REACH-SCALE SPATIAL HYDRAULIC DIVERSITY IN LOWLAND RIVERS: CHARACTERISATION, MEASUREMENT AND SIGNIFICANCE FOR FISH

Nadine Nella Kilsby

A thesis submitted to The University of Adelaide for the degree of Doctor of Philosophy

School of Earth and Environmental Sciences (Ecology and Evolutionary Biology)
School of Civil, Environmental and Mining Engineering

April 2008
CONTENTS

LIST OF TABLES .. IV

LIST OF FIGURES ... V

ABSTRACT ... IX

DECLARATION .. XI

ACKNOWLEDGEMENTS ... XII

1 INTRODUCTION ... 1
 1.1 Scope .. 1
 1.2 Hydraulics and biodiversity ... 2
 1.3 Measuring spatial hydraulic diversity ... 3
 1.4 Thesis outline .. 5

2 SWIMMING ABILITY OF THREE SPECIES OF SMALL-BODIED FRESHWATER FISH 9
 2.1 Introduction ... 9
 2.2 Methods .. 11
 2.2.1 Fish collection, housing and feeding ... 11
 2.2.2 Flume and hydraulics .. 11
 2.2.3 \textit{U}_\text{crit} swimming ability tests ... 12
 2.3 Results ... 13
 2.4 Discussion ... 14

3 CONTRASTING BEHAVIOUR OF TWO SMALL PELAGIC AND DEMERSAL FISH SPECIES IN
 DIVERSE HYDRAULIC ENVIRONMENTS ... 19
 3.1 Introduction ... 19
 3.2 Methods .. 21
 3.2.1 The channel .. 21
 3.2.2 The fish and trial procedure ... 27
 3.2.3 Image capture ... 27
 3.2.4 Image analysis ... 27
 3.2.5 Hydraulic measurements .. 28
 3.3 Results ... 30
 3.3.1 Hydraulics .. 30
 3.3.2 Fish preferences and behaviour .. 36
 3.4 Discussion ... 41
4 USING COMPUTATIONAL FLUID DYNAMICS AND VARIOGRAMS TO CHARACTERISE REACH-SCALE SPATIAL HYDRAULIC DIVERSITY ... 45

4.1 Introduction... 45
 4.1.1 3-D Computational Fluid Dynamics (CFD) ... 47
 4.1.2 Variograms.. 48

4.2 Methods... 49
 4.2.1 Reach design ... 49
 4.2.2 Velocity sampling ... 51
 4.2.3 Characterising diversity ... 51

4.3 Results .. 53
 4.3.1 Reach hydraulics ... 53
 4.3.2 Reach diversity characterisation ... 56

4.4 Discussion .. 65

5 RELIABILITY AND SUITABILITY OF AN ACOUSTIC DOPPLER CURRENT PROFILER FOR USE IN LARGE, LOWLAND RIVERS .. 69

5.1 Introduction... 69

5.2 Methods... 71
 5.2.1 Velocity and depth sampling using an ADCP ... 71
 5.2.2 The reaches ... 73
 5.2.3 Data processing and analysis.. 74

5.3 Results .. 75

5.4 Discussion .. 83

6 USING VARIOGRAMS AND AN ADCP TO IDENTIFY SPATIAL AND TEMPORAL DIFFERENCES BETWEEN REACHES .. 87

6.1 Introduction... 87

6.2 Methods... 88
 6.2.1 The reaches ... 88
 6.2.2 ADCP sampling ... 91
 6.2.3 Data processing and analysis.. 91

6.3 Results .. 92
 6.3.1 Hydraulic conditions .. 92
 6.3.2 Reach characterisation - variograms ... 98

6.4 Discussion .. 109

7 GENERAL DISCUSSION ... 115

7.1 Overview ... 115

7.2 Reach-scale spatial hydraulic diversity ... 116

7.3 Fish and spatial hydraulic diversity .. 116
 7.3.1 Fish swimming ability ... 116
 7.3.2 Fish behaviour ... 116

7.4 Measuring spatial hydraulic diversity .. 118
7.4.1 Reach characterisation ... 118
7.4.2 Reach modelling ... 119
7.4.3 Field sampling ... 119
7.4.4 Field characterisation – identifying spatial and temporal variation 120
7.5 Recommendations for future work .. 120

8 REFERENCES .. 123
LIST OF TABLES

Table 2.1: A summary of the timing and velocity of the swimming ability test 13
Table 2.2: Comparison of results from various studies on the swimming ability of
the species studied. TL = total length (mm±SD) , Velocity = U_{crit} (incremental) or as
specified (m s^{-1}), n = number of fish in study. * U_{test} maximum velocity tested, # for
Retropinna retropinna (from New Zealand) not Australian smelt (Retropinna
semoni). Studies are from Australia unless otherwise indicated. 14
Table 3.1: Summary of the hydraulic measurements for the different cross-
sections. n refers to the number of samples in that cross-section, while b refers to
the benched area only, of 7.7-8.1m. ... 33
Table 4.1: Notation used for Equations 4.1-4.8... 48
Table 4.2: The features of the eight reaches modelled.. 50
Table 4.3: Common statistics for the depth-averaged velocity for the different
reaches. Lowest values of variability are shown in grey, and highest in bold. 56
Table 4.4: Depth-averaged velocity diversity indices. Lowest values of variability
are shown in grey, and highest in bold. ... 57
Table 6.1: Discharge and stage for the six reaches over the two sampling times.
Discharge and water level difference taken from daily Murray-Darling Basin
Commission reports. .. 90
Table 6.2: The range, mean and median of depth-averaged velocity (cm s^{-1}), depth
(m) and Kendall's correlation measured at each reach................................. 93
LIST OF FIGURES

Figure 2.1: The three species studied: note their contrasting body shapes. (a) common galaxias (McDowall 1980), (b) Australian smelt (McDowall 1980), (c) flathead gudgeon (A.R. McCulloch in McDowall 1980). ..11

Figure 2.2: Schematic of the recirculating flume used for the fish trials. The swimming zone was made of clear Perspex. ...12

Figure 3.1: Sketch of (a) the flathead gudgeon (A.R. McCulloch in McDowall 1980), and (b) the common galaxias (McDowall 1980). ...21

Figure 3.2: Sketch of the recirculating flume, showing the 15.4 metre section where the channel was built. ...22

Figure 3.3: Contour diagram of the channel, looking downstream. The water level is shown by the blue grid. ...23

Figure 3.4: Sketch of the channel, showing the channel form and additional features. All distances are measured from the inflow, and descriptions of areas referred to in the text, including the area they cover, are shown in the boxes. The camera coverage is shown by the yellow blocks, and the red lines show the positions of cross-sections shown in Figure 3.5. ...24

Figure 3.5: A sample of cross-sections of the channel, as shown in Figure 3.4. The water level is shown by the dashed line. ...25

Figure 3.6: Photos of the flume, looking upstream (a) without water, showing the boulder piles and upstream wood pile, and (b) with water (low discharge), showing the cameras and camera frames ...26

Figure 3.7: Box plots of average velocity magnitude measurements from different cross-sections for the three discharges (low, medium and high).31

Figure 3.8: Box plots of turbulence parameter TKE for individual samples in different cross-sections sections for the three discharges (low, medium and high). ...32

Figure 3.9: The turbulence parameter TKE versus the average velocity magnitude for individual samples at the three discharges. Kendall’s correlation (τ) is shown for each discharge; $\tau = 0.28$ for the combined data (pooling all discharges).35

Figure 3.10: The percentage time (based on fishsecs-see text) the (a) flathead gudgeon and (b) common galaxias spent holding position (black bars) or cruising (white bars) for all trials. ..37
Figure 3.11: Patches where the flathead gudgeon spent their time while holding position during the three trials at the three discharges (see Figure 3.4 for patch location). The relative time spent cruising is shown by the category, ‘general’. All times are in fishsecs (see text for explanation). .. 38

Figure 3.12: Patches where the common galaxias spent their time while holding position during the three trials at the three discharges (see Figure 3.4 for patch location). The relative time spent cruising is shown by the category, ‘general’. All times are in fishsecs (see text for explanation). Note that High 3 (the lightest green, bottom bar) @13m also includes 75 fishsecs at a patch on the opposite side of the channel.. 39

Figure 3.13: A sample of the video image, showing four cameras at once, (a) two flathead gudgeon holding position at the bottom of the channel (circled) (high discharge), and (b) eight common galaxias holding position at position ~9.1 m (circled) (high discharge). ... 40

Figure 4.1: Example of a variogram (after Brooker 1991)................................. 49

Figure 4.2: Down-channel centre depth-averaged velocity for four reaches........ 53

Figure 4.3: Depth-averaged velocity distribution in plan view for the eight reaches. Velocity scaling is shown in the colour key to the right, in m s$^{-1}$. Blank regions show the position of the wood pieces. ... 54

Figure 4.4: Depth-averaged velocity across-channel for four cross-sections of the eight reaches. Reach shown in row heading. Cross-section positions are 75, 125, 175 and 225 m from the inflow respectively.. 55

Figure 4.5: (a) Histograms, (b) depth-DAV scatter-plots, and (c) bubble-plots for the eight reaches. .. 58

Figure 4.6: Directional experimental variograms of depth-averaged velocity for the eight reaches. (a) across-channel, and (b) down-channel. 60

Figure 4.7: Experimental across-channel variograms for the depth-averaged velocity and velocity at different depths (see legend). (a) 1 Straight (b) 2 Single Bend ... 61

Figure 5.1: Sketch of an ADCP, showing the beam geometry and sampling cells (from Kostaschuk et al. 2005). ... 71

Figure 5.2: The boat-mounted, downward facing ADCP (a) set up and (b) in deployment. .. 72

Figure 5.3: Example screen shot from the RiverSurveyor software, through which the ADCP was controlled, showing a cross-section and measured velocity cells. 73
Figure 5.4: The middle and lower tracts of the River Murray, showing the location of the six reaches and cross-sections within the reaches. Flow direction from Lock 26 to Goolwa.

Figure 5.5: Cross-section morphology as measured by the ADCP. Different traverses are shown by different line types. The cross-section width is shown in the plot heading. (a) L4 (b) L5 (c) L11 (d) Hat (e) BDS (f) BUS. Note different depth and width scales.

Figure 5.6: Depth-averaged velocity across the cross-section. Cross-section width is shown in the plot headings. Different traverses are shown by different line types. Raw DAV data is shown on the left hand side, and smoothed DAV on the right hand side. (a) L4 (b) L5 (c) L11. Note different width scales.

Figure 5.7: A graphic depiction showing the effect of Gaussian smoothing on the velocity within a cross-section, from ViewADP: (a) filtered, (b) filtered and smoothed.

Figure 5.8: Width-averaged cross-sectional velocity (an averaged profile). Different traverses are shown by different line types. (a) L4 (b) L5 (c) L11 (d) Hat (e) BDS (f) BUS. Note the different depth scales.

Figure 5.9: Kernel frequency (density) plots for each traverse, shown by different line types. (a) L4 (b) L5 (c) L11 (d) Hat (e) BDS (f) BUS.

Figure 5.10: Comparison of the discharge calculations from RiverSurveyor (circle symbol, o) and the discharge reported by the Murray-Darling Basin Commission (line symbol, -).

Figure 6.1: The Murray-Darling Basin, south-eastern Australia, and the six reaches (L4, L5, L11, HAT, BDS, BUS) (adapted from Murray-Darling Basin Commission 2003).

Figure 6.2: The middle and lower tracts of the River Murray, showing the locations of the six reaches and the cross-sections within the reaches. Black line: September 2006; Red line: April 2007. Flow from Lock 26 to Goolwa.

Figure 6.3: Depth-averaged velocity-depth scatter-plots for the six reaches. Blue cross: September 2006; Red circle: April 2007.

Figure 6.4: Cross-sections at the six reaches in September 2006. Percentage distance across from the true left. Note different depth scales. (a) L4 (b) L5 (c) L11 (d) HAT (e) BDS (f) BUS.
Figure 6.5: Depth-averaged velocity-depth scatter-plots for cross-sections within the six reaches for September 2006. From top left is cross-section 1 to n for each reach. (a) L4 (b) L5 (c) L11 (d) HAT (e) BDS (f) BUS. .. 96

Figure 6.6: Four cross-section velocity contours from each reach. Velocity scaling is shown in the colour key on the right, in cm s$^{-1}$. Note different depth scales. Reach shown in plot heading... 97

Figure 6.7: Directional depth-averaged velocity variograms for the six reaches (see legend), September 2006. (a) across-channel, (b) down-channel. 100

Figure 6.8: Directional depth variograms for the six reaches (see legend), September 2006. (a) across-channel, (b) down-channel. 100

Figure 6.9: Directional local Froude Number variograms for the six reaches (see legend), September 2006. (a) across-channel, (b) down-channel. 100

Figure 6.10: Across-channel directional variograms of the depth-averaged velocity and velocity from other selected depths (see legend) for the six reaches, September 2006. Reach shown in the top left of each plot.......................... 101

Figure 6.11: Down-channel directional variograms of the depth-averaged velocity and velocity from other selected depths (see legend) for the six reaches, September 2006. Reach shown in the top left of each plot.......................... 102

Figure 6.12: Across-channel directional depth-averaged velocity variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot... 103

Figure 6.13: Down-channel directional depth-averaged velocity variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot... 104

Figure 6.14: Across-channel directional depth variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot.......... 105

Figure 6.15: Down-channel directional depth variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot.......... 106

Figure 6.16: Across-channel directional local Froude Number variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot... 107

Figure 6.17: Down-channel directional local Froude Number variograms for the six reaches from September 2006 and April 2007. Reach shown in the top left of each plot... 108
Hydraulic conditions (velocity, depth, turbulence) strongly influence the distribution and abundance of organisms in rivers. A diverse hydraulic environment should foster biodiversity, because organisms have different hydraulic preferences. In fact, the relationship between spatial hydraulic diversity and biodiversity is largely presumed, and not well-supported by empirical studies, but it underpins efforts in river restoration and conservation. This is particularly so at the reach scale, indicating a stream- or river-section with large-scale homogeneous geomorphic and hydrological conditions and smaller-scale habitat patches, as perceived by organisms in the community under study.

This thesis considers the factors that create spatial hydraulic diversity, and the ways that fish respond. It presents a method to characterise hydraulic diversity, and uses this to describe temporal and spatial changes between reaches. It also demonstrates the use of hydraulic modelling for comparing reaches. Finally, it assesses the Acoustic Doppler Current Profiler (ADCP) as a method to describe hydraulic conditions in a large, open river channel.

Swimming ability tests were applied to three small freshwater fish, the pelagic Australian smelt (*Retropinna semoni*) and common galaxias (*Galaxias maculatus*) and the demersal flathead gudgeon (*Philypnodon grandiceps*). The latter species was the weaker swimmer, but the tests indicated that behaviour also should be considered.

A laboratory experiment was designed to investigate how two species with contrasting ecological habits (common galaxias, flathead gudgeon) behave in a diverse hydraulic environment. Habitat choices and activity were monitored in a constructed sinuous channel at three discharges over a 3-hour period. The galaxias favoured the pelagic habitat, and spent 20-60% of the time cruising, whereas the flathead gudgeon preferred the demersal habitat and spent <6% of the time cruising. The flathead gudgeons could access their preferred habitat at all discharges, but the common galaxias were limited by their swimming ability at the highest discharge.

Several methods to characterise reaches were compared for eight 3-D model reaches representing the effects of channel form, wood and aquatic plants. The variogram (a measure of the variance between samples as a function of distance) emerged as a superior method because it indicates hydraulic diversity, incorporates the spatial arrangement of hydraulic patches, and facilitates comparisons between reaches.

The ADCP proved a quick, reliable means to measure depth and 3-D velocity in rivers. It was effective only in depths >1.5 m, but modified instrumentation may overcome this limitation.
Six reaches, including weir-pool and free-flowing sections, were compared at two discharges in the River Murray, Australia. Variograms derived from the ADCP data clearly demonstrated spatial differences between the sections, but temporal differences were less well-defined, suggesting that reaches may retain characteristic hydraulic patterns despite changes in discharge.

Opportunities for further research include: the issue of optimal levels of hydraulic diversity for fish and other biota; use of variograms as a tool for field studies of aquatic biota; and measuring reach-scale hydraulic diversity and biodiversity before and after reach manipulation (e.g. the placement of wood), to elucidate the effects of changes in spatial hydraulic diversity on reach biodiversity.
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

………………………………
Nadine Nella Kilsby
2008
Financial support for this thesis was provided by an Australian Postgraduate Award, the Cooperative Research Centre for Freshwater Ecology (through the Murray-Darling Freshwater Research Centre, Mildura), the School of Earth and Environmental Sciences (Discipline of Ecology and Evolutionary Biology) and the School of Civil, Environmental and Mining Engineering. Their support is gratefully acknowledged.

Thank you to my supervisors, Associate Professor Keith Walker, Associate Professor Martin Lambert and Associate Professor Trevor Daniell, for allowing me the freedom to pursue new ideas.

Thanks to my ‘other’ supervisors. Dr Shaun Meredith, you were instrumental in making possible the field work. Dr Mike Geddes, thanks for all the cups of tea.

Thank you to Professor Peter Dowd and Associate Professor Mark Jaksa (Faculty of Engineering, Computer and Mathematical Sciences) for their assistance with the geostatistics, and Michael Leonard (School of Civil, Environmental and Mining Engineering) and Jonathan Tuke (School of Mathematical Sciences) for their help with R.

Thank you to Professor Nils Olsen, from The Norwegian University of Science and Technology, for hosting me for a week in Norway, making me feel so welcome, and allowing me to pick your brain about SSIIM.

To the ‘lab crew’ in engineering – Greg, Steve and Darren, a big thank you for making my crazy idea real. Another thank you to Stan and Ian in instrumentation for organising the video cameras and computers, and saving me from despair by fixing the ADCP.

Thank you to SA Water and Michael Burch for lending me the ADCP for the field trips, and Dr Michael Reid, The University of Canberra, for helping me with initial investigations into the use of ADCPs.

To my partners in the field, a big thank you. Dr Vlad Matveev, Andrew Palmer, Dr Rod Oliver and Dr Zygmunt Lorenz from CSIRO for letting me join, and coordinate with, your field work. I’m glad you appreciate my choice of wine. Iain Ellis, Kate Engeldow, Peter Fraser and Rohan Rehwinkle, your patience day trawling with the ADCP was greatly appreciated, and really, night trawling is fun.

A really big thank you to my fellow students, Brain (Paddy) Deegan, Karl Hillyard, Matt Ward, Anne Jensen for just being there. Emily Steele, our chats were, and will continue to be, gold. Scotte Wedderburn, I couldn’t have done it without you; your fish knowledge, your field help, and (need I say), your chocolate.

Thank you to my parents for the baby sitting. And finally, to Adam, thanks for your patience and support.