Pathways of paternal antigen presentation to initiate antigen-specific immune responses in pregnancy

Lachlan Moldenhauer

Research Centre for Reproductive Health
School of Paediatrics and Reproductive Health
Discipline of Obstetrics and Gynaecology
University of Adelaide, Adelaide, Australia

A thesis submitted to the University of Adelaide in fulfilment of the requirements for admission to the degree Doctor of Philosophy

July 2008
Abstract

The fetus and its placenta, collectively called the conceptus, are semi-allogeneic to the mother, as they express transplantation antigens of paternal origin. Foreign tissues generally experience immunological rejection by the host immune system; however in a normal healthy pregnancy the conceptus does not undergo immune attack. Emerging evidence indicates the conceptus avoids rejection through a number of mechanisms including the induction of active maternal immune tolerance specific for paternal antigens. However, the mechanisms responsible for establishing this tolerance remain undefined, including the timing of the first encounter with paternal antigen and the cellular processes by which paternal antigen is presented to the maternal immune system. Exposure to paternal transplantation antigens occurs in two waves: initially in the context of male seminal fluid at conception, and secondly after placental trophoblast invasion of maternal tissues in mid-gestation pregnancy. Therefore the aim of this research was to evaluate the female immune response to paternal antigens in seminal fluid and those associated with the conceptus. The mechanisms of antigen presentation, the impact of the cytokine environment and the consequences of T cell activation on pregnancy were also investigated.

A transgenic system using ovalbumin (OVA) as the model paternal antigen was established. The transgenic Act-mOVA mouse expresses OVA constitutively and ubiquitously under a β-actin promoter and OVA was shown to be present in seminal fluid and in the fetal and placental tissue of sired progeny. The OVA-reactive CD8+ OT-I and CD4+ OT-II T cells were employed to gauge the relative amount of OVA antigen presented, with the strength of the maternal immune response quantified based upon the extent of T cell proliferation, as assessed by CFSE dye-dilution.

Utilising bone marrow chimeric mice, it was demonstrated that upon insemination by an Act-mOVA male, seminal fluid-derived OVA was processed and indirectly presented by maternal bone marrow-derived antigen presenting cells to induce activation and proliferation of the CD8+ OT-I T cells within the uterine-draining para-aortic lymph nodes of the female. Likewise, OT-II T cells were responsive to MHC class II-restricted presentation of seminal fluid OVA. Post-implantation conceptus-derived OVA was detected within peripheral lymph nodes and the spleen where it was presented via the MHC class I and class II-restricted pathways to induce systemic proliferation of both OT-I and OT-II T cells. Furthermore, as gestation
advanced the extent of OVA presentation and hence T cell proliferation intensified. Conceptus-derived OVA was still presented systemically until 20 days pp.

The impact of the uterine cytokine environment was assessed to determine its influence on seminal OVA antigen processing and presentation. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a key factor in regulating the leukocyte population of the female reproductive tract. GM-CSF-deficient female mice were unable to process and present seminal fluid OVA as effectively or efficiently as their wildtype counterparts, as assessed by their reduced capacity to drive OT-I and OT-II T cell proliferation following insemination by an Act-mOVA male.

Finally, with highly-reactive OVA-specific T cells activated in response to seminal and conceptus OVA antigen, it was of interest to determine the effect of OT-I T cell activation on fetal survival and pregnancy success. It was found that OT-I T cells activated in vivo to paternal OVA antigen in the context of seminal fluid and pregnancy were not deleterious to pregnancy outcomes. However the transfer of cytotoxic OT-I T cells generated in vitro in the presence of an IL-2 into female mice carrying OVA-expressing conceptuses was detrimental to fetal survival.

Collectively these experiments demonstrated that the initial exposure to paternal antigen, and hence the first opportunity to develop paternal antigen-specific tolerance, occurs at insemination. Paternal antigen is presented to the maternal T cell repertoire throughout gestation and may play a role in maintaining immune tolerance during pregnancy. The processing and presentation of paternal-derived antigen is chiefly performed by female bone marrow-derived antigen presenting cells. The cytokine environment of the mated female reproductive tract is critical in allowing optimal antigen processing and presentation, to generate an immune response consistent with maternal immune tolerance of the conceptus.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma at any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I further grant my consent to the University of Adelaide to make this thesis available in all forms of media, now or hereafter known.

Lachlan Millhouse Moldenhauer

July 2008
Acknowledgements

I wish to take this opportunity to sincerely thank my two supervisors, Assoc. Prof. Sarah Robertson and Dr. John Hayball for the opportunity they provided me with to be involved in their research. Both Sarah and John provided me with unwavering support throughout my PhD studies. They have continuously inspired me to become the best research scientist that I can. I will forever be thankful.

I would also like to acknowledge the many staff and students of the Discipline of Obstetrics and Gynaecology at the University of Adelaide who assisted me during my studies, particular those, both past and present, within the Reproductive Immunology Laboratory. Also I would like to thank Ms Leanne Srpek who performed surgery on mice, including vasectomises, seminal vesicle removal and uterine ligation. In addition I would like to thank the members of the Experimental Therapeutics Laboratory at the Hanson Centre, in particular Ms Kerri Diener, who undertook the B3Z assay, provided technical assistance and maintained several mouse colonies throughout my PhD.

I would also like to acknowledge Mr Josef Nguyen and Mr KA Giam from the Radiation Oncology Department at the Royal Adelaide Hospital. They took time out of their hectic days to assist in the irradiation of mice. I would also like to thank all of the staff of the University’s animal house.

These studies were carried out using financial support obtained from grants from the National Health and Medical Research Council and University of Adelaide. I would like to acknowledge the Faculty of Health Science, Research Centre for Reproductive Health and Discipline of Obstetrics and Gynaecology for providing my postgraduate scholarship and travel grants.

Finally I would like to thank my family and friends. Mum and Dad have supported me both emotionally and financially throughout my PhD, thank you. Also thank you to my friends who have always been there to support me.
Publications arising from these and related studies

1. KR Diener, **LM Moldenhauer**, AB Lyons, MP Brown, JD Hayball.

 “GM-CSF is essential for optimal antigen processing and presentation in the mouse uterus”. In preparation.

 “T cell receptor transgenic mice in the study of maternal immune tolerance during pregnancy”. In preparation to be submitted to Journal of Reproductive Immunology.
Abstracts arising from these and related studies

Presenting author underlined

2003

- **LM Moldenhauer**, JD Hayball, SA Robertson. “A novel transgenic T cell model to determine the presence of paternal-derived MHC class I in the mouse uterus post-insemination”. Australasian Society for Immunology, 10th Annual Student Meeting of the South Australia/Northern Territory Branch. Adelaide, Australia.

2004

2005

• **LM Moldenhauer**, JD Hayball, SA Robertson. “Paternal-derived antigen processing and presentation in the mouse uterus”. Australian Society for Medical Research, South Australian Annual Scientific Meeting. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Robertson. “Female recognition of male antigens in pregnancy”. Adelaide Women’s and Children’s Hospital, Annual Young Investigator Awards. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Robertson. “Paternal-derived antigen: processing and presentation in the mouse uterus”. Australasian Society for Immunology, 1st Student Retreat of the South Australia/Northern Territory Branch. Tanunda, Australia.

• **LM Moldenhauer**, JD Hayball, SA Robertson. “The activation of the maternal immune system to paternal antigens associated with the ejaculate and conceptus”. Australasian Society for Immunology, 12th Student Meeting of the South Australia/Northern Territory Branch. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Robertson. “Conceptus antigen systemically priming the maternal immune system”. Australasian Society for Immunology, 35th Annual Conference. Melbourne, Australia.

2006

- **LM Moldenhauer**, JD Hayball, SA Robertson. “Cellular mechanisms for paternal antigen activation of the maternal immune system in pregnancy”. Australian Society for Medical Research, South Australian Annual Scientific Meeting; Ross Wishart Memorial Award. Adelaide, Australia.

- **LM Moldenhauer**, JD Hayball, SA Robertson. “Orchestrating the mother’s immune response to establish healthy pregnancy”. Adelaide Women’s and Children’s Hospital, Annual Young Investigator Awards. Adelaide, Australia.

2007

- **LM Moldenhauer**, JD Hayball, **SA Robertson**. “Systemic maternal awareness of conceptus antigens in pregnancy”. Society of Gynecologic Investigation, 54th Annual Scientific Meeting. Reno, United States.

• **LM Moldenhauer**, JD Hayball, SA Roberts. “GM-CSF is an essential regulator of uterine antigen presenting cells in early pregnancy”. Australian Society for Medical Research, South Australian Annual Scientific Meeting. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Robertson. “Activation of maternal T cell tolerance ensures successful pregnancy outcome”. Adelaide Women’s and Children’s Hospital, Annual Young Investigator Awards. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Roberts. “Male seminal fluid antigens activate a T cell response tolerance of pregnancy”. University of Adelaide Faculty of Health Science, 1st Post-graduate Research Expo. Adelaide, Australia.

• **LM Moldenhauer**, JD Hayball, SA Roberts. “In vivo priming to paternal antigens is consistent with successful pregnancy outcome”. Society of Reproductive Biology, 38th Annual Conference. Christchurch, New Zealand.

2008

- **LM Moldenhauer**, JD Hayball, SA Roberts. "Maternal t cell priming to paternal antigens is consistent with normal fetal and placental development". Australian Society for Medical Research, South Australian Annual Scientific Meeting. Adelaide, Australia.

Table of Contents

Abstract ... i
Declaration .. iii
Acknowledgements iv
Publications arising from these and related studies v
Abstracts arising from these and related studies vi
Table of contents xi
List of figures .. xvii
List of tables ... xix
Abbreviations .. xx
CHAPTER 1; LITERATURE REVIEW

1.1 INTRODUCTION

1.2 THE ESTABLISHMENT OF PREGNANCY

1.2.1 Fertilisation

1.2.2 Pre-implantation embryo development

1.2.3 Embryo implantation

1.2.4 Trophoblast invasion and placental development

1.3 AN OVERVIEW OF THE IMMUNE SYSTEM

1.3.1 Introduction

1.3.2 Innate immunity

1.3.3 Adaptive immunity

1.3.4 Major histocompatibility complex

1.3.4.1 Antigen presenting role of the major histocompatibility complex

1.3.4.2 Polymorphisms of the major histocompatibility complex

1.4 THE IMMUNOLOGY OF PREGNANCY

1.4.1 Medawar’s hypotheses on the immune paradox of pregnancy

1.4.2 Antigenicity of the conceptus

1.4.3 The uterus is not an immune-privileged site

1.4.4 Mechanisms of maternal immune tolerance in pregnancy

1.4.4.1 Antigen and partner-specific tolerance

1.4.4.2 Tolerance of paternal-antigen reactive T cells

1.4.4.3 Cytokine expression within the mated female reproductive tract

1.4.4.4 Multiple mechanisms of maternal immune tolerance

1.4.5 The immune-activating and immune-deviated properties of seminal fluid

1.4.5.1 Introduction

1.4.5.2 The antigenicity of semen

1.4.5.3 Seminal fluid initiates the post-mating inflammatory response

1.4.5.4 The immune-deviating and suppressive capabilities of seminal fluid

1.4.5.5 Seminal plasma and pathologies of pregnancy

1.4.6 Leukocyte populations of the female reproductive tract

1.4.6.1 Introduction

1.4.6.2 Macrophages

1.4.6.3 CD4+ T cells

1.4.6.4 CD8+ T cells

1.4.6.5 Natural killer cells

1.4.6.6 B cells and antibody production

1.5 DENDRITIC CELLS, CROSS-PRESENTATION AND IMMUNE TOLERANCE

1.5.1 Dendritic cell subtypes

1.5.2 The mechanism of cross-presentation

1.5.3 Dendritic cells within the female reproductive tract
1.5.4 Dendritic cells and cross-tolerance 30

1.6 OVA T CELL TRANSGENIC MODELS 32

1.7 SUMMARY 33

1.8 RESEARCH QUESTIONS 34

1.9 HYPOTHESES 34

1.10 AIMS 35

CHAPTER 2; MATERIALS AND METHODS 36

2.1 ANIMALS AND SURGERIES 37
 2.1.1 Mouse Strains 37
 2.1.2 Mouse Surgery 38
 2.1.2.1 Vasectomy and seminal vesicle removal 38
 2.1.2.2 Uterine ligation 39
 2.1.2.3 Retro-orbital bleeds 39

2.2 QUANTIFICATION OF OVA EXPRESSION IN THE EjACULATE AND FETAL AND PLACENTAL TISSUE 39
 2.2.1 Harvesting and preparation of ejaculate and conceptus tissue samples 39
 2.2.2 OVA-specific ELISA 40

2.3 IDENTIFICATION OF LYMPH NODES DRAINING THE UTERUS OF FEMALE MICE 40

2.4 ADMINISTRATION OF OVA PROTEIN AND PEPTIDE TO FEMALE RECIPIENT MICE 40

2.5 OT-I AND OT-II T CELL RECEPTOR TRANSGENIC T CELL ASSAYS 41
 2.5.1 Adoptive transfer of OVA-reactive OT-I and OT-II T cells 41
 2.5.2 Flow cytometric analysis of OT-I and OT-II T cell responses to OVA antigen 41
 2.5.3 Quantification of OT-I and OT-II T cell responses to OVA antigen 42

2.6 B3Z T CELL HYBRIDOMA ACTIVATION ASSAY 45

2.7 BONE MARROW CHIMERA PROTOCOLS 45

2.8 THE EFFECT OF GM-CSF ON SEMINAL FLUID OVA PROCESSING AND PRESENTATION 46

2.9 THE EFFECT OF CYTOTOXIC OT-I T CELLS ON PREGNANCY OUTCOME 47
 2.9.1 Generation of cytotoxic OT-I T cells 47
 2.9.2 The effect of cytotoxic OT-I T cells on pregnancy 47

2.10 STATISTICAL ANALYSIS 47
CHAPTER 3; DEVELOPMENT AND VALIDATION OF THE OVA T CELL TRANSGENIC MODEL

3.1 INTRODUCTION

3.2 THE PARA-AORTIC LYMPH NODES DRAIN THE UTERUS OF PARTICULATE AND SOLUBLE ANTIGENIC MATERIAL

3.3 THE KINETICS AND DOSE DEPENDENT RESPONSE OF OVA-REACTIVE T CELLS

3.4 CHARACTERISATION OF THE NATURE AND QUANTITY OF OVA WITHIN THE EJACULATE OF THE TRANSGENIC ACT-MOVA MOUSE

3.5 QUANTIFICATION OF OVA WITHIN THE GESTATIONAL TISSUES

3.6 DISCUSSION

CHAPTER 4; THE KINETICS OF SEMINAL-FLUID OVA AND CONCEPTUS-ASSOCIATED OVA ANTIGEN PRESENTATION TO OT-I AND OT-II T CELLS

4.1 INTRODUCTION

4.2 SEMINAL FLUID OVA AND CONCEPTUS-DERIVED OVA ACTIVATE CD4+ OT-II AND CD8+ OT-I T CELLS

4.3 KINETICS OF THE LOCAL OT-I T CELL RESPONSE IN THE PARA-AORTIC LYMPH NODES AT INSEMINATION, DURING PREGNANCY AND POST-PARTUM

4.4 KINETICS OF THE SYSTEMIC OT-I T CELL RESPONSE AT INSEMINATION, DURING PREGNANCY AND POST-PARTUM

4.5 CONCEPTUS-DERIVED OVA IS PRESENTED SYSTEMIC WITHIN LYMPHOID TISSUE AND SPLEEN DISTAL TO THE UTERUS DURING PREGNANCY

4.6 DISCUSSION

CHAPTER 5; INDIRECT PRESENTATION OF SEMINAL FLUID OVA BY MATERNAL BONE MARROW-DERIVED ANTIGEN PRESENTING CELLS

5.1 INTRODUCTION

5.2 SEMINAL FLUID-DERIVED OVA ANTIGEN IS PRESENTED TO CD8+ OT-I T CELLS BY MATERNAL CELLS
5.3 CONCEPTUS-DERIVED OVA ANTIGEN IS PRESENTED TO CD8+ OT-I T CELLS BY MATERNAL CELLS 92
5.4 GENERATION OF BONE MARROW CHIMERAS 95
5.5 SIINFEEKL PEPTIDE ADMINISTERED TO THE UTERUS IS INDIRECTLY PRESENTED TO CD8+ OT-I T CELLS BY BONE MARROW-DERIVED ANTIGEN PRESENTING CELLS 97
5.6 SOLUBLE OVA PROTEIN ADMINISTERED TO THE UTERUS IS INDIRECTLY PRESENTED TO CD8+ OT-I T CELLS BY BONE MARROW-DERIVED ANTIGEN PRESENTING CELLS 99
5.7 ACT-MOVA SEMINAL FLUID-DERIVED OVA IS INDIRECTLY PRESENTED TO CD8+ OT-I T CELLS BY BONE MARROW-DERIVED ANTIGEN PRESENTING CELLS 103
5.8 DISCUSSION 106

CHAPTER 6; GM-CSF REGULATION OF ANTIGEN PROCESSING AND PRESENTATION IN THE UTERUS 112
6.1 INTRODUCTION 113
6.2 GM-CSF IS REQUIRED FOR AN OPTIMAL CD4+ OT-II T CELL PROLIFERATION RESPONSE TO SEMINAL FLUID-DERIVED OVA ANTIGEN 115
6.3 GM-CSF IS REQUIRED FOR AN OPTIMAL CD8+ OT-I T CELL PROLIFERATION RESPONSE TO SEMINAL FLUID-DERIVED OVA ANTIGEN 115
6.4 GM-CSF IS REQUIRED FOR OPTIMAL MHC CLASS I-RESTRICTED PRESENTATION OF SEMINAL FLUID DERIVED OVA ANTIGEN TO CD8+ OVA-SPECIFIC T CELLS 118
6.5 DISCUSSION 120

CHAPTER 7; THE EFFECT OF OVA-REACTIVE T CELLS ON PREGNANCY OUTCOME 124
7.1 INTRODUCTION 125
7.2 METHODOLOGY TO INVESTIGATE THE EFFECT OF OT-I T CELLS ON PREGNANCY OUTCOME 126
7.3 THE EFFECT OF OT-I T CELL TRANSFER AT DAY 0.5 POST-COTIUM ON PREGNANCY 128
7.3.1 The effect of OT-I T cells on pregnancy rates and implantation rates 128
7.3.2 The effect of OT-I T cells on fetal viability 129
7.3.3 The effect of OT-I T cells on fetal and placental weights 129
7.4 THE EFFECT OF OT-I T CELL TRANSFER AT DAY 3.5 POST-COTIUM ON PREGNANCY 132
7.4.1 The effect of OT-I T cells on pregnancy and implantation rates 132
7.4.2 The effect of OT-I T cells on fetal viability 133
7.4.3 The effect of OT-I T cells on fetal and placental weights 136

7.5 DISCUSSION 139

CHAPTER 8; GENERAL DISCUSSION AND CONCLUSIONS 145

APPENDIX 159

CHAPTER 9; BIBLIOGRAPHY 162
List of figures

Figure 1.1 Classical and cross-presentation pathways 10
Figure 2.1 Gating and analysis of OT-I T cells 43
Figure 3.1 Particulate antigen administered to the uterus drains to the PALN 51
Figure 3.2 OVA antigen administered to the uterus drains to the PALN 53
Figure 3.3 The kinetics of OVA-reactive T cell proliferation in the PALN after transcervical OVA immunisation 54
Figure 3.4 Paternal-derived OVA is present within the seminal fluid of the Act-mOVA mouse 57
Figure 3.5 Seminal vesicle-derived OVA activates a CD4+ OT-II T cell response 59
Figure 3.6 Seminal vesicle-derived OVA activates a CD8+ OT-I T cell response 60
Figure 3.7 Paternal-derived OVA is expressed by conceptus tissue 62
Figure 4.1 Act-mOVA seminal fluid initiates OT-II T cell proliferation in the PALN and conceptus-derived OVA initiates systemic OT-II T cell proliferation 70
Figure 4.2 OT-II T cell proliferation is OVA-dependent 71
Figure 4.3 Act-mOVA seminal fluid initiates OT-I T cell proliferation in the PALN and conceptus-derived OVA initiates systemic OT-I T cell proliferation 73
Figure 4.4 OT-I T cell proliferation is OVA-dependent 74
Figure 4.5 Representative flow cytometry data showing the kinetics of OT-I T cell activation and proliferation in the PALN of females mated to Act-mOVA males 77
Figure 4.6 Kinetics of OT-I T cell activation and proliferation post-mating, during pregnancy and post-partum 79
Figure 4.7 Systemic proliferation is driven by presentation of conceptus-derived OVA in distal lymphoid tissue 82
Figure 5.1 Maternal H-2Kb-expressing cells are required for seminal fluid OVA antigen processing and presentation to OT-I T cells 93
Figure 5.2 Maternal H-2Kb-expressing cells are required for conceptus-derived OVA antigen processing and presentation to OT-I T cells 94
Figure 5.3 Host bone marrow was ablated by radiation and donor bone marrow engraftment in the host was successful 98
Figure 5.4 Soluble SIINFEKL peptide administered to the uterus is indirectly-presented to OT-I T cells by bone marrow-derived APCs

Figure 5.5 Soluble OVA protein administered to the uterus is indirectly-presented to OT-I T cells by bone marrow-derived APCs

Figure 5.6 Act-mOVA seminal fluid-derived OVA administered to the uterus is indirectly-presented to OT-I T cells by bone marrow-derived APCs

Figure 6.1 GM-CSF is required for an optimal CD4+ OT-II T cell proliferation response to seminal fluid-derived OVA antigen

Figure 6.2 GM-CSF is required for an optimal CD8+ OT-I T cell proliferation response to seminal fluid-derived OVA antigen

Figure 6.3 GM-CSF is required for an optimal CD8+ OT-I T cell proliferation response to SIINFEKL peptide post-insemination

Figure 7.1 Effect of OT-I T cell administration at day 0.5 pc on pregnancy rates, implantation rates and fetal viability

Figure 7.2 Effect of OT-I T cell administration at day 0.5 pc on fetal and placental growth

Figure 7.3 Effect of OT-I T cell administration at day 3.5 pc on pregnancy rates, implantation rates and fetal viability

Figure 7.4 Effect of OT-I T cell administration at day 3.5 pc on fetal and placental growth

Figure 8.1 A model for the induction of maternal immune tolerance
List of tables

Table 7.1 Experimental groups to assess the effect of OT-I T cells on pregnancy outcomes 128
Table 7.2 Cytotoxic OT-I T cells tend to induce OVA-positive fetal loss in an antigen-specific manner 134
Table A.1 Administration of OT-I T cell at day 0.5 post-coitum does not interfere with normal pregnancy outcome 160
Table A.2 Administration of OT-I T cell at day 3.5 post-coitum does not interfere with normal pregnancy outcome 161
Abbreviations

♂ male
♀ female
°C degrees Celsius
%CD25+ percentage of CD25 positive cells in the parent peak
%CD69+ percentage of CD69 positive cells in the parent peak
am ante meridiem
APC antigen presenting cell
B6 C57Bl/6 mouse strain
B6.SJL B6.SJL-PtprcaPep3b/BoyJArc mouse strain
B6.SJL → B6.SJL B6.SJL mouse donor bone marrow into B6.SJL host
B6.SJL → bm1 B6.SJL mouse donor bone marrow into bm1 host
bm1 bm1 mouse strain
bm1 → B6.SJL bm1 mouse donor bone marrow into B6.SJL host
bm1 → bm1 bm1 mouse donor bone marrow into bm1 host
BSA bovine serum albumin
cDNA complementary deoxyribonucleic acid
CFSE 5,6 - carboxyfluorescein diacetate succinimidyl ester
CLN cervical lymph node
CpG DNA cytosine-guanine island deoxyribonucleic acid
CSF colony stimulating factor
CSF-1R colony stimulating factor 1 receptor
Crry complement receptor related protein
CTL cytotoxic lymphocyte
CTLA-4 cytotoxic T lymphocyte-associated protein 4
CTLA4-CR cytotoxic T lymphocyte-associated protein 4 counter receptor
DC dendritic cell
DES-TCR Désiré T cell receptor transgenic mouse
dpc days post-coitum
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHCO₃</td>
<td>potassium bicarbonate</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>LCMV</td>
<td>lymphocytic choriomeningitis virus</td>
</tr>
<tr>
<td>LN</td>
<td>lymph node</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MCP</td>
<td>monocyte chemoattractant protein</td>
</tr>
<tr>
<td>MES</td>
<td>mesenteric lymph nodes</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MIP</td>
<td>macrophage inflammatory protein</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MUC</td>
<td>mucin</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>disodium hydrogen phosphate</td>
</tr>
<tr>
<td>NF</td>
<td>nuclear factor</td>
</tr>
<tr>
<td>ng</td>
<td>nanograms</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>ammonium chloride</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>NLR</td>
<td>NOD-like receptors</td>
</tr>
<tr>
<td>nm</td>
<td>nanometres</td>
</tr>
<tr>
<td>NP-40</td>
<td>nonyl phenoxylpolyethoxylethanol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OVA</td>
<td>chicken ovalbumin</td>
</tr>
<tr>
<td>PALN</td>
<td>para-aortic lymph nodes</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>pc</td>
<td>post-coitum</td>
</tr>
<tr>
<td>PE</td>
<td>phycoerythrin</td>
</tr>
<tr>
<td>PE-Cy</td>
<td>phycoerythrin-cyanine</td>
</tr>
<tr>
<td>PGE</td>
<td>prostaglandin</td>
</tr>
<tr>
<td>PI</td>
<td>proliferation index</td>
</tr>
<tr>
<td>pm</td>
<td>post-meridiem</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethanesulphonylfluoride</td>
</tr>
<tr>
<td>pp</td>
<td>post-partum</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern recognition receptor</td>
</tr>
<tr>
<td>RANTES</td>
<td>regulated upon activation normal T cell expressed and secreted</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RER</td>
<td>rough endoplasmic reticulum</td>
</tr>
<tr>
<td>RLR</td>
<td>retinoid-inducible gene 1-like receptors</td>
</tr>
<tr>
<td>s.c.</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>SIINFEKL</td>
<td>ovalbumin peptide amino acids 258-265</td>
</tr>
<tr>
<td>SOCS</td>
<td>suppressor of cytokine signalling</td>
</tr>
<tr>
<td>SPL</td>
<td>spleen</td>
</tr>
<tr>
<td>ssRNA</td>
<td>single stranded ribonucleic acid</td>
</tr>
<tr>
<td>SV</td>
<td>simian virus</td>
</tr>
<tr>
<td>SVX</td>
<td>seminal vesicle-deficient</td>
</tr>
<tr>
<td>TAP</td>
<td>transporter associated with antigen processing</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TIMP</td>
<td>tissue inhibitors of metalloproteinase</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Tris (hydroxymethyl) aminomethane hydrochloride</td>
</tr>
<tr>
<td>uNK</td>
<td>uterine natural killer</td>
</tr>
<tr>
<td>VAS</td>
<td>vasectomised</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VSV</td>
<td>vesicular stomatitis virus</td>
</tr>
</tbody>
</table>