Real-Coded Genetic Algorithm Parameter Setting for Water Distribution System Optimisation

by Matthew S. Gibbs

Submitted in fulfilment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

MARCH 2008
Table of Contents

[Table of Contents](#)

Abstract ix

Statement of Originality xi

Acknowledgements xiii

List of Figures xv

List of Tables xix

List of Symbols xxv

List of Acronyms xxvii

1 Introduction
1.1 Goals of this research ... 3
1.2 Proposed Methodology ... 4
1.3 Layout and Contents of Thesis 7

2 Background
2.1 WDS Optimisation .. 11
2.1.1 Constraint Handling .. 12
2.1.2 Previous WDS Optimisation Methods 14
2.1.3 Evolutionary Optimisation of WDS 15
2.1.4 Applications of EAs to WDS Optimisation 16
2.2 Genetic Algorithm Overview .. 17
2.2.1 Encoding Scheme .. 18
2.2.1.1 Binary Representation 18
2.2.1.2 Integer Representation 19
Table of Contents

2.2.1.3 Real Value Representation ... 20
2.2.2 Selection .. 21
2.2.3 Crossover ... 22
2.2.4 Mutation ... 23
2.2.5 Advanced Operators .. 24
2.2.5.1 Elitism ... 24
2.2.5.2 Local Search Operators .. 24
2.2.5.3 Niching Operators .. 25
2.2.5.4 Linkage Learning ... 25
2.3 GA Theory ... 26
2.3.1 Schema Theory ... 26
2.3.2 Markov Chain Theory ... 27
2.3.3 Quantitative Genetics .. 28
2.3.4 Dimensional Analysis ... 29
2.4 GA Calibration Methods .. 30
2.4.1 Measuring Optimisation Problem Difficulty 31
2.4.1.1 Fitness Function Structure ... 33
2.4.1.2 Epistatic Interactions ... 35
2.4.2 Empirical Studies of GA Parameters 37
2.4.3 Dimensional Analysis ... 38
2.4.4 Parameter Control .. 40
2.4.4.1 Deterministic Parameter Control 41
2.4.4.2 Adaptive Parameter Control 42
2.4.4.3 Self-adaptive Parameter Control 42
2.4.5 Supervisory Algorithms ... 43
2.4.6 GA Calibration Methodologies .. 44
2.5 Summary and Proposed Methodology 45
2.5.1 GA Adopted for This Research .. 46
2.5.2 Relevance of the Literature ... 48

3 The Number of Generations Until Convergence 51
3.1 Observing an Optimal Number of Generations 52
3.1.1 Methodology .. 53
3.1.1.1 Test Functions ... 53
3.1.1.2 Parametric Study .. 55
3.1.2 Parametric Study Results .. 56
3.1.2.1 Maximal Generation Functions 59
3.1.2.2 Optimal Generation Functions 64
3.1.2.3 Problem Size Effects 69
3.1.2.4 Epistasis Effects 70
3.1.3 Discussion of Parametric Study Results 71

3.2 The Effect of Function Characteristics on the Number of Generations 73
3.2.1 Methodology ... 73
3.2.1.1 Test Functions 74
3.2.2 Function Characteristics Results 80
3.2.2.1 F3 ... 80
3.2.2.2 F4 ... 82
3.2.2.3 F6 ... 83
3.2.3 Observed Effect of Characteristics on the Number of Generations 84
3.2.3.1 Roughness and Multimodality 84
3.2.3.2 Salience of Variables 85
3.2.3.3 Epistatic Interactions 85
3.2.3.4 Problem Size 87
3.2.4 Discussion of Characteristics Results 87

3.3 Summary .. 88

4 Development of Fitness Function Statistics 91
4.1 Spatial Correlation .. 92
4.1.1 Methodology .. 94
4.1.2 Results .. 98
4.1.3 Discussion ... 99
4.2 Epistatic Interactions 100
4.2.1 Testing the Gene Epistasis Measure 101
4.2.1.1 Method 1: Gene Epistasis by Joint Mutual Information 103
4.2.1.2 Method 2: Gene Epistasis by Fitness Function Residuals 103
4.2.2 Separability Measure 105
4.3 Decision Variable Salience 109
4.4 Summary .. 111

5 Predicting the Number of Generations Before Convergence 113
5.1 Background ... 113
Table of Contents

5.2 The Relationship Between Fitness Function Characteristics and Population Variance ... 115
 5.2.1 Methodology .. 116
 5.2.1.1 Test Functions ... 116
 5.2.1.2 Determining the Decay in Population Variance 118
 5.2.1.3 Statistics Based on the Fitness Function Measures 119
 5.2.2 Relationship Results .. 121
 5.2.2.1 Input Determination 121
 5.2.2.2 Functional Form of the Relationship 122
5.3 Validation of the Relationship 125
 5.3.1 Predicting the Decay in Population Variance 125
 5.3.1.1 F3 .. 125
 5.3.1.2 F4 .. 126
 5.3.1.3 F6 .. 126
 5.3.2 Predicting the Number of Generations Before Convergence 128
 5.3.2.1 Determining the Initial and Final Population Variance 128
 5.3.2.2 F3 .. 129
 5.3.2.3 F4 .. 129
 5.3.2.4 F6 .. 130
5.4 Discussion ... 130
5.5 Summary ... 133

6 GA Calibration Methodology .. 135
 6.1 The Relationship Between GA Parameters 136
 6.1.1 Population Size .. 138
 6.1.2 Probability of Mutation 138
 6.1.3 Elitism .. 141
 6.1.4 Standard Deviation of Crossover 142
 6.1.5 Probability of Crossover 144
 6.2 GA Calibration Methodology 147
 6.3 Convergence Due to Genetic Drift 150
 6.4 Comparison of GA Calibration Methods 151
 6.4.1 Outline of the Methodologies 151
 6.4.2 Test Functions .. 153
 6.4.3 Function Characterisation 156
 6.4.4 Overall Solution Quality Comparison 162
6.4.5 Function by Function Performance Comparison 167
6.5 Discussion 171
6.6 Summary 174

7 Application to WDS Optimisation 177
7.1 Cherry Hill-Brushy Plains Network 178
 7.1.1 System Description 178
 7.1.2 Cherry Hill-Brushy Plains Fitness Function 180
 7.1.3 Cherry Hill-Brushy Plains Results 180
 7.1.3.1 Fitness Function Characterisation 181
 7.1.3.2 Comparison of GA Calibration Methods 184
 7.1.3.3 Comparison of Best Solution Found 187
7.2 Woronora WDS 189
 7.2.1 System Description 189
 7.2.2 Model Calibration 191
 7.2.3 Model Validation 200
 7.2.4 Woronora WDS Fitness Function 206
 7.2.5 Woronora Results 210
 7.2.5.1 Fitness Function Characterisation 211
 7.2.5.2 Comparison of GA Calibration Methods 214
 7.2.5.3 Comparison of Best Solutions 216
7.3 Discussion 226
7.4 Summary 231

8 Conclusions and Further Work 233
 8.1 Contributions of this Work 233
 8.2 Conclusions 238
 8.3 Recommended Future Work 241

References 245

Appendices 259

Appendix A Published Works 261

Appendix B Test Function Results 263

Appendix C Ranking of Median Solutions 359
| Appendix D | Woronora Results | 367 |
Abstract

The management of Water Distribution Systems (WDSs) involves making decisions about various operations in the network, including the scheduling of pump operations and setting of disinfectant dosing rates. There are often conflicting objectives in making these operational decisions, such as minimising costs while maximising the quality of the water supplied. Hence, the operation of WDSs can be very difficult, and there is generally considerable scope to improve the operational efficiency of these systems by improving the associated decision making process. In order to achieve this goal, optimisation methods known as Genetic Algorithms (GAs) have been successfully adopted to assist in determining the best possible solutions to WDS optimisation problems for a number of years.

Even though there has been extensive research demonstrating the potential of GAs for improving the design and operation of WDSs, the method has not been widely adopted in practice. There are a number of reasons that may contribute to this lack of uptake, including the following difficulties: (a) developing an appropriate fitness function that is a suitable description of the objective of the optimisation including all constraints, (b) making decisions that are required to select the most appropriate variant of the algorithm, (c) determining the most appropriate parameter settings for the algorithm, and (d) a reluctance of WDS operators to accept new methods and approaches.

While these are all important considerations, the correct selection of GA parameter values is addressed in this thesis. Common parameters include population size, probability of crossover, and probability of mutation. Generally, the most suitable GA parameters must be found for each individual optimisation problem, and therefore it might be expected that the best parameter values would be related to the characteristics of the associated fitness function.

The result from the work undertaken in this thesis is a complete GA calibration methodology, based on the characteristics of the optimisation problem. The only input required by the user is the time available before a solution is required, which is beneficial in the
Abstract

WDS operation optimisation application considered, as well as many others where computationally demanding model simulations are required. Two methodologies are proposed and evaluated in this thesis, one that considers the selection pressure based on the characteristics of the fitness function, and another that is derived from the time to convergence based on genetic drift, and therefore does not require any information about the fitness function characteristics.

The proposed methodologies have been compared against other GA calibration methodologies that have been proposed, as well as typical parameter values to determine the most suitable method to determine the GA parameter values. A suite of test functions has been used for the comparison, including 20 complex mathematical optimisation problems with different characteristics, as well as realistic WDS applications.

Two WDS applications have been considered: one that has previously been optimised in the literature, the Cherry Hills-Brushy Plains network; and a real case study located in Sydney, Australia. The optimisation problem for the latter case study is to minimise the pumping costs involved in operating the WDS, subject to constraints on the system, including minimum disinfectant concentrations. Of the GA calibration methods compared, the proposed calibration methodology that considered selection pressure determined the best solution to the problem, producing a 30% reduction in the electricity costs for the water utility operating the WDS.

The comparison of the different calibration approaches demonstrates three main results:

1. that the proposed methodology produced the best results out of the different GA calibration methods compared;
2. that the proposed methodology can be applied in practice; and
3. that a correctly calibrated GA is very beneficial when solutions are required in a limited timeframe.
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder/s of those works.

SIGNED: DATE:
I would like to acknowledge the support and guidance of my academic supervisors Prof. Holger R. Maier and Prof. Graeme C. Dandy. I appreciate the research freedom I have enjoyed under their supervision, I doubt any of us knew what what we were getting into when I first started this work. I would also like to acknowledge the support of my industry supervisor, Dr. John B. Nixon, especially for the typesetting suggestions that he provided.

The author was financially supported by the Cooperative Research Centre for Water Quality and Treatment (CRCWQT) and an Australian Postgraduate Award. As part of the CRCWQT, the author would like to thank Corinna Doolan, Robert Green and Dusko Mirkovic from the Sydney Water Corporation for their assistance in answering persistent questions regarding the Woronora Water Distribution System, and for supplying the data required to make the case study a success.

The author is indebted to the South Australian Partnership for Advanced Computing for the use of their facilities to generate the results presented in this thesis. I would like to thank the staff that maintain and support the nodes for making this work possible.

The author would like to thank his fellow postgrads for their support and company over the past four years. I would especially like to thank Robert May for the numerous conversations regarding the Mutual Information components of this work, and Darren Broad for organising Friday Drinks for the majority of my time as a postgraduate student at the University of Adelaide.

I would like to thank my parents, brothers and sister for their support. I must especially thank Mum for everything she has done for me over the past two years, it has made undertaking this work much easier.

Last, but definitely not least, I would like to thank Verity. The support, consideration, patience, and encouragement she has given me has been invaluable.
List of Figures

1.1 Flowchart depicting the relationship between the work presented in this thesis. ... 8

2.1 Representation the interaction between decision variables in terms of Mutual Information. .. 36

2.2 Probability distribution used for crossover .. 48

3.1 The different results obtained for the Optimal Generation Functions and the Maximal Generation Functions. .. 57

3.2 Functional form of F1 and F2. .. 59

3.3 Optimal populations sizes for F1 for different function evaluations. .. 60

3.4 Optimal populations sizes for F2 for different function evaluations. .. 61

3.5 Optimal populations sizes for F5 for different function evaluations. .. 62

3.6 Optimal populations sizes for F7 for different function evaluations. .. 63

3.7 Functional form of F5 and F7. .. 63

3.8 Functional form of F6 and F3. .. 64

3.9 Optimal populations sizes for F6 for different function evaluations. .. 65

3.10 Optimal populations sizes for F3 for different function evaluations. .. 66

3.11 Optimal populations sizes for F4 for different function evaluations. .. 67

3.12 Plot of F4 in \(l = 2, 5, 10, \) and 20 dimensions. The higher dimensional plots are 1–dimensional cross-sections of the function taken along the diagonal of the hypercube. .. 68

3.13 Flow chart depicting the fitness function calibration classes. .. 72

3.14 Plots of the effect of parameters \(A \) and \(f \) on the characteristics of F3B .. 76

3.15 The effect of increasing the salience of \(x_2 \) relative to \(x_1 \) for F3C .. 77

3.16 Plots of the effect of parameters \(A \) and \(p \) on the characteristics of F4A .. 79

3.17 Plots of the effect of parameter \(p \) on the characteristics of F6. .. 80

3.18 The effect of interactions on the solution found for F3A with \(l = 30. \) .. 86
List of Figures

4.1 Extension of the Wiener–Khinchin Theorem into two dimensions. 95
4.2 The Rastrigin function and Fourier Series approximation to the Rastrigin Function used to compute the correlation statistics. 97
4.3 Temporal (R_t) and spatial (R_s) correlations compared to the true correlation (R). 98
4.4 Comparison of the spatial correlation function computed for variations of the approximated Rastrigin Function. 100
4.5 Representation the interaction between decision variables in terms of Mutual Information. 101
4.6 Sampling method used for the separability measure. 106

5.1 The effect of applying the rotation matrix. 117
5.2 Example of the Fourier Series test functions used. 118
5.3 The computation of the correlation statistics from the spatial correlation measure. 120
5.4 Predicted and experimental values of k for the Fourier Series test functions. 124
5.5 Predicted and experimental values of k for F3. 126
5.6 Predicted and experimental values of k for F4. 127
5.7 Predicted and experimental values of k for F6. 127
5.8 Predicted and experimental values of g_{conv} for F3. 129
5.9 Predicted and experimental values of g_{conv} for F4. 130
5.10 Predicted and experimental values of g_{conv} for F6. 131

6.1 Best performing population sizes for Maximal Generation Functions. 139
6.2 Population size against probability of mutation for Optimal Generation Functions. 140
6.3 Best performing (a) mutation rates and (b) number of elite solutions for the Maximal Generation Functions. 140
6.4 Number of elite solutions for each population size for Optimal Generation Functions. 141
6.5 Number of elite solutions for each probability of mutation for Optimal Generation Functions. 142
6.6 Standard deviation of crossover for each probability of mutation for Optimal Generation Functions. 143
6.7 Best performing (a) fraction for the standard deviation of crossover and (b) probabilities of crossover for the Maximal Generation Functions. 144
6.8 Probability of crossover for each probability of mutation for Optimal Generation Functions ... 145
6.9 Probability of crossover for each population size for Optimal Generation Functions ... 146
6.10 The proposed GA calibration methodology ... 148
6.11 Probability distribution used for crossover with $\sigma = (p_1 - p_2)/6$... 149
6.12 Functional form of f1 and f2. ... 155
6.13 Functional form of f3 and f5. ... 155
6.14 Functional form of f6 and f8. ... 156
6.15 Functional form of f9 and f10. ... 156
6.16 Functional form of f11 and f12. ... 157
6.17 Functional form of f13 and f14. ... 157
6.18 Functional form of f15 and f16. ... 158
6.19 Functional form of f18 and f19. ... 158
6.20 Functional form of f20 and f21. ... 159
6.21 Functional form of f22 and f23. ... 159
6.22 GA convergence for the different calibration methods, for f12 with $l = 10$... 166

7.1 Schematic of the Cherry Hill-Brushy Plains Network ... 179
7.2 Schematic of the Woronora WDS EPANET model ... 190
7.3 Monthly demand patterns for the demand node at Maianbar. ... 193
7.4 Spatial distribution of the daily demand around the Woronora Water Distribution System (WDS). ... 194
7.5 Electricity costs over a 24 hour period. ... 195
7.6 Total chlorine trend at the outlet of Menai reservoir for December 2005. ... 197
7.7 Influence of tablet dosing for December 2005. ... 198
7.8 Influence of tablet dosing for July 2006. ... 199
7.9 Calcium hypochlorite tablet dosing model. ... 199
7.10 Simulated and observed Helensburgh reservoir profile. ... 201
7.11 Simulated and observed Engadine reservoir profile. ... 202
7.12 Simulated and observed Heathcote reservoir profile. ... 203
7.13 Simulated and observed Lucas Heights reservoir profile. ... 203
7.14 Simulated and observed Menai reservoir profile. ... 204
7.15 Simulated and observed total chlorine concentrations at the Engadine pumping station. ... 205
List of Figures

7.16 Simulated and observed total chlorine concentrations at the Menai reservoir inlet 206
7.17 Helensburgh reservoir profile with original initial levels ... 218
7.18 Engadine reservoir profile with original initial levels ... 219
7.19 Heathcote reservoir profile with original initial levels ... 220
7.20 Lucas Heights reservoir profile with original initial levels ... 220
7.21 Menai reservoir profile with original initial levels ... 221
7.22 Total chlorine concentration at demand nodes with original initial reservoir levels 222
7.23 Helensburgh reservoir profile with low initial levels ... 223
7.24 Engadine reservoir profile with low initial levels .. 224
7.25 Heathcote reservoir profile with low initial levels .. 224
7.26 Lucas Heights reservoir profile with low initial levels .. 225
7.27 Menai reservoir profile with low initial levels ... 226
7.28 Total chlorine concentration at demand nodes with low initial reservoir levels 227
List of Tables

3.1 The test functions used in the parametric study, and the interval used for the decision variables. .. 54
3.2 The GA parameter values used for the parametric study. 55
3.3 Optimal Generation Function results. 57
3.4 Maximal Generation Function results. 58
3.5 The test functions with controllable characteristics used in the parametric study. .. 74
3.6 The function values used for F3A. .. 75
3.7 The function values used for F3B. .. 75
3.8 The function values used for F3C. .. 77
3.9 The function values used for F4A and F4B. 78
3.10 The function values used for F6A and F6B. 78
3.11 g_{conv} values observed for F3A. 81
3.12 g_{conv} values observed for F3B. 81
3.13 g_{conv} values observed for F3C. 82
3.14 g_{conv} values observed for F4A and F4B. 83
3.15 g_{conv} values observed for F6A and F6B. 84
4.1 Gene epistasis test functions. ... 102
4.2 Interactions by mutual information and joint probability. 103
4.3 Interactions by mutual information and residuals. 104
4.4 Separability measure results. ... 107
4.5 Separability measure for F3A with $m_{BB} = 1$, $\delta_{BB} = 1$. 108
4.6 Separability measure for F3A with $m_{BB} = 1$, $\delta_{BB} = 2$. 108
4.7 Separability measure for F3A with $m_{BB} = 1$, $\delta_{BB} = 4$. 108
4.8 Separability measure for F3A with $m_{BB} = 2$, $\delta_{BB} = 1$. 108
4.9 Separability measure for F3A with $m_{BB} = 2$, $\delta_{BB} = 2$. 108
4.10 Separability measure for F3A with $m_{BB} = 4$, $\delta_{BB} = 1$. 108
4.11 Salience results for F3C. .. 110
4.12 Salience results for F3C without epistatic interactions. 111
5.1 Parameters values used for the test functions. 116
5.2 Input selection results. .. 123
6.1 GA parameter interactions for Optimal Generation Functions. 137
6.2 GA parameter interactions for Maximal Generation Functions. 137
6.3 Test functions for the GA calibration methods. 154
6.4 Fitness function statistic values, and corresponding N for fitness functions with $l = 10$. .. 160
6.5 Fitness function statistic values for different sized search spaces for f6. . 161
6.6 Predicted N for fitness functions with $l = 30$. 162
6.7 Predicted N for fitness functions with $l = 50$. 163
6.8 Population Sizes Predicted due to Genetic Drift 163
6.9 Overall rankings of the GA calibration methods 165
6.10 Average ranking of each GA calibration method for each fitness function. 168
6.11 Variance of best solutions found for $FE = 5 \times 10^5$ and $l = 50$. 170
7.1 Interactions .. 183
7.2 Results for different GA calibration methods with set parameters 185
7.3 Results for different GA calibration methods with self adaptive parameters 186
7.4 Average Rankings ... 186
7.5 Comparison of the solutions found by different optimisation methods ... 187
7.6 Total mass of chlorine for different methods 188
7.7 Summary of reservoirs in Woronora EPANET model. 191
7.8 Woronora Decision Variables 208
7.9 Separability measure results for scenario 2 of the Woronora fitness function 212
7.10 Statistic values for the Woronora fitness function 213
7.11 Ranking of GA calibration methods for Woronora fitness function for $FE = 5 \times 10^3$.. 214
7.12 Ranking of GA calibration methods for Woronora fitness function for $FE = 10^4$.. 215
7.13 Ranking of GA calibration methods for Woronora fitness function for $FE = 10^5$.. 215
7.14 Overall ranking of GA calibration methods for Woronora fitness function 216
7.15 Pumping cost of best solution found for different scenarios. 217
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.36</td>
<td>Predicted - Set Values. (l = 30) (f_{19-23})</td>
<td>298</td>
</tr>
<tr>
<td>B.37</td>
<td>Predicted - Self Adaptive. (l = 30) (f_{1-6})</td>
<td>299</td>
</tr>
<tr>
<td>B.38</td>
<td>Predicted - Self Adaptive. (l = 30) (f_{8-12})</td>
<td>300</td>
</tr>
<tr>
<td>B.39</td>
<td>Predicted - Self Adaptive. (l = 30) (f_{13-18})</td>
<td>301</td>
</tr>
<tr>
<td>B.40</td>
<td>Predicted - Self Adaptive. (l = 30) (f_{19-23})</td>
<td>302</td>
</tr>
<tr>
<td>B.41</td>
<td>Drift - Set Values. (l = 30) (f_{1-6})</td>
<td>303</td>
</tr>
<tr>
<td>B.42</td>
<td>Drift - Set Values. (l = 30) (f_{8-12})</td>
<td>304</td>
</tr>
<tr>
<td>B.43</td>
<td>Drift - Set Values. (l = 30) (f_{13-18})</td>
<td>305</td>
</tr>
<tr>
<td>B.44</td>
<td>Drift - Set Values. (l = 30) (f_{19-23})</td>
<td>306</td>
</tr>
<tr>
<td>B.45</td>
<td>Drift - Self Adaptive. (l = 30) (f_{1-6})</td>
<td>307</td>
</tr>
<tr>
<td>B.46</td>
<td>Drift - Self Adaptive. (l = 30) (f_{8-12})</td>
<td>308</td>
</tr>
<tr>
<td>B.47</td>
<td>Drift - Self Adaptive. (l = 30) (f_{13-18})</td>
<td>309</td>
</tr>
<tr>
<td>B.48</td>
<td>Drift - Self Adaptive. (l = 30) (f_{19-23})</td>
<td>310</td>
</tr>
<tr>
<td>B.49</td>
<td>Parameterless - Set Values. (l = 30) (f_{1-6})</td>
<td>311</td>
</tr>
<tr>
<td>B.50</td>
<td>Parameterless - Set Values. (l = 30) (f_{8-12})</td>
<td>312</td>
</tr>
<tr>
<td>B.51</td>
<td>Parameterless - Set Values. (l = 30) (f_{13-18})</td>
<td>313</td>
</tr>
<tr>
<td>B.52</td>
<td>Parameterless - Set Values. (l = 30) (f_{19-23})</td>
<td>314</td>
</tr>
<tr>
<td>B.53</td>
<td>Parameterless - Self Adaptive. (l = 30) (f_{1-6})</td>
<td>315</td>
</tr>
<tr>
<td>B.54</td>
<td>Parameterless - Self Adaptive. (l = 30) (f_{8-12})</td>
<td>316</td>
</tr>
<tr>
<td>B.55</td>
<td>Parameterless - Self Adaptive. (l = 30) (f_{13-18})</td>
<td>317</td>
</tr>
<tr>
<td>B.56</td>
<td>Parameterless - Self Adaptive. (l = 30) (f_{19-23})</td>
<td>318</td>
</tr>
<tr>
<td>B.57</td>
<td>Typical - Set Values. (l = 30) (f_{1-6})</td>
<td>319</td>
</tr>
<tr>
<td>B.58</td>
<td>Typical - Set Values. (l = 30) (f_{8-12})</td>
<td>320</td>
</tr>
<tr>
<td>B.59</td>
<td>Typical - Set Values. (l = 30) (f_{13-18})</td>
<td>321</td>
</tr>
<tr>
<td>B.60</td>
<td>Typical - Set Values. (l = 30) (f_{19-23})</td>
<td>322</td>
</tr>
<tr>
<td>B.61</td>
<td>Typical - Self Adaptive. (l = 30) (f_{1-6})</td>
<td>323</td>
</tr>
<tr>
<td>B.62</td>
<td>Typical - Self Adaptive. (l = 30) (f_{8-12})</td>
<td>324</td>
</tr>
<tr>
<td>B.63</td>
<td>Typical - Self Adaptive. (l = 30) (f_{13-18})</td>
<td>325</td>
</tr>
<tr>
<td>B.64</td>
<td>Typical - Self Adaptive. (l = 30) (f_{19-23})</td>
<td>326</td>
</tr>
<tr>
<td>B.65</td>
<td>Predicted - Set Values. (l = 50) (f_{1-6})</td>
<td>327</td>
</tr>
<tr>
<td>B.66</td>
<td>Predicted - Set Values. (l = 50) (f_{8-12})</td>
<td>328</td>
</tr>
<tr>
<td>B.67</td>
<td>Predicted - Set Values. (l = 50) (f_{13-18})</td>
<td>329</td>
</tr>
<tr>
<td>B.68</td>
<td>Predicted - Set Values. (l = 50) (f_{19-23})</td>
<td>330</td>
</tr>
<tr>
<td>B.69</td>
<td>Predicted - Self Adaptive. (l = 50) (f_{1-6})</td>
<td>331</td>
</tr>
<tr>
<td>B.70</td>
<td>Predicted - Self Adaptive. (l = 50) (f_{8-12})</td>
<td>332</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>B.71</td>
<td>Predicted - Self Adaptive. $l = 50$. f13-18</td>
<td>333</td>
</tr>
<tr>
<td>B.72</td>
<td>Predicted - Self Adaptive. $l = 50$. f19-23</td>
<td>334</td>
</tr>
<tr>
<td>B.73</td>
<td>Drift - Set Values. $l = 50$. f1-6</td>
<td>335</td>
</tr>
<tr>
<td>B.74</td>
<td>Drift - Set Values. $l = 50$. f8-12</td>
<td>336</td>
</tr>
<tr>
<td>B.75</td>
<td>Drift - Set Values. $l = 50$. f13-18</td>
<td>337</td>
</tr>
<tr>
<td>B.76</td>
<td>Drift - Set Values. $l = 50$. f19-23</td>
<td>338</td>
</tr>
<tr>
<td>B.77</td>
<td>Drift - Self Adaptive. $l = 50$. f1-6</td>
<td>339</td>
</tr>
<tr>
<td>B.78</td>
<td>Drift - Self Adaptive. $l = 50$. f8-12</td>
<td>340</td>
</tr>
<tr>
<td>B.79</td>
<td>Drift - Self Adaptive. $l = 50$. f13-18</td>
<td>341</td>
</tr>
<tr>
<td>B.80</td>
<td>Drift - Self Adaptive. $l = 50$. f19-23</td>
<td>342</td>
</tr>
<tr>
<td>B.81</td>
<td>Parameterless - Set Values. $l = 50$. f1-6</td>
<td>343</td>
</tr>
<tr>
<td>B.82</td>
<td>Parameterless - Set Values. $l = 50$. f8-12</td>
<td>344</td>
</tr>
<tr>
<td>B.83</td>
<td>Parameterless - Set Values. $l = 50$. f13-18</td>
<td>345</td>
</tr>
<tr>
<td>B.84</td>
<td>Parameterless - Set Values. $l = 50$. f19-23</td>
<td>346</td>
</tr>
<tr>
<td>B.85</td>
<td>Parameterless - Self Adaptive. $l = 50$. f1-6</td>
<td>347</td>
</tr>
<tr>
<td>B.86</td>
<td>Parameterless - Self Adaptive. $l = 50$. f8-12</td>
<td>348</td>
</tr>
<tr>
<td>B.87</td>
<td>Parameterless - Self Adaptive. $l = 50$. f13-18</td>
<td>349</td>
</tr>
<tr>
<td>B.88</td>
<td>Parameterless - Self Adaptive. $l = 50$. f19-23</td>
<td>350</td>
</tr>
<tr>
<td>B.89</td>
<td>Typical - Set Values. $l = 50$. f1-6</td>
<td>351</td>
</tr>
<tr>
<td>B.90</td>
<td>Typical - Set Values. $l = 50$. f8-12</td>
<td>352</td>
</tr>
<tr>
<td>B.91</td>
<td>Typical - Set Values. $l = 50$. f13-18</td>
<td>353</td>
</tr>
<tr>
<td>B.92</td>
<td>Typical - Set Values. $l = 50$. f19-23</td>
<td>354</td>
</tr>
<tr>
<td>B.93</td>
<td>Typical - Self Adaptive. $l = 50$. f1-6</td>
<td>355</td>
</tr>
<tr>
<td>B.94</td>
<td>Typical - Self Adaptive. $l = 50$. f8-12</td>
<td>356</td>
</tr>
<tr>
<td>B.95</td>
<td>Typical - Self Adaptive. $l = 50$. f13-18</td>
<td>357</td>
</tr>
<tr>
<td>B.96</td>
<td>Typical - Self Adaptive. $l = 50$. f19-23</td>
<td>358</td>
</tr>
<tr>
<td>C.1</td>
<td>$FE=10^3$ - $l = 10$, f1-12</td>
<td>359</td>
</tr>
<tr>
<td>C.2</td>
<td>$FE=10^3$ - $l = 10$, f13-23</td>
<td>359</td>
</tr>
<tr>
<td>C.3</td>
<td>$FE=10^3$ - $l = 30$, f1-12</td>
<td>360</td>
</tr>
<tr>
<td>C.4</td>
<td>$FE=10^3$ - $l = 30$, f13-23</td>
<td>360</td>
</tr>
<tr>
<td>C.5</td>
<td>$FE=10^3$ - $l = 50$, f1-12</td>
<td>360</td>
</tr>
<tr>
<td>C.6</td>
<td>$FE=10^3$ - $l = 50$, f13-23</td>
<td>361</td>
</tr>
<tr>
<td>C.7</td>
<td>$FE=10^4$ - $l = 10$, f1-12</td>
<td>361</td>
</tr>
<tr>
<td>C.8</td>
<td>$FE=10^4$ - $l = 10$, f13-23</td>
<td>361</td>
</tr>
<tr>
<td>C.9</td>
<td>$FE=10^4$ - $l = 30$, f1-12</td>
<td>362</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.10</td>
<td>FE=10^4 - l = 30, f13-23</td>
<td>362</td>
</tr>
<tr>
<td>C.11</td>
<td>FE=10^4 - l = 50, f1-12</td>
<td>362</td>
</tr>
<tr>
<td>C.12</td>
<td>FE=10^4 - l = 50, f13-23</td>
<td>363</td>
</tr>
<tr>
<td>C.13</td>
<td>FE=10^5 - l = 10, f1-12</td>
<td>363</td>
</tr>
<tr>
<td>C.14</td>
<td>FE=10^5 - l = 10, f13-23</td>
<td>363</td>
</tr>
<tr>
<td>C.15</td>
<td>FE=10^5 - l = 30, f1-12</td>
<td>364</td>
</tr>
<tr>
<td>C.16</td>
<td>FE=10^5 - l = 30, f13-23</td>
<td>364</td>
</tr>
<tr>
<td>C.17</td>
<td>FE=10^5 - l = 50, f1-12</td>
<td>364</td>
</tr>
<tr>
<td>C.18</td>
<td>FE=10^5 - l = 50, f13-23</td>
<td>365</td>
</tr>
<tr>
<td>C.19</td>
<td>FE=3×10^5 - l = 30, f1-12</td>
<td>365</td>
</tr>
<tr>
<td>C.20</td>
<td>FE=3×10^5 - l = 30, f13-23</td>
<td>365</td>
</tr>
<tr>
<td>C.21</td>
<td>FE=5×10^5 - l = 50, f1-12</td>
<td>366</td>
</tr>
<tr>
<td>C.22</td>
<td>FE=5×10^5 - l = 50, f13-23</td>
<td>366</td>
</tr>
<tr>
<td>D.1</td>
<td>Predicted - Set Values</td>
<td>367</td>
</tr>
<tr>
<td>D.2</td>
<td>Rogers - Set Values</td>
<td>368</td>
</tr>
<tr>
<td>D.3</td>
<td>Parameterless - Set Values</td>
<td>369</td>
</tr>
<tr>
<td>D.4</td>
<td>Typical - Set Values</td>
<td>370</td>
</tr>
<tr>
<td>D.5</td>
<td>Predicted - Self Adaptive</td>
<td>371</td>
</tr>
<tr>
<td>D.6</td>
<td>Rogers - Self Adaptive</td>
<td>372</td>
</tr>
<tr>
<td>D.7</td>
<td>Parameterless - Self Adaptive</td>
<td>373</td>
</tr>
<tr>
<td>D.8</td>
<td>Typical - Self Adaptive</td>
<td>374</td>
</tr>
</tbody>
</table>
List of Symbols

Fitness Function Symbols

\(A \)
Amplitude

\(k_{BB} \)
Building Block Size

\(\delta_{BB} \)
Defining Length of a Building Block

\(f \)
Frequency

\(l \)
Problem Size

\(M \)
Transformation Matrix

\(m_{BB} \)
Building Block Number

\(\phi \)
Phase Shift

\(\pi \)
Mathematical Constant, Pi

Fitness Function Statistic Symbols

\(D \)
Dominance Statistic

\(\lambda \)
Separability Measure

\(R_{av} \)
Average Correlation

\(R_l \)
Correlation Length

\(R_T \)
Total Correlation

General Sampling Symbols

\(\beta \)
Fourier Series Rotation

\(d \)
Distance

\(h \)
Smoothing Parameter (Bin Width or Bandwidth)

\(I \)
Mutual Information

\(I_c \)
Moran’s I

\(n \)
Number of Samples

\(NI \)
Normalised Mutual Information

\(PI \)
Partial Mutual Information

\(\rho \)
Standard Autocorrelation

\(R \)
Analytic Autocorrelation

\(R_s \)
Spatial Autocorrelation
List of Tables

\(R_t \) Temporal Autocorrelation
\(w \) Weighting Function

Genetic Algorithm Symbols

\(c \) Fraction Used for the Standard Deviation of Crossover Distribution
\(e \) Number of Elite Solutions
\(FE \) Function Evaluations
\(g \) Number of Generations
\(g_{\text{conv}} \) Number of Generations Before Convergence
\(N \) Population Size
\(p_m \) Probability of Mutation
\(p_c \) Probability of Crossover
\(\sigma \) Standard Deviation of Crossover Distribution
\(s \) Selection Pressure

Quantitative Genetics Symbols

\(i \) Selection Intensity
\(k \) Decay of Population Variance
\(\sigma_{\text{pop}} \) Standard Deviation of the Population
\(\sigma_P \) Standard Deviation of the Fitness Function
\(S \) Selection Differential

Water Distribution System Symbols

\(k_{\text{cl}} \) Chlorine Decay Rate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCO</td>
<td>Aggregation-Based Crossover Operator</td>
</tr>
<tr>
<td>ACOA</td>
<td>Ant Colony Optimisation Algorithm</td>
</tr>
<tr>
<td>AICV</td>
<td>Automatic Inlet Control Valve</td>
</tr>
<tr>
<td>CWS</td>
<td>Clear Water Storage</td>
</tr>
<tr>
<td>DCO</td>
<td>Discrete Crossover Operator</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary Algorithm</td>
</tr>
<tr>
<td>FDC</td>
<td>Fitness Distance Correlation</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>HCO</td>
<td>Hybrid Crossover Operator</td>
</tr>
<tr>
<td>KDE</td>
<td>Kernel Density Estimation</td>
</tr>
<tr>
<td>MI</td>
<td>Mutual Information</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>NBCO</td>
<td>Neighbourhood-Based Crossover Operator</td>
</tr>
<tr>
<td>pdf</td>
<td>probability density function</td>
</tr>
<tr>
<td>PMI</td>
<td>Partial Mutual Information</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Reducing Valve</td>
</tr>
<tr>
<td>RCGA</td>
<td>Real Coded Genetic Algorithm</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition</td>
</tr>
<tr>
<td>SFLA</td>
<td>Shuffled Frog Leaping Algorithm</td>
</tr>
<tr>
<td>TCV</td>
<td>Throttle Control Valve</td>
</tr>
<tr>
<td>WDS</td>
<td>Water Distribution System</td>
</tr>
<tr>
<td>WFP</td>
<td>Water Filtration Plant</td>
</tr>
<tr>
<td>WTP</td>
<td>Water Treatment Plant</td>
</tr>
<tr>
<td>WQ</td>
<td>Water Quality</td>
</tr>
</tbody>
</table>