Adaptive Antenna Array Processing
for GPS Receivers

By
Yaohua Zheng

Thesis submitted for the degree of
Master of Engineering Science

School of Electrical & Electronic Engineering
Faculty of Engineering, Computer & Mathematical Sciences
The University of Adelaide
Adelaide, South Australia

July, 2008
Contents

Statement of Originality .. v
Acknowledgements ... vii
Abstract .. ix
Abbreviations ... xi
List of Figures ... xiii
List of Tables ... xv
Publication ... xv

Chapter 1. Introduction ... 1
 1.1 Motivation .. 1
 1.2 Thesis Outline and Contributions .. 2

Chapter 2. Background ... 4
 2.1 GPS Background Information ... 4
 2.1.1 GPS Signal Structure ... 4
 2.1.1.1 GPS Signal Components and Generation ... 4
 2.1.1.2 Properties of PRN Codes ... 5
 2.1.1.3 Power Level of GPS Signal at a Receiver ... 7
 2.1.2 Generic Structure of a Digital GPS Receiver ... 8
 2.1.2.1 Acquisition ... 11
 2.1.2.2 Tracking ... 12
 2.1.3 RF Interference (RFI) ... 12
 2.2 Literature Review of Adaptive Antenna Array Processing 14
 2.2.1 Null Steering ... 16
 2.2.2 MVDR ... 20
 2.2.3 MMSE .. 22
Chapter 3. A Blind Beamforming Technique for GPS Receivers 28

3.1 Signal Model .. 28
3.2 Blind Beamforming Technique for GPS receivers 33
 3.2.1 Eigen Decomposition -Based Subspace Technique 33
 3.2.2 Multiple Independent Conventional Beamformers (CBF) 37
 3.2.2.1 Introduction ... 37
 3.2.2.2 Overall Beampatterns Combining subspace and multiple independent beamformers ... 40
 3.2.3 Acquisition and Tracking Channel Assignment 44
3.3 Projection Matrix P in Subspace .. 45
 3.3.1 Projection Matrix P and Inverse of Cross-Covariance Matrix 45
 3.3.2 Blind beamforming and Multiple MVDR Beamforming 46
 3.3.3 An alternative Calculation of Subspace .. 47
3.4 Blind Beamforming and Array Phase Error ... 48
 3.4.1 Description of Simulations ... 48
 3.4.2 Discussions ... 50
3.5 Summary .. 53

Chapter 4. Analysis and Comparison of Null Steering, MMSE and the Blind Beamforming technique ... 54

4.1 No Interference .. 54
 4.1.1 Results .. 54
 4.1.2 Negative Array Gain for Null Steering .. 57
4.2 AG vs. Power Level of Interference ... 59
 4.2.1 One Interference, One GPS Signal .. 59
 4.2.2 Two Interferences, One GPS Signal .. 61
4.3 Three Interferences, three antennas ... 63
4.4 Summary .. 65
Chapter 5. Application to Real Data ... 66
 5.1 Description of Collection of Data ... 66
 5.2 Application to Real Data ... 67
 5.2.1 Dataset without Interference .. 67
 5.2.2 Dataset with a Jammer ... 70
 5.3 Summary .. 71

Chapter 6. Conclusion ... 72
 6.1 Summary .. 72
 6.2 Limitations ... 73
 6.3 Recommendations and Extensions ... 73

Appendix A
Implementation of proposed blind beamforming technique in MATLAB...... 74

Appendix B
MATLAB Functions .. 82

Bibliography .. 95
Statement of Originality

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of my
knowledge and belief, contains no material previously published or written by another
person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the university Library,
being available for loan and photocopying.

SIGNED:

DATE:
Acknowledgements

I would like to acknowledge the support, encouragement and information I received from a number of people in the creation of this thesis.

To Mr. Matthew Trinkle, my MEng.SC supervisor, for his consistent help over the course of this thesis, his infectious enthusiasm and overriding patience.

To Prof. Douglas Gray, my principal supervisor of MEng.Sc, for his informed direction, broad knowledge in signal processing field and his clear and vivid explanations.

To my colleagues in the Sensor Signal Processing group, in particular Rowan Fry, Joy Li, Cloudia Newland, Alvin Goh and Dr. Danny Gibbins, who made the CSSIP an excellent place to work over the course of my time there.

Finally, thanks must go to my parents, my great parents, for their consistent support.
Abstract

This thesis describes a blind beamforming technique for GPS receivers. It improves the performance of a GPS receiver by mitigating interference and enhancing GPS signals separately and has a three-stage structure.

The technique is based on a linear antenna array and integrates the eigen-decomposition based subspace and multiple independent beamforming techniques. A signal model is carefully constructed. Particular emphasis is placed upon the projection matrix derived from the subspace technique. The effect of interference and phase error on this technique is discussed.

This technique is tested and compared to null steering and MMSE technique using simulated data for a number of interference environments. Furthermore, the proposed technique is applied to real data and shows several advantages over simple null steering.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>AG</td>
<td>Array Gain</td>
</tr>
<tr>
<td>AGC</td>
<td>Automatic Gain Control</td>
</tr>
<tr>
<td>AIC</td>
<td>A Information Criterion</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>BF</td>
<td>Beamformer</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>C/A</td>
<td>Course/Acquisition Code, One Type of PRN Codes</td>
</tr>
<tr>
<td>CB</td>
<td>Citizens Band</td>
</tr>
<tr>
<td>CBF</td>
<td>Conventional Beamformer</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>C/No</td>
<td>Carrier-to-Noise ratio</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>DOA</td>
<td>Direction of Arrival</td>
</tr>
<tr>
<td>DS-CDMA</td>
<td>Direct Sequence Code Division Multiple Access</td>
</tr>
<tr>
<td>DS-SS</td>
<td>Direct Sequence-Spread Spectrum</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gates Array</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRET</td>
<td>GPS RF Environment Testbed</td>
</tr>
<tr>
<td>I</td>
<td>In-phase</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>LMS</td>
<td>Least Mean Square</td>
</tr>
<tr>
<td>LPF</td>
<td>Low Pass Filter</td>
</tr>
<tr>
<td>L1</td>
<td>L1 Frequency Band, 1575.42MHz</td>
</tr>
<tr>
<td>L2</td>
<td>L2 Frequency Band, 227.6MHz</td>
</tr>
<tr>
<td>MaxSINR</td>
<td>Maximum Signal-to-Interference and Noise Ratio</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>MaxSNR</td>
<td>Maximum Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>MDL</td>
<td>Minimum Description Length</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>MSC</td>
<td>Multiple Sidelobe Canceller</td>
</tr>
<tr>
<td>MSNNR</td>
<td>Maximum Signal-plus-Noise-to-Noise Ratio</td>
</tr>
<tr>
<td>MVDR</td>
<td>Minimum Variance Distortionless Response</td>
</tr>
<tr>
<td>NCO</td>
<td>Numerically Controlled Oscillator</td>
</tr>
<tr>
<td>PRN</td>
<td>Pseudo Random Noise</td>
</tr>
<tr>
<td>P[Y]</td>
<td>P code, One Type of PRN Codes</td>
</tr>
<tr>
<td>Q</td>
<td>Quadra-phase</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFI</td>
<td>RF Interference</td>
</tr>
<tr>
<td>RHCP</td>
<td>Right Hand Side Circularly Polarisation</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal-to-Interference and Noise Ratio</td>
</tr>
<tr>
<td>SIR</td>
<td>Signal-to-Interference Ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SV</td>
<td>Space Vehicle</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra-wideband</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Generation of a GPS Signal...5
2.2 System Level Functional Block Diagram of a Generic Digital GPS Receiver…9
2.3 Generic Digital Receiver Tracking Channel Block Diagram.....................10
2.4 Broadside Beampattern of a Conventional Bemaformer with 7 antennas......15
2.5 Functional Diagram of a K-Element Adaptive Beamformer.....................15
2.6 Null Steering Beamforming..18
2.7 MVDR Beamforming..20
2.8 MMSE Beamforming..22
2.9 MaxSINR Beamforming...23
3.1 Coordinate System...31
3.2 Linear Array with Antennas Equi-spaced along y Axis...........................31
3.3 Schematic Diagram of Blind Beamforming Technique for GPS Receiver....34
3.4 GPS Signal Gain in Worst Case Scenario ...39
3.5 Beampatterns of Seven Independent Conventional Beamformers..........39
3.6 Overall Beampatterns Combining Subspace and Seven Independent
 Beamformers with Interference at $\frac{\pi}{6}$..40
3.7 Overall Beampatterns Combining Subspace and Nine Independent Beamformers
 with Interference at $\frac{\pi}{6}$..42
3.8 Overall Beampatterns Combining Subspace and Seven Independent
 Beamformers with Two Interference at $\frac{\pi}{6}$ and $\frac{-\pi}{9}$.................43
3.9 Acquisition and Tracking Assigning...45
3.10 Overall Beampatterns of Seven Independent Beamformers against a Phase
 Error of Standard Deviation 9°..49
3.11 Mean of Array Gain against Standard Deviation of the Phase Error for 7
 Antennas...51
3.12 Standard Deviation of Array Gain against Standard Deviation of the Phase Error for 7 Antennas ... 52
4.1 Array Gain without Interference with 7 Antennas 55
4.2 Array Gain without Interference with 5 Antennas 56
4.3 Array Gain without Interference with 3 Antennas 56
4.4 Beampatterns of Null Steering without Interference 58
4.5 Loss of GPS Power vs. Number of Antennas in Null Steering Algorithm with a C/No=46dB ... 58
4.6 Loss of GPS Power vs. Number of Antennas in Null Steering Algorithm with a C/No=49.5dB ... 59
4.7 Array Gain vs. Power of Single Interference with 7 Antennas 60
4.8 Array Gain vs. Power of Interference with 3 Antennas 61
4.9 Array Gain vs. Power of Two Interference with 7 Antennas 62
4.10 Array Gain vs. Power of Two Interference with 3 Antennas 63
4.11 Array Gain vs. power of three interference using three antennas 64
5.1 Antenna Array and Supporting Hardware (Front View) 66
5.2 Antenna Array and Supporting Hardware (Side View) 67
A1 Frequency Response of LPF ... 76
A2 Real Part of Simulated Received Data at One Antenna 78
A3 Beampatterns of Subspaces ... 80
A4 Beampatterns of Independent Conventional Beamformers and Direction Information of Received Data 81
List of Tables

2.1 Cross-Correlation Properties of Gold Codes (No Doppler Offset)………………..7
2.2 Types of RF Interference and Potential Sources...13
5.1 Acquired SVs and Their C/No in Data Set without Interference......................68
5.2 Acquired SVs and Their C/No in Data Set with An interference.....................68
A1 Corresponding Spatial Angles of Wavenumbers...81

Publication