that produce the
same function characteristics have not been re-evaluated. Examples of parameter combi-
nations that produce the same function characteristics include changes to the frequency
of a term when Ai = 0, different interaction cases that are the same for the lower dim-
ensional functions considered, or functions with Ai = 1 or Ai = 2 and the same values
for fi, producing the same function characteristics, only the function values are twice the
magnitude for Ai = 2. Therefore, a total of 18 672 functions were used to collect the data
used determine the relationship between fitness function characteristics and k.

5.2.1.2 Determining the Decay in Population Variance
The decay in population variance has been computed for each of the test functions out-
lined above. A total of n = 5 000 samples in the search space have been used to represent
a population of solutions. The population standard deviation, σpop, has been computed
based on the population variance statistic proposed by Beyer and Deb (2001):

σpop =

√√√√ 1

n

n∑
i=1

l∑
j=1

(xs,i,j − xs,j)
2, (5.5)
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where xs are sampled decision variable values, standardised to into the range [0, 1]. This
standardisation is used to ensure that one decision variable that happens to occur over
a larger range does not dominate the σpop computed. Initially, the values are randomly
sampled from a uniform distribution over the search space, to represent the initial parent
solutions in a GA population. Tournament selection is then applied to the sampled so-
lutions, producing the children solutions. The variance in the population will decrease
after the selection operator is applied, as after selection the worst solutions in the popula-
tion are replaced by a number of copies of the better solutions in the population. σpop is
then recomputed from the decision variable values of the children solutions using Equa-
tion 5.5. The decay in the standard deviation of the population due to selection, k, is then
computed by:

k =
σpop,children

σpop,parents
. (5.6)

To remove any variability produced by the random sampling, the average over 30
different random data sets have been taken as the k value for each test function to develop
the relationship in Section 5.2.2.

5.2.1.3 Statistics Based on the Fitness Function Measures
Each of the measures proposed in Chapter 4 have been applied to each of the test functions
outlined in Section 5.2.1.1. In order to make use of the correlation plots that are produced
by the spatial correlation measure, a number of statistics have been computed. The three
statistics are the correlation length, Rl, the average correlation, Rav, and the total positive
correlation in the fitness function, RT.

The correlation length has been used in a number of studies to investigate the be-
haviour of GAs. Along with the correlation length, however, two more statistics that
provide information about the roughness of a fitness function have been developed. The
first of these statistics is the average correlation in fitness function over the correlation
length, which provides information about the roughness of the fitness function for solu-
tions near each other in the search space. It was observed in Chapter 4 that an increase
in the roughness of the fitness function did not affect the correlation length, however, the
the value for Rav did decrease with an increase in roughness, indicating that this is a very
useful statistic for the characterisation of fitness functions. The second statistic is the total
positive correlation in the search space, RT. This statistic provides a very useful insight
into the global structure in the search space. For example, if RT > Rav, it is likely that
points far apart in the search space are positively correlated, indicating that a ‘big bowl’
structure exists for the fitness function being analysed. However, if RT = Rav, then the
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Figure 5.3 The computation of the correlation statistics from the spatial correlation mea-
sure.

plot of correlation against distance in the search space does not turn positive again after
the correlation length, indicating that the function is likely to be globally flat over the
whole search space.

The spatial correlation function computed for the Rastrigin Function with pair-wise
interaction between decision variables in Section 4.1 can be seen in Figure 5.3. The value
of Rl can be seen as the normalised distance before the spatial correlation calculated is
no longer positive, within the limits of statistical significance. The limit of statistical
significance has been taken as 1√

n
in this work. Therefore, for the function considered

in Figure 5.3, Rl = 0.2. The value for Rav is computed as the average area under the
correlation plot for distances less than the correlation length, as indicated by the grey bars
in Figure 5.3. The value for Rav for the function considered in Figure 5.3 is therefore
Rav = 0.10, taken as the sum of the height of each bar multiplied by its width, in this case
0.05. The total positive correlation in the fitness function, RT, is computed in a similar
fashion, however, in this case, the area under the whole positive section of the correlation
plot is used, as indicated by both the grey and black bars. Therefore, the value for RT in
Figure 5.3 is RT = 0.14.

To make use of the salience measure proposed in Section 4.3, the difference between
the maximum NI and minimum NI has been used. This statistic provides information
about the maximum dominance of one variable over another for a given fitness function.
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The equation used to compute the dominance statistic, D, is given in Equation 5.7:

D = max
i∈1...l

NI(Xi, Y ) − min
j∈1...l

NI(Xj, Y ). (5.7)

While the number and order of any interactions for the test functions is known from
the variables that have been rotated by the transformation matrix, the separability measure
has been applied to ensure that the interactions can be detected in practice. Based on
the array of interactions produced by applying the separability measure to each pair of
decision variables, higher order interactions that are present in some of the test functions
have been located. Higher order interaction were identified by inspecting the results for
the pair-wise interactions. For example, if an interaction is detected between variables
xi and xj , xk and xj , as well as xi and xk, then there is an interaction of order kBB = 3

between these three variables. This analysis has been extended to identify the highest
order of interaction present in each of the test functions. Therefore, kBB has been taken as
the size of the biggest building block identified, and mBB has been taken as the number of
unique building blocks in the fitness function.

5.2.2 Relationship Results

Before the relationship between the fitness function measures and the k values can be
developed, the data collected from the test functions have been screened to include only
the functions that are Optimal Generation Functions. The flowchart given in Section 3.1.3
has been used to undertake this screening. If the correlation length for a test function was
computed to have Rl ≤ 0.05, or if Rav < 0.05, then the function has been deemed to have
no structure in the fitness function, and is therefore not an Optimal Generation Function.
Typically, this occurred for functions that were comprised of terms with the highest fre-
quencies considered along with the highest amplitudes, or if A1 = 0. Similarly, functions
that had both kBB = 1, indicating no epistatic interactions, and D < 0.05, indicating
that the function has no highly salient variables, were also deemed to not be Optimal
Generation Functions. Therefore, of the original 18 672 test functions considered, 9 347

functions were determined to be Optimal Generation Functions to be used to develop the
relationship.

5.2.2.1 Input Determination
In order to identify the statistics that had the largest influence on the k value, an input
determination technique has been implemented. The Partial Mutual Information (PMI)
(Sharma, 2000) between the values of k, or the output, and each of the statistic values, or
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inputs, has been used as the input determination technique. The dimension of the problem
has also been included as an input. The process of PMI is similar to the method used to
estimate the gene epistasis by fitness function residuals in Section 4.2. Firstly, the MI
is calculated between each input, the statistic values, and the output (i.e.; the values of
k). The input that has the highest value of MI is regressed against the output, using the
non-parametric kernel regression outlined in Section 4.2. The resulting series comprises
the residual values of k, the values of k without the influence of the most significant
input. The process is then repeated, in this case by computing the MI between each of the
remaining inputs and the output, in the form of the residuals of the k values, known as the
PMI. The input that produces the highest PMI value is then regressed against the residuals
of the k values. The process is continued until there are no more significant inputs.

For this work the significant inputs have been determined using 95% confidence level,
indicated in brackets Table 5.2. The 95% confidence levels have been produced from 1000
bootstraps of the data. This involved computing the MI between a random reordering of
the data, which will remove any true interaction between the parameters. This process
was repeated 1000 times, and the MI value that was greater than the MI computed for a
random reordering between the input and output values 95% of the time is selected as the
significance level.

The results from the input determination procedure using the data for the 9 347 test
functions is presented in Table 5.2. The analysis has been performed with reference band-
width and a Gaussian kernel. A base 2 logarithm has been used to compute the entropy,
therefore the units of the PMI values is ‘bits’. From Table 5.2, it can be seen that all
the statistics computed have a strong relationship with k, apart from those produced by
the separability measure, namely mBB and kBB. This result reinforces the observation in
Chapter 3, where the number or distance between the epistatic interaction had very little
effect on the gconv value. Based on the input selection results, the statistics computed from
the separability measure have not been included in the relationship between k and the
remaining fitness function statistics. While it has not been included in the prediction of
the value of k, the information provided by the separability measure may still be useful
in re-arranging the solution string, to align the interactions between decision variables,
giving the GA the best chance to find better solutions before the population will converge.

5.2.2.2 Functional Form of the Relationship

The information provided by the fitness function statistics is very similar to the parameters
involved in the theoretical population sizing equation proposed by Harik et al. (1999).
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Table 5.2 Input selection results.

Rank Parameter PI(Xi, Y )

1 Rav 0.899 (0.177)
2 RT 0.825 (0.113)
3 l 0.384 (0.101)
4 Rl 0.288 (0.083)
5 D 0.212 (0.089)
6 mBB 0.076 (0.079)
7 kBB 0.077 (0.086)

Therefore, a similar functional form has been adopted to that given in Equation 2.11,
where each input is raised to a power, and the product of each input term is taken. The
population sizing equation proposed by Harik et al. (1999) was focused on maximising
the final solution quality found by the GA, and hence terms similar to mBB and kBB were
included in the equation. However, as discussed above, these parameters were not found
to influence the convergence of the algorithm considered in this work.

The relationships proposed by Thierens and Goldberg (1994) and Thierens et al.
(1998) have also been included in the functional form of the relationship used in this work.
Their results suggest that gconv is between O(

√
l) and O(l), depending on the salience of

the decision variables. Therefore, the l and D parameters have been included in the form
l(α+βD).

Hence, the general form of the function that has been selected to predict the decay in
population variance due to selection is:

k = 1 − aRb
l R

c
TR

d
avl

(e+fD), (5.8)

where: k is the decay of population variance, Rl is the correlation length, RT is the total
correlation, Rav is the average correlation, l is the problem size, D is the dominance
statistic, and a, b, c, d, e and f are all parameters to be calibrated to the data collected
from the test functions. a has been constrained such that a > 0, and will not produced a
value greater than 1 for the second term in Equation 5.8. This constraint has been used to
ensure that the resulting prediction of k is reasonable, i.e.; k ∈ [0, 1].

A non-linear generalised reduced gradient search method has been used to determine
the parameter values in the relationship, as it would be expected that the search space
characteristics are smooth, with few local optima, and gradient methods are more suitable
for these purposes. The initial starting points for the gradient search have been determined
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Figure 5.4 Predicted and experimental values of k for the Fourier Series test functions.

from the regression coefficients between each of the inputs and the output, and a number
of different starting points were used with the search method in order to have the best
chance of determining the globally optimal set of coefficients.

Based on these analyses, the following relationship has been fitted to the data collected
from the test functions:

k = 1 − 2.266
R1.168

l R2.145
T

R1.074
av l(0.506+0.346D)

. (5.9)

The k value experimentally computed from a sample of solutions from each test func-
tion plotted against the k value predicted by Equation 5.9 can be seen in Figure 5.4. The
dashed grey line indicates the line of perfect prediction. The figure shows that very good
agreement is achieved between the functional form used in Equation 5.9 and the exper-
imentally collected data. A coefficient of determination of R2 = 0.8118 is obtained for
this relationship. All of the coefficients of determination presented in this section are pro-
duced from the regression line through the origin, to ensure there is no bias included in
the goodness of fit tests.
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5.3 VALIDATION OF THE RELATIONSHIP

An empirical relationship between the information provided by the fitness function statis-
tics proposed in Chapter 4 and the decay in variance in a GA population due to selection
has been developed in the first part of this chapter. The remainder of this chapter is ded-
icated to testing the generality of the relationship identified. Firstly, the relationship is
applied to test functions that have a different functional form to the Fourier Series that
have been used to develop the relationship. Secondly, the predicted value of k is used
to determine an estimate for gconv, which is then compared against the experimentally
observed value of gconv for a number of test functions.

In order to undertake these tests, the variations of the three Optimal Generation Func-
tions considered in Chapter 3 are used. These function have been selected as the very
large GA parametric studies required to obtain a experimental estimate of gconv were un-
dertaken in Chapter 3. The following section compares the predicted and experimental
value of k for these functions, before the predicted value of k is used to determine an
estimate for gconv, to be compared against the values that were experimentally observed in
Chapter 3.

5.3.1 Predicting the Decay in Population Variance

A similar approach to that used to determine the experimental value of k for the Fourier
Series functions in Section 5.2.1.1 has been used to determine the value of k for the
test functions considered in Chapter 3. A sample size of n = 5 000 in the search space
has been used to represent a population of solutions to compute the population standard
deviation, σpop, before and after selection. Each decision variable has been standardised
to be in the range [0, 1]. Again, the average over 30 different random sample data sets
have been used to compute the k values presented.

In the remainder of this section, the predicted value of k using Equation 5.9 is plot-
ted against the experimentally observed value for each of the three families of Optimal
Generation Functions considered in Section 3.2.

5.3.1.1 F3
F3 considered variations of the Rastrigin Function, with different degrees of epistatic in-
teractions (F3A), roughness and multimodality (F3B) and salience of the variables (F3C).
The predicted and experimental values of k for all variations of the Rastrigin Function
considered are shown in Figure 5.5. It can be seen from Figure 5.5 that generally Equa-
tion 5.9 produces a slight overestimate of the experimental values, however, a very good
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Figure 5.5 Predicted and experimental values of k for F3.

fit is obtained for these functions, with a coefficient of determination of R2 = 0.848.

5.3.1.2 F4
Variations of Griwank’s Function (F4) were considered in Section 3.2. The values pre-
dicted and experimental k values for both F4A and F4B are shown in Figure 5.6. From
Figure 5.6 it can be seen that the k values produced by Equation 5.9 consistently pro-
duced a slight overestimation of the experimental values, with every point on Figure 5.6
above the line of perfect prediction. However, the overestimation is only slight, and a very
strong relationship with R2 = 0.920 is obtained.

5.3.1.3 F6
Function F6 was composed by a summation of the decision variable values multiplied
by their location in the solution string, with the final decision variable highly salient, as
it was raised to a higher power. The results from the comparison of the predicted and
experimental values of k for F6 can be seen in Figure 5.7. While there is generally good
agreement between the predicted and experimental values of k, the relationship is not
as close for F6 compared to that observed for F3 and F4. This is reinforced by a lower
coefficient of determination of R2 = 0.686. The effect of problem size on the predicted
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Figure 5.6 Predicted and experimental values of k for F4.
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Figure 5.7 Predicted and experimental values of k for F6.
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values of k is more evident in the predictions for F6, with each cluster of points seen on
Figure 5.7 corresponding to each problem size tested, l = 5, 10, 20, and 30.

5.3.2 Predicting the Number of Generations Before Convergence

The previous section demonstrated that the relationship proposed in Equation 5.9 can
generalise to functional forms other than the Fourier Series functions that it was developed
on, with good predictions of the experimentally observed values of k for the test functions
considered. The aim of this section is to take the predicted values of k to obtain the
more useful prediction of gconv, and compare the predicted values against those observed
experimentally.

The functions considered in Section 3.2 have again been used as the test functions, as
the experimental values of gconv have been determined in that section. To determine each
value of gconv experimentally, large parametric studies were undertaken, with a total of
12 960 GA runs required to determine gconv for each function, represented by a single dot
on each of the figures in the following sections.

5.3.2.1 Determining the Initial and Final Population Variance
Equation 5.1 indicates that the number of generations before the GA population will con-
verge to a single value can be determined from the k value, provided two terms are quan-
tified, the initial and final population standard deviation. It would be expected that gconv

occurs when there is no more variance in the population, occurring when σpop,g = 0.
However, in practice, the term log(0) cannot be computed, and an approximation to sig-
nify when the population has adequately converged must be adopted. In this work, the
GA has been deemed to have converged once σpop,g = 0.001.

The other parameter that must be estimated in Equation 5.1 is the initial standard de-
viation of the population, σpop,0. As each variable is scaled to the range [0, 1] to compute
the standard deviation, and the samples have been drawn from a uniform random distri-
bution, the expected value of the variance for one decision variable is σ2 = (1−0)2

12
= 1

12
.

The approach used to compute the population variance, given in Equation 5.5, involves
summing the variance over each decision variable and hence the initial standard deviation
in the population, σpop,0, is given by:

σpop,0 =

√
l

12
. (5.10)

By substituting σpop,g = 0.001 and Equation 5.10 into Equation 5.1, the value of gconv

can be obtained from the value of k predicted by Equation 5.9. The following sections
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Figure 5.8 Predicted and experimental values of gconv for F3.

provide the results for the predicted and experimental values of gconv for each variation of
the three Optimal Generation Functions considered in Section 3.2.

5.3.2.2 F3
F3 considered changes to the degree of epistatic interactions (F3A), roughness and multi-
modality (F3B), and salience (F3C), of the Rastrigin Function. A plot of the gconv values
predicted using Equation 5.9 and Equation 5.1 can be seen on the y-axis of Figure 5.8,
with the value determined experimentally from the parametric study undertaken in Sec-
tion 3.2 plotted on the x-axis. The grey dashed line is the line of perfect prediction. It
can be seen from Figure 5.8 that while there is some scatter in the larger values of gconv,
generally close predictions of the experimental gconv values are obtained. The coefficient
of determination for the data presented in Figure 5.8 is R2 = 0.706.

5.3.2.3 F4
As there was some slight overestimation of the k values for F4 (Griwank’s Function)
in Figure 5.6, it is not surprising that there is also some overestimation in the predicted
values of gconv compared to the experimentally observed values, as seen in Figure 5.9.
However, unlike the k predictions, the slight overestimation is not as prominent in the
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Figure 5.9 Predicted and experimental values of gconv for F4.

gconv predictions, as for some of the variations of F4, the predicted value is slightly below
the line of perfect prediction. An R2 = 0.607 is obtained for the F4 results seen in
Figure 5.9.

5.3.2.4 F6
As the gconv values are derived from the k values, it is not surprising that for F6, a grouping
of the values of gconv for different problem sizes is again observed in Figure 5.10. Some
of the predicted values of gconv can be seen to produce a significant overestimation when
compared to the experimental values around the experimentally observed value of gconv ≈
200. This cluster of functions all have l = 10. Apart from the over prediction for these few
functions, there is generally good agreement between the predicted and the experimental
values, with a coefficient of determination of R2 = 0.668.

5.4 DISCUSSION

The results presented in Section 5.2 indicate that a very strong relationship was identified
between the statistics produced from two of the three fitness function statistics proposed
in Chapter 4 and the change in population variance due to selection. The final relationship
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Figure 5.10 Predicted and experimental values of gconv for F6.

identified, seen in Equation 5.9, produced a strong correlation between the predicted and
experimental values of k, seen in Figure 5.4 with R2 = 0.8118. The biggest errors in
the predictions, seen for some functions with an experimentally observed k > 0.98, can
be attributed to a slight underestimation of either the correlation length, Rl, or the total
positive correlation in the fitness function, RT.

The fact that this relationship has been identified is in itself an important result, as
the relationship between fitness function characteristics and GA behaviour has not been
quantified previously. Generally, fitness function statistics have been compared to the
final solution quality found by a GA, and more often than not it appears that the statistics
do not provide any useful information. However, this can be explained by a lack of
consideration to the calibration of the algorithm. The results presented in this chapter
demonstrate that the information provided by the proposed spatial correlation measure,
along with the dominance statistic, can be directly related to the change in GA population
variance due to selection.

The form of the relationship identified in Equation 5.9 indicates that the roughness
of the fitness function has a large effect on the convergence of the GA. The correlation
length has been used in a number of studies to investigate the behaviour of GAs. Along
with the correlation length, however, two more statistics that provide information about
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the roughness of a fitness function were required to accurately predict GA convergence.
From the input selection results presented in Table 5.2, it can be seen that these two
statistics had the strongest relationship with the k values, more so than the problem size,
l, or the correlation length, Rl. This may explain why, along with a lack of consideration
to the GA parameter values, previous studies relating the correlation length alone to GA
behaviour have been largely unsuccessful.

In Section 5.2 a relationship between the proposed fitness function statistics and the
decay of GA population variance was obtained, and validated on different function classes.
Quantitative genetic theory provided the relationship to compute the number of genera-
tions before convergence from the decay in population variance, along with the initial and
final standard deviation of the values in the population. While it is beneficial to have this
theoretical basis, it is a significant result for the relationship developed to hold in prac-
tice, with all GA influences considered. The calculation of the fitness function statistics is
based on a random sample of solutions, therefore some variability in the predicted values
will arise from this sampling. Along with this variability in the predicted gconv values, the
experimentally observed values may also have a large degree of variability, as they have
been determined from large scale parametric studies. The average of 30 GA runs with dif-
ferent initial populations has been used in an attempt to reduced this variability, however,
the fact that the GA is a probabilistic process will also introduce some variability into
the experimental results. In addition, even with the large number of GA runs that have
been undertaken, only a limited number of potential population sizes have been tested,
which may also add to the variation in the experimental results. However, even with the
potential variability in the data, the results for predicting the observed gconv in Figure 5.8,
Figure 5.9 and Figure 5.10 indicate that Equation 5.9 provided a definite relationship to
the experimentally observed gconv for the range of test functions considered.

The fact that a useful relationship was obtained using the methodology proposed in
Section 1.2 suggests that a number of the assumptions made, outlined in Section 2.5.2,
were reasonable. The first important assumption was that the statistics applied to the fit-
ness function were a useful approximation to the true fitness landscape. In other words,
that the distance between points in the search space used for the spatial correlation mea-
sure is a suitable approximation to the solutions that are most likely to be produced by the
GA operators of crossover and mutation. If this was not the case, the spatial correlation
statistic would not have been related to the k value, as indicated by the input selection
results presented in Table 5.2.

The second important assumption made in the methodology implemented was that
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only the selection operator significantly changed the population variance each genera-
tion. This assumption implies that the crossover and mutation operators do not alter the
population variance in a significant way. If additional variance was reintroduced into the
population through these operators, it would be expected that the predicted value of gconv

would be lower than the observed experimental value, as the population will be predicted
to converge quicker than in reality. However, the results in Section 5.3.2 do not display
this, as in a number of cases in Figure 5.8, Figure 5.9 and Figure 5.10, the predicted gconv

is greater than the experimental value. Therefore, from these results, it can be concluded
that the assumption is valid; that crossover and mutation operators selected for the GA
used in this work did not have a significant effect on the observed population variance.

5.5 SUMMARY

This chapter has tested the final hypothesis of this thesis, that the number of GA gener-
ations before the population converges to one solution can be predicted using the infor-
mation provided by fitness function statistics. A large data set of function characteristics
and corresponding changes in population variance was collected for functions derived
from a Fourier Series relationship with controllable roughness, epistatic interactions and
salience characteristics. Based on theoretical modelling results, a deterministic relation-
ship between the fitness function characteristics and the decay in population variance was
identified.

The relationship was found to compare favourably for functions not belonging to the
Fourier Series test functions used in the calibration of the relationship, displaying its gen-
erality. Based on the decay in population variance, the number of generations before con-
vergence was calculated. The predicted number of generations based on the fitness func-
tion characteristics also compared favourably to experimentally observed values, again
displaying the accuracy of the relationship identified.

It is a significant finding that fitness function measures can be directly related to GA
parameter values, in this case the number of generations before the GA will converge.
This is not surprising from a practical point of view, as based on experience GA practi-
tioners know that the characteristics of the fitness function affect the most suitable GA
parameters. Furthermore, a number of theoretical studies such as Harik et al. (1999) sug-
gest that function characteristics, such as the signal to noise ratio and number of building
blocks, affect the most suitable population size. However, fitness function statistics have
generally been shown to be poor predictors of GA performance. The results presented in
this chapter demonstrate firstly that fitness function measures can be used to accurately
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characterise a fitness function, and secondly, that the information provided by these mea-
sures can be used to determine the most suitable GA parameter values, and not to predict
GA convergence, as previously attempted.

The relationship identified is extremely beneficial in assisting with the calibration of
GA parameters. By applying the spatial correlation measure and the dominance measure
to a given fitness function, the number of generations before a GA will converge for the
given fitness function can be predicted. For most WDS optimisation problems, along with
most ‘real world’ optimisation problems, the optimal solution is never found, therefore
by making use of the time available before a solution is required, the most influential GA
parameter, the population size, can be determined. In the following chapter the prediction
of the population size for a number of optimisation problems is considered with different
values for the remaining GA parameters. The result from these analyses is a complete GA
calibration methodology based on the characteristics of the fitness function.
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GA Calibration Methodology

In Chapter 5 it was demonstrated that fitness function statistics can be used to estimate
the number of generations before the GA population can be expected to converge. Based
on the estimated number of generations and the time available to solve a fitness function,
the most important GA parameter, the population size, can be determined. However, this
is only one of the GA parameter values that must be set before the GA can be applied to a
given fitness function. The first part of this chapter is dedicated to using the results from
the parametric study undertaken in Chapter 3 to identify relationships that can be used
to set the remaining GA parameter values. Based on these observations, a complete GA
calibration methodology utilising the characteristics of the fitness function is proposed in
Section 6.2.

A second approach to determine the population size is proposed in Section 6.3. This
approach is much simpler to apply than the first method proposed, as the fitness func-
tion statistics do not need to be computed. However, in this case the GA is assumed to
converge due to genetic drift, and convergence due to selection pressure is not considered.

The remainder of this chapter is then dedicated to testing the GA calibration method-
ology proposed in Section 6.2 and Section 6.3 against other GA calibration methods that
are available. The different calibration methods considered are outlined in Section 6.4.1,
before the performance of each calibration method is evaluated over a wide range of fit-
ness functions and convergence criteria in Section 6.4.4 and Section 6.4.5. A discussion of
the results and concluding remarks on the performance and suitability of the different GA
calibration methods considered in this chapter are made in Section 6.5 and Section 6.6,
respectively.
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6.1 THE RELATIONSHIP BETWEEN GA PARAMETERS

It is likely that the most suitable GA parameter values are related to each other. For
example, it might be expected that a small population size generally performs well with
a large probability of mutation, and vice versa. To determine if any relationships exist
between the best values of the GA parameters, the MI was computed between the values
found for each pair of GA parameters. If the best values for two GA parameters are related
to each other then there will be a high MI between their values, otherwise if the parameter
values are independent of each other, the MI computed will be close to zero.

The two classes of functions identified in Chapter 3 have been considered separately
to investigate the relationships between the GA parameters. The Optimal Generation
Functions considered in Section 3.2 have been used for the Optimal Generation Function
class, while the four problem sizes of the four Maximal Generation Functions tested in
Section 3.1 have been considered for the Maximal Generation Functions.

Based on the results from the fitness function statistics, gconv was predicted for each of
the Optimal Generation Functions in Section 5.3.2. The best performing GA parameters
after the predicted number of generations before the GA population will converge have
been identified for each function. Similarly to the approach taken in Section 3.1.1, the
best performing GA parameter values were determined from a Student’s t-test with a
95% confidence level. For each function, the best parameter values were identified after
FE = gconvN (to the nearest 1000 evaluations), for each population size considered in the
parametric study, namely N = 10, 50, 100, 200, 400 and 800. For example, for function
F3A with l = 30, mBB = 1 and δBB = 1, the predicted value of gconv in Section 5.3.2 was
gconv = 212. For N = 10, the GA parameter combinations that produced statistically the
best results after FE = gconvN = 2000 were identified. The best combinations of GA
parameter values that contained N = 10 were taken as the most suitable GA parameters
to use with this population size for the predicted number of generations. All of the best
performing GA parameter sets were identified for each population size considered in the
parameteric study, for all 136 Optimal Generation Functions considered in Section 3.2.
This analysis produced a total of 1858 GA parameter sets to be analysed for the Optimal
Generation Functions.

For the Maximal Generation Functions there does not exist a gconv, as these problems
were most efficiently solved with as many generations as possible of a small population
size. Therefore, the best GA parameter values can be considered after any FE before
the optimal solution is located, unlike only at FE = gconvN for the Optimal Generation
Functions. To produce a suitable set of GA parameter values, similar to that obtained
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Table 6.1 GA parameter interactions for
Optimal Generation Functions.

Rank X1 X2 I(X1, X2)

1 N pm 0.557 (0.009)
2 N e 0.160 (0.003)
3 pm e 0.155 (0.002)
4 pm c 0.056 (0.003)
5 pm pc 0.032 (0.004)
6 N pc 0.028 (0.005)
7 N c 0.020 (0.003)
8 e c 0.015 (0.001)
9 pc e 0.012 (0.002)

10 pc c 0.007 (0.002)

Table 6.2 GA parameter interactions for
Maximal Generation Functions.

Rank X1 X2 I(X1, X2)

1 N pm 0.130 (0.022)
2 pm pc 0.074 (0.035)
3 pm e 0.051 (0.014)
4 pm c 0.027 (0.021)
5 N pc 0.022 (0.015)
6 N e 0.015 (0.007)
7 pc e 0.015 (0.013)
8 pc c 0.012 (0.011)
9 N c 0.007 (0.010)

10 e c 0.001 (0.005)

for the Optimal Generation Functions, the best GA parameters have been considered at
five equal spacings before the optimal solution was found for F1, F2 and F5. For F7, the
GA never converged to the optimal solution, therefore the maximum number of function
evaluations used, FE = 500 000, has been used as the upper limit. Hence, for F7, the best
performing GA parameters have been considered after FE = 100 000, 200 000, 300 000,
400 000, and 500 000. This analysis produced a total of 282 GA parameter sets to be
analysed for the Maximal Generation Functions.

The MI was computed between every pair-wise combination of the GA parameters,
to determine if there were any relationships between their best performing values. The
results from this analysis are presented in Table 6.1 for the Optimal Generation Functions,
and Table 6.2 for the Maximal Generation Functions. The tables rank each pair of GA
parameters by their MI value, where a higher value indicates a stronger relationship. The
values in brackets are the 95% confidence levels produced from 1000 bootstraps of the
data for each pair of parameters. This involved computing the MI between a random re-
ordering of the data, removing any true interaction between the parameters. This process
was repeated 1000 times, and the MI value that was greater than the MI computed for a
random reordering between the parameter values 95% of the time is presented in brakets
in Table 6.1 and Table 6.2. Therefore, if the MI computed between two GA parameters
is similar to the significance level, it can be concluded that the interaction between the
parameters is not significant, and is due to chance alone.

The results for the Optimal Generation Functions, presented in Table 6.1, indicate that
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there exists a very strong interaction between the best values for the population size and
probability of mutation for the functions considered, with I(N, pm) = 0.557. This result
agrees with the observations made in Chapter 3, where a large probability of mutation
is required for a small population size, while a larger population size performs best with
a lower mutation rate. The interactions between the remaining pairs of GA parameters
are much less significant than that between the population size and the probability of
mutation, with the next highest mutual information being between the population size
and the number of elite solutions, with I(N, e) = 0.160. However, all MI values are
greater than the significance levels computed from bootstrapping the data, indicating that
there is a weak relationship between all parameters.

The MI computed between each pair of GA parameters for the Maximal Generation
Functions can be seen in Table 6.2. The MI computed between the GA parameters from
this data set are much lower than those computed for the Optimal Generation Functions,
with the highest MI term being I(N, pm) = 0.130. This can be attributed to much less
variation in the data for these functions, as for almost all of the GA parameter sets col-
lected N = 10, along with generally very similar values for pm and e. The relationships
between the GA parameters and the frequency of occurrence of each of the GA parameter
values considered for both the Optimal and Maximal Generation Functions are considered
in more detail in the remainder of this section.

6.1.1 Population Size

Each population size considered in the parametric study has been used for the Optimal
Generation Functions, where the relevant FE for each population size has been com-
puted from the predicted value of gconv as FE = gconvN . For the Maximal Generation
Functions, a histogram of the best performing population sizes is presented in Figure 6.1.
As expected, it can be seen from Figure 6.1 that N = 10 is by far the best population size
for the Maximal Generation Functions, with only a few occurrences for N = 50 and 100.
The interaction between N and pm of I(N, pm) = 0.130 observed in Table 6.2 for the
Maximal Generation Functions is produced by these few occurrences of larger population
sizes occurring with low probabilities of mutation of pm = 0 and pm = 0.2.

6.1.2 Probability of Mutation

A number of previous studies (Schaffer et al., 1989, for example) have observed a rela-
tionship between the population size and the most suitable probability of mutation. The
MI results presented in Table 6.1 and Table 6.2 reinforce this relationship, with the high-
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Figure 6.1 Best performing population sizes for Maximal Generation Functions

est values of I(N, pm) = 0.557 and I(N, pm) = 0.130, respectively. A boxplot of the
different probabilities of mutation that occurred for each population size is presented in
Figure 6.2 for the Optimal Generation Functions. From Figure 6.2, it can be seen that
there is indeed a strong inverse relationship between N and pm in this dataset, with large
pm only suitable for small N , and vice versa.

For the Maximal Generation Functions, a histogram of the number of occurrences
of each probability of mutation considered in the parametric study can be seen in Fig-
ure 6.3(a). From Figure 6.3(a), it can be seen that all of the values of pm considered
perform well at least once, however pm = 0.4 is by far the most common. The proba-
bilities of mutation are not compared to the population size for the Maximal Generation
Functions, as 93.6% of the GA parameter sets for these functions have N = 10, as seen
in Figure 6.1.

From these results, it is clear that there is a relationship between the best performing
values for the probability of mutation and the population size. Therefore, it is proposed
that the probability of mutation be calculated from the population size, which is first
determined by N = FE/gconv for an Optimal Generation Function, or N = 10 for a
Maximal Generation Function. The grey dashed line in Figure 6.2 is the line pm = 5/N ,
and it can be seen that this relationship provides a good fit to the centre of the box plot
for each population size. This relationship also provides a close approximation to the
most common pm = 0.4 for the Maximal Generation Functions, as pm = 5/10 = 0.5.
However, this value for the probability of mutation was not included in the parametric
study to be tested. As the probability of mutation used in this work is the probability of
mutating each solution string in the population, this relationship suggests that there should
be 5 mutations per generation, irrespective of the population size or dimension of the
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Figure 6.2 Population size against probability of mutation for Optimal Generation Func-
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Figure 6.3 Best performing (a) mutation rates and (b) number of elite solutions for the
Maximal Generation Functions.
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Figure 6.4 Number of elite solutions for each population size for Optimal Generation Func-
tions

problem. It also indicates that there will always be some mutation to introduce diversity
in the population, even if mutation occurs with a low probability for larger population
sizes.

6.1.3 Elitism

The next strongest relationship identified between the GA parameters for the Optimal
Generation Functions by the MI analysis presented in Table 6.1 was between the number
of elite solutions and population size, and the number of elite solutions and the probability
of mutation, with I(N, e) = 0.160 and I(pm, e) = 0.155, respectively. Given that N and
pm were strongly related to each other, if one parameter is related to the elitism operator,
it is not surprising that both parameters are related to the elitism operator.

The number of occurrences for a GA with (e = 1) and without elitism (e = 0) for
different population sizes for the Optimal Generation Functions is presented in Figure 6.4.
It can be seen from Figure 6.4 that e = 1 performs the best with all the population sizes
considered in the parametric study. The difference is largest for the smaller population
sizes, where good solutions are easily lost without an elitist operator.

The number of occurrences for a GA with and without elitism for different mutation
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Figure 6.5 Number of elite solutions for each probability of mutation for Optimal Genera-
tion Functions

rates for the Optimal Generation Functions is presented in Figure 6.5. Similarly, it can be
seen from Figure 6.5 that e = 1 performs the best with all the probabilities of mutation
considered in the parametric study, with e = 0 only suitable for small mutation rates of
pm = 0 and 0.2, where good solutions in the population are less likely to be mutated, and
subsequently lost.

It can be seen from Figure 6.3(b) that e = 1 performs much better for the Maximal
Generations Functions, as the GA with an elitist operator produced the best results in
97.5% of the parameter sets. These results reinforce Markov Chain modelling results
such as those presented by Lozano et al. (1999) and Suzuki (1995), that suggest that an
elitist operator is useful, and required to ensure theoretical convergence to the optimal
solution. Therefore, based on these results and the results from Markov Chain modelling
studies such as these, e = 1 is used in the GA calibration methodolgy proposed in this
work.

6.1.4 Standard Deviation of Crossover

For the Optimal Generation Functions, the GA parameter that had the strongest relation-
ship with the standard deviation of the crossover operator was the probability of mutation,
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Figure 6.6 Standard deviation of crossover for each probability of mutation for Optimal
Generation Functions

with I(pm, c) = 0.056, as seen in Table 6.1. Both these GA parameters control the amount
of variation of the population, as both a high probability of mutation and a smaller fraction
of the distance between the parent values for σ will generally produce solutions that are
further away in the search space from their parent solutions. Therefore, it is not surprising
that these two GA parameters are related, as one or the other of these parameters could
be used to control the degree of variation from generation to generation. However, the
mutual information value between these two parameters was quite low, indicating the re-
lationship is not very strong, but is still an order of magnitude higher than the significance
level of 0.003.

The number of occurrences for each c considered for each mutation rate in the para-
metric study for the Optimal Generation Functions is presented in Figure 6.6. Similarly
to the case for the elitism parameter, it can be seen from Figure 6.6 that c = 6 performed
the best for all pm considered. However, the largest difference between the two occurred
for the lower mutation probabilities. In this case, the smaller value of c produces a wider
distribution for the crossover operator, producing greater changes in the decision variable
values in the population, taking over from mutation, which is occurring at low probabili-
ties, if at all.

Page 143



Chapter 6 – GA Calibration Methodology

Fraction for Std. of Crossover, c

O
cc

u
rr

en
ce

s

6 18
0

50

100

150

(a)

Probability of Crossover, pc

O
cc

u
rr

en
ce

s

0.70 0.85 1.00
0

20

40

60

80

100

(b)

Figure 6.7 Best performing (a) fraction for the standard deviation of crossover and (b) prob-
abilities of crossover for the Maximal Generation Functions.

The number of occurrences for the two fractions for the standard deviation of the
crossover operator considered for the Maximal Generation Functions can be seen in Fig-
ure 6.7(a). From Figure 6.7(a), it can be seen that this parameter did not have a large
effect on the performance of the GA, as the number of occurrences is relatively even,
however, there were slightly more occurrences for c = 6. The MI scores presented in
Table 6.1 indicate that there were no strong interactions between the standard deviation of
the crossover operator and the other GA parameters, as the highest score for this param-
eter was I(pm, c) = 0.027, only slightly higher than the significance level of 0.021. For
the Maximal Generation Functions, new values are found through mutations of a small
population, and therefore the crossover parameter values do not have a significant effect
on GA performance.

The results from the MI analysis indicate that the standard deviation of the crossover
operator parameter was not significantly related to the value of any of the other GA pa-
rameters, and that c = 6 performed the best for both the Optimal and Maximal Generation
Functions. Therefore, c = 6 has been adopted in the GA calibration methodology.

6.1.5 Probability of Crossover

The final GA parameter value that must be determined before the GA can be applied is
the probability of crossover. The MI results indicate that this parameter had the strongest
relationship with the probability of mutation and the population size, with I(pm, pc) =

0.032 and I(N, pc) = 0.028 for the Optimal Generation Functions, and I(pm, pc) = 0.074

and I(N, pc) = 0.022 for the Maximal Generation Functions. While these MI values

Page 144



The Relationship Between GA Parameters – Section 6.1

Probability of Mutation, pm

O
cc

u
rr

en
ce

s

pc = 0.70

pc = 0.85

pc = 1.00

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Figure 6.8 Probability of crossover for each probability of mutation for Optimal Generation
Functions

are greater than their corresponding significance level, the MI values suggest that the
relationship is very weak, and unlikely to effect the performance of the GA.

The number of occurrences of each probability of crossover for each probability of
mutation considered in the parametric study undertaken in Chapter 3 is given in Figure 6.8
for the Optimal Generation Functions. It can be seen that pc = 1 produced the best
results, irrespective of the probability of mutation. Similarly to the case for the fraction
of the distance between parent solutions for the distribution of the crossover operator
variable, the largest differences are seen for the lower probabilities of mutation. This
result can be better explained by the relationship with the population size. As observed
above, there was a strong relationship between the probability of mutation and population
size, where the lower probabilities of mutation performed best with the larger population
sizes. For the larger population sizes, the crossover operator is used as the dominant
operator to locate better solutions, as opposed to relying mainly on the mutation operator
for problems that are best solved with smaller population sizes. Therefore, for the case
where crossover is the more dominant operator, the probability of crossover has a greater
influence on the performance of the GA.

This observation is reinforced in Figure 6.9, presenting the most common probabil-

Page 145



Chapter 6 – GA Calibration Methodology

Population Size, N

O
cc

u
rr

en
ce

s

pc = 0.70

pc = 0.85

pc = 1.00

10 50 100 200 400 800
0

50

100

150

200

250

300

350

Figure 6.9 Probability of crossover for each population size for Optimal Generation Func-
tions

ities of crossover for each population size for the Optimal Generation Functions. From
Figure 6.9, it can be seen that the larger the value of pc, the more frequently it produced
the best results, irrespective of the population size. While pc = 1 was always the best, for
N > 10 there were only very few occurrences of pc = 0.7, and not many more occur-
rences of pc = 0.85. However, for N = 10, where mutation was relied on to do most of
the searching, the value of pc is not as important, as it can be seen from Figure 6.9 that all
values for pc performed well.

The frequency of occurrence for each probability of crossover tested for the Maximal
Generation Functions can be seen in Figure 6.7(b). As was the case for the Optimal Gen-
eration Functions, pc = 1 was the most common value in the best performing sets of GA
parameter values for the Maximal Generation Functions. The explanation for this result
is similar to that for the fraction of the distance between parents for the standard deviation
of the crossover operator. For the Maximal Generation Functions, new values are found
through mutations of a small populations, and therefore the crossover parameters do not
have a significant affect on the GA performance.

These results indicate that pc = 1 performed the best for both the Optimal and Max-
imal Generation Functions, and that the parameter was not significantly related to the
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value of any of the other GA parameters. Therefore, pc = 1 has been adopted for the
GA calibration methodology. This result implies that every solution in the population
is altered every generation by crossover, therefore making the most efficient use of FE

available. Conversely, pc < 1 will result in a number of solutions being re-evaluated every
generation, provided a solution tracking operator is not implemented to ensure that only
solutions that change from one generation to the next are evaluated.

6.2 GA CALIBRATION METHODOLOGY

The previous section identified that the only strong relationship between the GA param-
eter values for the cases considered was between the population size and the probability
of mutation. The MI results presented in Table 6.1 and Table 6.2 indicate that for the re-
maining combinations of pairs of GA parameters, the interaction was only slightly higher
than that computed from a random reordering of the data. The results presented so far in
this thesis are summarised in thesis section, providing a complete GA calibration method.
A flowchart of the resulting methodology can be seen in Figure 6.10.

The type of fitness function must be determined before the population size can be
determined. The classification flow chart developed in Section 3.1.3, presented in Fig-
ure 3.13, can be used to classify a given fitness function. By applying the fitness function
statistics developed in Chapter 4, a function can be classified as a Maximal Generation
Function if: Rav < 0.05 (Rav > 0 to allow for small random effects in the estimation
of the statistic), indicating no structure in the search space; or if a function has a largest
building block size of kBB = 1, indicating that there were no interactions between the de-
cision variables, as well as D < 0.05, indicating that each decision variable had a similar
contribution to the fitness function value. If a function is classified as a Maximal Gen-
eration Function, the population size to be used is N = 10. Otherwise, a function is an
Optimal Generation Function, and the number of generations before convergence, gconv,
should be computed by Equation 5.9 and Equation 5.1. From the time available to obtain
a solution, the available number of fitness function values can be determined, then the
population size to be used is given by N = FE/gconv.

Once the population size has been determined, the probability of mutation can be de-
termined. Section 6.1 identified a strong relationship between these two parameters, and
it was determined that the best value for the probability of mutation was pm = 5/N . The
remaining GA parameters did not have a significant relationship between each other, and
therefore the best values identified in Section 6.1 are used in the calibration methodology.

An elitist strategy is required in the Markov Chain modelling of GA populations to
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Figure 6.10 The proposed GA calibration methodology
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ensure convergence to the global optimum (Lozano et al., 1999; Suzuki, 1995), so it is
not surprising that e = 1 performed well in the parametric study. e = 1 also ensures that
the best solution in the population is not lost in the crossover or mutation process. pc = 1

will make the most efficient use of the FE available, as every solution in the population is
altered every generation, and therefore no FE are consumed by re-evaluating solutions.
The final GA parameter to be calibrated produced the best performance when c = 6. A
crossover distribution with a standard deviation based on this parameter value can be seen
in Figure 6.11. A value of c = 6 will produce a distribution with three standard deviations
from each parent solution, and therefore any solution between the two parent solutions
can be produced by the crossover operator, with a decreasing probability as the distance
from either of the parents is increased.

To summarise these results, the proposed GA calibration methodology, as seen in
Figure 6.10, is:

• Calculate the fitness function statistics:

– Spatial Correlation (Section 4.1);
– Dominance Measure (Section 4.3);
– Separability Measure (Section 4.2.2).

• Determine the type of function (Figure 3.13):

– Maximal Generation Function; or
– Optimal Generation Function;

∗ Determine gconv (Equation 5.9).

• Determine the population size:
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– if a Maximal Generation Function (MGF): N = 10;
– if an Optimal Generation Function (OGF): N = FE/gconv.

• pm = 5/N ;
• pc = 1;
• e = 1;
• c = 6.

6.3 CONVERGENCE DUE TO GENETIC DRIFT

A second GA calibration method is proposed, based on a similar method to determine
the population size. However, rather than attempting to predict the convergence due to
the selection pressure as a function of the fitness function characteristics, an upper limit
to when the convergence will occur is identified, based on when the population will ran-
domly converge due to genetic drift. As genetic drift is independent of the fitness function
values, there is no need to estimate the characteristics of the fitness function. Rogers and
Pruegel-Bennett (1999) developed analytic expressions for the change in population vari-
ance due to genetic drift for a range of selection schemes. The authors derived that for
a generational GA with a tournament size of two, the decay in population variance from
one generation to the next was k = 1 − 1

N
. Based on the same initial (σ0) and final (σf )

standard deviation of the population used to estimate the number of generations from k in
Equation 5.1, the population size can be estimated directly by:

gconv =
log (σf ) − log (σ0)

log (k)
,

FE

N
=

log (0.001) − log
(√

l
12

)
log

(
1 − 1

N

) ,

FE

N
log

(
1 − 1

N

)
= −3 − log

(√
l

12

)
. (6.1)

Therefore, by solving the implicit equation in Equation 6.1, the largest population
size that will converge due to genetic drift in the number of function evaluations that are
available for a given problem size can be determined. As was the case for the GA calibra-
tion methodology based on the fitness function characteristics, this approach assumes that
the GA operators, other than selection operator, do not significantly alter the population
variance. The same values for the remaining GA parameters have been used for this cal-
ibration method as for the the proposed methodology above, namely e = 1, pm = 5/N ,
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pc = 1, and c = 6.

6.4 COMPARISON OF GA CALIBRATION METHODS

The two proposed GA calibration methods have been compared with another GA cal-
ibration method, as well as ‘typical’ GA parameter values, to investigate the effect on
GA performance over a range of functions. In this section the different GA calibration
methodologies that have been tested are outlined, before the range of test functions that
they have been applied to are presented. This is followed the results from this study,
firstly presenting the results from the characterisation of the fitness functions, before the
comparison of the solution quality found by the different GA calibration methods.

6.4.1 Outline of the Methodologies

Four different methods for determining the GA population size have been selected to
be tested on a range of fitness functions. Other approaches for self adaptation of the
population size are available, such as Arabas et al. (1994), Bäck et al. (2000), or Eiben
et al. (2004). However, these approaches result in replacing the population size with one
or more parameters to control the change in population size, hence they contribute to the
GA calibration problem, not solve it. The first GA calibration method to be compared
is the first methodology proposed in this thesis. This method is called ‘Predicted’ in the
remainder of this chapter. The second GA calibration approach tested is that proposed in
Section 6.3, and has been called ‘Drift’ in the analysis of the results.

The third method selected to be tested was the ‘Parameterless’ GA calibration method.
This GA calibration methodology was first proposed by Harik and Lobo (1999), followed
by a number of studies, including Lobo and Goldberg (2004), Reed and Yamaguchi (2004)
and Minsker (2005). Reed and Yamaguchi (2004) applied this GA calibration method-
ology to real coded EAs, specifically Differential Evolution, and therefore a similar ap-
proach is adopted for comparison in this work. As is the case in this work, Reed and
Yamaguchi (2004) assumed that the population size is the key parameter controlling the
reliability and efficiency of EAs. Consequently, the approach involves doubling the pop-
ulation size after convergence is achieved, and standard values are used for the remaining
EA parameters. The method starts with a small population size; a value of N = 10 was
suggested (Reed and Yamaguchi, 2004). After the EA has converged, the population size
is doubled and randomly reinitialised, and the best solution from the first GA run is in-
jected into the population. The algorithm then starts again, until the larger population size
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has converged, and then it is again doubled in size. The process continues until there is
no improvement in solution quality from one run to the next, a desired solution quality is
reached, or the maximum FE is reached.

The initial starting population used in this work was N = 10. As proposed by Reed
and Yamaguchi (2004), the GA has been deemed to have converged after a minimum
of g = Nl generations, and after there is no longer at least a 1% improvement in the
fitness function value from one generation to the next. After the GA has converged, the
population size was doubled and reinitialised with random solutions, along with the best
solution from the last GA run. The process was continued until the available number of
FE have been made.

The GA calibration methodology proposed by Harik and Lobo (1999) suggests that to
ensure building block growth in line with the schema theorem, the probability of crossover
must be pc ≤ (1 − s)/s, where s is the selection pressure. The relationship has been
applied to binary coded GAs, however, as it is derived from the schema theorem, it is
also applicable to RCGAs (Goldberg, 1991; Wright, 1991). For this work, the parameter
values proposed by Minsker (2005) to satisfy this relationship are adopted, namely s = 2

and pc = 0.5. Minsker (2005) suggested that the bitwise probability of mutation should
be the maximum value of pm = 1/N and pm = 1/l, where pm = 1/l per bit used in that
work is, on average, equivalent to pm = 1 per string used in this work. Therefore, for the
Parameterless GA calibration methodology, pm = 1 has been adopted. For the remaining
GA parameters c = 6 and e = 1 have been used.

The fourth GA calibration method tested was used to represent the GA parameter
values used typically, and therefore is referred to as ‘Typical’. The values adopted for this
method were:

• N = 100;
• pm = 1 per string;
• pc = 0.9;
• c = 6;
• e = 1.

Each of these four GA calibration methods have also been used in a self-adaptive
framework. The four methods described above have been used to determine the popula-
tion size, and for each method e = 1 has been adopted. These parameters are applied at
the population level, not the individual solution level, and therefore there is no clear way
for the GA to self-adapt these parameter values. For the remaining parameter values, each
solution in the population also included a value for pm, pc and c to be used by the GA for
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that solution. When crossover occurred, the crossover parameter values to be used were
randomly selected with an equal probability from one of the two parent solutions to be
crossed over. In this way, the GA solves the parameterisation problem in parallel with
the fitness function, removing the calibration problem from the user. The range for each
parameter considered was [0 ≤ pm ≤ 1], [0.5 ≤ pc ≤ 1], and [0.01 ≤ c ≤ 36].

Therefore, a total of eight GA calibration methods have been selected to be tested in
the remainder of this chapter. The following section outlines the test functions that have
been chosen for the comparison.

6.4.2 Test Functions

To avoid biasing the results toward the proposed GA calibration methodology, a set of
fitness functions that have not been used in the calibration of the methodology have been
selected. The test functions developed for the special session on real-parameter optimi-
sation at the 2005 IEEE Congress on Evolutionary Computation (Suganthan et al., 2005)
have been used as the test functions to compare the different GA calibration methods.
These functions have been composed to posses a number of different properties, includ-
ing (Suganthan et al., 2005):

• shifted functions (i.e. each variable has a different value at the optimum);
• rotated functions;
• varying structure in the fitness landscape;
• continuous and non-continuous functions;
• a range of the number of local optima;
• a range in the size and shape of local optima basins with respect to the basin of

attraction for the global optimum;
• additively non-separable or non-decomposable;
• global optimum at the search boundary for some variables; and
• scalability into higher dimensions.

A summary of the functions used is presented in Table 6.3, and two–dimensional
plots of each function are presented in Figures 6.12(a) to 6.21(b). Formal definitions of
the functions can be found in Suganthan et al. (2005). Each function has been considered
for problem sizes of l = 10, 30, and 50. For the different GA calibration methods,
convergence times corresponding to FE = 103, 104, and 105 have been considered, along
with 3 × 105 for each problem with l = 30, and 5 × 105 for each problem with l = 50.
Each function has been optimised over the range xi ∈ [−5, 5] with the exception of f1–
f6 and f14, which have the range xi ∈ [−100, 100], f8 over xi ∈ [−32, 32], f11 over
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Table 6.3 Test functions for the GA calibration methods.
UNIMODAL FUNCTIONS
f1 Shifted Sphere Function
f2 Shifted Schwefels Problem 1.2
f3 Shifted Rotated High Conditioned Elliptic Function
f5 Schwefels Problem 2.6 with Global Optimum on Bounds
MULTIMODAL FUNCTIONS
Basic Functions
f6 Shifted Rosenbrocks Function
f8 Shifted Rotated Ackleys Function with Global Optimum on Bounds
f9 Shifted Rastrigins Function

f10 Shifted Rotated Rastrigins Function
f11 Shifted Rotated Weierstrass Function
f12 Schwefels Problem 2.13
Expanded Functions
f13 Expanded Extended Griewanks plus Rosenbrocks Function
f14 Shifted Rotated Expanded Scaffers Function
Hybrid Composition Functions
f15 Hybrid Composition Function
f16 Rotated Hybrid Composition Function
f18 Rotated Hybrid Composition Function

f19
Rotated Hybrid Composition Function with a Narrow Basin for the
Global Optimum

f20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds
f21 Rotated Hybrid Composition Function
f22 Rotated Hybrid Composition Function with High Condition Number Matrix
f23 Non-Continuous Rotated Hybrid Composition Function
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(a) 2–dimensional plot of f1 (b) 2–dimensional plot of f2

Figure 6.12 Functional form of f1 and f2.

(a) 2–dimensional plot of f3 (b) 2–dimensional plot of f5

Figure 6.13 Functional form of f3 and f5.

xi ∈ [−0.5, 0.5], and f12 over the range xi ∈ [−π, π]. The analysis methods proposed
by Suganthan et al. (2005) to compare the results from different calibration methods for
the test functions have been adopted in this work. For every GA calibration methodology
tested, each function in each problem size for each stopping criterion has been run 25
times with different seeds for the random number generator.

Functions that include random noise in the fitness function value (f4, f7, and f24) have
not been included in the analysis, as functions such as these do not represent those that
would be expected for WDS optimisation, where each set of decision variable values will
produce a constant, deterministic, fitness function value. Similarly, the test functions that
do not have a set search space (f7, f25) have not been considered in this work, as generally
for WDS optimisation the objective is to locate the best solution within a desired range.
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(a) 2–dimensional plot of f6 (b) 2–dimensional plot of f8

Figure 6.14 Functional form of f6 and f8.

(a) 2–dimensional plot of f9 (b) 2–dimensional plot of f10

Figure 6.15 Functional form of f9 and f10.

Both of these function properties may also present a problem for the fitness function
statistics, as the search space must be sampled within a specified area, and it is not clear
how well statistics such as the spatial correlation measure will characterise noise in the
fitness function values. Therefore, a total of 20 fitness functions have been used for the
comparison.

6.4.3 Function Characterisation

Each of the fitness function statistics proposed in Chapter 4 has been applied to the 20 test
functions. The fitness function statistics have been computed using n = 5 000, where the
samples used to compute the separability measure are reused to compute the spatial corre-
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(a) 2–dimensional plot of f11 (b) 2–dimensional plot of f12

Figure 6.16 Functional form of f11 and f12.

(a) 2–dimensional plot of f13 (b) 2–dimensional plot of f14

Figure 6.17 Functional form of f13 and f14.

lation and the dominance of the decision variables. The values computed for each statistic
for each function in l = 10 dimensions are given in Table 6.4, along with the predicted k,
corresponding gconv and N (to the nearest 10 solutions) for each FE considered.

Based on the values presented in Table 6.4, the Maximal Generation Functions are
f1, f6, f8, f9, and f14. f8 and f14 do not have any structure in their search space to
guide the optimisation process, as they have Rav = 0. This result is validated by the
2–dimensional plots of these functions, seen in Figure 6.14(b) for f8 and Figure 6.17(b)
for f14, where the fitness function is very flat, and there is no structure to guide the GA
toward better solutions. The fitness function statistics results for f1 and f9 suggest that
these are separable functions with equal contributions from each decision variable to the
fitness function value, which is verified by the equation for each of these fitness functions.
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(a) 2–dimensional plot of f15 (b) 2–dimensional plot of f16

Figure 6.18 Functional form of f15 and f16.

(a) 2–dimensional plot of f18 (b) 2–dimensional plot of f19

Figure 6.19 Functional form of f18 and f19.

The results presented in Table 6.4 suggest that f6 also falls into this class of fitness
functions. However, f6 is Rosenbrocks Function with the optimal solution shifted in the
search space. The function is:

f6 (x) =
l−1∑
i=1

(
100

(
z2

i − zi+1

)2
+ (zi − 1)2

)
, (6.2)

where zi = xi − oi, and oi is value of xi where the optimum occurs. If the summation
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(a) 2–dimensional plot of f20 (b) 2–dimensional plot of f21

Figure 6.20 Functional form of f20 and f21.

(a) 2–dimensional plot of f22 (b) 2–dimensional plot of f23

Figure 6.21 Functional form of f22 and f23.

term is expanded, Rosenbrocks Function can also be written as:

f6 (x) =
l−1∑
i=1

(
100

(
z2

i − zi+1

)2
+ (zi − 1)2

)
,

=
l−1∑
i=1

(
100z4

i − 200z2
i zi+1 + 100z2

i+1 + z2
i − 2zi + 1

)
. (6.3)

From Equation 6.3, it can be seen that most terms that make up f6 are if fact separable,
it is only the −200z2

i zi+1 term that involves a combination of the variables. As the statis-
tics are computed over the whole range of the function, which for f6 is xi ∈ [−100, 100],
the contribution to the fitness function value from the interacting terms will be relatively
insignificant compared to that produced from the completely separable terms. The fitness
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Table 6.4 Fitness function statistic values, and corresponding N for fitness functions with
l = 10.

f kBB mBB Rav Rl RT D k gconv
N

103 104 105

1 1 0 0.2603 0.45 0.2603 0.0330 0.9389 - 10 10 10
2 6 6 0.2357 0.45 0.2357 0.0539 0.9433 117 10 90 860
3 4 8 0.2432 0.45 0.2549 0.0794 0.9365 104 10 100 960
5 3 12 0.2386 0.45 0.2386 0.0590 0.9428 116 10 90 860
6 1 0 0.2444 0.45 0.2482 0.0187 0.9452 - 10 10 10
8 10 1 0 0.05 0 0.0028 1 - 10 10 10
9 1 0 0.2092 0.45 0.2092 0.0364 0.9505 - 10 10 10
10 10 1 0.2474 0.45 0.2474 0.0593 0.9406 111 10 90 900
11 10 1 0.0595 0.25 0.0595 0.0030 0.9932 998 10 10 100
12 3 6 0.1830 0.45 0.1830 0.0480 0.9566 154 10 70 650
13 2 2 0.1780 0.45 0.2020 0.1790 0.9502 133 10 70 750
14 10 1 0 0.05 0 0 1 - 10 10 10
15 7 9 0.2233 0.45 0.2233 0.0561 0.9466 124 10 80 810
16 9 7 0.2257 0.45 0.2289 0.0569 0.9443 119 10 80 840
18 3 11 0.2556 0.45 0.2556 0.1414 0.9423 115 10 90 870
19 3 11 0.2496 0.45 0.2496 0.1308 0.9433 117 10 90 860
20 3 10 0.2542 0.45 0.2542 0.1293 0.9421 114 10 90 870
21 9 9 0.2482 0.45 0.2482 0.0860 0.9416 113 10 90 880
22 4 2 0.2426 0.45 0.2426 0.0393 0.9409 112 10 90 890
23 8 13 0.2370 0.45 0.2370 0.0870 0.9445 119 10 80 840

function statistics computed for f6 in l = 10 for different search space sizes can be seen
in Table 6.5. The sampling has been centred around the global optimum solution, and the
fitness function statistic values computed from ranges of ±0.1, ±1, ±10 and ±100 in each
dimension are shown in Table 6.5. It can be seen that the fitness function characteristics
are very similar when the fitness function values are sampled over the ranges ±10 and
±100 from the optimal solution. Similar correlation and dominance values are observed
for a decrease in the search space size to ±1 around the global optimum, however, for this
smaller search space, the mBB = 9 pair-wise interactions between the decision variables
has been detected, with kBB = 2.

In practice, the location of the global optimal solution is unknown, and therefore it is
not possible to identify local changes to the fitness function characteristics, such as this,
before the problem is solved. However, the fitness function statistics could be re-evaluated
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Table 6.5 Fitness function statistic values for different sized search spaces for f6.

Range kBB mBB Rav Rl RT D k gconv

0.1 2 9 0.2022 0.4 0.3033 0.0270 0.8978 60
1 2 9 0.2102 0.4 0.2815 0.0374 0.9171 80

10 1 0 0.1936 0.4 0.2749 0.0444 0.9145 -
100 1 0 0.1870 0.4 0.3003 0.0453 0.8928 -

as the GA converged to smaller regions in the search space, and if the characteristics have
changed, the GA parameter values could also be changed accordingly. It may be possible
to make use of fitness function values that have already been evaluated by the GA, and
therefore the computation effort involved in re-evaluating the fitness function character-
istics would not be significant for computationally intensive fitness functions. While an
approach such as this may be beneficial to the GA search, it has not been considered in
this work.

Similar fitness function values were computed for the fitness functions with l = 30

and l = 50. The predicted values of k from Equation 5.9 for each function, corresponding
values of gconv calculated from Equation 5.1, as well as N rounded to the nearest 10
solutions for each FE, used as stopping criterion for each function, are presented in
Table 6.6 for the functions with l = 30 and Table 6.7 for the functions with l = 50.

To compute the largest population size that will converge due to genetic drift, only the
dimension of the problem and the number of function evaluations available are required,
as given by Equation 6.1. The population sizes (rounded to the nearest 10 solutions) com-
puted for each case considered in the comparison of the GA calibration methodologies
are presented in Table 6.8. As the self-adaptive calibration method adds three more de-
cision variables to the problem (pm, pc, and c) dimensions of l = 13, 33, and 53 are also
included in Table 6.8. However, this slight increase in problem size did not influence the
population size computed by Equation 6.1. The population sizes presented in Table 6.8
are much smaller than those computed from the fitness function statistics presented in
Table 6.4, Table 6.6, and Table 6.7. This result indicates that it is predicted that the GA
will converge much quicker due to the selection pressure than due to genetic drift, and
therefore larger population sizes can be adopted to make more efficient use of the FE

available to the GA.
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Table 6.6 Predicted N for fitness functions with l = 30.

f k gconv
N

103 104 105 3 × 105

1 0.9662 - 10 10 10 10
2 0.9681 230 10 40 440 1320
3 0.9646 200 10 50 490 1470
5 0.9679 230 10 40 440 1330
6 0.9707 - 10 10 10 10
8 1 - 10 10 10 10
9 0.9723 - 10 10 10 10
10 0.9667 220 10 50 460 1380
11 0.9961 1890 10 10 50 160
12 0.9755 300 10 30 340 1010
13 0.9733 270 10 40 370 1100
14 1 - 10 10 10 10
15 0.9700 240 10 40 410 1240
16 0.9688 230 10 40 430 1290
18 0.9687 230 10 40 430 1300
19 0.9691 230 10 40 430 1280
20 0.9684 230 10 40 440 1310
21 0.9676 220 10 40 450 1340
22 0.9666 220 10 50 460 1380
23 0.9692 240 10 40 420 1270

6.4.4 Overall Solution Quality Comparison

It should be noted that the function evaluations used to compute the fitness function statis-
tics have not been considered in the function evaluations available to solve the problem.
The fitness function statistics have been computed using n = 5 000, and only need to be
computed once for each function in each problem size. As each fitness function is solved
25 times for a number of different FE, the number of samples used to evaluate each func-
tion is insignificant compared to those used by the GA. For example, for a fitness function
with l = 50 optimised 25 times for FE = 103, 104, 105, and 5×105, a total of 15 275 000

fitness function evaluations were made.

The analysis methods proposed by Suganthan et al. (2005) to compare the results
from different calibration methods for the test functions has been adopted in this work.
For every GA calibration methodology tested, each function in each problem size for
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Table 6.7 Predicted N for fitness functions with l = 50.

f k gconv
N

103 104 105 5 × 105

1 0.9743 - 10 10 10 10
2 0.9756 310 10 30 320 1620
3 0.9731 280 10 40 360 1790
5 0.9755 310 10 30 330 1630
6 0.9781 - 10 10 10 10
8 1 - 10 10 10 10
9 0.9788 - 10 10 10 10
10 0.9745 300 10 30 340 1690
11 0.9970 2530 10 10 40 200
12 0.9813 400 10 20 250 1240
13 0.9800 380 10 30 260 1320
14 1 - 10 10 10 10
15 0.9771 330 10 30 300 1520
16 0.9761 320 10 30 320 1590
18 0.9764 320 10 30 310 1570
19 0.9766 320 10 30 310 1550
20 0.9761 320 10 30 320 1580
21 0.9753 310 10 30 330 1640
22 0.9744 290 10 30 340 1700
23 0.9766 320 10 30 310 1560

Table 6.8 Population Sizes Predicted due to Genetic Drift

FE
l 103 104 105 3 × 105 5 × 105

10 10 40 120 - -
13 10 40 120 - -
30 10 40 120 200 -
33 10 40 120 200 -
50 10 40 110 - 260
53 10 40 110 - 260
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each stopping criterion has been run 25 times with different random number seeds. The
difference in the solution found from the optimal solution for each fitness function for
each of the 25 runs for each case considered have been sorted into increasing order, and
the 1st (Best), 7th, 13th (Median), 19th, and 25th (Worst) values found are presented in
Appendix B, along with the mean and standard deviation of all 25 runs.

For each combination of l and FE tested, the performance of each GA calibration
method over each of the 20 fitness functions has been ranked in order of decreasing ability
to locate the best solutions. The ranking has been performed using a Student’s t-test
between the mean values found by the different methods, and if there is not a significant
difference between two methods with a 95% confidence level, they have been given the
same rank. The results from this analysis can be seen in Appendix C, where the different
GA calibration methods have been sorted by their average rank over the 20 test functions
used.

The average rankings for each case of FE and l considered in the comparative study,
given in Appendix C, can be seen in Table 6.9. The GA calibration methods have been
sorted by the mean of the average rankings over each case of FE and l considered, pro-
ducing an overall ranking of the performance of the different GA calibration approaches
considered.

For FE = 103, both the Predicted method and the Drift method use a population size
of N = 10, therefore the results are the same for these two cases. It can be seen that
overall, the proposed GA calibration methodology with set values for the GA parameter
values performed best, with a mean ranking of 2.43. The genetic drift population sizing
method also performed well, with a mean ranking of 2.79.

Not surprisingly, the Typical GA parameter calibration method performed worst, with
a mean rank of 6.56, highlighting the importance of calibrating the GA parameter values
for each individual problem. By allowing the GA to self-adapt the values for pm, pc and
c, the typical GA parameter setting of N = 100 was able to improve the mean ranking of
this method to 5.42.

The third best GA parameter calibration method overall was the Parameterless method
with set values for the remaining GA parameters. However, with an overall rank of 4.11,
it was consistently outperformed by the constant population size methods of Predicted
and Drift. It can be seen from Table 6.9 that the Parameterless method with self adaptive
parameters was the second worst performing calibration method, with a mean ranking of
5.48, which was even slightly outperformed overall by the constant population size with
self adaptive parameters, with a ranking of 5.42.
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Table 6.9 Overall rankings of the GA calibration methods

Parameter Setting Mean
FE = 103 103 103 104 104 104

l = 10 30 50 10 30 50

Predicted - Set Values 2.43 1.90 1.98 2.52 1.95 3.00 3.27
Drift - Set Values 2.79 1.90 1.98 2.52 3.05 3.50 3.55
Parameterless - Set Values 4.11 3.10 2.67 2.38 4.75 3.60 3.05
Predicted - Self Adaptive 4.33 5.53 5.20 4.67 5.08 5.10 5.20
Drift - Self Adaptive 4.88 5.53 5.20 4.67 5.42 4.85 4.95
Typical - Self Adaptive 5.42 5.90 6.80 7.45 3.48 4.03 5.00
Parameterless - Self Adaptive 5.48 5.53 5.20 4.67 5.28 5.55 5.55
Typical - Set Values 6.56 6.62 6.97 7.10 7.00 6.38 5.42

Parameter Setting Mean
FE =105 105 105 3 × 105 5 × 105

l = 10 30 50 30 50

Predicted - Set Values 2.43 3.52 1.85 1.70 2.55 2.48
Drift - Set Values 2.79 3.73 2.45 3.05 2.45 2.52
Parameterless - Set Values 4.11 4.75 5.15 5.00 5.10 5.65
Predicted - Self Adaptive 4.33 3.00 3.90 3.67 3.23 3.00
Drift - Self Adaptive 4.88 4.47 4.97 4.83 4.45 4.35
Typical - Self Adaptive 5.42 4.97 5.12 5.22 5.80 5.90
Parameterless - Self Adaptive 5.48 5.33 5.83 6.05 5.85 5.40
Typical - Set Values 6.56 6.22 6.72 6.47 6.58 6.70

Somewhat surprisingly, the calibration methods with set values for pm, pc and c con-
sistent outperformed the corresponding methods with self-adaptive parameter values. The
only exception to this was the typical GA parameter setting, where the ranking increased
from 6.56 to 5.42 by allowing the parameter values to self adapt. This was most likely
due to the probability of mutation of pm = 1 (one mutation per solution) used for the
typical setting, which was able to be reduced by the self-adaptive method when appro-
priate. This probability of mutation was also used for the Parameterless GA calibration
method with set values, which may explain its relatively poor performance. However, if
only the self-adaptive calibration methods are considered, and therefore the values of the
GA parameters other than the population size and number of elite solutions are left to the
GA, it can be seen from Table 6.9 that the Predicted and Drift methods still perform the
best of the four methods used to determine the population size.

A typical convergence plot for the various GA calibration methods can be seen in
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Figure 6.22 GA convergence for the different calibration methods, for f12 with l = 10

Figure 6.22. The plot shows the best solution found by each calibration method, averaged
over the 25 independent GA runs undertaken, plotted against the function evaluations
made, for f12 with l = 10. The Typical and Drift calibration methods with set parameter
values have very similar population sizes of N = 100 and N = 120, respectively. The
difference between these two convergence plots can be explained by the different pm

values used for each method, which were pm = 1 and pm = 0.042, respectively. From
Figure 6.22, it can be seen that the Drift method with set parameters converged very
quickly, but then is unable to find better solutions, while the Typical calibration method
converged much more slowly but continued to slightly improve the solution found through
the higher mutation rate. The results indicate that for f12, pm = 1 is too disruptive, and
the Drift method with pm = 0.042 found a much better solution, averaged over the 25
GA runs. The effect of the different values of pm is reinforced by the results for these two
methods with self-adaptive parameters, which are very close when the GA is optimising
the value of pm along with the actual solution.

The Parameterless GA calibration method can be seen to converge very quickly in
Figure 6.22, as in the first few thousand function evaluations very small population sizes
of N = 10 and N = 20 are used. As the population size increased as the run progressed,
the average best solution found from the 25 runs can be seen to still improve, however,
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the rate of improvement is much slower. From Figure 6.22, it can be seen that there
was very little difference between the self-adaptive and set parameter value methods for
the Parameterless GA calibration method for f12. This may be due to the population size
changing in accordance with the other parameters, reducing their influence on the solution
found.

The convergence of the proposed GA calibration methodology can be seen in Fig-
ure 6.22 as the lines ‘Predicted - Set’ with set GA parameter values and ‘Predicted - SA’
with self-adaptive parameter values. This method adopts by far the largest population size
of all the methods, with N = 650, and therefore can be seen to converge the slowest out
of all the methods over the first FE ≈ 104. However, there is more diversity in this larger
population, and therefore the GA has the best chance of finding the best solutions during
the permitted FE = 105. It can be seen from Figure 6.22 that the predicted method is still
converging after the allowed FE = 105, however the most efficient part of the optimisa-
tion has already occurred. If more time was available to solve the problem, it would be
expected that better solutions would be located with a larger population size, rather than
relying on mutation to fine tune the decision variable values.

In comparison to the Predicted method, which was still locating better solutions after
FE = 105, the population size determined from the Drift calibration method had more or
less converged after FE = 6 × 104. This result indicates that the GA has converged due
to the selection pressure, rather than due to genetic drift, and therefore a larger population
size than that predicted by the genetic drift model will converge in the FE available.
The genetic drift method can be considered to provide a minimum bound on the most
suitable population size to use, where even on a flat fitness function, the population can
be expected to converge to a solution.

6.4.5 Function by Function Performance Comparison

The ranking of each of the GA calibration methods for each of the fitness functions,
averaged over each case of FE and l considered, is provided in Table 6.10. It can be
seen that the Predicted GA calibration method with set parameter values consistently
ranks as the best approach, and if this calibration method did not have the best rank for
a given function, it had the second best. The functions considered have a wide range of
different properties, hence this result reinforces the belief that it is necessary to consider
the characteristics of the fitness function in the calibration process, to provide the GA
with the greatest chance of locating the best solutions.

The functions that the Predicted calibration method was outperformed on were f10,
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Table 6.10 Average ranking of each GA calibration method for each fitness function.

Parameter Setting 1 2 3 5 6 8 9 10 11 12

Predicted - Set Values 1.6 2.3 1.8 2.4 1.3 3.7 1.1 3.0 1.9 1.4
Predicted - Self Adaptive 4.3 4.3 4.1 4.2 6.0 4.5 3.6 3.8 5.5 4.5
Drift - Set Values 1.7 2.3 2.2 3.1 2.2 4.1 4.2 1.7 1.2 1.9
Drift - Self Adaptive 5.1 6.0 5.4 6.0 4.9 4.8 4.2 4.2 4.4 5.2
Parameterless - Set Values 5.6 2.8 4.0 3.1 4.8 4.8 6.3 5.1 4.5 4.6
Parameterless - Self Adaptive 4.1 7.1 5.6 6.6 3.7 4.5 3.4 6.5 5.6 5.0
Typical - Set Values 7.8 5.6 7.1 4.9 7.4 4.4 7.9 7.4 7.9 7.9
Typical - Self Adaptive 5.8 5.6 5.7 5.6 5.7 5.2 5.4 4.4 5.0 5.6

Parameter Setting 13 14 15 16 18 19 20 21 22 23

Predicted - Set Values 2.8 2.1 3.4 2.6 3.2 3.2 3.1 2.5 2.2 3.0
Predicted - Self Adaptive 3.6 6.4 4.0 3.7 4.1 4.0 4.2 3.7 4.0 3.9
Drift - Set Values 2.2 5.0 3.0 1.9 3.5 3.3 3.3 3.4 2.0 3.5
Drift - Self Adaptive 4.8 2.8 4.0 4.7 5.8 5.7 5.5 4.5 5.2 4.7
Parameterless - Set Values 5.4 4.1 5.2 5.1 2.1 2.2 2.1 3.2 4.0 3.1
Parameterless - Self Adaptive 3.9 4.9 3.6 7.0 6.2 6.4 6.4 5.9 7.1 6.0
Typical - Set Values 7.6 6.7 7.8 6.4 5.0 5.3 5.3 6.5 6.0 6.3
Typical - Self Adaptive 5.7 4.0 5.0 4.7 6.0 5.9 6.1 6.3 5.5 5.5

f11, f15, f16, and f22 by the Drift method, and f18-f20 by the Parameterless method. In
all cases, the best calibration methods adopted static values for the pm, pc and c parame-
ters. Functions f15-f23 are the composite functions, composed from 10 simpler standard
benchmark fitness functions. These functions have different characteristics in different
regions of the search space, thus it is much harder for the fitness function statistics to ac-
curately characterise these functions. Therefore, it is possible that the predicted number
of generations before the population will converge based on the values of the fitness func-
tion statistics were accurate. However, the proposed GA calibration methodology does
not perform poorly on these functions, and is the second best GA calibration method. It
may be that better estimates of the local fitness function characteristics can be obtained
for these more difficult functions from the smaller regions of the search space as the GA
converges, similar to the case presented in Table 6.5 for f6, and the GA parameter values
could be adjusted as more accurate values for the fitness function statistics were obtained.

The rankings presented in Table 6.10 were determined from a Student’s t-test based on
the mean and variance of the 25 GA runs for each GA calibration methodology for each
case of each fitness function. Therefore, a calibration methodology achieved a higher
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ranking than another method only if the difference was statistically significant. However,
if one method happens to find some good solutions, as well as some poor solutions, over
the 25 independent GA runs, a large variance is produced, and it is difficult to distinguish
between the different calibration methods. In reality, a large variance is undesirable,
as the solutions produced from one run to another can vary greatly, and it is unlikely
that numerous GA runs will be undertaken to ensure the best solutions are identified in
practice. The variances of the 25 GA runs for each GA calibration methodology for each
function with l = 50 after FE = 5 × 105 are presented in Table 6.11. It is not practical
to combine the variances of different problems sizes or run times, as the variances are
directly related to the fitness function values. However, the standard deviations for all GA
calibration methods for all cases considered can be found in Appendix B.

The largest differences in the variance in the solutions found by the different GA cali-
bration methods is produced for the completely separable functions of f1 and f9. By iden-
tifying the lack of epistatic interactions between the decision variables for these functions,
the Predicted calibration method with set parameter values produced a much smaller vari-
ance in the best solutions found from run to run compared to the other methods. However,
the drift calibration method produced the smallest variance for f1, of σ2 = 3.4×10−9. The
Predicted method also produced a much smaller variance for f6, which was incorrectly
classified as a separable function, in comparison to the other GA calibration methods con-
sidered. Interestingly, by allowing the GA to self-adapt the GA parameter values for the
predicted method for these functions, the variance in the best solutions found from run to
run increased by many orders of magnitude. Again, this may be due to the increase in the
number of decision variables, and therefore the GA is spending extra time determining
the GA parameter values, as well as locating better solutions.

From Table 6.11, it can be seen that for the composite functions of f15-f23, generally
the Predicted GA calibration method produced a variance at least an order of magnitude
smaller than the other methods tested. For f21, the GA converged to the exact same
solution for each of the 25 runs, producing a variance of σ2 = 0, as seen in Appendix B.
While this is a local optimum for f21, no other calibration method found a better solution,
or found this solution as consistently. Therefore, while the proposed methodology only
ranked as the second best calibration method for most of the composite functions, there
was much less variance in the solution found from run to run. This result can be explained
by the larger population size implemented for the Predicted GA calibration method, and
therefore random effects of the initial population have a much smaller effect on the final
solution found.
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Table 6.11 Variance of best solutions found for FE = 5 × 105 and l = 50.
Parameter Setting 1 2 3 5 6

Predicted - Set Values 4.7123e-07 3.1201e+06 1.6278e+13 7.2486e+04 2.1560e+04
Predicted - Self Adaptive 3.7330e+01 5.6365e+06 2.0568e+14 1.7595e+06 3.5156e+10
Drift - Set Values 3.4236e-09 7.7687e+02 4.0287e+12 2.7646e+05 4.0151e+06
Drift - Self Adaptive 4.0947e+02 5.4461e+07 1.4291e+15 9.0650e+06 8.2356e+12
Parameterless - Set Values 9.1283e+02 1.3640e+07 9.8510e+14 4.2687e+06 1.6390e+10
Parameterless - Self Adaptive 9.2710e+00 1.0693e+08 1.2347e+15 2.7513e+07 7.6852e+08
Typical - Set Values 8.2768e+04 2.0133e+07 6.8394e+14 1.9764e+06 6.7357e+13
Typical - Self Adaptive 1.3772e+04 8.6824e+07 1.1051e+15 6.2082e+06 2.6242e+08

Parameter Setting 8 9 10 11 12

Predicted - Set Values 1.9499e-03 4.0097e-06 1.3622e+02 4.3862e+00 6.9659e+08
Predicted - Self Adaptive 1.5594e-02 5.1415e+00 4.8478e+02 3.3601e+01 1.8251e+09
Drift - Set Values 2.3761e-03 1.1114e+01 1.4301e+04 7.0055e+00 2.5560e+08
Drift - Self Adaptive 9.2484e-03 3.5953e+01 2.8816e+03 3.5947e+01 4.3946e+09
Parameterless - Set Values 2.0872e-03 1.0523e+01 1.5950e+03 1.1275e+01 3.2356e+09
Parameterless - Self Adaptive 7.7551e-03 1.0265e+01 1.2666e+04 2.8046e+01 4.7468e+09
Typical - Set Values 8.6751e-04 2.7712e+02 7.0030e+02 1.6683e+01 3.8882e+09
Typical - Self Adaptive 1.3497e-02 2.7781e+01 8.5541e+03 3.0506e+01 4.6491e+09

Parameter Setting 13 14 15 16 18

Predicted - Set Values 2.1734e+00 2.6718e-01 9.9663e+03 7.3758e+01 3.1552e+01
Predicted - Self Adaptive 1.1709e+00 1.6538e-01 9.1518e+03 2.0924e+02 7.0041e+01
Drift - Set Values 6.3032e-01 3.5230e-02 7.6416e+03 1.4813e+04 2.0814e+02
Drift - Self Adaptive 1.3860e+01 3.1403e-01 8.2943e+03 4.8374e+03 4.4761e+02
Parameterless - Set Values 6.4822e+00 8.6361e-02 1.7790e+04 1.3031e+04 2.8669e+02
Parameterless - Self Adaptive 1.1396e+01 1.7516e-01 3.4919e+04 1.0807e+04 2.4778e+03
Typical - Set Values 1.2956e+02 5.1124e-02 1.4621e+03 1.5866e+03 2.0592e+02
Typical - Self Adaptive 1.0911e+01 3.2034e-01 7.2611e+03 1.1255e+04 8.9379e+02

Parameter Setting 19 20 21 22 23

Predicted - Set Values 2.8633e+01 2.0747e+01 0.0000e+00 7.5073e+01 4.5299e-04
Predicted - Self Adaptive 6.0706e+01 4.8811e+01 7.1185e-01 1.8900e+02 2.5669e-01
Drift - Set Values 9.8019e+02 9.8507e+02 1.7601e+04 2.2085e+02 6.5716e-04
Drift - Self Adaptive 3.1710e+02 3.2217e+02 1.8484e+04 1.2296e+03 1.6283e+04
Parameterless - Set Values 1.8026e+02 2.4262e+02 4.2799e+04 2.8759e+02 1.6766e+04
Parameterless - Self Adaptive 2.3726e+03 2.6877e+03 1.1955e+05 1.2544e+03 8.0068e+04
Typical - Set Values 5.3872e+01 3.7060e+01 5.0876e+02 1.8242e+02 4.7905e+03
Typical - Self Adaptive 1.2393e+03 1.0699e+03 1.2430e+05 2.1819e+03 9.7277e+04
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6.5 DISCUSSION

Firstly, it should be noted that the No Free Lunch Theorem (Wolpert and Macready, 1997)
does not apply to the comparison presented in the previous section. If the objective was
to find the best set of GA parameter values for any function, for example if eight differ-
ent sets of GA parameter values were compared, rather than eight different methods to
determine the GA parameter values, then it would be expected from the No Free Lunch
Theorem that when the performance of each parameter set was averaged over every func-
tion, and every combination of l and FE considered for each function, that the sets of
parameter values would perform similarly. However, in this study, the proposed GA cali-
bration methodology identifies information about the fitness function, and makes use of it
to give the selected algorithm the best chance of solving the problem. Therefore, the No
Free Lunch Theorem does not apply, and meaningful results are obtained.

From Table 6.9, it can be seen that generally the ‘typical’ GA parameter values per-
formed the worst. The typical GA parameter values used were the same for each function,
where all other methods considered had a mechanism to change the GA parameter val-
ues with the function characteristics; either by increasing the population size with FE

or l (Drift method), increasing the population size only after a smaller population size
had converged (Parameterless method), or by relating the population size directly to the
characteristics of the function (Predicted). Therefore, it is not surprising that this method
performed worst overall, as the GA parameter values were not tuned to each fitness func-
tion, providing different GA behaviour for the different functions.

Equation 6.1 provided the largest population size that can be expected to converge due
to genetic drift for a given FE and l. However, generally the population will converge
due to the selection pressure before it will randomly converge due to genetic drift. Con-
vergence due to selection pressure is much more difficult to predict, as the convergence
rate is dependent on the fitness function characteristics. The GA calibration methodology
proposed in this thesis has quantified the convergence due to the selection pressure, based
on the characteristics of the fitness function.

The population sizes produced by the Predicted calibration methodology are much
larger than the population sizes determined from the genetic drift model in Equation 6.1.
The differences in the population sizes predicted from these two methods can be explained
by the different approaches. By considering these population sizes in terms of the number
of generations before convergence, the results indicate that the GA will converge due to
the selection pressure before it will converge due to genetic drift. This is an expected
result, as for a flat fitness function, the convergence will be due to genetic drift, as the
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fitness function value has no influence on the solutions chosen during selection. However,
for a function with any structure, it would be expected that the fitness function values
would cause the GA population to converge quicker than what will occur randomly due
to genetic drift. Therefore, as fewer generations are available before the GA population
will converge, the Predicted method can use a larger population size, and thus generally
find better solutions.

From Table 6.9, it can be seen that generally the static population sizes determined
from both the Predicted and Drift methods outperformed the Parameterless GA calibra-
tion method. Eiben et al. (2004) also found that the Parameterless GA was much slower
than a traditional GA with a constant population size on a number of multi-modal prob-
lems. From Figure 6.22, it can be seen that Parameterless method causes the GA to con-
verge quickly, both with and without self-adaptation, but then the rate in the improvement
in fitness function value is much slower after the first few thousand function evaluations.
This may be due to starting the GA with a small population size and quickly converg-
ing to a local optimum, and then by injecting this local optimum into the population for
larger population sizes, the GA is lead back toward this local optimum in the first few
generations, and therefore potentially away from better regions in the search space.

This result suggests that in general, one GA run with a large population size can
identify better solutions than multiple restarts of smaller population sizes for the same
FE. Other studies (Cantú-Paz and Goldberg, 2003, for example) have also come to this
conclusion. The work presented in this thesis has put a value on how large is ‘large’, by
making use of the fitness function characteristics to identify the population size that can
be expected to come close to converging in the FE available. Therefore, fitness function
evaluations are not wasted by the GA population prematurely converging, but at the same
time the population will converge close to one solution, allowing the best possible solution
to be found in the time available.

This work has not looked in depth at the possibility of adaptive population sizes.
Methodologies to self-adapt the population size are available (Arabas et al., 1994; Bäck
et al., 2000; Eiben et al., 2004), however these approaches replace the population size
with one or more parameters to control the change in population size, and therefore con-
tribute to the GA calibration problem. The values for the fitness function statistics for f6
over different search space sizes, presented in Table 6.5, indicate that for this function, the
interaction between the decision variables is only significant after the GA has converged
to a region in the search space close to the optimal solution. Once the GA converged to
this region, it may be beneficial to increase the population size, providing the GA with a
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greater chance of processing the interactions between decision variables. Therefore, by
computing the fitness function statistics as the GA converges to smaller regions of the
search space, the population size can be adapted to suit the local fitness function charac-
teristics. A GA calibration approach such as this would produce an adaptive population
size, without introducing more parameters to be calibrated.

It may be that the deterministic rule used to increase the population size for the Pa-
rameterless GA calibration method is equivalent to the deterministic rules that are avail-
able to control the other GA parameters, such as those proposed for pm outlined in Sec-
tion 2.4.4.1. In the case of deterministically adapting the value for pm, the value is
changed without any consideration of the actual progress in solving the problem, and
determining the best form of the relationship to change the value is just as difficult to
determine as the best static value for the parameter. This is not quite the case for the Pa-
rameterless GA calibration method, where some feedback from the GA progress is used
to control the population size, as the population size is only increased after a smaller
population size has converged. However, the change in population size is deterministic,
which may not be the most appropriate change for the fitness function being optimised.
For example, f15 is non-separable over the whole search space, however, near the global
optimum, the function is composed from the Rastrigin Function, and therefore is separa-
ble in all decision variables. For this case, once the GA has converged to this region in the
search space, it may be beneficial to decrease the population size, not increase it, as there
are no longer interactions between the decision variables to be processed by the GA.

Eiben et al. (1999) suggested that self-adaptive parameter control methods were the
most promising method to determine the most suitable GA parameter values. However,
the results presented in this chapter indicate that the set parameter values for pm, pc and
c outperformed the self adaptive methods. A similar result was found by Bäck et al.
(2000), who concluded that the performance of self-adapting the parameters pm and pc

was disappointing when used on its own (i.e.; without any control of the population size).
The most likely reason for this is that time spent on searching for good parameter values
is time taken away from finding the optimum (Bäck et al., 2000). While a self-adaptive
approach provides a mechanism for the GA parameters to adjust to more suitable values
as the GA converges to smaller regions of the search space, it is unlikely that the GA will
find better values for the parameters through mutation alone after they have converged to
an initial value.

It can be seen from Table 6.4, Table 6.6, and Table 6.7 that, for most of the fitness
functions considered that were Optimal Generation Functions, the predicted value of k
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does not change very much from function to function, and therefore neither does the pop-
ulation size used to solve the problem for each FE considered. This result implies that if
a function is known to be an Optimal Generation Function, it may be possible to gener-
alise the value of k to determine the best population size. In reality, it may be reasonable
to assume that the types of optimisation problems considered will be structured in some
way, and will have a number of epistatic interactions between the decision variables, as
well as potentially at least one highly salient variable, classifying the function as an Opti-
mal Generation Function. If a generalised function for the value of k can be determined,
similar to that for the genetic drift equation presented in Equation 6.1, then the complex
function characterisation can be avoided, and a rough estimate for the population size
could still be obtained. However, a study such as this is beyond the scope of this thesis.

The population size predicted to converge due to genetic drift is not related to the
fitness function, and therefore is easy to determine by solving the implicit equation in
Equation 6.1. This approach to determining the GA population size was a close second
to the Predicted method, with a ranking of 2.79 compared to 2.43, and in all but three
of the cases where the Predicted method did not perform best in Table 6.10, the Drift
method was the best. Therefore, as this approach to determining the population size is
much easier than the Predicted method based on the statistics of the fitness function, the
Drift method may be suitable in many cases were the absolute best solution is not desired.

6.6 SUMMARY

The first section of this chapter has investigated the relationships between the best values
for the GA parameters, leading to a full GA calibration methodology. The best performing
GA parameter values, including interaction between the parameter values, were identified
from the results of the large scale parametric studies undertaken in Chapter 3. Based on
observations from these data outlined in Section 6.1, Section 6.2 has proposed a full GA
calibration methodology, based on the characteristics of the fitness function. A simple
GA calibration method based on convergence due to genetic drift was also proposed in
Section 6.3.

Section 6.4 has tested the proposed GA calibration methods against a number of other
GA calibration methods that are currently available. The calibration methods have been
compared over a wide range of functions, tested for different problem sizes and conver-
gence criteria. The results presented in Table 6.9 indicate that the proposed GA calibration
methodology produced the best overall results of the eight different GA calibration meth-
ods considered, while the typical GA parameter values produced the worst results. These
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findings highlight the importance of calibrating the GA parameter values to the charac-
teristics of the fitness function. The calibration methodology proposed in this chapter
directly relates the best value of the GA parameters to the characteristics of the fitness
function, as determined by the fitness function statistics developed in Chapter 4.

Both this GA calibration method, and the calibration method based on determining
the largest population size that will converge before genetic drift occurs, outperformed
the Parameterless GA calibration method. The genetic drift method can be considered
to provide a minimum bound on the most suitable population size to use, where even
on a flat fitness function, the population can be expected to converge to a solution. This
approach proved to provide a simple alternative to determine a suitable population size to
use in many of the cases considered.

The results suggests that, in general, one large population size has a greater chance
of locating better solutions than a number of restarts of smaller populations for the same
number of function evaluations. The proposed GA calibration methodology determines
a value for how large is ‘large’, ensuring that the GA converges to the best possible so-
lutions, but at the same time preventing the GA population from prematurely converging
and relying on the inefficient mutation operator to identify better solutions.

The results presented in Table 6.9 indicate that self-adaptive values for pm, pc and c

were significantly outperformed by the use of static values for these parameters over the
entire GA run. It might be expected that a self adaptive approach would produce better
final solutions, as it provides a mechanism for the GA parameter values to adjust to more
suitable values as the GA converges to smaller regions of the search space. However,
the self adaptive approach produced more decision variables to be solved by the GA, and
therefore the most likely reason for the poor performance of the self adaptive method is
function evaluations that are spent on searching for good parameter values are taken away
from finding better solutions, when compared to a GA with the same population size and
fixed values for the remaining GA parameters.
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Chapter 7
Application to WDS Optimisation

A full GA calibration methodology was developed in Chapter 6, and tested against other
methods to determine the GA parameters on a number of complex test functions. The test
functions used were designed to present a realistic test for the GA, however the functions
consisted of mathematical functions that cannot represent the complexities involved in the
optimisation of WDS. In this chapter, a similar comparison of the GA calibration methods
considered in Chapter 6 is undertaken, however in this chapter the fitness functions used
for the comparison are actual WDS optimisation problems.

Two different WDS problems have been considered in the study. Both studies consider
the optimal operation of a WDS, to minimise the costs involved in operating the system.
The first is a network that has been optimised by a number of different approaches in the
past, the Cherry Hill-Brush Plains network from the USA. The second network considered
for the GA calibration comparison is the Woronora WDS, located in Sydney, Australia.
In this case, the optimisation problem is to determine the most cost effective operation of
the pumps and valves in the network, while also considering the water quality produced
by the operation of the WDS.

The eight GA calibration methods have been tested for different stopping criteria for
each problem. The only difference to the methodology used in Chapter 6 is that the
number of different sequences of random numbers used for each method has been reduced
from 25 to 13, due to the computational effort of running the WDS simulation model. For
all the analyses undertaken in this work, the simulation model used was EPANET, version
2.00.10 (Rossman, 1994).

In the following section, the comparative study is undertaken on the Cherry Hill-
Brushy Plains network. Firstly, the network is presented, then the fitness function to be
optimised. This is followed by a results section, consisting of the characterisation of
the fitness function, a comparison of the different GA calibration methods for different
convergence criteria, and a description of the best solution found by the optimisation.
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The second section of this chapter presents a similar analysis for the Woronora WDS,
before a discussion of the results and concluding remarks are made.

7.1 CHERRY HILL-BRUSHY PLAINS NETWORK

The Cherry Hill-Brushy Plains portion of the South Central Connecticut Regional Water
Authority network, USA, is the first network used to test the GA calibration methods on
WDS optimisation problems. This network has been used to validate and test different
water quality models, and has been optimised by a number of methods, including linear
programming (Boccelli et al., 1998), a linear least-squares formulation (Propato and Uber,
2004) and a GA (Munavalli and Kumar, 2003). Hence, this network provided a good test
case for the comparison of the GA calibration methods, as well as to compare the GA
used in this work against other optimisation methods that have been applied in the WDS
optimisation field. To assist in the comparison, first-order bulk decay kinetics have been
used to model the chlorine decay in the system, as this assumption is required for the
linear optimisation methods that have previously been implemented. However, one of the
benefits of the GA approach is that the optimisation proceeds with information directly
from the simulation model, and therefore more complex kinetics, for both bulk and wall
decay, could have been implemented just as easily.

7.1.1 System Description

The data for the system are the same as those used by Boccelli et al. (1998), and the
network layout can be seen in Figure 7.1. The link and node data, including demands and
pipe lengths can be found in Boccelli et al. (1998). The water source is a pump station,
represented by a negative demand at node 1. The pump station is switched on for the first
six hours of the simulation. After this time, the pumps switch off, and the demands in the
system are met by the water stored in the reservoir at node 26. After the first 12 hours
of the simulation, the pump station switches back on for another six hours, allowing the
reservoir to be refilled with water from the pumping station. For the final six hours of the
day the pump station is off, and again, the demands in the system are met from the storage
in the reservoir.

The hydraulics of the system are fixed, hence the optimisation problem is to determine
the mass of chlorine to be dosed at each of the six dosing points, for each of the four 6-
hour time periods over a day. The sources are represented by nodes A, B, C, D, E, and
F in Figure 7.1. Therefore, when the pumping station is on, source node A provides the
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Figure 7.1 Schematic of the Cherry Hill-Brushy Plains Network
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initial concentration of chlorine, and the concentration can be boosted at node C before
reaching the reservoir. The chlorine concentration of water coming out of the reservoir
can be increased at node F, and nodes B, D, and E can be used to boost the concentration
of chlorine in the water in their respective parts of the network.

For the time periods when the pump station is off, the flow along the trunk main from
node 1 to the reservoir at node 26 will reverse, and the demands in the network will be
met from water in the reservoir. Therefore, for this case, the water supplying the demands
in the bottom section of the network will have had a much longer detention time, as the
water has travelled from the pump station to the reservoir, been stored in the reservoir for
a number of hours, and then travelled back to the demand nodes. When the pump station
is off, the concentration of chlorine can be increased at nodes F and C, while nodes B, D,
and E are used to top up the concentration of chlorine at the relevant nodes.

To remove the influence of the initial chlorine concentrations in the network, the sim-
ulation was run until a 24 hour repeating pattern was observed in the chlorine concentra-
tions at the demand nodes. Generally, approximately a two week simulation was required
to reach the steady state condition in the chlorine concentrations.

7.1.2 Cherry Hill-Brushy Plains Fitness Function

The objective of the Cherry Hill-Brushy Plains optimisation problem is to minimise the
mass of chlorine added to the system over a 24 hour period. The decision variables are
the mass of chlorine injected at each dosing point, in mg/min, for each of the four six-
hour time periods when the hydraulics of the system change. This produces a total of 24
decision variables to be determined by the GA. The range considered for each decision
variable was between 0 and 800 mg/min.

The constraint on the system is to maintain the chlorine concentrations in the network
in the acceptable range of 0.2–4.0 mg/L. A penalty of 100 (mg/L)−1 multiplied by the
difference between the actual and required chlorine concentrations was applied at any
violating nodes at each 10 minute time step of the simulation.

7.1.3 Cherry Hill-Brushy Plains Results

The eight GA calibration methods considered in Chapter 6, namely Predicted, Drift, Pa-
rameterless, and Typical, with both set and self-adaptive parameter values, have been
applied to the fitness function for the Cherry Hill-Brushy Plains Network. Due to the
computation requirements of repeatedly running the simulation model, the number of GA
runs with different random seeds for each calibration method was 13, as mentioned pre-
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viously. The fitness function was optimised for stopping criteria of FE = 5 × 103, 104,
and 105. For 1 GA run, these stopping criterion correspond to approximately 15 minutes,
30 minutes, and 5 hours before a solution is required, respectively, on a 2.2GHz work-
station with 1GB RAM running the Linux operating system. As each of the 8 calibration
methods have been run 13 times with different random numbers, this equates to a total of
24 days of CPU time required to perform the comparison of GA calibration methods on
the Cherry Hill-Brushy Plains fitness function.

7.1.3.1 Fitness Function Characterisation

The three fitness function statistics developed in Chapter 4 have been applied to the Cherry
Hill-Brushy Plains fitness function over the defined search space of 0–800 mg/min for
each decision variable. A sample size of n = 5000 has been used to compute each statis-
tic. For the separability measure computed over the whole range of the search space, the
results suggested that there were no epistatic interactions between the decision variables.
This was a somewhat surprising result, as it would be expected that for most combinations
of dosing points, the chlorine added at at one location would have an influence on the best
chlorine to be dosed at another location. However, as the fitness function consisted of a
simple summation of the chlorine added at each dosing point at each time period to com-
pute the total mass of chlorine injected into the system over a day, the fitness function is
completely separable in the decision variables for all feasible solutions. Therefore, there
will only be an interaction between the decision variables if two solutions are compared
that violate the constraints by different amounts, therefore producing an extra penalty
term in the fitness function value.

If a solution is randomly sampled over the whole range of dosing rates considered in
this study, up to 800 mg/min, it is unlikely that the concentrations in the network will be
below the minimum constraint of 0.2 mg/L, based on the flows observed in the system.
Also, when all the dosing points in the network are set to the maximum of 800 mg/min, the
only nodes that violate the upper constraint are downstream of node B and downstream
of nodes D and E, as well as 5 nodes between nodes F and C for one 10 minute time
step over a 24 period. Therefore, for most of the randomly sampled solutions between
0 and 800 mg/min, it is also likely that the upper constraint will not be violated, and
hence generally only feasible solutions will be randomly generated, which are completely
separable in all decision variables.

In an attempt to identify the expected interactions between infeasible solutions in the
search space, the separability measure has been computed over a smaller range of the
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search space. It would be expected that the interaction between decision variables would
be most prevalent around the optimal solution, as generally the optimal solution occurs on
the boundary between the feasible and infeasible solutions. A near optimal solution for
the Cherry Hill-Brushy Plain network could be obtained from other optimisation studies
that have considered this problem, such as Boccelli et al. (1998), Propato and Uber (2004),
or Munavalli and Kumar (2003). However, in order to represent a more realistic situation
where the optimal solution is unknown, the search space has been sampled over the range
0–50 mg/min for each dosing point to compute the separability measure.

Each pair of chlorine dosing points in the system have been considered together to
compute the separability measure. The sampling for each interaction between the dosing
points has been undertaken randomly over all of the time steps, producing an overall in-
teraction between the two dosing points. This approach has the advantage of decreasing
the number of pairs of decision variables to be sampled, and therefore drastically reduces
the computation effort required to determine the separability measure. However, the dis-
advantage is that the interactions between the variables in time are lost. For example, if
the chlorine dosed at node A in the first six hours produced an epistatic interaction with
the chlorine dosed at node F in the second six hour period. As the number of pairs of
interactions to compute is given by l(l − 1)/2, the computation requirements to com-
pute the separability measure increase very quickly with problem size. This is a major
disadvantage of the separability measure, especially for computationally intensive fitness
functions typical of WDS optimisation problems.

The interactions between each pair of decision variables computed by the separability
measure over the smaller region of the search space are given in Table 7.1. The range of
the separability measure is [0 ≤ λ ≤ 1], where λ = 1 indicates a very strong interaction
between the decision variables, and λ = 0 indicates the decision variables are completely
separable. The results presented in Table 7.1 indicate that the interaction between the
decision variables was still not strong, with the strongest interaction being between nodes
C and F with λC,F = 0.177. This result can be explained by the layout of the network,
given in Figure 7.1. When the pumping station is on, the chlorine dosed at node C will be
topped up by the chlorine dosed at node F as the water drains out of the reservoir, while
when the pumping station is off, the water draining down to the bottom of the network
will first be dosed by node F, and then topped up by node C. Chlorine dosed by these
two nodes will have an influence on the chlorine concentrations over a wide range of the
network, and therefore will be most likely to produce a change in the feasibility of the
solution, and thus an interaction between the decision variables.
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Table 7.1 Interactions

B C D E F

A 0.053 0.147 0.064 0.065 0.071
B 0.146 0.042 0.000 0.100
C 0.153 0.088 0.177
D 0.029 0.066
E 0.132

The significant interactions in the network seen in Table 7.1 were between nodes A
and C, B and C, C and D, C and F and E and F. All of these interactions have very similar
values of the separability measure of λ ≈ 0.15. The results indicate that the chlorine
dosed at node C is very important, as it is involved in all but one of the interactions de-
tected between the decision variables by the separability measure. Based on these results,
it was decided to arrange the solution string in the order ABCDEF, to allow the most
effective processing of the interactions. With the solution string ordered in this way, all
the interactions are between decision variables one or two positions apart in the solution
string, with the only exception being nodes C and F. However, by moving these variables
closer together in the solution string, other interactions would have to be separated.

The spatial correlation measure and the dominance measure have also been applied
to the Cherry Hill-Brushy Plains fitness function. The values determined by the statistics
were:

• Rav = 0.2434,
• Rl = 0.45,
• RT = 0.2434,
• D = 0.0407.

Therefore, the fitness function is an Optimal Generation Function, as the search space is
structured with a high Rav and Rl and there were a number of interactions between the
decision variables over the smaller search space. The dominance measure suggested that
there were no salient decision variables, as D < 0.5. This result can also be explained
by the construction of the fitness function, where as the fitness function is computed as
a sum of each of the dosing rate decision variables, each decision variable had a similar
contribution to the fitness function value.

From these values of the spatial correlation and dominance measures, the value of k

computed from Equation 5.9 was k = 0.9626. Based on a problem size of l = 24, the
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number of generations before the population will converge on this function was predicted
to be gconv = 190 by Equation 5.1. Therefore, for the Predicted calibration methodology,
the population sizes used for the different convergence criteria were N = 30 (FE =

5 × 103), N = 50 (FE = 104), and N = 530 (FE = 105).

For the Drift GA calibration method, the population size was determined by Equa-
tion 6.1, based on l and the different cases of FE considered. Therefore, for the Cherry
Hill-Brush Plains Network, the population sizes used by the Drift calibration method were
N = 30 (FE = 5 × 103), N = 40 (FE = 104), and N = 120 (FE = 105). For the
shorter convergence times of FE = 5 × 103 and 104, it can be seen that both the Pre-
dicted and Drift methods adopt very similar population sizes. However, for FE = 105,
the population size predicted by the Drift method is much smaller than that computed by
the Predicted method.

7.1.3.2 Comparison of GA Calibration Methods

A similar comparison of the GA calibration methods provided in Chapter 6 has also been
applied to the Cherry Hill-Brushy Plains fitness function. The only difference between the
methodology used in the previous chapter and the methodology used for the WDS fitness
functions was that the number of times each calibration method was repeated with differ-
ent random seeds was reduced from 25 to 13 to reduce the computational requirements,
as mentioned previously.

The solutions found by the different GA calibration methods for the three different
stopping criteria considered are given in Table 7.2 for the calibration methods with set
values for pm, pc, and c, and in Table 7.3 for the calibration methods with self adaptive
pm, pc, and c parameter values. It can be seen that, overall, the solution quality found by
the different methods does not vary greatly, with the solutions generally being of the same
order of magnitude for the same convergence criteria across all methods.

The rankings of each of the calibration methods for the different stopping criteria can
be seen in Table 7.4, and the different approaches have been sorted by by their mean
ranking over the different stopping criteria. Overall, it can be seen that the Predicted and
Drift methods with set parameter values performed the best, with no significant difference
between the two methods. As was the case in Chapter 6, the typical GA parameters with
set values performed worst.

The population size for the Predicted and Drift methods are the same for FE = 5×103

(N = 30) and very similar for FE = 104 (N = 50 and 40, respectively). Hence, the re-
sults produced from these two methods for these stopping criteria are very similar. How-
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Table 7.2 Results for different GA calibration methods with set parameters

FE Predicted Drift Parameterless Typical

5e3

1st(Best) 1.6127e+03 1.6127e+03 1.4576e+03 1.1834e+04
4th 2.0348e+03 2.0348e+03 2.0123e+03 1.7449e+04
7th(Median) 2.6318e+03 2.6318e+03 5.9917e+03 3.4988e+04
10th 3.3910e+03 3.3910e+03 1.0991e+04 4.2695e+04
13th(Worst) 7.5492e+03 7.5492e+03 6.1467e+04 6.0100e+04
Mean 3.4469e+03 3.4469e+03 1.4315e+04 3.3091e+04
Stdev 1.9433e+03 1.9433e+03 1.9026e+04 1.5169e+04

1e4

1st(Best) 1.3083e+03 1.2819e+03 1.4027e+03 3.4600e+03
4th 1.4264e+03 1.3925e+03 1.4751e+03 5.2657e+03
7th(Median) 1.5347e+03 1.4694e+03 1.5520e+03 8.9233e+03
10th 1.8437e+03 2.9314e+03 1.5758e+03 1.1731e+04
13th(Worst) 9.2051e+03 1.1573e+04 1.6621e+03 1.7421e+04
Mean 2.2938e+03 3.1520e+03 1.5311e+03 9.1438e+03
Stdev 2.0499e+03 3.1674e+03 7.1782e+01 4.2800e+03

1e5

1st(Best) 1.1871e+03 1.1686e+03 1.2513e+03 1.5061e+03
4th 1.1901e+03 1.1900e+03 1.2918e+03 1.5484e+03
7th(Median) 1.1934e+03 1.1963e+03 1.3114e+03 1.6093e+03
10th 1.1978e+03 1.2028e+03 1.3371e+03 1.6421e+03
13th(Worst) 1.2330e+03 1.2247e+03 1.3770e+03 1.7527e+03
Mean 1.1965e+03 1.1957e+03 1.3184e+03 1.6159e+03
Stdev 1.1223e+01 8.1207e+00 3.6939e+01 8.0747e+01

ever, by increasing the population size to N = 100, used by the Typical GA calibration
method, the mean value found was much higher, being 10 times higher for the stopping
criteria of FE = 5 × 103, and three times higher for the stopping criteria of FE = 104.

Very similar solutions are found by all GA calibration methods for the longest stop-
ping criterion of FE = 105. This is somewhat surprising, as the Drift and Predicted
methods used very different population sizes of N = 120 and N = 530, respectively. The
Typical and Drift methods were used with very similar population sizes for FE = 105,
however the poorer performance of the Typical method can be attributed to the higher
mutation rate adopted.

The Parameterless method performed similarly to the Predicted and Drift methods for
FE = 104 and 105. The Parameterless method was slightly worse for FE = 105, and
from Table 7.4, it can be seen that the difference was significant at a 95% confidence level.

Page 185



Chapter 7 – Application to WDS Optimisation

Table 7.3 Results for different GA calibration methods with self adaptive parameters

FE Predicted Drift Parameterless Typical

5e3

1st(Best) 1.4122e+03 1.4122e+03 1.4451e+03 3.4175e+03
4th 2.5579e+03 2.5579e+03 2.1777e+03 8.5085e+03
7th(Median) 1.5385e+04 1.5385e+04 6.0830e+03 2.9381e+04
10th 2.3368e+04 2.3368e+04 1.8467e+04 4.7575e+04
13th(Worst) 3.3924e+05 3.3924e+05 4.5227e+04 6.6770e+04
Mean 5.9970e+04 5.9970e+04 1.3643e+04 2.9792e+04
Stdev 1.0362e+05 1.0362e+05 1.4309e+04 2.1112e+04

1e4

1st(Best) 1.3853e+03 1.3504e+03 1.3098e+03 1.4260e+03
4th 3.1609e+03 1.4318e+03 2.1107e+03 1.7058e+03
7th(Median) 5.3863e+03 1.4669e+03 5.5237e+03 4.1160e+03
10th 8.4290e+03 6.9937e+03 1.3373e+04 9.7805e+03
13th(Worst) 5.5312e+04 1.2019e+05 2.4972e+05 6.3273e+04
Mean 1.2232e+04 1.2746e+04 2.7956e+04 1.0417e+04
Stdev 1.5556e+04 3.1280e+04 6.5104e+04 1.5889e+04

1e5

1st(Best) 1.1961e+03 1.2075e+03 1.2232e+03 1.2063e+03
4th 1.2205e+03 1.2228e+03 1.2849e+03 1.2463e+03
7th(Median) 1.2426e+03 1.3064e+03 1.3128e+03 1.3603e+03
10th 1.2512e+03 1.3871e+03 1.3395e+03 1.5442e+03
13th(Worst) 1.3069e+03 6.3453e+03 1.3802e+03 2.7365e+03
Mean 1.2450e+03 1.7633e+03 1.3073e+03 1.4992e+03
Stdev 3.2677e+01 1.3598e+03 4.0671e+01 3.9324e+02

Table 7.4 Average Rankings

Parameter Setting Mean 5 × 103 104 105

Predicted - Set Values 1.67 1.50 2.00 1.50
Drift - Set Values 1.67 1.50 2.00 1.50
Parameterless - Set Values 3.50 3.50 2.00 5.00
Parameterless - Self Adaptive 4.83 3.50 6.00 5.00
Predicted - Self Adaptive 5.17 6.50 6.00 3.00
Typical - Self Adaptive 5.83 6.50 6.00 5.00
Typical - Set Values 6.67 6.50 6.00 7.50
Drift - Self Adaptive 6.67 6.50 6.00 7.50
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Table 7.5 Comparison of the solutions found by different optimisation methods

Booster Optimisation Dosing at Each Booster Location (mg/min)
Period Algorithm A B C D E F

1

LP 589.0 7.9 419.0 0.1 0.1 0.0
LLS 1442.0 10.2 0.0 3.8 2.9 1211.0
GA1 599.3 9.8 473.6 0.7 0.4 0.0
GA2 671.2 6.7 347.5 0.2 0.3 0.2

2

LP 0.0 0.0 0.0 0.2 0.6 727.0
LLS 0.0 4.7 6.7 2.2 2.1 204.0
GA1 0.0 0.7 0.0 0.3 0.4 713.5
GA2 0.0 0.0 0.2 0.4 1.3 717.2

3

LP 636.0 4.9 454.0 0.0 0.1 8.0
LLS 971.0 11.0 136.0 2.8 1.9 150.0
GA1 680.9 4.3 413.0 0.0 0.3 47.1
GA2 659.1 3.7 415.3 0.1 0.3 26.0

4

LP 0.0 0.4 0.0 0.8 1.4 409.0
LLS 0.0 4.0 0.0 1.6 1.4 223.0
GA1 0.0 0.0 0.3 0.7 1.0 400.7
GA2 0.0 0.0 0.0 0.7 1.5 394.3

The Parameterless method did produce the best results averaged over the 13 independent
GA runs for the stopping criterion of FE = 104. In this case, the difference was not
statistically better than that produced by the Typical and Drift methods, however this
result can be largely attributed to the higher variances for these methods.

As found in Chapter 6, the rankings of the methods presented in Table 7.4 suggest
that the self adaptive calibration methods produced worse performance. Generally, the
solutions found a similar solution quality as the set parameter values after FE = 105,
however, for the shorter convergence times, the average solutions found by most of the
self adaptive methods were much higher when compared to the average fitness function
values found by the same calibration method with set values for pm, pc, and c.

7.1.3.3 Comparison of Best Solution Found
From Table 7.2, it can be seen that the best solution to the Cherry Hill-Brushy Plains op-
timisation problem after FE = 105 using the GA was found using the Drift calibration
method, with a fitness function value of 1169 g/day. This solution, together with previ-
ously published solutions for this problem are presented in Table 7.5, where the linear
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Table 7.6 Total mass of chlorine for different methods

Optimisation Total Mass
Algorithm (g/day)

LP 1176
LLS 1587
GA1 1205
GA2 1169

programming (LP), linear-least squares (LLS) and previous Genetic Algorithm (GA1) so-
lutions are given. The LP and LLS solutions are taken from Propato and Uber (2004), as
the Boccelli et al. (1998) solution was found using a previous version of EPANET, and is
infeasible if evaluated with the most recent version (2.00.10). The objective of Propato
and Uber (2004) was slightly different, which was to minimise the deviation of the chlo-
rine concentration at each node from the minimum of 0.2 mg/L, compared to minimising
the total mass of chlorine used in this work, although it is expected that both approaches
will produce the same goal of minimising the total mass of chlorine added to the sys-
tem. It should also be noted that the GA1 results of Munavalli and Kumar (2003) were
obtained from FE = 1.5 × 105 compared to FE = 105 used in this work, and if more
evaluations were available, it would be expected that better solutions would be found by
the GA presented in this study.

Generally, three of the four optimisation methods that have been applied to the Cherry
hill-Brushy Plains network found very similar solutions. The LLS method found a slightly
different solution, possibly due to a slightly different formulation of the fitness function.
The results indicate that the best approach to operate the system was to have a large dose
at node A, with some booster dosing at node C when the pump station is on, and some
very small additions of chlorine at some or all of the other source nodes in the network.
When the pumping station is off, the solutions given in Table 7.5 indicate that it is best
to have the majority of chlorine added to the system at node F, with some minor topping
up of the chlorine concentrations at source nodes D and E, as well as potentially B and
C. None of the solutions found by the different optimisation methods included chlorine
dosing at node A when the pumping station was off.

It can be seen from Table 7.6 that the GA solution presented in this thesis found
the lowest mass of chlorine to be added to the system, found by the Drift calibration
method with set parameter values. The linear programming method of Propato and Uber
(2004) located a very similar solution. The major advantage of the GA optimisation
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approach compared to the linear programming method is that specific formulations for the
chlorine decay kinetics (i.e.; first order decay) or network behaviour (such as fixed pump
operations) are not required to apply the GA method, which are required to apply the
linear optimisation method. It would be much more difficult, if not impossible, to apply
the linear programming optimisation method to the optimisation of a more complex WDS
optimisation problem, such as that considered for the Woronora WDS in the following
section.

7.2 WORONORA WDS

The Cherry Hill-Brushy Plain network optimisation problem is a rather simple WDS fit-
ness function that has been optimised by a number of methods previously, and therefore
allowed for a comparison of the performance of the GA used in this work, as well as for
the comparison of the GA calibration methods considered. The second WDS optimisation
problem considered in this chapter is an actual ‘real world’ WDS optimisation problem.
The system used in this study is the Woronora WDS located in Sydney, Australia.

The same methodology that was applied in Chapter 6 and applied to the Cherry Hill-
Brushy Plain fitness function has also been applied to the fitness function for the Woronora
WDS. The following section provides a description of the Woronora system, before the
steps taken to calibrate and validate the model are described. The Woronora fitness func-
tion is then outlined, before the results of the study are presented, including the fitness
function characterisation, a comparison of the GA calibration methods on the Woronora
fitness function, and an outline of the best solution found for a number of different sce-
narios.

7.2.1 System Description

The Woronora WDS supplies over 100,000 customers in south-western Sydney, Aus-
tralia. The Woronora Dam has a catchment area of 75 km2 and an operating capacity of
71,800 ML. The Woronora Water Filtration Plant (WFP) was first commissioned in July
1996, and has a capacity is 160 ML/D. Treatment methods at the WFP include chlorina-
tion, UV, both conventional and micro-filtration, and chloramination. Chloramination is
used as the disinfection process for the total system. To minimise the likelihood of nitrifi-
cation in the system, the chlorine set point at the WFP is held constant at 1.75 mg/L, and
the Cl2:NH3 ratio is targeted to be maintained as close as possible to a 4:1 ratio throughout
the system. Calcium hypochlorite tablet dosing is also carried out at all service reservoirs
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Figure 7.2 Schematic of the Woronora WDS EPANET model

in a further attempt to prevent nitrification occurring in the WDS.

The layout of the Woronora WDS EPANET model can be seen in Figure 7.2. The
Woronora dam supplies the Woronora WDS via the Woronora WFP and Clear Water
Storage (CWS). The model represents the distribution system that was supplied by the
Woronora CWS at the time of the work. However, it is possible to supply other zones
in the area that are also connected to the network, but are not shown in the model. A
Pressure Reducing Valve (PRV) is used to provide a head from the clear water tanks that
is equivalent to the surface level of the dam, which has an elevation of 169 m.

The Woronora trunk main is approximately 1 m in diameter, and supplies water from
the Woronora WFP into the distribution network. 10 km along the trunk main the Enga-
dine pumping station supplies water to the Engadine reservoir. The Engadine reservoir
then gravity feeds the Loftus and Maianbar reservoirs, as well supplying the Heathcote
reservoir via a pumping station. The off-take to the Menai subsystem is 3 km further
along the Woronora trunk main from the Engadine pumping station. From the Menai
subsystem off-take, the Lucas Heights reservoir is gravity fed from the Woronora WFP.
In this area of the network the size of the trunk main is 375 mm in the Lucas Heights
subsystem, and 600 mm in the Menai subsystem. The Illawong reservoir is also shown
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Table 7.7 Summary of reservoirs in Woronora EPANET model.

Name
Bottom Height Diameter

Elevation (m) (m) (m)

Menai 124.8 12.2 51.08
Engadine 194.3 10.7 46.66
Loftus 156.4 9.6 35.87
Lucas Heights 145.5 9.5 30.41
Heathcote 219.5 12.5 37.76
Helensburgh 301.5 7.5 41.20
Maianbar 102.4 5.6 22.87

in Figure 7.2, which can be gravity fed from the Menai reservoir. However, at the time
of this study, the Illawong reservoir was off-line to reduce detention times in this area of
the network, and therefore has not been considered in the remainder of this work. The
Helensburgh pumping station supplies water up to the Helensburgh reservoir from the
Woronora CWS. The bottom elevations, heights and diameters of the reservoirs used in
the EPANET model of the Woronora WDS are given in Table 7.7. As the elevation of the
Woronora dam is 169 m, it is capable of supplying the Lucas Heights and Menai systems
of the network by gravity, however booster pumps are required to supply the Helensburgh
and Engadine systems.

The location of assets that can be used to control the operation of the Woronora WDS
are given in Figure 7.2. There are pumping stations located on each trunk main that
lead to the Helensburgh, Engadine and Heathcote reserviors. Automatic Inlet Control
Valves (AICVs) are located on the inlet to the Lucas Heights, Loftus and Maianbar reser-
voirs. The Lucas Heights AICV is operated based on the water level in the Lucas Heights
reservoir, and the water level to open and close the valve can be controlled remotely. The
operations of the AICV on the inlet of the Loftus and Maianbar reservoirs are determined
from set rules, as there is no remote control for the operation of these two valves. There
is a Throttle Control Valve (TCV) on the inlet to the Menai reservoir, which can also be
remotely controlled based on the water level in the Menai reservoir.

7.2.2 Model Calibration

A WATSYS model of the Woronora WDS was provided by the utility responsible for the
system, Sydney Water Corporation. The WATSYS model was converted to an EPANET
model, to allow the GA to simulate the system via the EPANET toolkit. Sydney Water
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Corporation have a sophisticated Supervisory Control And Data Acquisition (SCADA)
system in place for the Woronora WDS, and online monitors provide data about the sys-
tem, including flows, reservoir levels and total chlorine concentrations, at regular inter-
vals, in most cases every 15 minutes. Therefore, there is a large amount of data available
for calibration of the model of the system.

The Woronora WFP is also capable of supplying the Sutherland Zone, which is fed
off the Woronora trunk main between the Engadine pumping station and the Menai zone,
and is located north-east of the Loftus reservoir in Figure 7.2. However, at the time of this
study, the Sutherland zone was fed by the the Allawah reservoir, as the volume available
from the Woronora dam was very limited. The Sutherland zone accounts for approxi-
mately 65% of the demand in the system under normal operating conditions, and therefore
the demand on the system has decreased significantly, from approximately 80 ML/D to
25 ML/D. Due to the capacity of the WFP, the minimum operating flow from the WFP is
35 ML/D. Therefore, it is not possible to continually operate the WFP, as the minimum
supply is greater than the demand in the system. In the model, the daily demand has been
forcast assuming that it will be the same as the previous daily demand, recorded by the
SCADA system. The plant has been modelled to shut down at midnight, and then starts
up when it can supply the minimum flow for the rest of the day. For example, if the daily
demand is forcast to be 28 ML/D, the plant will shut down at midnight, and then restart
at 4:48 am to supply a constant 35 ML/D for the remainder of the day.

It is desirable to operate the WFP to produce a constant flow of treated water. This
allows for ease of operation of the filtration plant, and also minimises abrupt changes in
the water quality provided from the WFP. The current operation of the WDS to achieve
a constant flow from the WFP involves sequentially filling each of the reservoirs in the
system. For example, once the Engadine reservoir has been filled, the pumps are switched
off, and then the TCV in the Menai zone is opened to fill the Menai reservoir, to maintain a
similar demand from the WFP. In order to model this requirement, the WFP is represented
by a node in the model with a negative demand, equal to the daily demand in the system
if it is greater than the minimum operating flow of the WFP, or the minimum operational
flow of 35 ML/D otherwise. Therefore, the operations of the network must maintain a
constant flow from the WFP, otherwise hydraulic errors are produced by empty or overfull
reservoirs in the model.

One of the most important properties of a WDS model is an accurate representation
of the demands in the system, as the demand will control the flows and pressures in
the system, and therefore also the water quality. Detailed information about the smaller
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Figure 7.3 Monthly demand patterns for the demand node at Maianbar.

reticulation of the Woronora system was not available, hence each customer zone in the
system has been represented by a single demand node on the outlet of each reservoir in the
model. The flow and reservoir level data records available from the SCADA were used
to determine the distribution of the demands in the system. However, flow data were not
available to determine the true demand at all demand nodes in the system. A water balance
was undertaken at each time step in the data in order to determine an approximation for
the total demand at the different demand nodes in the network, as well as the daily pattern
of the demand at each node. As the flow upstream and downstream of a desired node
is known, as well as the change in reservoir level, which can be used to compute the
change in storage, a water balance was carried out over the desired node to determine the
demand for a given time. To undertake this analysis, it was assumed that the travel times
were zero, therefore the difference between the flows recorded at different locations in the
network at the same time represented the water that was consumed.

The water balance analysis was conducted for each month to determine if there were
any seasonal changes in the demands in the system. The demand patterns for the Ma-
ianbar demand node for each month of the year can be seen in Figure 7.3. The patterns
are multiplied by the base demand at each node, and therefore they are normalised to
produce an average demand of 1. From Figure 7.3, it can be seen that the pattern of the
demand consumption at the Maianbar demand node did not vary significantly from month
to month, and this was a typical result for all the demand nodes that were investigated.
Therefore, the average demand pattern at each node over all months have been used in the
model.
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Figure 7.4 Spatial distribution of the daily demand around the Woronora WDS.

The demand patterns are used to represent how the demand at each location varies with
the time over a day, however, the spatial distribution of the demand over the Woronora
WDS is just as important to accurately model the demands in the system. Based on the
same water balance approach used to determine the demand patterns, the fraction of the
total daily demand consumed at the different demand nodes was also determined. In this
way, if the total demand for a day is predicted to be 28 ML/D, then this total demand can
be multiplied by the demand fraction for a particular node to determine the average daily
demand, and the average daily demand is multiplied by the demand pattern for that node
to determine the hourly demand for that node at each time in the simulation. The location
and spatial distribution of demands in the system determined from the water balance study
are shown in Figure 7.4. The distribution of demands throughout the system were found
not to vary significantly throughout the year.

As the objective of the Woronora optimisation is to minimise the costs involved in
operating the network, it is important to have an accurate representation of the cost of the
electricity used by the pump stations. To compute total energy used over the day, accurate
pump curves are required for each pumping station. The Helensburgh and Heathcote
pumping stations are modelled as having two fixed speed pumps. However, the two active
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Figure 7.5 Electricity costs over a 24 hour period.

pumps at the Engadine pumping station are variable speed pumps, which are not straight
forward to simulate with the EPANET hydraulic solver. In practice, the most efficient
pump speed to pump to the mid-point of the upper and lower controls is determined, and
this pump speed is maintained until the pumps are switched off, which occurs when the
water level in the Engadine Reservoir reaches its upper limit. In order to simulate this
operation in EPANET, if the pumps are switched on in one time step, the pump speed to
provide the necessary pressure head for the flow through the pump is determined to be
used in the following time step, and this pump speed is held constant until the pumps are
switched off.

Once the energy used in the operation of the pumps in the system has been computed,
the corresponding cost of the electricity used can be determined. The cost of electricity
is variable over a day, where the cost of electricity in cents per kilowatt-hour for different
time periods is given in Figure 7.5. The difference between the costs at 7am and 11pm are
produced by one electricity biller adjusting their times to daylight saving time in summer,
while the other electricity biller does not. Therefore, the electricity cost of running the
pumps in the system can be computed by multiplying the number of kilowatts used each
hour by the electricity cost for that hour.

Sydney Water Corporation is also billed for the maximum electricity demand. There-
fore, if the pump stations are pumping more water and more current is being drawn, cost
for electricity demand will increase. The peak electricity demand used to compute the
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electricity bills persists for two years, thus if the peak electricity demand is increased on a
given day, then that demand is used for the following two years to compute the electricity
demand cost paid by the utility. It is highly undesirable to increase the peak electricity
demand, and hence the peak electricity demand has been included in the fitness function
as a constraint, where a penalty is applied if the peak electricity demand is increased, as
the increase in demand will produce an increase in the electricity costs for the next two
years. To compute the peak electricity demand, the power used by the pumps, in kW,
is divided by a power factor to produce the peak electricity demand, in kVA. Based on
the maximum power used by the pumps in a simulation of the current operations of the
Woronora WDS, as well as billing records of the electricity demand that has historically
been paid, a value of 0.85 has been used for the power factor.

The objective of the optimisation (i.e.; minimising cost) is constrained by the water
quality produced by the operation of the WDS, and therefore a water quality model has
also been developed. Total chlorine was used as a surrogate for the chloramine in the
system, as only total chlorine measurements were available to calibrate the model, and it
is assumed at the utility that if the total chlorine concentration is above 1 mg/L, then all
the ammonia in the system will be bound with chlorine, and nitrification will not occur. A
first order decay model has been used to represent the change in chlorine concentration.
There are regular total chlorine measurements at the WFP and at the valve before the
Engadine pumping station, along with flow measurements along the trunk main in this
section of the system. Therefore, as the initial and final chlorine concentrations were
known for this section along the pipe, as well as the travel time between the two points,
given by the flow and pipe diameter, the decay rate of chlorine in this section of the pipe
can be determined. Data from different times of the year were considered to investigate
if the chlorine decay rate changed with water temperature. However, the analysis did
not provide a reliable result, with the chlorine decay rate varying between kCl = −0.05

to −0.4 d−1, with no relationship with water temperature or time of year. While this
was a relatively closed section of the system, the true chlorine decay coefficient could
not be determined from the available data. This is due to the influence of other effects
in the system, such as the opening or shutting of valves, which produce sudden changes
in the chlorine concentrations, and these could not be taken into account in the chlorine
calibration model.

A separate study was undertaken at the Australia Water Quality Centre that performed
a number jar tests of chlorine decay on a number of water sources from around Australia
at different times of the year. One of the water sources tested in the study was from the

Page 196



Woronora WDS – Section 7.2

Time, days

T
ot

al
C

h
lo

ri
n
e

C
on

ce
n
tr

at
io

n
,
m

g/
L

0 2 4 6 8 10 12 14 16

1.1

1.15

1.2

1.25

1.3

Figure 7.6 Total chlorine trend at the outlet of Menai reservoir for December 2005.

Woronora WFP. Based on the jar tests undertaken in that study, the total chlorine decay
rate used for the water quality model of the Woronora WDS was kCl = −0.24 d−1, which
falls between range of computed decay rates of kCl = −0.05 to −0.4 d−1.

The final part of the model of the Woronora WDS to be developed was to represent
the calcium hypochlorite tablet dosing that was undertaken to increase the chlorine con-
centrations in the network. To determine the effect of the tablet dosing, the total chlorine
concentration at the inlet and outlet of the Menai reservoir was used, along with records
of when tablets were dosed into the reservoir. A plot of the total chlorine concentration at
the outlet of the Menai reservoir for December 2005 can be seen in Figure 7.6, where the
large circles are used to represent when tablets were dosed in the reservoir. It can be seen
from Figure 7.6 that after tablets are dosed, the chlorine concentration at the outlet of the
reservoir increases, and then slowly decreases over the next two days.

The influence of dosing the calcium hypochlorite tablets can be determined by consid-
ering the difference between the chlorine concentrations measured at the inlet and outlet
of the Menai reservoir, if the decay of chlorine in the reservoir is assumed to relatively
slow. The result from this analysis can be seen in Figure 7.7, where the difference between
the outlet and the inlet concentrations is plotted for the time after each of the seven sets
of tablets were dosed in December 2005. The thick dashed line is the average influence
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Figure 7.7 Influence of tablet dosing for December 2005.

of the tablets dosed for this period.
A similar analysis was undertaken on data collected over the month of July 2006. The

increase in chlorine due to the five sets of tablets dosed in July can be seen in Figure 7.8,
and again the thick dashed line provides the average influence of the tablet dosing for this
month. These two cases of December 2005 and July 2006 provide an indication of the
influence of the tablet dosing under both summer and winter conditions. The chlorine
data at the Menai reservoir were erroneous between January and April 2006, therefore
December 2005 was the latest time in the summer that the analysis could be undertaken.

The average influence of the calcium hypochlorite tablet dosing at the Menai reservoir
for December 2005 and July 2006 are given in Figure 7.9. The peak for the two different
plots can be seen to occur at a very similar time, approximately 14 hours after the tablet
was dosed. The size of the peak is also very similar, at approximately 0.13 mg/L, and
the difference between the two peaks is not significant, given the accuracy of the chlorine
measurements. The average influence of the tablet dosing is also given in Figure 7.9.
Based on this average influence of the tablet dosing, the model used to represent the
effect of tablet dosing for the Woronora WDS is given by the triangular distribution in
Figure 7.9. This provides an approximation to the observed influence of the tablet dosing,
and was deemed appropriate for this study.
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Figure 7.8 Influence of tablet dosing for July 2006.
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Figure 7.9 Calcium hypochlorite tablet dosing model.
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7.2.3 Model Validation

The previous section outlined the calibration of the Woronora WDS EPANET model,
in order to simulate the behaviour of the network as well as possible. In this section,
the results from the simulation model are compared with measured data from the WDS,
to determine the accuracy of the model. The operation of the WDS for a given day,
including pump operations, valve operations and tablet dosing, have been simulated in
the WDS model, so that the reservoir levels and total chlorine concentrations computed
by the model can be compared against what was actually measured in the WDS.

The day used for the comparison was 4/8/2006, as after this date maintenance was
undertaken on the Helensburgh pumping station, and the actual operations of the system
were unknown. The reservoir levels and total chlorine concentrations in the model were
initialised to the values recorded at midnight on this day. For nodes in the model where
the chlorine concentrations are not measured, the initial values have been determined by
a linear interpolation between data at known locations.

The operations of the AICV on the inlet of the Loftus and Maianbar reservoirs are de-
termined from set rules, as there is no remote control for the operation of these two valves.
Based on observations from the SCADA data available, the Loftus reservoir is maintained
between 70 and 95% full. Therefore, if the reservoir level approaches 70% full, the valve
will open, and then will shut once the water level in the reservoir reaches 95% full. Sim-
ilarly, the AICV on the inlet of the Maianbar reservoir is operated to maintain the water
level in the reservoir between 85 and 87%. These operations have been simulated in the
model of the Woronora WDS, and therefore the operation of these AICVs are not deci-
sions to be made.

The simulated and recorded water level in the reservoirs around the network that are
controlled by pumping stations or valve operations have been compared. The results can
be seen in Figures 7.10 to 7.14. From Figure 7.10, the simulated and observed reservoir
profile for the Helensburgh reservoir can be seen, and the results indicate that the simu-
lated result agrees very well with the true reservoir profile. Therefore, it can be concluded
that the pump curve used for the Helensburgh pump station is accurate, and reasonable
demands were used at the outlet of the reservoir.

The simulated and observed water profiles for the Engadine reservoir can be seen in
Figure 7.11. The results suggest that the approximation to the variable speed pumping at
the Engadine pumping station is not a perfect representation, as at times the pumps are
pumping harder in the simulated model compared to those in the real system, indicated
by the levels recorded by the SCADA system. This can be seen in Figure 7.11 by the
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Figure 7.10 Simulated and observed Helensburgh reservoir profile.

faster increase in the water level for the EPANET simulation at around 0600 hours. How-
ever, for the remainder of the day, the reservoir profiles are in agreement, and when the
pumps switch back on at 1 pm, the pumps can be seen to behave similarly. Therefore, the
approximation to the variable speed pumping at Engadine is deemed to be reasonable for
the Woronora WDS model.

The water level in the Heathcote, Lucas Heights and Menai reservoirs can be seen
in Figure 7.12, Figure 7.13, and Figure 7.14, respectively. For all three of these plots,
the simulation of the reservoir profile can be seen to agree with the true profile for this
day for the first part of the simulation. However, generally after the respective pump
or valve shuts off for the first time, the water level in the observed profile indicates that
the reservoir is draining quicker than was simulated in the EPANET model. This will
result in the pump or valve filling the reservoir earlier in the day than in the simulation
model. The most likely reason for this difference is the demands that have been used in
the simulation model have been produced by the demand patterns and the distribution of
the daily demand determined in the calibration of the model. On a day-to-day basis, the
actual demands in the system may be quite different from the average demands that were
used in developing the model. Therefore, for the case presented here, it is likely that the
predicted demands in the model are slightly lower than the true demands, and therefore
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Figure 7.11 Simulated and observed Engadine reservoir profile.

the reservoirs take more time to drain to the trigger level where the pump or valve is
opened again in the EPANET model.

Generally, the water profiles presented in Figures 7.12, 7.13, and 7.14 are in agree-
ment with the true water profile recorded by the SCADA system. The most important
characteristic to note is that the reservoir at Heathcote fills at the same rate for both the
simulated and observed cases, indicating that the pumps at Heathcote are simulated ac-
curately. Therefore, if the pumps are simulated accurately, it may be expected that the
simulated electricity cost of pumping is also an accurate resemblance of the true electric-
ity cost.

The pumping costs computed by the simulation of the Woronora WDS system for this
day of operation was $176. The electricity bill for the month of August 2006 was $5086,
which gives an average daily cost of $164. The simulated pumping cost does not include
other costs that are included in the total electricity bill paid by the utility, such as capacity
costs and other fees, however the majority of the electricity bill consists of the costs of
the electricity used. Therefore, from the analysis of the reservoir profiles and electricity
costs, it can be concluded that the simulated hydraulic behaviour of the Woronora WDS
is a reasonable representation of the true hydraulic behaviour of the system.

The simulation of the total chlorine concentrations in the network have also been com-
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Figure 7.12 Simulated and observed Heathcote reservoir profile.
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Figure 7.13 Simulated and observed Lucas Heights reservoir profile.
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Figure 7.14 Simulated and observed Menai reservoir profile.

pared against those recorded by the SCADA system for the same day of operation. Two
locations in the network where total chlorine concentrations are measured have been com-
pared; the Engadine pumping station, and the inlet to the Menai reservoir. The simulated
and observed total chlorine concentrations over a 24 hour period at the Engadine pump-
ing station can be seen in Figure 7.15. It can be seen that the concentration of chlorine
at this location does not change significantly over the day. This observation is typical of
the chlorine concentrations at most locations in the WDS, and is part of the reason for the
large range of chlorine decay constants observed from the data in Section 7.2.2. The water
quality model can be seen to predict the slight changes in the chlorine concentration at the
Engadine pumping station, however the small short term variations in the chlorine con-
centration are not simulated. These short term variations are a similar magnitude to the
accuracy of the equipment used to measure the chlorine concentrations (approximately
±0.1 mg/L). Therefore, these small changes in the concentration are most likely insignif-
icant, and hence the simulation of the chlorine concentration at the Engadine pumping
station is a reasonable representation of the true chlorine concentration at this location.

The other location where suitable data were available to compare the chlorine con-
centrations was at the inlet to the Menai reservoir. The simulated and observed chlorine
concentrations over a 24 hour period at this location can be seen in Figure 7.16. Again,
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Figure 7.15 Simulated and observed total chlorine concentrations at the Engadine pumping
station.

the simulation of the chlorine concentration can be seen to be a reasonable representa-
tion to the overall change in the true chlorine concentration, however, some of the small
fluctuations in the chlorine concentration were not simulated. As outlined above, these
fluctuations are of the same order as the error of the measurement equipment, and are
most likely not significant. There is large step change in the chlorine concentration simu-
lated with EPANET, which is not present in the true chlorine concentrations for this day.
This result is most likely due to the simulation of the TCV at the inlet to the Menai reser-
voir, which has been opened relatively quickly in the model, and water of higher chlorine
concentration from the WFP is released to the Menai reservoir. In reality, the TCV is
opened more slowly, and therefore chlorine concentrations are observed to increase more
slowly. The simulated result may also be due to effects such as dispersion being ignored
in the simulation model, as in reality, longitudinal dispersion tends to reduce sharp fronts
in chlorine concentrations in the system. While on first inspection, the step change in the
simulated chlorine concentration in Figure 7.16 appears to be very different from the true
chlorine concentration, the two profiles are rarely more than 0.1 mg/L apart, and there-
fore it has been concluded that, for the requirements of this study, the water quality model
provides a suitable representation of the total chlorine concentrations in the Woronora
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Figure 7.16 Simulated and observed total chlorine concentrations at the Menai reservoir
inlet.

WDS.
The results presented in this section indicate that the simulated reservoir levels, chlo-

rine concentrations and calculated pumping cost were all in reasonable agreement with
that recorded from the actual Woronora WDS. Therefore, the Woronora WDS model cal-
ibrated in Section 7.2.2 has been determined to provide a reasonable representation of the
true behaviour of the Woronora WDS, and thus can be used for the optimisation of the
system. In the following section, the fitness function to be optimised for the Woronora
WDS is outlined.

7.2.4 Woronora WDS Fitness Function

The objective of the Woronora optimisation problem is to minimise the total cost of oper-
ating the system. The total cost consists of the electricity cost due to running the pumps in
the system, and the cost of dosing calcium hypochlorite tablets in the reservoirs. The cost
of the tablets themselves is relatively cheap, however in order to dose the tablets, two em-
ployees are required to drive to each reservoir that requires the tablet dosing. Therefore,
the cost of dosing a reservoir with calcium hypochlorite tablets has been used as $240, to
include the costs of employing two staff to dose the tablets and the vehicle costs involved
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in driving to each reservoir (Corinna Doolan, pers. comm., October 30, 2006).

The decision variables that can be changed to meet the objective of the optimisation
are given in Table 7.8. Each of the pumping stations consist of two active pumps, which
are controlled by the water level in the reservoir downstream. Therefore, the decision
variables for each pump are the water level in the reservoir to trigger the pump to turn on,
and the water level in the reservoir to trigger the pump to turn off. In order for the pump
operations to be accepted by the software that implements the trigger levels, the decisions
must be structured in order from lowest to highest of: first pump on, second pump on,
first pump off, and second pump off. The other hydraulic decisions to be made are the
reservoir trigger levels for the AICV at Lucas Heights to open and close, and the trigger
levels in the Menai reservoir to control the TCV upstream. Therefore there are a total of
16 different hydraulic decision variables.

As seen in Figure 7.5, the cost of electricity varies a great deal over a 24 hour period.
Therefore, it might be expected that different operational regimes may be beneficial at
different times of the day. For example, to minimise the cost of running the pumps, it
may be beneficial to undertake as much of the required pumping as possible at night,
when the electricity is much cheaper. Five different control periods over the day have
been implemented to allow solutions such as this to be identified by the GA. The five
periods have been derived from the electricity costs given in Figure 7.5. Consequently,
the 16 hydraulic decision variables must be determined for the periods: 0000–0700, 0700–
1400, 1400–2000, 2000–2200, and 2200–0000 hours. For the final period, the operations
revert back to the operations that were used for the first time period of the day, as the
electricity costs are the same, and in order to produce consistent pumping operations
overnight. Therefore, there a total of four sets of the 16 hydraulic decision variables must
be determined, producing 64 hydraulic decision variables.

The final decisions that must be made are whether or not to dose calcium hypochlorite
tablets in each of the reservoirs. As the GA is real coded, for these decisions the tablet
dosing has been represented by a value over the range [0, 2), and to determine if the
tables are dosed the value is truncated. Therefore, if the truncated value is 1, tablets are
dosed, otherwise if the value is 0, no tablets are dosed in the reservoir. As there are
seven reservoirs in the Woronora WDS, there are seven water quality decision variables,
producing a total of 71 decision variables for the Woronora WDS fitness function when
the water quality constraint is considered.

The objective of minimising the costs of operating the Woronora WDS is subject to a
number of constraints on the system that must be satisfied. The constraints on the system
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Table 7.8 Woronora Decision Variables

No. Location Asset Decision

1 Helensburgh Pump 1 Low TL
2 Helensburgh Pump 1 High TL
3 Helensburgh Pump 2 Low TL
4 Helensburgh Pump 2 High TL
5 Engadine Pump 1 Low TL
6 Engadine Pump 1 High TL
7 Engadine Pump 2 Low TL
8 Engadine Pump 2 High TL
9 Heathcote Pump 1 Low TL
10 Heathcote Pump 1 High TL
11 Heathcote Pump 2 Low TL
12 Heathcote Pump 2 High TL
13 Lucas Heights AICV Low TL
14 Lucas Heights AICV High TL
15 Menai TCV Low TL
16 Menai TCV High TL
17 Helensburgh Reservoir Tablet Dose
18 Engadine Reservoir Tablet Dose
19 Loftus Reservoir Tablet Dose
20 Maianbar Reservoir Tablet Dose
21 Heathcote Reservoir Tablet Dose
22 Lucas Heights Reservoir Tablet Dose
23 Menai Reservoir Tablet Dose

are:

• Minimum water levels in each reservoir to maintain pressures in the reticulation
system. As the reticulation system is not modelled further downstream than the
reservoirs, the water pressure delivered at the customer level cannot be constrained
directly. Therefore, the pressure constraint is implemented by requiring minimum
water levels in the reservoirs that are known to maintain suitable pressures in the
system.

• The water level in a reservoir must return to at least the level it was at the start of
the day. This constraint is used to ensure that pumping costs are not reduced arti-
ficially, as without this constraint, the minimum amount of pumping, and therefore
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the minimum electricity cost, is achieved by allowing all reservoirs to drain down
to their lowest allowable level. Obviously, this is not a desirable situation for the
operation of the system for the following day, where all the reservoirs will need to
be refilled at the same time at the beginning of the day.

• Minimum flow from the CWS at the WFP. Due to the size of the plant equipment,
the achievable turn-down ratio restricts operation to a minimum flow of 10 ML/D.
Hence, flows from the CWS of less than 10 ML/D cannot be maintained in practice,
and either the valve on the outlet of the CWS is open with a flow greater than
10 ML/D, or the valve must be shut.

• Minimum total chlorine concentrations of 1 mg/L to prevent nitrification occurring
in the system.

• Maximum electricity capacity of 428 kVA to ensure the electricity capacity cost is
not increased for the following two years.

• A maximum of 13 pump switches per day for each pump to reduce the risk of pump
burn out produced by constantly switching the pumps on and off.

• The correct order of pumping trigger levels, so that the levels are ordered: first
pump on, second pump on, first pump off, and second pump off. Each solution can
be analysed to determine if it satisfies this constraint without running the hydraulic
simulation model. Therefore, if necessary, each solution has been repaired before
running the EPANET model to ensure the solution does not violate this constraint.
As outlined in Section 2.1.1, a decision must then be made about whether or not
to replace the infeasible solution with the repaired solution in the GA population.
For this work, the rule suggested by Michalewicz (1996) has been adopted, which
states that a 15% replacement of infeasible solutions is the best choice for numerical
optimisation problems with nonlinear constraints.

In order for the selection operator to compare two infeasible solutions, penalty factors
have been applied to any constraints that have been violated. A penalty of 100 multiplied
by the maximum constraint violation over the simulation is included in the fitness function
value for any infeasible solutions. The exception to this is the constraint on the minimum
total chlorine concentration, which had the penalty of 5 (mg/L)−1 multiplied by the con-
straint violation at each time step that the chlorine concentration was below 1 mg/L at a
demand node. These penalty values were found to provide a reasonable trade off between
penalising infeasible solutions while still making use of slightly infeasible solutions in the
optimisation process. However, it is clear that future research should be directed towards
determining suitable methods for handling feasible and infeasible solutions.
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Four different cases of the Woronora WDS system have been considered to be opti-
mised. The first scenario initialised the model with reservoir levels to 70% full, and the
chlorine concentrations initialised with the concentrations measured at midnight 4/8/2006.
The second scenario to be optimised initialised the reservoir levels to 70% full, however,
the constraint on the chlorine concentrations was ignored. This scenario was considered
to investigate the effect of including the water quality constraint on the best hydraulic
operation of the system. The third scenario was initialised with the actual reservoir levels
and chlorine concentrations measured at midnight 4/8/2006. Many of the reservoirs in the
system are much higher than the 70% full considered for scenario 1, and it is expected
that by reducing the overnight reservoir levels in scenario 1, compared to scenario 3, that
more pumping will be able to be shifted into the off-peak electricity period, therefore
producing lower pumping costs. The final case of the Woronora WDS fitness function
optimised considered only the hydralic constraints with the reservoirs in the model ini-
tialised to the actual levels measured at midnight, 4/8/2006, to provide a comparison with
scenario 3 to investigate the effect of removing the water quality constraint on the best
hydraulic operation of the system.

In order to suitably simulate each scenario, different simulation times were used for
the scenarios with and without water quality constraints. For the two scenarios without
the water quality constraint, the simulation time was a standard 24 hour period. For
scenarios 1 and 3, where the water quality produced by the operation of the WDS was
taken into consideration, the simulation was run until the total effect of the tablet dosing
was observed. If 24 hour simulations were also used for the water quality solutions, it
would be unlikely that any tablets would be dosed, as the increased chlorine concentration
produced by the tablets would not be fully observed until the day after the tablets had
been dosed. Usually, the tablets are dosed at 9 am in the Woronora WDS, and the tablet
dosing model, given in Figure 7.9, indicates that the effect of the tablet dosing persists
for 48 hours. Therefore, a 57 hour simulation has been selected for scenarios 1 and 3, to
allow enough simulation time for the influence of the tablet dosing to be observed, without
unnecessarily increasing the computational requirements. For these scenarios, where the
simulation time was longer than 24 hours, the demand, demand patterns, and operation of
the system were repeated for each 24 hour period.

7.2.5 Woronora Results

The same comparison of the different GA calibration methods considered in Chapter 6
has been applied to the Woronora WDS fitness function. Each GA calibration method
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has been tested with 13 different sequences of random numbers. The same stopping
criteria have been used for the Woronora fitness function that were used for the Cherry
Hill-Brushy Plain fitness function, FE = 5 × 103, 104, and 105. For 1 GA run, these
stopping criteria correspond to approximately 2.5 minutes, 5 minutes and 50 minutes of
CPU time, respectively, for the version of the fitness function with only the hydraulic con-
straints. With the water quality constraints also considered in the fitness function, both the
hydraulic and water quality models must be run, and the simulation time was increased
from 24 to 57 hours. Therefore, for scenarios 1 and 3 these stopping criteria correspond
to approximately 9 minutes, 18 minutes, and 3 hours of CPU time, respectively. The
benchmark machine was a 2.2 GHz workstation with 1 GB RAM running the Linux oper-
ating system. As each of the eight calibration methods has been run 13 times on the four
different variations of the fitness function, this equates to a total of 38 days of CPU time
required to perform the comparison of GA calibration methods on the Woronora fitness
function.

In the following section, the results from applying the fitness function statistics to the
Woronora fitness function are presented, before the performance of the GA calibration
methods are compared for the different versions of the fitness function for different stop-
ping criteria. This is followed by a description of the best solutions found by the GA to
operate the Woronora WDS for the different scenarios considered.

7.2.5.1 Fitness Function Characterisation

The results from applying the separability measure to the Woronora WDS fitness function
are given in Table 7.9. The interactions are presented for case 2 of the fitness func-
tion, where the water quality constraints are not considered and the model was initialised
with the lowered initial reservoir levels. Similarly to the approach used for the Cherry
Hill-Brushy Plain fitness function, each pair of decision variables has been considered
independent of the time of day, to dramatically decrease the number of pairs of decision
variables to be processed. Each decision variable is represented by the corresponding
number given in Table 7.8.

The results presented in Table 7.9 suggest that every decision variable in the Woronora
fitness function interacts with every other decision variable. As the fitness function is
highly constrained, it is unlikely that a feasible solution that satisfies every constraint will
be found by the GA, let alone by randomly sampling the search space to compute the
separability measure. Also, as the constraint violation is computed using a highly non-
linear simulation model, the fitness function value might be expected to vary greatly for
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Table
7.9

Separability
m

easure
resultsforscenario

2
ofthe

W
oronora

fitnessfunction

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

1
0.685

0.482
0.661

0.640
0.665

0.609
0.646

0.693
0.553

0.582
0.550

0.655
0.574

0.673
0.583

2
0.700

0.715
0.671

0.577
0.657

0.722
0.553

0.701
0.715

0.640
0.996

0.641
0.901

0.616
3

0.661
0.682

0.622
0.548

0.638
0.729

0.709
0.522

0.674
0.694

0.657
0.712

0.657
4

0.724
0.662

0.668
0.627

0.667
0.697

0.662
0.711

0.679
0.991

0.721
0.688

5
0.676

0.754
0.741

0.696
0.718

0.726
0.663

0.713
0.673

0.588
0.682

6
0.811

0.796
0.627

0.675
0.509

0.650
0.789

0.667
0.673

0.699
7

0.767
0.721

0.774
0.802

0.663
0.878

0.701
0.659

0.618
8

0.694
0.718

0.732
0.726

0.912
0.955

0.992
0.714

9
0.713

0.650
0.634

0.944
0.597

0.741
0.702

10
0.748

0.708
0.594

0.660
0.689

0.675
11

0.673
0.738

0.715
0.630

0.622
12

0.996
0.676

0.643
0.933

13
0.694

0.610
0.811

14
0.579

0.653
15

0.487
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Table 7.10 Statistic values for the Woronora fitness function

N

Scenario l Rav Rl RT D k gconv 5 × 103 104 105

1 71 0.134 0.45 0.134 0.011 0.988 655 10 20 150
2 64 0.122 0.45 0.122 0.019 0.989 692 10 10 140
3 71 0.129 0.45 0.129 0.020 0.989 693 10 10 140
4 64 0.117 0.3 0.117 0.014 0.993 1159 10 10 90

changes in the value of one or two decision variables. If there is no systematic change
in the fitness function values produced by different values for one or two of the decision
variables, the mutual information used to compute the separability measure will detect
a relationship, implying a highly epistatic interaction and the value for the separability
measure will be close to 1. This can be seen for a number of pairs of decision variables in
Table 7.9, for example, between decision variables 8 and 15, and 12 and 16. Due to the
computation requirements involved in computing the separability measure, it has not been
applied to the three other scenarios of the fitness function considered, as it is expected that
a similar result, of all decision variables interacting with each other, would be obtained.

The spatial correlation measure and the dominance measure have also been applied to
the Woronora WDS fitness function. The values determined for the four different scenar-
ios considered are given in Table 7.10. It can be seen from Table 7.10 that the different
variations of the fitness function considered have little affect on the fitness function statis-
tics computed, with the only noticeable difference being a decrease in the correlation
length for scenario 4. The results for the dominance statistic indicate that there was not
one decision variable that dominated the fitness function value. The results for the spatial
correlation statistics indicated that the fitness function is a plane, as Rav = RT. Otherwise,
if Rav < RT the results would suggest the fitness function has a ‘big bowl’ structure, as the
fitness function value for solutions far apart in the search space are correlated on average.

The values of k and gconv computed from the spatial correlation and dominance mea-
sure results are given in Table 7.10. The larger value predicted for gconv for Scenario 4
is produced by the higher value of k = 0.993, which is due to the shorter correlation
length for this version of the fitness function. The corresponding population sizes used
by the Predicted method for each of the stopping criterion considered are also given in
Table 7.10.

For the Drift GA calibration method, the population size was determined by Equa-
tion 6.1, based on l and the different cases of FE considered. Therefore, for the Woronora

Page 213



Chapter 7 – Application to WDS Optimisation

Table 7.11 Ranking of GA calibration methods for Woronora fitness function for FE =

5 × 103

Scenario
Parameter Setting Mean 1 2 3 4

Predicted - Set Values 1.6 1.0 2.0 1.5 2.0
Parameterless - Set Values 2.8 2.5 5.0 1.5 2.0
Drift - Set Values 3.6 2.5 2.0 4.0 6.0
Typical - Self Adaptive 4.4 6.5 2.0 7.0 2.0
Typical - Set Values 4.8 4.0 5.0 4.0 6.0
Drift - Self Adaptive 5.4 6.5 5.0 4.0 6.0
Predicted - Self Adaptive 6.8 6.5 7.5 7.0 6.0
Parameterless - Self Adaptive 6.8 6.5 7.5 7.0 6.0

WDS fitness function, the population sizes used by the Drift calibration method were
N = 30 (FE = 5 × 103), N = 40 (FE = 104), N = 110 (FE = 105). The dif-
ferent problem sizes of l = 64 and 71 did not influence the population size used, as the
population size to be used by the GA has been rounded to the nearest 10 solutions.

7.2.5.2 Comparison of GA Calibration Methods

The results from the optimisation of the Woronora WDS by the different GA calibration
methods can be found in Appendix D, where the fitness function values for the 1st (Best),
4th, 7th (Median), 10th, and 13th (Worst) solutions are presented, along with the mean
and standard deviation of the fitness function value for all 13 solutions found for each
calibration method, and each convergence criterion. The ranking of the different GA
calibration methods for the four scenarios of the Woronora WDS fitness function are
given in Table 7.11, Table 7.12 and Table 7.13 for the stopping criteria of FE = 5× 103,
FE = 104, and FE = 105, respectively.

In general, the calibration of the GA did not have as great an impact on the perfor-
mance of the GA on the Woronora WDS fitness function as the other fitness functions
considered in this thesis. This can be seen in the rankings of the different methods for
each case in Table 7.11, Table 7.12, and Table 7.13, where generally there were only two
or three different ranks shared between the eight GA calibration methods. This may be
due to the lower average correlation computed for this fitness function of Rav ≈ 0.125,
where for the Cherry Hill-Brushy Plain fitness function, and many of the fitness functions
considered in Chapter 6, the average correlation of the fitness function was Rav ≈ 0.25.
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Table 7.12 Ranking of GA calibration methods for Woronora fitness function for FE = 104

Scenario
Parameter Setting Mean 1 2 3 4

Predicted - Set Values 2.5 2.0 3.0 3.0 2.0
Parameterless - Set Values 2.5 2.0 3.0 3.0 2.0
Drift - Set Values 3.5 2.0 3.0 3.0 6.0
Typical - Set Values 4.2 5.0 3.0 3.0 6.0
Typical - Self Adaptive 4.2 5.0 3.0 7.0 2.0
Drift - Self Adaptive 5.9 7.5 7.0 3.0 6.0
Parameterless - Self Adaptive 6.2 5.0 7.0 7.0 6.0
Predicted - Self Adaptive 6.9 7.5 7.0 7.0 6.0

Table 7.13 Ranking of GA calibration methods for Woronora fitness function for FE = 105

Scenario
Parameter Setting Mean 1 2 3 4

Predicted - Set Values 3.8 2.5 3.5 4.0 5.0
Drift - Set Values 3.8 2.5 3.5 4.0 5.0
Parameterless - Set Values 3.8 6.5 3.5 4.0 1.0
Typical - Self Adaptive 4.6 2.5 7.0 4.0 5.0
Predicted - Self Adaptive 4.8 6.5 3.5 4.0 5.0
Typical - Set Values 4.8 6.5 3.5 4.0 5.0
Drift - Self Adaptive 4.8 6.5 3.5 4.0 5.0
Parameterless - Self Adaptive 5.9 2.5 8.0 8.0 5.0

Therefore, as there is less structure in the fitness function, the GA must rely more on
randomly searching the search space, and the parameter values are less influential on the
final solution found by the GA.

The rank of each calibration method for each stopping criterion, and the average over-
all ranking for each calibration method, is given in Table 7.14. The order of the different
calibration methods is very similar to that obtained in Chapter 6 and Section 7.1, where
again, the Predicted method with set values produced the best overall results. The Param-
eterless method with set parameter values also produced very good results, as the only
statistical difference between the two methods was that the Parameterless method had a
slightly lower ranking for the FE = 5 × 103 stopping criterion.

The Drift GA calibration method with set values for pm, pc, and c also performed well

Page 215



Chapter 7 – Application to WDS Optimisation

Table 7.14 Overall ranking of GA calibration methods for Woronora fitness function

Parameter Setting Mean 5 × 103 104 105

Predicted - Set Values 2.62 1.62 2.50 3.75
Parameterless - Set Values 3.00 2.75 2.50 3.75
Drift - Set Values 3.62 3.62 3.50 3.75
Typical - Self Adaptive 4.42 4.38 4.25 4.62
Typical - Set Values 4.58 4.75 4.25 4.75
Drift - Self Adaptive 5.33 5.38 5.88 4.75
Predicted - Self Adaptive 6.12 6.75 6.88 4.75
Parameterless - Self Adaptive 6.29 6.75 6.25 5.88

on the Woronora WDS fitness function, with a ranking of 3.62. The Drift method also
had the same overall ranking as the Predicted and Parameterless calibration methods for
the FE = 105 stopping criterion. The Drift and Predicted calibration methods used very
similar population sizes for FE = 104 and 105, and therefore the ranks for these methods
for these two stopping criteria are also very similar, with the only difference being that
the Predicted method located a better solution on average for scenario 4 after FE = 104.
However, for FE = 5 × 103 the Predicted method with set parameter values consistently
outperformed the Drift method, where in this case the Predicted method used N = 10,
compared to N = 30 for the Drift method.

The Typical GA parameter values produced statistically poorer results for all stopping
criteria than the three other GA calibration methods with set parameter values. This result
further reinforces the need to determine the most suitable GA parameter values on a case
by case basis. For the Woronora case study, the Typical method was again the only cali-
bration method that produced better results with self-adaptive parameter values than with
set parameter values. Otherwise, for the Drift, Predicted and Parameterless methods, the
self-adaptive parameter values produced significantly worse results than when static val-
ues were used for the whole GA run. As mentioned previously, this result is most likely
due to the increase in the problem size, and time spent on searching for good parameter
values, which is time taken away from finding better solutions to the fitness function.

7.2.5.3 Comparison of Best Solutions

The best solutions found by the GA for each of the four scenarios of the Woronora WDS
fitness function was identified, and the costs involved in operating the pumps in the system
for each case can be seen in Table 7.15. The results indicate that the inclusion of the
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Table 7.15 Pumping cost of best solution found for different scenarios.

Scenario 1 2 3 4
Tank Levels Low Low High High
WQ Constraint Yes No Yes No

Total Pumping Cost ($) 295.80 120.65 333.82 140.68
Simulation Time (hr) 57 24 57 24
Pumping Cost/Day ($) 124.55 120.65 140.56 140.68
Improvement Over Cost

29.23 31.45 20.14 20.07of Current Operations (%)

constraint on total chlorine did not have a significant influence on the cheapest pumping
cost found. The cheapest cost found by the GA with the original reservoir levels was
actually slightly cheaper with the water quality constraint. However the difference is only
$0.12/day, and the cheaper solution is most likely also suitable for scenario 4 without the
water quality constraint, and was probably not found for that case due to the stochastic
nature of the GA.

From Table 7.15, it can be seen that decreasing the initial reservoir levels produced
a significant decrease in the cost of pumping required. With the original initial reservoir
levels (scenarios 3 and 4), a saving of 20% was found when compared to the pumping cost
determined for the current operation of the system. By reducing the initial reservoir levels
to 70% of the height of the reservoir (scenarios 1 and 2), the solutions found produced
a 30% saving in the pumping costs compared to the current operations. By reducing the
reservoir levels, more pumping can be undertaken before 0700 hours, when the electricity
cost is cheapest. It should be noted that the decrease in the initial starting level of the
reservoirs did not produce a lower operating level for the reservoirs, as in Figures 7.17–
7.21 it can be seen that the reservoirs are still filled to close to 100% full at some time
during the day.

For scenarios 1 and 3, the best solutions found suggest that no calcium hypocholorite
tablets should be dosed for the simulations of the Woronora WDS considered. The in-
crease in the total chlorine concentration provided by the tablets peaks at 0.13 mg/L,
9 hours after the tablets are dosed, and the cost of dosing the tablets to provide this in-
crease in chlorine concentration at a reservoir was $240. Hence, it is very expensive to
dose the tablets, considering the small increase in chlorine concentration that is gained,
and it is therefore not surprising that the best solutions found by the GA did not include
tablet dosing in the system.
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Figure 7.17 Helensburgh reservoir profile with original initial levels

Original Initial Reservoir Levels The reservoir levels over a 48 hour period for sce-
nario 3 with original initial reservoir levels and the water quality constraint can be seen
in Figures 7.17–7.21. The grey dashed lines on the figures represent the reservoir trigger
levels determined by the GA to control the asset (pump or valve) that fills each reservoir.
From Figure 7.17, it can be seen that the Helensburgh reservoir is filling between 2000
and 600 hours, therefore the pumping required is undertaken in the off peak period when
electricity is cheapest, thus minimising the electricity cost involved.

From Figure 7.18, it can be seen that there is some pumping to the Engadine reservoir
during the cheapest part of the day between 2200 and 2400 hours. However, Figure 7.18
suggests that some pumping must be undertaken during the day, as the reservoir is filling
between 0900 and 1400 hours, when electricity is more expensive. The reservoir starts to
drain after 1400 hours, and therefore for the best solution found suggests that no pumping
should be undertaken in the period of the day when electricity is most expensive.

A similar profile can be seen for the Heathcote reservoir, however, there is only one
period during the day when the reservoir is filled, as opposed to two for the Engadine
reservoir. The reservoir profile produced by the best GA solution found for scenario 3
can be seen in Figure 7.19. The results suggest that it is not possible to fill the Heathcote
reservoir during a period of the day when electricity is cheapest, as the reservoir is filling
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Figure 7.18 Engadine reservoir profile with original initial levels

between 0700 and 1400 hours, in the period of the day when electricity is second cheapest.
As was the case for the pumping at the Engadine pumping station, the pumps are off
during the most expensive time of the day, between 1400 and 2000 hours.

The Lucas Heights reservoir is filled by opening an AICV upstream, and therefore
there is no electricity cost involved in filling this reservoir. The Lucas Heights reservoir
water profile for the best solution found can be seen in Figure 7.20. The results suggest
that it is best to fill the Lucas Heights reservoir after 1400 hours, when it is most expen-
sive to operate the pumps that fill the Engadine, Heathcote and Helensburgh reservoirs.
The reservoir is kept full until the electricity becomes cheaper at 2000 hours, when the
Helensburgh pumping station switches on, and soon after, the Engadine pumping station
switches on at 2200 hours. Filling the Lucas Heights reservoir at 1400 hours will assist in
maintaining the required constant flow from the WFP, as generally one of the reservoirs
in the WDS should be filling at all times. The results suggest that in the period of the day
when electricity costs are highest, it is possible to direct the flow to the Lucas Heights
reservoir, and keep the pump stations in the system off to reduce pumping costs.

As was the case for the Lucas Heights reservoir, the Menai reservoir is gravity fed
from the WFP, and hence there is no cost involved in opening the TCV upstream to fill
the reservoir. Therefore, the best operation of the Menai reservoir is based on balancing
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Figure 7.19 Heathcote reservoir profile with original initial levels
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Figure 7.20 Lucas Heights reservoir profile with original initial levels
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Figure 7.21 Menai reservoir profile with original initial levels

the flows in the system, as opposed to minimised the cost of filling the reservoir. From
Figure 7.21, it can be seen that the results suggest that the best time to fill the Menai
reservoir is between 0000 and 0600 hours. For this period of the day, the demands on the
system are very low, as most people are asleep and not consuming water, and therefore
most of the water produced must go into storage. The only other reservoir filling at this
time is Helensburgh, and therefore to balance the flow from the WFP, the best solution
found by the GA suggests that it is best to fill the Menai reservoir at this time to balance
the flows in the system.

The total chlorine concentration at the demand nodes in the Woronora WDS for the
best solution found for scenario 3 in terms of the fitness function can be seen in Fig-
ure 7.22. It can be seen that the chlorine concentration at most nodes was well above
1 mg/L, and therefore the minimum chlorine constraint does not affect the operation of
the WDS. This result can be used to explain the very similar pumping costs determined
for scenarios 3 and 4, with and without the water quality constraint, as the operations do
not need to change to satisfy the chlorine constraint that is imposed in scenario 3.

While the chlorine concentration at most nodes was above the 1 mg/L minimum con-
straint, the concentration at the Maianbar demand node started below 1 mg/L, and stayed
below 1 mg/L for the entire simulation. While it may have been possible to find a solution
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Figure 7.22 Total chlorine concentration at demand nodes with original initial reservoir
levels

that satisfied this constraint for at least some of the simulation by increasing the penalty
factor on this constraint, the initial value for the Maianbar demand node in Figure 7.22
is measured from the WDS, and therefore has been deemed to be appropriate. From Fig-
ure 7.22, it can be seen that the chlorine concentration at Maianbar remains around this
initial concentration. Therefore, this solution has been determined to be suitable, as the
alternative is to increase the penalty on the chlorine constraint, which would result in
higher pumping costs to feed water from the WFP to the Maianbar reservoir to increase
the total chlorine concentration.

Lower Initial Reservoir Levels The reservoir profiles for scenario 1 with the initial
reservoir levels reduced to 70% full and the water quality constraint can be seen in Fig-
ures 7.23–7.27. From Figure 7.23, it can be seen that the reservoir profile determined
for scenario 1 is almost identical to that found for scenario 3, seen in Figure 7.17, as the
original water level in scenario 3 for the Helensburgh reservoir was already very close to
70% full. However, the reservoir trigger levels to produce this reservoir profile can be
seen to be very different for these two methods, as indicated by the grey dashed lines in
Figure 7.23 and Figure 7.17. For most time steps, it can be seen from Figure 7.23 that only
one of the trigger levels is active, for example before 0700 hours the only active control
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Figure 7.23 Helensburgh reservoir profile with low initial levels

turned on pump 2 at the Helensburgh pumping station, and between 0700 and 1400 hours
the only trigger level that influenced the reservoir profile was the upper trigger level, to
turn pump 2 off again. Therefore, as long as the other trigger levels do not interfere with
the reservoir profile, they can take any value over the allowable range.

The reservoir profile for the Engadine reservoir with an initial reservoir level of 70%
can be seen in Figure 7.24. While some pumping is still required between 1000 and
1200 hours, it can be seen from Figure 7.24 that by lowering the tank level overnight,
the majority of the pumping required to fill the Engadine reservoir has been shifted into
the period between 2200 and 0600 hours, when the cost of electricity is at its cheapest.
The lower overnight reservoir level did not imply that the Engadine reservoir operated at
a lower level, as it can be seen from Figure 7.24 that the reservoir was close to 100% full
at approximately 0600 hours each morning.

From Figure 7.25, it can be seen that with the lower reservoir level at midnight, the
Heathcote reservoir can be filled between 2200 and 0300 hours, compared to between
0700 and 1400 hours for the higher initial reservoir levels solution, seen in Figure 7.19.
Therefore, the pumping required to fill the Heathcote reservoir has been shifted from the
morning to overnight, when the cost of electricity is almost half, producing a lower cost
to operate the Woronora WDS.
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Figure 7.24 Engadine reservoir profile with low initial levels
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Figure 7.25 Heathcote reservoir profile with low initial levels
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Figure 7.26 Lucas Heights reservoir profile with low initial levels

The two reservoirs that are gravity fed from the WFP were located at Lucas Heights
and Menai. The reservoir profile resulting from the best solution found for scenario 1 of
the Woronora fitness function can be seen in Figure 7.26 for the Lucas Heights reservoir
and in Figure 7.27 for the Menai reservoir. The results suggest that for this scenario, it
is best to fill the Lucas Heights reservoir twice a day, once at approximately 1200 hours
and again at 2000 hours. These times correspond to the times directly after the Engadine
pumping station switches off at 0000 hours, and directly before the Engadine pumping
station comes back on at 2200 hours. The best time to fill the Menai reservoir was de-
termined to be 0700 hours, six hours later than it was filled for scenario 3 with higher
initial reservoir levels. This result is due to most of the pumping required in the system
occurring overnight before 0700 hours for the case of lower initial reservoir levels, and
therefore the Menai reservoir is filled later in the day, once the pump stations have turned
off.

The total chlorine concentration produced by the best solution found to scenario 1 of
the Woronora fitness function can be seen in Figure 7.28. The concentrations are very
similar to those produced for the higher initial reservoir levels seen in Figure 7.28, where
at most of the demand nodes, the chlorine concentrations are much higher than the min-
imum concentration of 1 mg/L. The initial chlorine concentration at Maianbar is again
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Figure 7.27 Menai reservoir profile with low initial levels

below 1 mg/L, however, by the second day of the simulation, the chlorine concentration
at the Maianbar demand node can be seen to increase to the minimum constraint level
of 1 mg/L. This can be explained by the pumping at the Engadine pumping station oc-
curring earlier in the day, and therefore water from the WFP reaches the Maianbar reser-
voir quicker than was occurring for the higher initial reservoir levels seen for scenario 3.
Therefore, as the water reaches Maianbar quicker, there is less decay of chlorine in the
system, and a higher chlorine concentration results.

7.3 DISCUSSION

This work adds to the significant body of literature that has applied GAs to the optimisa-
tion of WDS. The best solution found for the Cherry Hill-Brushy Plain system by the GA
was slightly better than the solution found by the Linear Programming method used by
Propato and Uber (2004). While the two solutions are very similar, the main advantage of
the GA over traditional mathematical optimisation methods is that the methods can be ap-
plied to much more complex WDSs and fitness functions, such as the fitness function for
the Woronora WDS considered in the second section of this chapter, without any change
to the algorithm.
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Figure 7.28 Total chlorine concentration at demand nodes with low initial reservoir levels

By applying the GA to optimise the operation of the Woronora WDS, solutions were
found to save between 20-30% of the daily operating costs for the utility responsible for
the system. This result highlights the fact that GA optimisation of WDSs can identify
much more effective solutions than can be determined by trial and error, either in a mod-
elling environment or in the actual WDS. The solutions found suggest that by allowing
the reservoir levels to be lower overnight, more pumping can be shifted to the off-peak
periods, resulting in a greater reduction in the pumping costs involved in operating the
system.

In Chapter 6, the proposed GA calibration method based on the characteristics of the
fitness function was found to produced the best overall results for a number of test func-
tions and stopping criteria. While the mathematical functions considered in that chapter
were not simple, the results presented in this chapter indicate that the Predicted GA cali-
bration method can also be extended to the optimisation of more irregular WDS optimi-
sation functions, as the best overall results were again obtained using the Predicted GA
calibration method.

The ranking of the performance of the different GA calibration methods tested for
the two WDS optimisation problems considered in this chapter was very similar to that
found in Chapter 6, where the Predicted method with set parameter values located the
best solutions, and the Parameterless and Drift methods with set parameter values also
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provided good parameter values for the GA. Again, the typical GA parameters produced
the worst results of the four methods of determining the GA population size considered.
Another similar result to that observed in Chapter 6 was that for the WDS optimisation
problems, the calibration methods that adopted self-adaptive values for the pm, pc, and c

parameters produced the worst overall results of all the methods considered.

The main disadvantage to the Predicted GA calibration method proposed in this work
is that the fitness function statistics must be computed prior to the optimisation of the
problem to determine the population size. However, it is not possible to quantify the
convergence of the GA without some information about the fitness function. The Param-
eterless calibration method is much easier to implement than the Predicted method, as
in this case, the information about the fitness function is obtained as the GA is solving
the problem, as the population size is increased only after a smaller population size has
converged. However, the Parameterless method is not straight forward to apply either, as
a number of modifications must be made to the GA to allow the population size to be dou-
bled automatically, and to inject the best solution from the previous GA run into the initial
population. The main disadvantages of the Parameterless GA calibration method are that:
1) multiple restarts of smaller population sizes are used, as opposed to one run with a
larger population size, and 2) a deterministic rule is used to alter the population size, as in
some cases the GA may benefit from a decrease to the population size, as opposed to an
increase, as discussed in Section 6.5.

The Drift GA calibration method performed as well as the Predicted method for the
Cherry Hill-Brushy Plains fitness function, and this approach was only slightly outper-
formed by both the Predicted and Parameterless methods on the Woronora fitness func-
tion. The Drift method has the advantage that the population size is can be to determined
very easily, and therefore may provide a simple alternative to the Predicted calibration
method to determine a suitable population size for applications where it is not feasible to
compute the fitness function statistics.

A large scale GA parametric study, similar to that undertaken in Chapter 3, was ap-
plied to the Cherry Hill-Brushy Plain fitness function by Gibbs et al. (2005). The results
from that study are not directly comparable to results presented in this section, as the
GA implemented is slightly different, and only five different random number seeds were
considered in that study, compared to 13 used in this work. A total of 378 different com-
binations of GA parameter values were considered in the parametric study, where the best
solution found added a total of 1163 g/day of chlorine to the system, and the average
fitness function value over the five different GA runs was 1184 g/day. By making use of
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the Drift and Predicted calibration methods developed in this thesis, only one combina-
tion of the GA parameter values was tested for each method, as opposed to the 378 used
by Gibbs et al. (2005). While the chlorine dosing rates found in this work were slightly
higher, with a best fitness function value of 1168 g/day, and average fitness function val-
ues of 1196 g/day for the Drift method and 1197 g/day for the Predicted method, the
solutions found are very similar to those found by the full GA parametric study, with a
much smaller computation requirement to identify a similar solution quality.

Application of the fitness function statistics to the WDS fitness functions considered
in this chapter provided a number of insights into the characteristics of these functions that
are generally largely unknown. For the Woronora WDS fitness function, the results from
the spatial correlation measure suggested that the search space was much less correlated
than many of the other Optimal Generation Functions that have been considered in this
work, with Rav ≈ 0.125 compared to Rav ≈ 0.25. The correlation in the fitness function
can be used to determine the expected influence of the GA parameters, where for the more
correlated functions, the calibration of the GA parameters had a large effect on the quality
of the final solutions found. However for the Woronora fitness function with a lower value
of Rav, the GA parameter values had a much smaller influence on the solutions found.

This result also agrees with the flowchart used to determine if a function is an Optimal
Generation Function or a Maximal Generation Function based on the structure in the
fitness function, given in Figure 3.13 in Section 3.1.3. The results suggested that for a
function with no correlation in the fitness function, the GA parameter values had very
little influence on the performance of the GA, however generally slightly better solutions
were found with a small population size. For functions that were highly correlated, the
calibration of the GA parameters was much more important to the final solution found by
the GA. Therefore, if a function is highly correlated, it may be beneficial to determine the
best GA parameter values possible from the Predicted method, otherwise if the function is
less correlated, the simpler Drift method may provide a suitable alternative to determining
the GA parameter values.

For the Cherry Hill-Brushy Plains fitness function, the separability measure indicated
that for feasible solutions, the fitness function was completely separable. Intuitively, this
is not an obvious result, as it would be expected that the best mass of chlorine to be dosed
at one location would be strongly influenced the best mass of chlorine dosed at an up-
stream location. These interactions between the decision variables are detected for infea-
sible solutions, and once the chlorine concentrations became important to the constraints
on the fitness function, a number of interactions were identified between the decision
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variables for the Cherry Hill-Brushy Plains system.

The separability measure was extremely computationally intensive to compute, and in
practice, the resources spent on determining the interaction between the decision variables
may be better spent actually optimising the fitness function. The information provided by
the measure could be used to encourage better solutions to be found, as if interacting
decision variables are located near each other in the solution string, the GA will have a
greater chance of locating good combinations of values. However, it may be that online
linkage learning methods, such as those reviewed in Section 2.2.5, provide more efficient
learning of the interactions between the decision variables. For most realistic problems,
such as the WDS optimisation problems considered in this chapter, it may be a reason-
able assumption that there are epistatic interactions between the decision variables, and
therefore it is only the correlation in the search space that must be estimated to determine
if a problem is an Optimal Generation Function or a Maximal Generation Function.

Both of the WDS optimisation problems considered in this work have constraints on
the objective of the fitness function, which is the case for almost all WDS optimisation
problems. It is these constraints that make the optimisation process difficult, otherwise
the solution would generally be very simple to determine, either to dose the smallest
amount of chlorine, undertake all of the pumping required overnight when electricity is
the cheapest, or in the case of a design problem, install all of the smallest pipe sizes.
The penalty factors used in this work are the most common approach used to take the
constraints on a problem into account, however, there is very little guidance available to
determine suitable values. Many methods have been proposed to take the constraints on
an objective into account in the optimisation process, a number of which are outlined
in Section 2.1.1. However, at the present time, there is not an accepted best approach
to consider all the constraints on the objective of an optimisation problem, and this area
should be the focus of future research.

It is likely that better solutions could be easily obtained by fine tuning the dosing rates
found from the GA optimisation of the Cherry Hill-Brushy plain system. As the fitness
function is separable in all decision variables for feasible solutions for this problem, a
simple local search algorithm could be applied after the GA to improve the best solution
found and determine if even smaller amounts of chlorine can be added to the system. The
mutation operator used to determine better solutions for each decision variable is rela-
tively inefficient, and a local search operator applied during or after the GA optimisation
may also be beneficial for more complex problems, such as the fitness function for the
Woronora WDS. As provided by the No Free Lunch theorem (Wolpert and Macready,
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1997), problem specific GA operators may also lead to better solutions in a number of
cases. An example would be the use of creeping mutation, which tends to mutate smaller
doses of chlorine for the Cherry Hill-Brushy plain network.

Many of the values determined for the decision variables for Woronora fitness function
are not binding. For example, if a pump does not come on for a given time period,
then the trigger level to turn the pump off can take a value anywhere over the range of
the decision variables, provided that the order of trigger levels required is satisfied. If
the demands used for the optimisation of the system are significantly different from the
true demands in the system, the optimised reservoir profile will change, and the trigger
levels that were not important in the simulation may become more significant in reality.
One method to ensure reasonable solutions are implemented would be for an experienced
operator of the system to determine reasonable trigger levels in the event of unforeseen
demands. Another approach to identify more reliable solutions would be to incorporate
the uncertainty into the optimisation, and simulate each proposed solution over a range
of demands, to consider all of the potential scenarios that could occur. However, this
approach would require multiple runs of the simulation model for the evaluation of each
solution, adding to the already computationally expensive process of running hydraulic
and water quality models.

7.4 SUMMARY

The GA calibration method based on the characteristics of the fitness function proposed
and tested in Chapter 6 has been applied to the optimisation of WDSs in this chapter.
The results presented indicate that the proposed GA calibration method can be extended
to provide very good GA parameter values for the optimisation of more irregular WDS
optimisation functions, as the best results of the eight calibration methods considered
were obtained using the proposed GA calibration method.

The ranking of the performance of the different GA calibration methods tested for the
two WDS optimisation problems considered in this chapter was very similar to that found
in Chapter 6, where the Predicted method with set parameter values located the best so-
lutions, and the Parameterless and Drift methods with set parameter values also provided
good parameter values for the GA. As previously found in this work, the calibration meth-
ods that adopted self-adaptive values for the pm, pc, and c parameters produced the worst
overall results of all the methods considered. The ranking of the performance of the
different calibration methods also indicate that the typical GA parameter values lead to
poor GA performance, reinforcing the importance of determining the most suitable GA
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parameter values for each fitness function optimised.
For the Cherry Hill-Brushy Plain fitness function, the solutions found by the GA cal-

ibrated by the Drift and Predicted methods were very similar to the solutions found in
the large scale GA parametric study undertaken by Gibbs et al. (2005). While the mass
of chlorine added to the system was slightly higher, the computational requirements to
obtain these solutions are much lower when suitable GA parameter values are determined
from one of the calibration methods presented in this work, compared to the full scale GA
parametric study required to determine the best GA parameter values in that study. This
result highlights the usefulness of the proposed calibration methods, as near optimal GA
parameter values can be determined directly, and therefore only one GA run is required,
as opposed to the 378 different combinations of parameter values tested by Gibbs et al.
(2005).

By applying the GA to optimise the operation of the Woronora WDS, solutions were
found to save up to 30% of the daily operating costs involved in running the system. The
solutions found suggest that by allowing the reservoir levels to be lower overnight, more
pumping can be shifted to the off-peak periods, and therefore a greater reduction in the
pumping costs is achieved. This result reinforces the understanding that GA optimisation
can provide much more effective solutions to WDS optimisation problems than can gen-
erally be determined by trial and error, either in a modelling environment or in the actual
WDS.
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Chapter 8
Conclusions and Further Work

8.1 CONTRIBUTIONS OF THIS WORK

The following contributions have been made to the field of Real-Coded Genetic Algo-
rithms in this thesis:

1. The empirical validation that the number of generations before a GA population
will converge is constant. It was found in Section 3.1 that for fitness functions with
certain characteristics, the number of generations before the GA population con-
verged was constant with respect to the stopping criterion. Therefore, if the number
of function evaluations (FE) available to solve the problem was increased, the pop-
ulation size was observed to increase accordingly. Fitness functions that possessed
this characteristic were called Optimal Generation Functions. If a function was not
solved with a constant number of generations, it was called a Maximal Generation
Function, as the best solutions for these functions were found with a small popu-
lation size, run for as many generations as possible. The function characteristics
that were identified to determine which type of function a given fitness function
belonged to were:

• Structure in the fitness function. If a function was essentially flat with no
structure to lead the GA toward better solutions, it is a Maximal Generation
Function.

• Epistatic interactions between some or all of the decision variables. If a fitness
function was structured and there was at least one interaction between the
decision variables, the GA benefited from the implicit parallelism in a larger
population size, and was therefore an Optimal Generation Function.

• Highly salient decision variables. If at least one decision variable had a much
larger influence on the fitness function value, and the fitness function was
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somewhat structured, then the GA benefited from the diversity in a larger pop-
ulation, and was therefore an Optimal Generation Function.

• If a function did have structure in the fitness function but did not have epistatic
interactions or highly salient variables, then it was found to be a Maximal Gen-
eration Function. In this case, the function is separable, and as each decision
variable has a similar contribution to the fitness function value, each variable
can be optimised independently of the others, and function evaluations are
wasted in a larger population.

2. The observation that the number of generations before convergence was related
to the characteristics of the fitness function. In Section 3.2, controllable changes
were made to the characteristics of the Optimal Generation Functions identified
in Section 3.1, to investigate the effect on the number of generations before the
GA population converged. It was determined that the number of generations be-
fore convergence observed was related to the characteristics of the fitness function,
where:

• In general, it was observed that an increase in the roughness of a function
produced an increase in the number of generations before the GA converged,
gconv. The implication of this result is that a smaller population size is better
for functions with greater roughness. For rougher functions, the GA is relying
on mutating the best solutions, as there is no structure in the fitness function
to benefit the search, and a larger population size will only waste function
evaluations.

• An increase in the multimodality of the function produced a slight decrease in
the value of gconv. For a given FE, a decrease in gconv indicates that a larger
population size performed better for functions with more local optima. This
result can be explained by the fact that a larger population size will contain
more solutions distributed over the search space, and therefore will be less
likely to become trapped in the local optima that are present.

• An increase in the salience of the decision variables produced a increase in
gconv. The consequence of this result is that for an available number of FE, a
smaller population size is better for functions that have a higher salience of at
least one decision variable. It might be assumed that a larger population size
would be more beneficial for a more salient problem, so that there is more
diversity available in the population once the more salient decision variables
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have converged, to allow the remaining variables to be optimised and avoid the
occurance of genetic drift. However, mutation can be used to inject diversity
into the population, and when only a small percentage of the decision variables
have a significant effect on the fitness function value, function evaluations are
wasted when a large population size is used.

• A change in the degree of interaction between variables did not have a signif-
icant effect on gconv for the cases considered (Section 3.2.2). While the results
suggest that the degree of interaction between the decision variables had little
effect on gconv, this characteristic did have a large effect on the solution qual-
ity found. The number of interactions was observed to have a large impact
on GA performance, where for problems with a large number of interactions,
the GA found it much more difficult to find better solutions. The distance be-
tween the interacting variables in the solution string also had a slight impact
on GA performance, where the GA was able to find slightly better solutions
when the distance between the interacting variables was shorter. However, the
difference was negligible when compared to the impact of an increase in the
number of interactions, mBB.

• Of all the problem characteristics considered, problem size had by far the
largest effect on the value of gconv (Section 3.2.2).

3. The development of a number of statistics to provide accurate information about
the characteristics of a fitness function. Statistics were developed to provide infor-
mation about each of the characteristics identified in Contribution 2, namely:

• A spatial correlation measure was developed to characterise the roughness and
multimodality of a fitness function. A correlation measure based on the dis-
tance between solutions in the search space was proposed, as opposed to the
more common approach of using a series of fitness function values to repre-
sent the distance between solutions. The two approaches to computing the
correlation of a fitness function were applied to functions with a known corre-
lation function, and therefore the results from the different sampling methods
could be compared to the true correlation. From these analyses, it was con-
cluded that the traditional temporal correlation statistic is unable to represent
a multi–dimensional space as a one dimensional series of function values, as
the approach lead to an over estimation of the true correlation of a function.
The proposed spatial correlation statistic provided a more accurate represen-
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tation of the search space, and therefore a more accurate estimation of the true
correlation of a function.

• A separability measure to identify epistatic interactions between decision vari-
ables. Mutual Information was identified as a useful statistic to determine
interactions between decision variable by Seo et al. (2003). However, the
experiments conducted in this thesis suggest that there are some serious short-
comings when applying the gene epistasis measure in practice. The separabil-
ity measure was proposed to determine epistatic interactions between pairs of
decision variables, and as the proposed statistic is based on the distribution of
values produced by the difference from changes to pairs of decision variables,
it can be accurately applied to any fitness function. Higher order interaction
can also be identified.

• A dominance measure to determine the presence of any highly salient decision
variables in the fitness function. The results presented in Section 4.3 indicate
that the proposed statistic is a suitable method for comparing the effect of each
decision variable on the fitness function value, as the results agreed with the
known characteristics for the functions considered.

4. A relationship was developed to predict the number of generations before conver-
gence based on the characteristics of the fitness function. This is the most important
contribution of this work for a number of reasons:

• The results suggest that the fitness function statistics developed are useful for
the calibration of GA parameter values. Many statistics to provide information
about different fitness function characteristics have been developed previously,
however, for each example that indicates that any of these measures provide
information about the difficulty of an optimisation problem, there appear to be
as many counter examples displaying that statistic’s unreliability. Generally,
other studies have concluded that fitness function statistics are a poor indicator
of GA performance. However, these studies did not consider the calibration
of the algorithm, and hence the convergence observed was rather arbitrary.
The relationship developed has demonstrated that the number of generations
before a GA will converge is a function of the characteristics of the problem,
which fitness function statistics provide information about. This approach is
different to that generally adopted when making use of these statistics, which
typically attempts to relate fitness function statistic values to how closely a
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GA will converge to the optimum solution. However, this is not only a func-
tion of the fitness function characteristics, but also the GA parameters and the
convergence criterion.

• The relationship characterises the selection pressure that can be expected to
decreases the variance in the population by producing multiple copies of fitter
solutions. As the selection operator is based on the fitness function values,
this selection pressure is directly related to the characteristics of the fitness
function. The analytic change in population variance due to genetic drift was
identified by Rogers and Pruegel-Bennett (1999), however, an analytic ex-
pression for the change in population variance can not be developed, as it is
dependent on the fitness function. The relationship developed in this thesis
has provided an empirical relationship to determine the decay in population
variance due to the selection pressure.

• Most importantly, in terms of the application of GAs, the relationship devel-
oped allows the most important GA parameter value, the population size, to
be estimated. This result is based on the assumption that there is a fixed FE

available to solve the problem. From the initial and final population variance,
the number of generations before convergence can be determined from the
change in population variance predicted from the fitness function statistics.
Hence, from the number of function evaluations that can be made before a
solution is required, the population size can be calculated by N = FE/gconv.

5. A complete GA calibration method based on the characteristics of the fitness func-
tion has been developed. The previous contribution provided the population size
based on the fitness function characteristics. However, this is only one of the GA
parameter values that must be set before the GA can be applied. In Chapter 6,
the relationships between the GA parameter values were identified and taken into
consideration to propose a full GA calibration method in Section 6.2. The proposed
calibration method has been compared with a number of other GA calibration meth-
ods that completely remove the calibration of any parameters from the user, includ-
ing another method to determine the population size proposed in this thesis, based
on the time to convergence due to genetic drift. A total of 20 difficult mathemat-
ical fitness functions, as well as two different WDS optimisation problems, have
been used as a basis for the comparison of the GA calibration methods. In almost
all individual cases considered, the proposed GA calibration method leads the GA
to find the best solutions, and hence was the best overall GA calibration method
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considered. This result reinforces the understanding that the GA parameter values
must be calibrated to each individual fitness function, and that the GA calibration
method proposed in this work provides an effective technique to determine the most
appropriate parameter values from the fitness function characteristics.

8.2 CONCLUSIONS

1. It has been well established that the values used for the GA parameters are critical
to the quality of the final solutions found by the GA. This fact has again been high-
lighted in this work, as the typical GA parameter values tested generally located
solutions of significantly poorer quality when compared to the other calibration
methods that made use of some information about the fitness function. The GA
calibration method developed in this thesis is explicitly based on the characteristics
of the fitness function, and therefore it is not surprising that it produced the best
results of the different methods tested. Therefore, based on the results presented in
this thesis, if the best solutions to a given fitness function are desired, it is recom-
mended that the proposed fitness function statistics be applied to characterise the
fitness function, allowing the most suitable GA parameter values to be determined.
This approach to determining the most suitable GA parameter values effectively
removes the need to undertake repeated runs of the GA in an attempt to determine
reasonable GA parameter values.

2. One of the calibration methods proposed in this work was based on the modelling
of Rogers and Pruegel-Bennett (1999) of when a GA population will converge due
to genetic drift. This result was extended in this work to provide a very simple
method for determining a suitable population size, as the only requirement is to
solve Equation 6.1. The only function characteristic that is taken into account in
this equation is the problem size, which was found to have the greatest effect on
gconv. This approach can be considered to provide a lower limit to the population
size, as the population size that is expected to converge due to genetic drift is de-
termined. However, if the selection pressure is higher, a larger population size will
also converge in the time available, and potentially find better solutions. However,
in many cases, the difference in the final solution found by the GA with a larger
population size may not be significant, as generally the Drift method produced sim-
ilar results to the Predicted method in Chapter 6. Therefore, the Drift calibration
method developed in this thesis can be used to provide a simple estimation of a
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suitable population size for situations where it is not feasible to compute the fitness
function statistics.

3. Another general conclusion made in this work is that, provided the fitness function
has certain characteristics, one GA run with a larger population size generally pro-
duced better results than a number of GA runs with a smaller population size for
the same number of fitness function evaluations. The results presented in Chapter 6
demonstrated that the population sizes determined from both the Drift and Pre-
dicted methods generally produced better results than the Parameterless method.
Other studies, such as Cantú-Paz and Goldberg (2003), have come to the same con-
clusion. Generally, it is understood that a larger population size will locate better
solutions, provided it has time to converge to a solution. Therefore, the question
that arises is how large a population can be used to locate the best solutions possi-
ble in the time available? The Drift and Predicted calibration methods presented in
this work have provided methods to answer this question. If a simple approxima-
tion to the population size is required, the Drift method is recommended. However,
if the best possible solutions are desired, then the increased effort required to de-
termine the population size from the characteristics of the fitness function may be
worthwhile.

4. The optimisation results presented in this thesis indicate that a self-adaptive frame-
work for GA parameters that are applied on a solution level (pm, pc, c) is less ef-
fective than set parameter values used for the whole GA run, provided reasonable
values are used. The results of Bäck et al. (2000) support this finding, where in
their empirical study the performance of self-adapting pc and pm was found to be
disappointing, and adapting the population size was the key to improving the GA
performance. The exception to this rule was for the typical GA parameter values,
where self-adaptive parameter values performed better than the set values used.
This result suggests that the set values used were not appropriate, and allowing
the values to self-adapt provides a mechanism to determine better solutions. In
Chapter 6, a method has been developed to determine suitable values for GA pa-
rameters other than population size. For the calibration methods that implemented
this method to determine parameter values, the GA consistently outperformed the
GA with self-adaptive parameter values.

5. The fitness function statistics developed in this thesis have been shown to provide
useful information about the characteristics of a fitness function. Each of the statis-

Page 239



Chapter 8 – Conclusions and Further Work

tics was applied to functions with known characteristics in Chapter 4, and each
statistic was confirmed to provide accurate information. Concluding remarks based
on the results presented in this thesis regarding each of the statistics developed are
provided below.

• The spatial correlation statistic was found to compare very favourably to the
true autocorrelation for functions with known autocorrelation. Not only was
the spatial correlation statistic accurate, but it was also able to identify changes
in the roughness, and to a lesser extent, the multimodality of a fitness function.
The correlation statistic provided information about two important aspects re-
garding GA parameter values:

– The degree of correlation provided an indication of the expected conver-
gence of the algorithm. An uncorrelated fitness function will eventually
converge due to genetic drift, where a highly correlated function will con-
verge to one solution much quicker, and therefore a larger population size
can be used to identify better solutions over the same number of function
evaluations.

– The degree of correlation provided an indication of how influential the
GA parameter values will be on the solution quality found. For an un-
correlated fitness function, the GA parameter values will have very little
influence on the final solution found by the GA, whereas for a highly
correlated fitness function, the GA parameter values are much more im-
portant to the final solution quality found.

• The proposed dominance statistic was found to accurately characterise the
contribution of each decision variable to the fitness function value. However,
as the statistic is based on the normalised MI between one decision variable
and the fitness function value, it is unlikely that highly salient combinations
of decision variables will be identified by the proposed statistic. It may be
possible to determine the salience of combinations of decision variables, how-
ever this would require higher dimensional pdfs to be estimated, and would
dramatically increase the number of combinations of decision variables to be
computed, increasing computational requirements.

• The separability measure was proposed to identify epistatic interactions be-
tween decision variables. By testing the statistic on functions with different
numbers of interactions, and distance between the interactions, it was found
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that the measure was able to very accurately determine the location of any
epistatic interactions between the decision variables for a fitness function.
However, as each pair of decision variables must be considered in turn, the
computation requirements to calculate the separability measure increases dra-
matically as problem size increases. The separability measure was not re-
quired to determine the population size in the proposed GA calibration method,
as the degree of epistatic interactions between the decision variables for a fit-
ness function was not found to influence the most suitable GA parameter val-
ues. The main use for the separability measure is then to provide information
about how to rearrange the solution string, to allow more efficient process-
ing of the building blocks. However, in Section 3.2.3, the distance between
the interactions was not found to have a great influence on the final solution
quality found by the GA, and the number of interactions was much more im-
portant. There is very little that can be done to reduce the number of epistatic
interactions in a given fitness function, therefore the effort required to com-
pute the separability measure is most likely better directed toward the actual
optimisation of the fitness function.

8.3 RECOMMENDED FUTURE WORK

1. It has been assumed in this thesis when computing the spatial correlation that the
fitness function is a reasonable approximation to the true fitness landscape. This
assumption implies that the distance between two solutions in the search space is
a close approximation to the likelihood of one solution being produced from the
other solution by the GA operators. Strong relationships were obtained between
the spatial correlation of a fitness function and the observed convergence of the
GA, indicating that this assumption was valid for cases considered in this work.
However, the fitness function is still only an approximation to the fitness landscape,
and more accurate results would most likely be obtained by using the true fitness
landscape to compute the distance, or likelihood of being produced, between two
solutions for the spatial correlation measure. An analysis such as this may also
provide an insight into the best GA operators to use, or even the best EA to use, as
if a certain operator produced a more correlated fitness landscape, then it may be
more likely to find better solutions.

2. The most pressing future work arising from this study is to develop the theoreti-
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cal knowledge of the fitness function statistics that have been proposed. The work
undertaken in this study has advanced the understanding of the contribution fitness
function statistics have in the field of GAs, where prior to this study the general con-
sensus was that statistics such as these do not provide a reliable representation of
the expected performance of a GA. This work has related the information provided
by fitness function statistics to GA calibration, not GA performance. Now that this
relationship has been identified, it has opened the way for more rigorous definitions
of the mechanisms of the statistics themselves. Following this, theoretical analyses
should consider the relationship between the information provided by the statistics
and the change in population variance. The form of the empirical relationship iden-
tified in this work was based on the modelling of GAs, however a more theoretical
understanding is required to provide a more generalised form for the relationship
proposed in Equation 5.9.

3. It was assumed in this work that the only change in population variance was due
to the selection operator. While the influence of the other GA operators, such as
crossover and mutation, are likely to be much less significant to the change in pop-
ulation variance compared to the selection operator, they will have some influence.
Future work should aim to include these operators in the calculation of the change
in population variance in each generation, to provide a more accurate estimation
of the number of generations before the GA population will converge. Similarly,
the only GA coding scheme considered in this work was real coding. Further work
should also investigate if similar results are obtained for GAs with other encodings,
such as binary and integer.

4. For a number of the fitness functions considered in this thesis, it was observed
that the characteristics of the fitness function were different in different regions of
the search space. The values computed for the fitness function statistics computed
over the complete search space provide a representation of the fitness function the
GA is presented with at the start of the optimisation. However, as the GA con-
verges to smaller regions of the search space, the characteristics of the fitness func-
tion may change significantly. To address this issue, it is recommended that an
adaptive approach to the GA calibration be undertaken, where as the GA conver-
gences to smaller regions, the spatial correlation and dominance measures could
be re-computed from solutions that have already been evaluated by the GA, and
therefore would not significantly increase the computational requirements for com-
putationally expensive fitness functions. Therefore, the GA parameter values could
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be adjusted based on the characteristics of the region of the search space the GA is
currently working on. However, more research is required to implement a method
such as this.

5. Two aspects related to the optimisation of WDS by GAs were identified in Chap-
ter 7 that should be the focus of future research. The first concern that arose was
how to compare feasible and infeasible solutions, or two infeasible solutions, for the
selection operator. The approach that is implemented will have a significant influ-
ence on the quality of the final solution found by the GA. While there are a number
of constraint handling methods available, there is still not an accepted approach
for handling constraints on the objective of a fitness function. The second aspect
identified to improve the solutions found by the GA was to include the uncertainty
in the model into the optimisation process. A number of decision variables for the
Woronora case study were found to be not important for the demand case consid-
ered. However, if the true demand was slightly different to the simulated demand,
the value used for these decision variables could be much more important. By in-
corporating this uncertainty into the model when a potential solution is evaluated,
factors such as this could be taken into account, and much more reliable solutions
could be identified by the GA.
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