Molecular characterisation of

Shigella flexneri outer membrane protease IcsP

Elizabeth Ngoc Hoa Tran

Submitted for the Degree of Doctor of Philosophy

Discipline of Microbiology and Immunology

The School of Molecular and Biomedical Science

The University of Adelaide

October 2007
Table of Contents

Abstract
Declaration
Acknowledgments
Abbreviations

Chapter 1 - Literature Review

1.1 Genus *Shigella*
1.1.1 Disease and symptoms

1.2 Classification
1.2.1 Species and serotypes

1.3 *Shigella* pathogenesis
1.3.1 Invasion of the gut epithelium
1.3.2 Entry into epithelial cells
1.3.3 Intercellular and intracellular spread
1.3.3.1 Actin based motility (ABM)
1.3.3.2 IcsA

1.4 The Gram-negative outer membrane (OM)
1.4.1 Surface distribution of OM proteins

1.5 Outer membrane proteases
1.5.1 The Omptin family
1.5.2 Omptins and infectious diseases
1.5.3 OmpT of *E. coli*
1.5.4 OmpP of *E. coli*
1.5.5 IcsP of *S. flexneri*
1.5.5.1 Regulation of IcsP expression
1.5.5.2 Role of IcsP in ABM
1.5.5.3 Role of IcsA cleavage in ABM
1.5.5.4 Distribution of IcsP on the cell surface
1.5.6 Pla of *Y. pestis*
1.5.7 PgtE of *S. enterica*
1.5.8 PlaA of *E. pyrifoliae*

1.6 Lipopolysaccharide (LPS)
1.6.1 LPS and IcsA
1.6.2 LPS and Omptins

1.7 VirK
1.7.1 VirK and IcsA

1 1 2 3 7 8 9 10 11 12 13 13 14 14 14 15 16 17
1.7.2 VirK and IcsP 18
1.7.3 VirK and LPS 18

1.8 Aims of this study 20

Chapter 2 - Materials and Methods 21

2.1 Reagents used in this study 21
2.1.1 Buffers and solutions 21
2.1.2 Oligonucleotides 21
2.1.3 Antibodies 21

2.2 Bacterial strains and growth conditions 22
2.2.1 Strains and plasmids 22
2.2.2 Growth media and conditions 22

2.3 DNA preparation 22
2.3.1 Preparation of chromosomal DNA 22
2.3.2 Preparation of boiled lysates for PCR amplification 23
2.3.3 Preparation of DNA using a kit 23

2.4 Polymerase Chain Reaction (PCR) 23
2.4.1 General PCR 23
2.4.2 Amplification of products for cloning PCR 24
2.4.3 Splicing by overlap extension PCR 24
2.4.4 DNA sequencing 24

2.5 Sequence analysis 25

2.6 Analysis of DNA 25
2.6.1 Agarose gel electrophoresis 25

2.7 In vitro cloning of DNA 26
2.7.1 General techniques 26
2.7.2 Preparation of competent cells 26
2.7.2.1 Chemically competent cells 26
2.7.2.2 Electrocompetent cells 27
2.7.3 Bacterial cell transformation 27
2.7.3.1 Heat shock transformation 27
2.7.3.2 Transformation by electroporation 27
2.7.3.3 Conjugation 28

2.8 Creation of chromosomal and virulence plasmid mutations 28
2.8.1 Mutagenesis using pCACTUS 28
2.8.2 Mutagenesis using the λ red phage mutagenesis system 29
2.8.2.1 In *E. coli* 29
2.8.2.2 In *S. flexneri* 29
2.9 Protein techniques 31
2.9.1 General preparation of whole cell lysates 31
2.9.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 31
2.9.3 Western transfer and detection 31
 2.9.3.1 Stripping and re-probing nitrocellulose membranes 32
2.9.4 Wild-type IcsP and IcsA expression 32
 2.9.5 His-tagged protein over-expression and purification from pQE60 32
 2.9.5.1 IPTG induced over-expression 32
 2.9.5.2 Purification of His-tagged protein 33
2.9.6 Antisera techniques 34
 2.9.6.1 Production of polyclonal anti-IcsP antiserum 34
 2.9.6.2 Purification of antiserum by absorption with live bacteria 35
 2.9.6.3 Affinity purification of antisera 35
 2.9.7 HA-tagged protein over-expression from pBAD30 36
 2.9.7.1 Arabinose induced over-expression 36
2.9.8 Cell fractionation 36
 2.9.8.1 Triton/MgCl2/Urea solubilisation 36
 2.9.8.2 Sucrose density gradient fractionation 37
 2.9.8.3 Refractive index readings of sucrose fractions 38
 2.9.9 Preparation of cell associated and soluble IcsA 39
2.10 Lipopolysaccharide (LPS) techniques 38
 2.10.1 O antigen typing 38
 2.10.2 Preparation of LPS samples 39
 2.10.3 Analysis of LPS samples by silver-stained SDS-PAGE 39
2.11 Immunofluorescence (IF) microscopy techniques 39
 2.11.1 Formalin-fixation of cells 39
 2.11.2 Sf6 TSP treatment of cells 40
 2.11.3 Lysozyme treatment of cells 40
 2.11.4 Indirect epi-fluorescence microscopy and deconvolution 40
 2.11.5 Microscopy image analysis 41
2.12 Tissue culture techniques 41
 2.12.1 Growth, maintenance, and incubation of cell monolayers 41
 2.12.2 Splitting cells and seeding trays/flasks 42
 2.12.3 Preparation of bacteria 42
 2.12.4 Plaque assay 43
 2.12.5 Invasion assay 43
2.13 Plasminogen/α2AP cleavage assay 44
2.14 Antimicrobial assays 45
 2.14.1 Growth of bacteria for bactericidal assay 45
 2.14.1.1 Complement bactericidal assay 45
 2.14.1.2 Protamine assay 45
2.15 Colicin sensitivity assay 46
Chapter 3 - Characterisation of IcsP

3.1 Introduction

3.2 Mutagenesis of \textit{S. flexneri} \textit{icsP} in 2457T and M90T

3.3 Characterisation of \textit{icsP} mutants

3.3.1 Analysis of IcsA cleavage by \textit{icsP} mutants

3.3.2 Analysis of surface distribution of IcsA in \textit{icsP} mutants

3.4 An analysis of \textit{icsP} mutants with respect to virulence related properties

3.4.1 Analysis of intercellular spread by \textit{icsP} mutants

3.4.2 Analysis of F-actin tail formation by \textit{icsP} mutants

3.5 Summary

Chapter 4 - Surface distribution of IcsP

4.1 Introduction

4.2 Cloning of \textit{icsP} into pQE60

4.2.1 IPTG induced expression and purification of IcsP-His\textsubscript{6}

4.2.2 IcsA cleavage by IcsP-His\textsubscript{6}

4.2.3 Detection of surface IcsP-His\textsubscript{6} by IF

4.2.4 Production of polyclonal anti-IcsP antisera

4.3 Insertion of a HA epitope into IcsP

4.3.1 Construction of pBAD30::\textit{icsP}HA and pBAD30::\textit{icsP}

4.3.2 Expression of IcsPHA and IcsP from pBAD30

4.3.3 Characterisation of IcsPHA

4.3.4 Localisation of IcsPHA protein to the OM

4.3.4.1 Cell fractionation by Triton/MgCl\textsubscript{2} treatment

4.3.4.2 Cell fractionation by sucrose density gradient centrifugation

4.4 Effect of LPS on detection of IcsP

4.4.1 Construction of smooth and rough LPS strains

4.4.2 LPS analysis of smooth and rough LPS strains

4.4.3 IcsPHA detection in smooth and rough LPS strains

4.4.4 Effect of extending arabinose incubation time on detection of IcsPHA

4.4.5 Detection of IcsPHA at low levels of expression

4.5 Deletion of \textit{yfdI} gene in \textit{E. coli} K-12

4.5.1 Construction of \textit{yfdI} mutant

4.5.2 Serotype specificity of \textit{yfdI} mutant by antiserum agglutination
6.2.1 Analysis of IcsP activity against plasminogen 87
6.2.2 Analysis of IcsP activity against α_2AP 88

6.3 Antimicrobial assays 88
6.3.1 Analysis of IcsP activity against complement 88
6.3.2 Analysis of IcsP activity against protamine 89

6.4 IcsP activity against colicins 90
6.4.1 Analysis of IcsP activity against colicin E1 91
6.4.2 Analysis of IcsP activity against colicin E2 91

6.5 Summary 92

Chapter 7 - Discussion 94
7.1 Introduction 94

7.2 Characterisation of icsP mutants and the role of IcsP in cell-to-cell spread 94
7.2.1 Role of IcsP in S. flexneri cell-to-cell spread 95

7.3 Surface distribution of IcsP 96
7.3.1 IcsP$^{\text{HA}}$ distribution in smooth and rough LPS strains 97
7.3.2 Sf6 TSP treatment enhances detection of IcsP$^{\text{HA}}$ 97
7.3.3 Punctate IcsP$^{\text{HA}}$ distribution at low arabinose induction 98
7.3.4 Helical distribution of LPS in S. flexneri 5a strains 99
7.3.5 LPS and IcsP$^{\text{HA}}$ distribution in S. flexneri 5a 100

7.4 Characterisation of S. flexneri virK and rmlD mutants 101
7.4.1 Reassessment of virK mutant phenotype 101
7.4.2 Assessment of rmlD mutant phenotype 102

7.5 IcsP activity against other known Omptin protease substrates 103
7.5.1 IcsP activity against plasminogen 104
7.5.2 IcsP activity against α_2AP and complement 105
7.5.3 IcsP activity against OmpT substrates protamine and colicins 106

7.6 Conclusion 107

References 108
Thesis Amendments

Abstract
Page 1, para 2, line 3: should read "...found that icsP in both..."
Page VI, abbreviations list: should include HEPES abbreviation "4-(2-hydroxyethyl)1-piperazineethanesulfonic acid"

Chapter 1 – Literature Review
Page 8, line 11: should read "...Gram-negative..."
Page 9, section 1.5.2, line 3: should read "...zoonosis of plague caused..."
Page 10, para 2, line 7: should read "...cleave colicins A..."
Page 11, section 1.5.5, line 3: should read "...detected in culture supernatants..."
Page 17, section 1.7, line 1: should read "...discovered to affect intracellular..."
Page 18, section 1.7.3, para 1, line 6: should read "...to encode proteins required for maximal...",
Page 18, section 1.7.3, para 2, line 3: should read "...which has 36% identity..."
Page 18, section 1.7.3, para 2, line 5: should read "...encodes the enzyme..."

Chapter 2 – Materials and Methods
Page 40, section 2.11.4, line 1: should read "...(-4 μl) were labelled..."
Page 45, section 2.14.1.1, line 1: should read "...bacteria were centrifuged..."

Chapter 3 – Characterisation of IcsP
Fig 3.7 legend, line 3: should read "...second agarose layer..."
Fig 3.8 legend, line 6: should read "...second agarose layer..."
Page 47, section 3.1, line 14: should read "...form plaques and F-actin comet tails..."
Page 48, para 2, line 6: should read "...ETRM22 (Section 5.6) and ETRM108 (data not shown) using anti-icsP..."
Page 52, section 3.4.2, line 3: should read "...with FITC-phalloidin..."

Chapter 4 – Surface distribution of IcsP
Page 54, section 4.1, para 2, line 9: should read "...increased detection..."
Page 61, section 4.3.4.1, line 3: should read "...unexpectedly solubilised by the Triton/MgCl2..."
Page 61, section 4.3.4.1, line 6: should read "...in the soluble and the insoluble fractions (Table 4.1, and data not shown)."
Page 70, section 4.6, line 3: should read "Experiments whereby the LPS of S. flexneri 2a 2457T was labelled with..."
Page 70, section 4.6, line 5: should read "...(Fig. 3.9A)."

Chapter 5 – Effect of virK and rmlD mutations on IcsP and S. flexneri virulence
Page 76 vs Page 85: The effect of the mutation used in the Nakate et al. (1992) study is speculated upon here as one of two possible differences. The virK mutation used in this study is unlikely to have a polar effect as it is a deletion. Proving the absence of a polarity effect does not change the results observed. Further experiments are also beyond the scope of this thesis and mutations affecting other genes in the operon would also need to be made.
Page 78, section 5.3, line 10: should read "...little or no detectable effect on the structure of LPS...",
Page 81, section 5.5, para 1, line 3: should read "...attributed to an effect...",
Page 81, section 5.5, para 2, line 1: should read "...Figure 5.10..."
Page 82, section 5.6, line 6: should read "...Figure 5.10C..."
Page 83, section 5.7, line 4: should read "...Figure 5.12"
Page 83, section 5.7, line 13: should read "...have no effect on IcsP..."
Page 84, section 5.9 conclusions: The data shown in Figure 5.11 is correct and reproducible. No effect on IcsA cleavage (Fig. 5.12) was observed which is consistent with the results in Figure 5.11. A problem with the immunoblotting chemiluminescence substrate was encountered during the course of
this thesis, and this was resolved by switching to a different substrate from a new supplier. This problem only affected immunoblotting with anti-LcsP. The differences seen in Figure 5.10B are reproducible and are not affected by the immunoblotting chemiluminescence substrate problem. should read “...no effect on LcsP...” should read “...that virK has no detectable effect on the structure of LPS.”

Chapter 6 – Alternative substrates for LcsP
Page 89, line 2: should read “...showed resistance...” Page 89, line 5: should read “...experiment was performed twice...” Page 89, para 2, line 6: should read “...experiment was performed twice...” Page 90, section 6.3.2, line 1: should read “...sequence similarity to the...” Page 90, line 2: should read “...experiment was performed twice...” Page 94, section 7.1, line 9: should read “...shares most similarity to OmpF...”

Chapter 7 – Discussion
Page 107, line 1: should read “...by van der Ley et al. ...” Page 107, section 7.6, line 5: should read “...plaque assay, and...”
Abstract

Shigella is a genus of Gram-negative bacteria responsible for bacillary dysentery in humans. *Shigella flexneri* type 2a in particular is responsible for the majority of incidents in developing countries. The *S. flexneri* protease IcsP, is a member of the Omptin family of outer membrane (OM) proteases which cleaves IcsA, a polarly localised OM protein required for *Shigella* virulence. Mutations in *icsP* have been shown to effect the observed distribution of IcsA, however the significance of IcsP in *Shigella* virulence is incompletely understood.

In this study, aspects of IcsP biology were investigated. *S. flexneri* 2457T and M90T *icsP* mutants were constructed to investigate the role of IcsP in *Shigella* intercellular spread, and it was found that *icsP* in both *S. flexneri* backgrounds did not appear to be essential for cell-to-cell spread in human cervical cancer HeLa cells, but enhanced cell-to-cell spread in monkey kidney CV-1 cells (as determined by plaque assays). Complementation with *icsP* returned the mutant phenotype to wild-type. The results suggest IcsP does play a role in *Shigella* intercellular spread.

The 2457T *icsP* mutant was subsequently complemented with an altered *icsP* gene encoding a haemagglutinin epitope tagged IcsP (IcsPHA) to determine the distribution of IcsP on the cell surface. In both *S. flexneri* and *E. coli* K-12 possessing smooth and rough lipopolysaccharide (LPS), the distribution of IcsPHA was found to be punctate across the cell surface. Deconvolution analysis revealed that IcsP distribution was punctate and banded in both LPS backgrounds. A smooth LPS *E. coli* K-12 *yfdI* mutant strain expressing IcsPHA was also constructed, and experiments involving treatment of this strain with bacteriophage Sf6 tail spike protein suggested that LPS O antigen chains masked IcsP in smooth LPS strains. During these studies, double-labelling of IcsPHA and LPS in a *S. flexneri* 5a M90T strain revealed a helical distribution of LPS in this strain. Overall, the results suggest IcsP has a punctate, banded distribution across the cell surface.
The effect of virK and rmlD mutations on IcsP was then investigated by constructing a virK, rmlD and virK/rmlD double mutant in S. flexneri 2457T. Western immunoblotting showed no change in IcsP expression levels in either the virK, rmlD or virK/rmlD mutants compared to wild-type. Surprisingly, the virK mutant showed no change in IcsA expression levels by Western immunoblotting and plaque assays (using HeLa and CV-1 cells) suggested that virK was not essential for Shigella intercellular spread (contradicting the published data on this gene). No effect was also observed on IcsP expression level or on IcsP’s ability to cleave IcsA into culture supernatants.

Finally alternative substrates for the protease activity of IcsP were investigated against known Omptin substrates (plasminogen, α2-antiplasmin, complement, protamine and colicins). However, IcsP appeared to have no effect on these substrates as determined by proteolytic cleavage assays and antimicrobial assay. Interestingly, Plg cleavage by rough LPS S. flexneri, and α2AP cleavage by both smooth and rough LPS S. flexneri, was observed.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University library, being made available in all forms of media, now or hereafter known.

Elizabeth Ngoc Hoa Tran
Acknowledgements

I would firstly like to thank my supervisor, Dr. Renato Morona. Thank you for giving me the opportunity to do my PhD with you, and for teaching me so much about microbiology and research. I have grown and developed much as a scientist under your guidance and I am grateful for your patience, understanding and knowledge. Thank you secondly to Luisa Van Den Bosch, for your patience in teaching me all the techniques in the lab, and for looking out for me like a daughter.

To Gerald Murray, Leanne Purins and Kerrie May, thank you for all the things you have taught me, for your advice and experience, and for your friendship. Maggie Papadopoulos and Min Yan Teh, my two best friends in and outside the lab, thank you for the laughter and unwavering support, your friendship is invaluable. To Marcin Grabowicz and Campbell Strong, your patient advice and friendship I appreciate alot. To all past Honours students, thank you for the joy you brought to the lab. A kind thank you to the Paton lab, for happily answering questions I had and for the ever entertaining conversations. Thank you for introducing me to the lab soccer games I love so much. To Steve Attridge and other members of the School, including the CSU staff, Chris Wong and Jamie Botten, Martin Lennon, Sergei Volgin and Garry Penney, thank you for being there to help me and provide advice.

To all my friends, particularly Sophia Tan and Damien Chong, thank you for the kind of support only a friend could give. You guys are the best! My heart-felt thank you and affection goes to Tan Nguyen, for your enduring enthusiasm and compassion. Thank you for being there and seeing me through, for now and always.

And finally, I would like to thank my loving parents and younger siblings Diana and Johnson, for all your love, support and encouragement over the years of study. I could not have done this without you, and I love you very much. This is for you!
List of Abbreviations

～ approximately
°C degree
% percentage
number
α alpha
α₂AP alpha₂-antiplasmin
β beta
γ gamma
λ lambda
µg; µl; µm microgram (s); microliter (s); micrometre (s)
aa amino acid
3D 3-dimensional
ABM actin based motility
Amp ampicillin
Anti-Pla anti-plasminogen
Arg arginine
Arp2/3 actin related protein 2/3
Av average
bp base pairs
C-terminal carboxyl-terminal
CAT# catalogue number
Ch. 3, 4, 5, 6 chapter 3, 4, 5, 6
cm centimetres
cm² cm square
CM cytoplasmic membrane
Cml chloramphenicol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>D-PBS</td>
<td>Dulbecco’s PBS</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’, 6-diamidino-2-phenylindole dihydrochloride</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s MEM</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra-acetic acid</td>
</tr>
<tr>
<td>Ef1, Ef2, Ef3</td>
<td>elution fractions 1, 2, 3</td>
</tr>
<tr>
<td>EIEC</td>
<td>enteroinvasive E. coli</td>
</tr>
<tr>
<td>FAE</td>
<td>follicular associated epithelium</td>
</tr>
<tr>
<td>FCA</td>
<td>Freund’s complete adjuvant</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FRT</td>
<td>FLP recognition target</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetylglucosamine</td>
</tr>
<tr>
<td>GTE</td>
<td>Glucose/Tris/EDTA</td>
</tr>
<tr>
<td>h; min; sec</td>
<td>hour (s); minutes (s); seconds (s)</td>
</tr>
<tr>
<td>HA</td>
<td>haemagglutinin</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HIC</td>
<td>heat inactivated complement</td>
</tr>
<tr>
<td>His₆</td>
<td>6x histamine</td>
</tr>
<tr>
<td>His₆-PsaA</td>
<td>N-terminal His₆ tagged PsaA</td>
</tr>
<tr>
<td>IcsP<sup>HA</sup></td>
<td>HA epitope tagged IcsP</td>
</tr>
<tr>
<td>IcsP-His₆</td>
<td>C-terminal His₆ tagged IcsP</td>
</tr>
<tr>
<td>IF</td>
<td>immunofluorescence</td>
</tr>
<tr>
<td>IL-1β</td>
<td>interleukin-1β</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IL-8</td>
<td>interleukin-8</td>
</tr>
<tr>
<td>IM</td>
<td>inner membrane</td>
</tr>
<tr>
<td>Ipa</td>
<td>invasion plasmid antigens</td>
</tr>
<tr>
<td>Ipg</td>
<td>invasion plasmid gene</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>Kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>L</td>
<td>litres</td>
</tr>
<tr>
<td>Lab</td>
<td>laboratory</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-bertani</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>Lys</td>
<td>lysine</td>
</tr>
<tr>
<td>M; mM</td>
<td>molar; millimolar (s)</td>
</tr>
<tr>
<td>M-cells</td>
<td>Membraneous epithelial cells</td>
</tr>
<tr>
<td>mA</td>
<td>milli-amps</td>
</tr>
<tr>
<td>MEM</td>
<td>Modified Eagle’s Media</td>
</tr>
<tr>
<td>mg; ml; mm</td>
<td>milligram (s); millilitre (s); millimetre (s)</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-Morpholino)-propanesulfonic acid</td>
</tr>
<tr>
<td>MQ</td>
<td>MilliQ</td>
</tr>
<tr>
<td>mxi-spa</td>
<td>membrane expression of Ipas-surface presentation of antigens</td>
</tr>
<tr>
<td>N-terminal</td>
<td>amino terminal</td>
</tr>
<tr>
<td>N-WASP</td>
<td>neural Wiskott-Aldrich syndrome protein</td>
</tr>
<tr>
<td>NaAc</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>NEB</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Ni-charged</td>
<td>nickel-charged</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>Oag</td>
<td>O antigen</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OD<sub>600</sub></td>
<td>optical density of 600 nm</td>
</tr>
<tr>
<td>OM</td>
<td>outer membrane</td>
</tr>
<tr>
<td>Omp</td>
<td>outer membrane protease</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Plg</td>
<td>plasminogen</td>
</tr>
<tr>
<td>R</td>
<td>resistance</td>
</tr>
<tr>
<td>Rha</td>
<td>rhamnose</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>Rif</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SAP</td>
<td>shrimp alkaline phosphatase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SOE PCR</td>
<td>Splicing by Overlap Extension PCR</td>
</tr>
<tr>
<td>Strep</td>
<td>streptomycin</td>
</tr>
<tr>
<td>TBE</td>
<td>tris-borate-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>Tet</td>
<td>tetracycline</td>
</tr>
<tr>
<td>Tris</td>
<td>tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>TSP</td>
<td>tailspike protein</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TTBS</td>
<td>tween tris buffered saline</td>
</tr>
<tr>
<td>TTSS</td>
<td>Type III secretion system</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>VASP</td>
<td>vasodilator-stimulating phosphoprotein</td>
</tr>
<tr>
<td>VP⁻virulence</td>
<td>virulence plasmid negative</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>WM</td>
<td>whole membrane</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5’-bromo-4-chloro-3-indolyl-β-D-galactopyranoside</td>
</tr>
</tbody>
</table>