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ABSTRACT 

 

Wine grape production in the semi-arid regions of Australia is successful due to the 

availability of irrigation water. Whilst water is a natural resource it is also becoming extremely 

valuable. In the hot and semi-arid regions of Australia, the prospect of water restrictions from 

drought and intensifying horticultural and domestic competition for water has prompted the 

grape and wine industry to implement strategic deficit irrigation practices to try and maintain 

sustainable wine grape production. Sustained deficit irrigation (SDI) differs significantly in its 

management to partial rootzone drying and regulated deficit irrigation and is a technique that 

could potentially be easily adopted across the winegrape industry if water allocations were 

reduced. With SDI, the water deficit is not created by withholding water, but rather, by 

applying a lesser volume of water at each irrigation event for the entire irrigation season. 

 

This study aimed to understand the physiological behaviour of wine grape cultivars to SDI and 

how this deficit irrigation strategy would influence yield and composition of the grapes and 

wine. The trials were conducted during 2003-2006 on the cultivars Cabernet Sauvignon and 

Shiraz grafted to 140 Ruggeri (V. berlandieri x V. rupestris) rootstock and grown in the 

Murray-Darling region of Australia. Furthermore, while Cabernet Sauvignon and Shiraz are 

the main red winegrape varieties grown in the Murray-Darling region, anectodally they are 

observed to respond differently to hot, dry conditions when managed under similar irrigation 

regimes. The vines were drip irrigated providing 100% of estimated ETc (control) and three 

graded sustained water deficits (Cabernet Sauvignon 70%, 52% and 43% of the control; Shiraz 

65%, 45% and 34% of the control). For each season, the volume of actual water applied 

(ML/ha) was calculated for each irrigation treatment and varied depending on seasonal and 

vineyard conditions. To further explore vine responses to water deficit, glasshouse studies on 

four own-rooted Vitis vinifera L. cultivars, including Cabernet Sauvignon, Shiraz, Grenache 

and Tempranillo were also conducted. 

 

Deficit irrigation management, whilst controlling vegetative growth and manipulating berry 

composition, may not always produce consistent outcomes among grapevine varieties. This 

has lead to the observation that deficit irrigation management strategies may need to be 

tailored to individual grape cultivars. Consequently, an understanding as to how certain 
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grapevine varieties respond to water deficit, particularly in relation to physiological responses, 

could assist with linking any impacts that water deficits may have on grape and wine 

composition. Field-grown Cabernet Sauvignon and Shiraz exposed to approximately 50% SDI 

experienced significant reductions in leaf water potential and stomatal conductance compared 

to the control. By contrast, xylem sap abscisic acid (ABA) levels increased significantly for 

the SDI-treated vines compared to the control that is probably related to root to shoot signals 

and canopy-derived ABA. Under field situations, Cabernet Sauvignon displayed physiological 

responses more typical of an isohydric-like (drought avoiding) vine, compared to the 

anisohydric-like (drought tolerant) responses of Shiraz.  These responses may also be 

supported by the pattern of xylem sap [ABA] production. The differences in canopy 

development (leaf area index and pruning weights) for Cabernet Sauvignon and Shiraz may be 

a reflection of the isohydric-like and anisohydric-like responses of these grape varieties to 

water deficit, thereby influencing carbohydrate dynamics and long-term viability of vine 

health under SDI. 

 

After three seasons, the SDI treatments significantly reduced yield of the field-grown vines, 

primarily due to a reduction in berry weight that tended to occur from the beginning of 

veraison through to harvest. SDI reduced yield (t/ha) by up to 30% in Cabernet Sauvignon and 

Shiraz, when applied at approximately 50% of the control irrigation (ML/ha). Irrespective of 

the yield reductions, water use efficiency was improved between 40-50% for the SDI-treated 

Cabernet Sauvignon and Shiraz, compared to the control. The lighter berries from SDI-treated 

vines tended to have increased pH and decreased titratable acid levels than the control. The 

SDI treatments applied at approximately 50% of the control increased the concentration of 

total anthocyanins in Cabernet Sauvignon and Shiraz berries by 22% and 15% respectively. As 

less water was applied there was an increase in total malvidin concentration for both varieties, 

with less effect on delphinidin, peonidin, petunidin and cyanidin for Cabernet Sauvignon and 

peonidin, petunidin, delphinidin and cyanidin for Shiraz. The increase in total anthocyanin and 

total phenolic concentrations for the SDI treatments than the control is attributed more to 

factors such as water deficit, canopy light penetration and/or changes in phenolic synthesis, 

than to differences in berry size (skin surface area to pulp volume ratio). 

 

Differences in grape anthocyanins and phenolics between the irrigation treatments were not 

the same as those measured in the wine. A decrease in berry weight did not alter the skin 
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weight to berry weight ratios, and were therefore unlikely to be the cause of the altered 

composition of SDI wines. The increases in wine colour with SDI treatment may be the result 

of biochemical changes in the flavonoid pathway as a result of altered grapevine physiology 

responses to the SDI. Alternatively, the increases in red wine colour could possibly be due to a 

change in chemical properties of the anthocyanins to copigmented forms that may have 

influenced extractability efficiency during the winemaking or ageing process. 

 

This research showed that an SDI of approximately 50% less water could be applied over one 

or two seasons with improvements in water use efficiency (t/ML) and berry composition 

compared to fully irrigated vines. Furthermore, for Cabernet Sauvignon exposed to 70% and 

52% SDI there tended to be improvements in the overall wine composition and sensory 

ranking than the control. However from an economic perspective, net returns were not largely 

affected by using SDI based on the current grape prices. If water becomes a more highly 

valued resource and priced accordingly, then a larger increase in net return will result from 

SDI. Additionally, wineries would need to offer price incentives to produce lower yields that 

may result from adopting SDI. Overall, if the wine industry was faced with reductions in water 

allocations of 50% or more in a particular season, then the adoption of SDI may be a feasible 

solution to maintaining winegrape production for the short-term. Through understanding the 

translation of grape composition into wine, these findings should be able to provide additional 

knowledge to the Australian grape and wine industry as to how SDI can be used to manipulate 

grape composition for the production of sustainable wine styles. 
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