DECLARATION

The work contained in this thesis is original, except as acknowledged in the customary manner, and has not been submitted previously for a degree at any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made.

The author consents to the thesis being made available for photocopying and loan if accepted for the award of the degree.

__

Jonathan Peter Salo
Adelaide, Australia
30 May 2005
EVALUATING SITES FOR SUBSURFACE CO₂ INJECTION/SEQUESTRATION: TANGGUH, BINTUNI BASIN, PAPUA, INDONESIA

(VOLUME 1: Text)

Jonathan P. Salo

Supervisors:
Dr. Simon C. Lang
Dr. John G. Kaldi

Australian School of Petroleum
University of Adelaide
South Australia
S.A. 5005

May 2005
ACKNOWLEDGEMENTS

The author expresses his gratitude to BP for their sponsorship and support. Particular thanks are extended to John A. Marcou (BP Tangguh Subsurface Development Manager 2000-2002); Dr. Neil Davis (BP Acting Tangguh Subsurface Development Manager 2002-2003); Achmadi T. Kasim (BP Tangguh Subsurface Development Manager 2003-2004); Dr. Godofredo Perez (Reservoir Engineer); Frans J. P. Silitonga (Reservoir Engineer); and Pranoto (BP Geophysicist).

The author would also like to thank the University of Adelaide, particularly the Australian School of Petroleum (ASP). The author wishes to express sincere gratitude to Dr. Simon C. Lang and Dr. John G. Kaldi for their time and assistance as supervisors and their keen interest in guiding the research, particularly in sedimentology/sequence stratigraphy and seal capacity/potential.

The author also wishes to thank the following ASP staff for time and assistance in their respective geological specialties, particularly Professor Richard Hillis (geomechanics and fault reactivation); Dr. Jochen Kassan (geologic modelling and geostatistics); Dr. Jerry Meyer (fault reactivation); Dr. Tobi Payenberg (sedimentology); Dr. Richard Daniel (seal evaluation); and Andy Mitchell (geophysics). The author also thanks fellow students Dr. Mark Tingay for FMI/FMS processing, and Dr. Takeshi Nakanishi for advice in probabilistic prospecting.

The author would also like to thank the GEODISC Programme of the APCRC (now the CO2CRC) and their key personnel including Dr. Peter Cook, Dr. Andrew Rigg, Dr. John Bradshaw, Dr. Jonathan Ennis-King, and especially Catherine Gibson-Poole for their kind assistance and helpful insights.

In addition, the author would like to thank Steve Tyson, of GeoVisual Systems, for his assistance with 3D geologic modelling, and numerous customizations to the GeoCARD software program.

Thanks also to Ben Royal, and especially Nathan Ceglar, for assistance with drafting and compilation. Finally, I would like to express thanks to my wife, Nurhayati Salo, and my son, Jason Michael Salo, for being patient and forgiving of the long periods of time spent away from home in the course of this study.

Jonathan Peter Salo
October 2004
The venting of anthropogenic CO$_2$ emissions into the atmosphere at increasing rates is probably influencing global warming and climate change. The Tangguh LNG development project in Papua, Indonesia will produce significant volumes of CO$_2$, which might be vented into the atmosphere. The LNG process will necessitate the separation of CO$_2$, estimated at 2.4 trillion cubic feet (TCF sc), from the natural gas reserves prior to liquefaction and shipping. This study screens and assesses the possible alternatives to atmospheric venting, and recommends subsurface CO$_2$ injection and sequestration/storage in saline aquifers. The study identifies specific subsurface locations for several Environmentally-Sustainable Sites for CO$_2$ Injection (ESSCI) in Bintuni Basin, where the Tangguh production fields are located.

Alternatives to atmospheric venting of the estimated CO$_2$ volume at Tangguh include both non-geologic and geologic disposal options. Non-geologic options such as biosphere sinks (enhanced forest or agricultural growth), deep-ocean sinks (subsea dispersal), and direct commercial usage (e.g. use in beverage or fertilizer production, fire-retardant manufacturing) are impractical and of questionable impact in remote Papua, Indonesia.

Several subsurface geological disposal options were investigated, but the most viable geologic disposal option for Tangguh CO$_2$ is injection into the downdip aquifer leg of the Roabiba Sandstone Formation hydrocarbon reservoir. Injected CO$_2$, at supercritical phase, is expected to migrate updip into the sealed structural traps at Vorwata or Wiriagar Deep, as the natural gas reserves are produced.

A probabilistic ranking of data quality and quantity for five potential ESSCI reservoirs determined that the Middle Jurassic Roabiba Sandstone Formation has the highest likelihood of viable ESSCI sequestration/storage.

A probabilistic ranking of data quality and quantity for eight ESSCI structural traps within the western flank of Bintuni Basin, determined that Vorwata, followed by Wiriagar Deep, are the most viable ESSCI structural traps at the Middle Jurassic reservoir level.

Five potential ESSCI seals were evaluated and it was determined the best seal potential occurs in the Pre-Ayot Shales, directly overlying the Middle Jurassic reservoir at Vorwata. This unit is capable of holding a 3300 to 4660 foot (1006 to
1420 meter) CO\textsubscript{2} column. Seal integrity of the Pre-Ayot is very good because it is a relatively homogeneous deep-water shale that is composed primarily of ductile illite and kaolinite clays with a minor quartz and feldspar content. Sequence stratigraphy analysis suggests that the zone extends over the entire Vorwata three-way dip closure, with thickness between 17 feet (5 m) and 233 (71 m) feet.

The maximum effective storage capacity of the Middle Jurassic reservoirs for each structure was calculated, taking into account irreducible water, trapped water, and trapped residual gas pore volumes. The Vorwata structure is capable of storing 19.3 TCFsc supercritical CO\textsubscript{2} at reservoir temperature and pressure. The Wiriagar Deep structure has potential storage capacity of 3.5 TCFsc, and Ubadari 2.8 TCFsc, at their respective reservoir temperatures and pressures.

A ‘Rating Product Ranking’ was developed to quantify the results of the quality and quantity of four factors: Reservoir Data, Structure Data, Seal Data, and Storage Ratio. Each structure, and the respective top and lateral seal overlying the Middle Jurassic reservoirs, was evaluated. The net result was that Vorwata rated a 0.88 on a scale of zero to one, where 1.0 represents 100% confidence in ESSCI potential. Ubadari and Wiriagar Deep scored, respectively, 0.52 and a 0.45.

Finally, the structures were evaluated for relative proximity to the proposed CO\textsubscript{2} source (i.e. the LNG plant location). With a weighted distance factor calculated with the Rating product for each potential injection site, Vorwata rated 0.88 on a scale of zero to one, Wiriagar scored 0.24, and Ubadari scored only 0.09.

The Middle Jurassic ‘Roabiba Sandstone Formation reservoir’ at the Vorwata structure has the greatest potential as an ESSCI storage site. The Middle Jurassic ‘Aalenian Sandstone Formation reservoir’ at the Wiriagar Deep is the second-best potential ESSCI storage site. The subsurface ESSCI injection location proposed for the ‘Roabiba Sandstone Formation’ aquifer, 10 km southeast and down-dip from the known gas-water contact (GWC), is on the southeast Vorwata plunging anticlinal nose. An alternate potential ESSCI injection location proposed for the ‘Roabiba Sandstone Formation’ aquifer is 6 km south of and down-dip from the known gas-water contact (GWC) on Vorwata structure southern flank.

A key issue was to determine the possible risk of fault re-activation from CO\textsubscript{2} injection. NE-SW striking vertical faults have the highest risk of re-activation requiring an increase of over ~1460 psi (103 kg/cc) over hydrostatic at 14,000 ft TVDss (4267 m), for slippage to occur. The closest fault with a high risk of re-
activation is 5 km northwest of the recommended ESSCI site location. Supercritical CO₂ pressure is not expected to exceed the estimated pressure determined to cause fault re-activation.

A 3D geological model of the Mesozoic interval was constructed over a large area of western Bintuni Basin. The model was constructed so as to preserve as much geological heterogeneity as possible yet still have a manageable number of active cells. Faults were incorporated into the model as strike-slip vertical fault surfaces (or indexed fault polygons) as a separate attribute.

The geo-cellular model was built suitable for importation into a reservoir simulator (VIP), and a 25-year simulation run for natural gas production from the Vorwata Middle Jurassic reservoir, with concurrent CO₂ injection downdip into the Vorwata Middle Jurassic aquifer at the primary recommended ESSCI site location. The simulation verified the recommended location with the CO₂ slowly migrating into the Vorwata structural trap within the Middle Jurassic reservoir, and not compromising the hydrocarbon reserves or production.

It is recommended that additional data be acquired such as conventional core, formation water samples, and specific logs such as dipole-sonic, multi-chambered dynamic formation testers (MDT), and mechanical rotary sidewall coring tools (MSCT).

Lastly, several CO₂ monitoring methods and techniques are recommended for Tangguh to monitor CO₂ migration, pressures, and potential leakages. One such method is a vertical monitoring well at the recommended injection site. Other monitoring techniques include smart well completions, detection monitors at production wells with tracers injected prior to CO₂ injection. In addition, crosswell seismic surveys, electromagnetic methods, and electrical-resistance tomography techniques are suggested during the injection phase.
TABLE OF CONTENTS

TITLE PAGE
ACKNOWLEDGMENTS ... i
ABSTRACT .. iii
TABLE OF CONTENTS ... vi
PART I – INTRODUCTION ... 1
 1. INTRODUCTION .. 2
 1.0 Rationale and Aim ... 2
 1.1 Background on Global Warming ... 2
 1.2 Greenhouse Effect ... 4
 1.3 Greenhouse Gases ... 6
 1.4 Carbon Dioxide .. 11
 1.5 Complete Carbon Cycle ... 13
 1.6 Anthropogenic CO\(_2\) ... 16
 1.7 Non-geological CO\(_2\) Disposal Options 16
 2. PROJECT AREA BACKGROUND ... 20
 2.1 Location .. 20
 2.2 Concession history and current status 21
 3. EVALUATION OF GEOLOGICAL SEQUESTRATION OPTIONS ... 27
 3.1 CUCS (CO\(_2\) in unmineable coal-bed sequestration) 28
 3.2 CECMP (CO\(_2\) for enhanced coal-bed methane production) ... 29
 3.3 CDOGR (CO\(_2\) in depleted oil/gas reservoirs) 30
 3.4 CCV (CO\(_2\) in cavity or void) .. 31
 3.4.1 Salt domes, mines, and tunnels 31
 3.4.2 New Guinea Limestone Group member (NGLG) 31
 3.4.2.1 Eocene carbonates .. 31
 3.4.2.2 Oligocene Limestone Formation 32
 3.4.2.3 Faumai Formation .. 32
 3.4.2.4 Kais Limestone Formation 32
 3.4.2.5 Nonsuitability of the NGLG for CO\(_2\) 33
 3.4.2.6 Nonsuitability of CDOGR for CO\(_2\) 34
 3.4.2.6.1 Insufficient Storage Capacity 34
 3.4.2.6.2 Supercritical Phase Instability 35
 3.4.2.6.3 Unsuitable Mineralogy 36

TABLE OF CONTENTS

5.3.9 New Guinea Limestone Group (NGLG)………………87
5.3.9.i.1 Oligocene Limestone Formation……………87
5.3.9.i.2 Faumai Formation…………………………..88
5.3.9.i.3 Kais Limestone Formation…………………90
5.3.10 Steenkool Formation……………………………91

PART II – INJECTIVITY... 93

6. STRATIGRAPHY.. 94
6.1 Stratigraphic Methodology... 94
6.1.1 Seismic Stratigraphy... 96
6.1.2 Palynological Biozonation... 100
6.1.3 Wireline Log Motifs and Stratigraphic Correlations...101
6.2 Paleogeographic Facies Maps for Tangguh Sequence Stratigraphy..104
6.3 Detailed Sequence Stratigraphy Framework for Tangguh……107
6.3.1 Late Permian………………………………………..116
6.3.2 Triassic and Early Jurassic…………………......117
6.3.3 Aalenian MJ-4 (Middle Jurassic)………………...120
6.3.4 Bajocian/Early Bathonian MJ-3 (Middle Jurassic)…123
6.3.5 Late Bathonian MJ-2 (Middle Jurassic)………….131
6.3.6 Callovian MJ-1/LJ-11 (Middle-Late Jurassic)……132
6.3.7 Ayot Limestone Formation LJ-9 (Late Jurassic)……140
6.3.8 Upper Late Jurassic LJ-8 to LJ-2 (Late Jurassic)…..142
6.3.9 Late Cretaceous……………………………………143
6.3.10 Cenozoic Succession……………………………145
6.4 Limitations and Alternatives...146
6.5 Re-interpretation of the Bird’s Head Tectonic/Structural History….147

7. RESERVOIR CHARACTERIZATION...153
7.1 Whole Cores, Core Plug Analyses, and DST Data………………...153
7.2 Reservoir Quality...156
7.2.1 Late Permian Reservoir Quality……………………………156
7.2.2 Aalenian Sandstone Formation Reservoir Quality….163
7.2.3 Callovian and Bathonian/Bajocian Roabiba Sandstone Formation Reservoir Quality…………..165
7.2.4 Ayot Limestone Formation Reservoir Quality……..170
TABLE OF CONTENTS

7.2.5 Late Cretaceous Reservoir Quality 171
7.2.6 Late Paleocene Reservoir Quality 172
7.2.7 NGLG Reservoir Quality 174

PART III – CONTAINMENT ... 176

8. ESSCI STRATA EVALUATION 177
8.1 Late Permian Reservoir ESSCI Potential 179
8.2 Middle Jurassic Reservoir ESSCI Potential 182
8.3 Late Cretaceous Reservoir ESSCI Potential 185
8.4 Late Paleocene Sand-Prone Interval ESSCI Potential 186
8.5 New Guinea Limestone Group Reservoir ESSCI Potential 188
8.6 ESSCI Stratum Rating and Ranking 190

9. ESSCI STRUCTURE EVALUATION 193
9.1 Vorwata Structure ESSCI Potential 194
9.2 Wiriagar Deep Structure ESSCI Potential 196
9.3 Ubadari Structure ESSCI Potential 198
9.4 Roabiba Structure ESSCI Potential 199
9.5 Ofaweri Structure ESSCI Potential 200
9.6 Wos Deep Structure ESSCI Potential 201
9.7 Kalitami Structure ESSCI Potential 201
9.8 Saritu Deep Structure ESSCI Potential 202
9.9 Ranking Structural Trap ESSCI Potentials 203

10. ESSCI SEAL EVALUATION 205
10.1 Overview of Reservoir/Seal Couplets and Seal Potential 205
10.2 Mercury Injection Capillary Pressure Methodology 207
10.3 Roabiba Reservoir Top and Lateral Seals 216
10.4 Roabiba Reservoir Regional Seals 224
10.5 Limitations ... 228
10.6 Discussions Regarding Seal Capacity, Geometry, and Integrity 231
10.7 Seal Potential Conclusions 246
10.8 ESSCI Seal Evaluation .. 249

11. CO₂ STORAGE CAPACITY ANALYSIS AND WEIGHTED DISTANCE FACTORING 252
11.1 ESSCI CO₂ Storage Capacity Analysis And Evaluation 252
TABLE OF CONTENTS

11.2 Integrating ESSCI CO₂ Storage Capacity Analysis with Reservoir, Structure, and Seal Potential ESSCI Evaluations ………………….. 253
11.3 Distance/Economics Factor Weighted Rating and Ranking ……... 257

12. CO₂ INJECTION FAULT RE-ACTIVATION RISK EVALUATION ….. 260

PART IV – CO₂ INJECTION-SITE RECOMMENDATION AND GEOLOGIC
MODEL VERIFICATION………………………………………………………. 266

13. CO₂ INJECTION SITE LOCATION RECOMMENDATIONS ………. 267
14. TANGGUH GEO-CELLULAR MODEL…………………………………. 272
 14.1 The Geological Test Model……………………………………….. 273
 14.2 The Preliminary Geological Model……………………………… 275
 14.3 The Final 3D Geologic Model…………………………………….. 279
 14.4 The Modeling Strategy…………………………………………… 281
 14.4.1 Zones Versus Layers in the Geological Model…………. 281
 14.4.2 Limitations on Volume of Active Cells in the Geological
 Model………………………………………………………… 285
 i. Incorporation of Faults into the Final Tangguh 3D Geologic
 Model…………………………………………………… 286
 ii. Attributes and Variograms in the Geological Model………. 287
 14.5. Results of the Final 3D Geologic Model……………………… 291
 14.6. Preliminary Reservoir Simulation Results…………………… 292
 14.7. Conclusions………………………………………………………… 293

PART V – IMPLICATIONS FOR IMPLEMENTATION……………………… 294

15. DRILLING AND DATA RECOMMENDATIONS FOR EXPLORATION
 AND INJECTION WELLS……………………………………………… 295
 15.1. Recommendations on Future Tangguh Well Data Acquisitions…… 295
 15.1.1. Steenkool/Sele Formations……………………………… 296
 15.1.2. Kais/Faumai Formations (NGLG)…………………………. 297
 15.1.3. Eocene/Paleocene Formations……………………………. 299
 15.1.4. Late Cretaceous Interval………………………………….. 301
 15.1.5. Jurassic Sequences………………………………………. 302
 15.1.6. Triassic/Permian Sequences……………………………. 303
 15.1.7. Final Remarks on Data Acquisition………………………. 304
TABLE OF CONTENTS

15.1.8. Conclusions... 305
16. EVALUATION OF SUBSURFACE CO₂ MONITORING.............. 306
 16.1. Surface Measurements... 306
 16.2. Smart Well Completions.. 307
 16.3. Seismic.. 308
 16.4. Time-Lapse 3D (‘4D’) Seismic Surveys............................... 308
 16.5. Downhole Seismic.. 309
 16.5.1. VSP... 309
 16.5.2. Cross-well Seismic Tomography.................................. 310
 16.5.3. Single-well Sonic Logging.. 310
 16.5.4. Microseismic Imaging.. 311
 16.6. Electromagnetic Methods.. 312
 16.7. Surface Electromagnetic Measurements............................ 312
 16.8. Cross-well Electromagnetic Methods............................... 313
 16.9. Downhole to Surface Electromagnetic Methods.................... 313
 16.10. ERT (Electrical Resistance Tomography)............................ 313
 16.11. Gravity.. 314
 16.12. Tracers.. 314
 16.13. Limitations and Advantages.. 315
 16.14. Subsurface CO₂ Monitoring Conclusions and
 Recommendations... 315

PART VI – CONCLUSIONS, POSTSCRIPT, AND REFERENCES......... 320
 17. Conclusions... 321
 18. Postscript... 335
 19. References... 340

VOLUME 2 (FIGURES and APPENDICES)

PART VII – FIGURES.. 1

PART VIII – APPENDICES... 191
 Appendix 1 : DST-PTA Summary.. 191
 Appendix 2: Petrophysical Summary.. 205
 Appendix 3: Porosity and Permeability Summary (V-10)............... 229
 Appendix 4: Core Plug/Chip Atlas.. 238
LIST OF TABLES

Table 1.1: Current averaged atmospheric gas composition 8
Table 5.1: Bintuni Basin gross intervals and formation/member 59
Table 6.1: Core and cuttings depth shifts at each well 95
Table 6.2a: Sequence stratigraphy zone/boundary depths at Tangguh 97
Table 6.2b: Sequence stratigraphy zone/boundary depths at Tangguh (cont.) 98
Table 6.3: Isopach thickness for zones/members 99
Table 6.4: Palynological zonation scheme used by Core Laboratories 103
Table 6.5: Palynological/Ichnological/Sedimentological/Log Motif charts 108-113
Table 7.1: List of all intervals cored and examined in Tangguh area 157
Table 7.2: Master list of new plug analyses (2002-2003) 158
Table 7.3: Core and cuttings depth shift for all wells 159
Table 7.4: Reservoir depth table 160
Table 7.5: New core plug porosity and permeability results 169
Table 7.6: Paleocene core plug porosity and permeability result summary 173
Table 8.1: Data confidence factor matrix for probabilistic HC exploration 178
Table 8.2: Data confidence factor matrix for ESSCI stratum at Tangguh 183
Table 8.3: Table of data confidence factor rating for ESSCI stratum 192
Table 9.1: Data confidence factor matrix for ESSCI structures at Tangguh 197
Table 9.2: Table of data confidence factor rating for ESSCI structures 204
Table 10.1: Core plug/chip MICP analyses results 208
Table 10.2: Example of GEODISC geochemical calculator 212
Table 10.3: CO₂ column height calculator 213
Table 10.4: Measured salinities for major reservoirs 214
Table 10.5: Temperatures and pressures at datum for major reservoirs 215
Table 10.6a: Sensitivities to varied threshold pressures 218
Table 10.6b: Sensitivities to varied contact angles 219
Table 10.6c: Sensitivities to varied interfacial tension 220
Table 10.7: Comparison of seal capacities and column heights for various seals 226
Table 10.8: Bulk XRD analyses on core plug/chip seal samples 233
Table 10.9a: Petrographic analysis for V-1 and V-2 core plugs 235
Table 10.9b: Petrographic analysis for V-2 and V-7 core plugs 236
Table 10.9c: Petrographic analysis for V-10 core plugs 237
Table 10.9d: Petrographic analysis for V-10 core plugs (cont.) 238
Table 10.10: Petrographic analysis for V-10 core plugs in aquifer leg 239
Table 10.11: Data confidence factor matrix for ESSCI seals at Tangguh 251
Table 11.1: Calculator for CO₂ storage volume in Tangguh structures 254
Table 11.2: Rating Product for ESSCI rankings 255
Table 12.1: List of Tangguh area leak-off tests/formation integrity tests 261
Table 12.2: Table of Tangguh area wells with FMI/FMS borehole image logs 262
Table 14.1: Zonation and layering scheme for preliminary geological model 278
Table 14.2: Zonation and layering scheme for final Tangguh geologic model 284
Table 14.3: Numerical facies codes used in the attribute ‘SimpleFacies_Use’ 288
Table 14.4: Variogram models and numerical codes for paleodepositional facies 290
Table 14.5: Variogram models, structures, and parameters for stochastically populating cells in the final geologic model 290
Table 14.6: The search ellipse parameters for paleodepositional facies 291
Table 16.1: Limitations/Advantages of CO₂ monitoring techniques/methods

LIST OF TABLES (Appendices)

Appendix 1: DST-PTA Summary Tables 191
Appendix 2: Petrophysical Summary Tables 205
Appendix 3: Core Plug Porosity and Permeability Table 1998 (V-10 well) 229

LIST OF FIGURES

Fig. 1.1: Changes in atmospheric CO₂ composition plotted from ice core 2
Fig. 1.2: Change in CO₂ concentrations over a millennium 3
Fig. 1.3: Change in CO₂ concentrations and temperature over a millennium 3
Fig. 1.4: Change in CO₂ concentrations and temperature over 400,000 yrs 4
Fig. 1.5: Change in GHG over a millennium 5
Fig. 1.6: Projected thermal expansion of sea level 6
Fig. 1.7: Projected sea level from thermal expansion and land-ice melt volume 6
Fig. 1.8: Projected SE coastal USA inundation from sea level rise 7
Fig. 1.9: Projected loss of polar ice caps (N. Pole) 8
Fig. 1.10: Map of global oceanic thermohaline circulation system 9
Fig. 1.11: CO₂ PVT phase diagram 10
Fig. 1.12: LANDSAT image of Cameroon volcanic fields 11
Fig. 1.13: Aerial photograph of Lake Nyos and crater rim after CO₂ bubble 11
Fig. 1.14: Temperature change relationship to GHG concentrations 12
Fig. 1.15: Schematic of the Complete Carbon Cycle (CCC) 13
Fig. 1.16: Schematic of the Bio-Geological Carbon Cycle 13
Fig. 2.1: Indonesia location map 14
Fig. 2.2: Map of Bird’s Head PSC boundaries and gas/oil fields 15
Fig. 2.3: Map of Tangguh development area with gas fields 16
Fig. 3.1: ESSCI CO₂ cross-sectional geological options schematic 17
Fig. 3.2: Bintuni Basin lithostratigraphic column 18
Fig. 3.3: Location map of production fields in Bintuni and Salawati Basins 19
Fig. 3.4: Map of shallow oil fields, seeps, and deep exploration wells in 1993 20
Fig. 3.5: Map of ‘kitchen area’ for source rock hydrocarbon generation 21
Fig. 4.1: Papua, Indonesia and Bird’s Head area location map 22
Fig. 4.2: Paleotectonic map Cretaceous/Tertiary (K/T Boundary) 23
Fig. 4.3: Paleotectonic map Middle Oligocene 24
Fig. 4.4: Paleotectonic map Late Oligocene 25
Fig. 4.5: Paleotectonic map Early Miocene 26
Fig. 4.6: Paleotectonic map Middle Miocene 27
Fig. 4.7: Paleotectonic map Late Miocene of Banda Arc collision 28
Fig. 4.8: Paleotectonic map Pliocene 29
Fig. 4.9: Foreland and Piggyback basin formations map 30
Fig. 4.10: Kitchen area map of Bintuni and Berau basins 30
Fig. 4.11: Thermal maturity history plot for Bintuni Basin source rocks 31
Fig. 5.1: Early stratigraphic column for Bintuni Basin 31
Fig. 5.2: Examining the cores 32
Fig. 5.3: Fluvio-lacustrine Late Permian shale in core 33
Fig. 5.4: Late Permian marine sandstone in core (WD-3) 34
Fig. 5.5: Near-top Late Permian sandstone in core (WD-3) 35
Fig. 5.6: Late Permian sandstone in core (V-1) 36
Fig. 5.7: Late Permian/Middle Jurassic unconformity in core (WD-3) 37
Fig. 5.8: Aalenian Sandstone Formation and overlying MJ-4 shale (WD-3) 38
Fig. 5.9: Aalenian Sandstone Formation in core (WD-3) 39
Fig. 5.10: Various depositional facies Aalenian Sandstone Formation (WD-3) 40
Fig. 5.11: Roabiba Sandstone Formation in core (WD-2) 41
Fig. 5.12: Roabiba Sandstone Formation in core (WD-7) 42
Fig. 5.13: Sedimentological features Roabiba Sandstone Formation core (WD-3) 43
Fig. 5.14: Sedimentological features Roabiba Sandstone Formation core (V-2) 44
Fig. 5.15: Helminthopsis or Helminthoida ichnological fabric (V-2) 45
Fig. 5.16: Callovian (LJ-11) marine shale in core (V-10) 46
Fig. 5.17: Ayot Limestone Formation in core (WD-3) 47
Fig. 5.18: Ayot belemnite death assemblage in core (WD-3) 48
Fig. 5.19: Upper Late Jurassic altered volcanic tuff (WD-3) 49
Fig. 5.20: Base Late Cretaceous/Top Late Jurassic unconformity (WD-3) 50
Fig. 5.21: Near-Base Late Cretaceous carbonate (WD-3) 51
Fig. 5.22: Late Paleocene Sand-Prone Interval Middle Member in core (WD-2) 52
Fig. 5.23: Late Paleocene Sand-Prone Interval Middle Member in core (WD-2) 53
Fig. 5.24: Late Paleocene Mud-Prone Interval (WD-3) 54
Fig. 5.25: Oligocene Limestone Formation outcrop photograph (E. Onin-1) 55
Fig. 5.26: Near-top Faumai Formation coherency image 1632 ms TWT 56
Fig. 5.27: Faumai Formation coherency image 1660 ms TWT 57
Fig. 5.28: Faumai Formation coherency image 1892 ms TWT 58
Fig. 5.29: Kais Limestone Formation coherency image 1200 ms TWT 59
Fig. 5.30: Kais Limestone Formation coherency image 1320 ms TWT 60
Fig. 5.31: Kais Limestone Formation coherency image 1340 ms TWT 61
Fig. 5.32: LANDSAT image of Berau bay and Bintuni Bay 62
Fig. 5.33: Aerial photograph of the Wiriagar River and Wiriagar Swamp 63
Fig. 6.1: Stratigraphic geological cross-section A – A’ 64
Fig. 6.2: Stratigraphic geological cross-section B – B’ 65
Fig. 6.3: Stratigraphic geological cross-section C – C’ 66
Fig. 6.4: Stratigraphic geological cross-section D – D’ 67
Fig. 6.5: Stratigraphic geological cross-section E – E’ 68
Fig. 6.6: Extensional Mesozoic rifting along Australian NW Shelf margin 69
Fig. 6.7: Bintuni Basin Mesozoic stratigraphic column 70
Fig. 6.8: A20 Aalenian isopach map 71
Fig. 6.9: Early A20 paleogeographic facies map 72
Fig. 6.10: Late A20 paleogeographic facies map 73
Fig. 6.11: Bajocian/Bathonian gross isopach map 74
Fig. 6.12: R10 isopach map 75
Fig. 6.13: R10 paleogeographic facies map 76
Fig. 6.14: R20 isopach map 77
Fig. 6.15: R20 paleogeographic facies map 78
Fig. 6.16: R30 isopach map 79
Fig. 6.17: R30 paleogeographic facies map 80
Fig. 6.18: R40 isopach map 81
Fig. 6.19: R40 paleogeographic facies map 82
Fig. 6.20: R50 isopach map 83
Fig. 14.16: Fault compartment boundaries for transmissibility multipliers 184
Fig. 14.17: Reservoir simulator screen capture of grids, zones, and attributes 185
Fig. 14.18: Reservoir simulator screen capture at Year 0 from injection 186
Fig. 14.19: Reservoir simulator screen capture at Year 5 from injection 187
Fig. 14.20: Reservoir simulator screen capture at Year 20 from injection 188
Fig. 14.21: Reservoir simulator screen capture at Year 25 from injection 189
Fig. 18.1: Vorwata Mesozoic core palynology/biostratigraphy chart 190

LIST OF FIGURES (Appendix 4) Volume 2

Fig. 1: Core Plug/Chip Atlas Guide 239
Fig. 2: Core Plug/Chip Atlas: WD-2, 7377' 11" 240-241
Fig. 3: Core Plug/Chip Atlas: WD-2, 7380’ 0" 242-243
Fig. 4: Core Plug/Chip Atlas: WD-2, 8681’ 3” 244-245
Fig. 5: Core Plug/Chip Atlas: WD-2, 8753’ 2” 246
Fig. 6: Core Plug/Chip Atlas: WD-3, 7548’ 9” 247-248
Fig. 7: Core Plug/Chip Atlas: WD-3, 7549’ 2” 249-250
Fig. 8: Core Plug/Chip Atlas: WD-3, 7552’ 7” 251-252
Fig. 9: Core Plug/Chip Atlas: WD-3, 7558’ 8” 253-254
Fig. 10: Core Plug/Chip Atlas: WD-3, 7956’ 3” 255
Fig. 11: Core Plug/Chip Atlas: WD-3, 9238’ 0” 256-257
Fig. 12: Core Plug/Chip Atlas: WD-3, 9272’ 1” 258-259
Fig. 13: Core Plug/Chip Atlas: WD-3, 9274’ 1” 260-261
Fig. 14: Core Plug/Chip Atlas: WD-3, 9286’ 2” 262-263
Fig. 15: Core Plug/Chip Atlas: WD-3, 9309’ 8” 264-265
Fig. 16: Core Plug/Chip Atlas: WD-3, 9325’ 0” 266-267
Fig. 17: Core Plug/Chip Atlas: WD-3, 9328’ 4” 268-269
Fig. 18: Core Plug/Chip Atlas: WD-3, 9344’ 1” 270-271
Fig. 19: Core Plug/Chip Atlas: WD-3, 9364’ 9” 272-273
Fig. 20: Core Plug/Chip Atlas: WD-3, 9509’ 0” 274
Fig. 21: Core Plug/Chip Atlas: WD-5, 9509’ 5” 275-276
Fig. 22: Core Plug/Chip Atlas: WD-7, 7962’ 6” 277-278
Fig. 23: Core Plug/Chip Atlas: WD-7, 7981’ 6” 279-280
Fig. 24: Core Plug/Chip Atlas: WD-7, 8452’ 5” 281-282
Fig. 25: Core Plug/Chip Atlas: WD-7, 8471’ 1” 283-284
Fig. 26: Core Plug/Chip Atlas: WD-7, 8497’ 9” 285-286
Fig. 27: Core Plug/Chip Atlas: WD-7, 8524’ 7” 287
Fig. 28: Core Plug/Chip Atlas: V-1, 11765’ 9” 288
Fig. 29: Core Plug/Chip Atlas: V-1, 11787’ 7” 289
Fig. 30: Core Plug/Chip Atlas: V-1, 11799’ 9” 290-291
Fig. 31: Core Plug/Chip Atlas: V-1, 11797’ 7” 292
Fig. 32: Core Plug/Chip Atlas: V-1, 11902’ 3” 293-294
Fig. 33: Core Plug/Chip Atlas: V-1, 11904’ 3” 295-297
Fig. 34: Core Plug/Chip Atlas: V-1, 11909’ 7” 298
Fig. 35: Core Plug/Chip Atlas: V-1, 11914’ 6” 299
Fig. 36: Core Plug/Chip Atlas: V-2, 12582’ 7” 300-301
Fig. 37: Core Plug/Chip Atlas: V-2, 12584’ 8” 302-303
Fig. 38: Core Plug/Chip Atlas: V-2, 12585’ 8” 304-305
Fig. 39: Core Plug/Chip Atlas: V-2, 12594’ 4” 306-307
Fig. 90: Core Plug/Chip Atlas: V-10, 4082.85 m 400-401
Fig. 91: Core Plug/Chip Atlas: V-10, 4090.85 m 402-403
Fig. 92: Core Plug/Chip Atlas: V-10, 4093.80 m 404-405
Fig. 93: Core Plug/Chip Atlas: V-10, 4095.50 m 406
Fig. 94: Core Plug/Chip Atlas: V-10, 4101.30 m 407-408
Fig. 95: Core Plug/Chip Atlas: V-10, 4117.70 m 409-410
Fig. 96: Core Plug/Chip Atlas: V-10, 4126.30 m 411-412
Fig. 97: Core Plug/Chip Atlas: V-10, 4126.69 m 413-414
Fig. 98: Core Plug/Chip Atlas: V-10, 4128.92 m 415-417
Fig. 99: Core Plug/Chip Atlas: Fractured & Faulted Cores of Seals 418-419
Fig. 100: Core Plug/Chip Atlas Guide 420