Investigation of the Therapeutic Potential of Transgenic CD40 Ligand Expression

Michael Paul Brown

School of Medicine
Faculty of Health Sciences
University of Adelaide

Thesis by Prior Publication Submitted for the Degree of Doctor of Philosophy
May 2007
TABLE OF CONTENTS

INTRODUCTION ... 16

1.1 THE EMERGENCE OF MOLECULAR MEDICINE ... 16
1.2 A PRIMER ON RECOMBINANT DNA TECHNOLOGY – THE CONCEPT OF THE CLONING VECTOR ... 16
1.3 TRANSLATING RECOMBINANT DNA TECHNOLOGY TO THERAPEUTIC RECOMBINANT PROTEINS ... 16
1.4 TRANSLATING RECOMBINANT DNA TECHNOLOGY TO THERAPEUTIC GENE TRANSFER TECHNOLOGY ... 17

1.4.1 The promise and limitations of current gene therapy ... 17
1.4.2 Gene delivery systems ... 17

1.4.2.1 Non-viral gene delivery systems ... 17
1.4.2.2 Viral gene delivery systems .. 18
1.4.2.3 Murine retrovectors .. 18
1.4.2.4 Adenovectors .. 19

1.4.3 Vector modifications to improve vector targeting ... 19

1.4.3.1 Pseudo-typed murine retrovectors and other retroviral backbone modifications 20
1.4.3.2 Adenovector backbone modifications ... 20

1.4.4 Other clinically applicable viral vectors ... 21

1.4.4.1 Lentiviral vectors .. 21

1.4.4.2 Herpes virus vectors ... 22

1.4.4.3 Adeno-associated virus (AAV) vectors ... 22

1.4.4.4 Poxvirus vectors .. 23

1.5 THE CD40 RECEPTOR AND ITS LIGAND .. 23

1.5.1 The key concepts of immunological specificity and memory .. 24
1.5.2 Characteristics of the CD40 receptor and its ligand ... 24

1.5.3 Regulation of the CD40L/CD40 interaction ... 25

1.5.3.1 Overview of CD40 signalling ... 25

1.5.3.2 CD40L expression is induced by activation of CD4+ T cells 26

1.5.3.3 Molecular regulation of CD40L expression by activated CD4+ T cells 27

1.5.3.4 Pre-formed CD40L contributes to the regulation of T cell activation 28

1.5.3.5 Soluble CD40L may act as a cytokine-like agonist locally .. 28

1.5.3.6 C4b-Binding Protein is an alternate CD40 ligand that modulates CD40 signalling 28

1.5.3.7 The duration of CD40L expression determines biological outcomes 29

1.5.3.8 CD40 expression is modulated by alternate splicing and cytokines 29

1.5.3.9 Control of CD40L/CD40 interactions is compartmented and process-dependent 30

1.5.4 CD40L/CD40 interactions and innate immunity ... 32

1.5.4.1 The dendritic cell is a unique cell type ... 34

1.5.4.2 Dendritic cells operate pathogen sensors ... 34

1.5.4.3 Dendritic cells integrate innate immune signals and drive adaptive immunity 35

1.5.4.4 CD40-dependent cross-talk between innate immune cells completes adaptive immunity ... 35

1.5.4.5 NFκB signalling pathways critically underpin inflammation and immunity 36

1.5.4.6 CD40-dependent and CD40-independent effects on NK cells 41

1.5.5 CD40L/CD40 interactions and adaptive immunity .. 41

1.5.5.1 The role of the CD40L/CD40 interaction in tolerance and immunity 41

1.5.5.2 Dendritic cells, cross-presentation, cross-priming and cross-tolerance 42

1.5.5.3 Dendritic cells, CD40L/CD40 interactions and peripheral tolerance 44

1.5.6 The role of the CD40L/CD40 interaction in T cell physiology .. 46

1.5.6.1 CD40L/CD40 interactions are required for T cell priming 46

1.5.6.2 CD40L/CD40 interactions are required for T helper 1-type immune responses 47

1.5.6.3 CD40L/CD40 interactions are required for tumour-specific T cell priming 48

1.5.7 The generation of antibody diversity ... 50

1.5.7.1 The processes of class switch recombination and somatic hypermutation 51

1.5.8 The role of CD40L/CD40 interactions in B cell physiology ... 52
1.5.1 T-B interactions and the CD40-dependent germinal centre reaction

1.6. PRIMARY IMMUNODEFICIENCY DISEASES

1.6.1 HyperIgM syndromes

1.6.1.1 HyperIgM syndromes 1 and 3

1.6.1.2 HyperIgM syndrome 2, UNG deficiency, and hyperIgM syndrome 4

1.6.1.3 HyperIgM syndrome associated with hypohydrotic ectodermal dysplasia

1.6.1.4 Therapy of hyperIgM syndrome 1

1.7 RESPIRATORY SYNCTIAL VIRUS EVADES HOST IMMUNITY

1.7.1 Clinical features of respiratory syncytial virus infection

1.7.2 Treatment of respiratory syncytial virus infection

1.7.3 Respiratory syncytial virus vaccines

1.8 CANCER KILLS, IN PART BECAUSE IT SUBVERTS IMMUNE CONTROLS

1.8.1 The nature of malignancy

1.8.2 The nature of metastases

1.8.3 Infection, inflammation and malignancy

1.8.4 The limitations of current anti-cancer treatments

1.8.5 How current anti-cancer treatments are being improved

1.8.6 The cancer stem cell is the main obstacle to curative treatment for metastatic cancer

1.8.7 Why does adjuvant systemic treatment cure patients with micrometastases?

1.8.8 The rationale for cancer immunotherapy

1.8.9 Cancer immunosurveillance and the updated concept of cancer immunoediting

1.8.10 Spontaneous anti-tumour immune responses and tumour cell death

1.8.11 The implications of apoptotic versus necrotic cell death

1.8.12 The hierarchy model likely applies to cancer stem cells

1.8.13 Micrometastatic disease is curable in early-stage breast and colorectal cancers

1.9 THE RATIONALE FOR CANCER IMMUNOTHERAPY

1.9.1 Cancer immunosurveillance and the updated concept of cancer immunoediting

1.9.2 Spontaneous anti-tumour immune responses and tumour cell death

1.9.3 Induced anti-tumour immune responses and tumour cell death

1.9.4 Transplanted allogeneic lymphocytes treat leukaemia and lymphoma

1.9.5 Immunosurveillance of virus-induced malignancies

1.9.6 Cancer immunotherapy

1.9.7 Genetic enhancement and correction strategies for cancer gene therapy

1.9.8 Cancer immunosurveillance and the updated concept of cancer immunoediting

1.9.9 The nature of malignancy

1.9.10 Spontaneous anti-tumour immune responses and tumour cell death

1.9.11 The implications of apoptotic versus necrotic cell death

1.9.12 The hierarchy model likely applies to cancer stem cells

1.9.13 Micrometastatic disease is curable in early-stage breast and colorectal cancers

CHAPTER 2

CD40L, CRYPTOSPORIDIOSIS, CHOLANGITIS, AND CANCER

2.1 CD40L DEFICIENCY, CRYPTOSPORIDIOSIS, HEPATOBILIARY INFLAMMATION AND MALIGNANCY

2.2 GASTROINTESTINAL INFECTION WITH THE CRYPTOSPORIDIAL PARASITE

2.3 CELL MEDIATED IMMUNITY DEFENDS AGAINST CRYPTOSPORIDIOSIS

2.3.1 The role of NK cells in cryptosporidial infection

2.3.1.1 The role of NK cells in cryptosporidial infection

2.3.2.1 The role of T cells and T cell interactions in cryptosporidial infection

2.3.2.2 MHC class II is required for T cell activation and cryptosporidial clearance

2.3.2.3 CD40 is required only on bone marrow-derived cells for cryptosporidial immunity

2.4 CD40L-DEFICIENT MICE MODEL CRYPTOSPORIDIOSIS AND HEPATOBILIARY INFLAMMATION

2.4.1 Is CD40 required on biliary epithelial cells for cryptosporidial clearance?

2.4.2 CD40L deficiency may prevent apoptosis of cholangiocytes

2.4.3 CD40L/C40 interactions are required for cryptosporidial immunity

2.5 T CELLS CONTRIBUTE TO CRYPTOSPORIDIUM-RELATED HEPATOBILIARY INFLAMMATION

2.5.1 IFNγ protects against cryptosporidium-related biliary tract pathology

2.5.2 CD40L/C40 interactions protect against biliary tract pathology

2.5.3 Biliary tract pathology in CD40L-deficient mice is mediated by TNF signalling

2.6 OTHER INNATE IMMUNE RESISTANCE MECHANISMS TO CRYPTOSPORIDIAL INFECTION

2.6.1 The role of IL-12, IL-15, IL-18 and IL-23 cytokines in cryptosporidial infection

2.6.2 CD40 activation and IL-15 may collaborate to mediate NK cell effector function

2.6.3 Interferon-producing killer dendritic cells and a potential role in cryptosporidiosis

2.7 IL-12 AND IFNγ PROTECT AGAINST MALIGNANCY

2.7.1 Cytokine imbalance is associated with unopposed inflammation

2.7.2 TNF-induced NFκB activation in chronic inflammation is associated with cancer

2.8 A MODEL TO LINK CRYPTOSPORIDIAL-RELATED INFLAMMATION WITH MALIGNANCY

2.8.1 Conclusions and future directions
CHAPTER 3
GENETIC CORRECTION OF CD40L DEFICIENCY INDUCES THYMIC MALIGNANCY.........99

3.1 BACKGROUND AND RATIONALE...99
3.2 AIMS ...99
3.3 EXPERIMENTAL APPROACH ..99
3.4 MAJOR FINDINGS ..100
 3.4.1 Retroviral transduction partially corrects CD40L-dependent immune defects in vivo100
 3.4.2 Retroviral transduction unexpectedly induces thymic malignancy100
 3.4.3 Non-transgene-related causes of thymic malignancy are unlikely101
 3.4.4 CD40L transgene likely has a role in the immunopathogenesis of thymic malignancy ...101
BROWN MP ET AL., 1998 ...102

CHAPTER 4
CD40L GENE AUGMENTATION OF RESPIRATORY SYNCYTIAL VIRUS IMMUNITY106

4.1 BACKGROUND AND RATIONALE...106
4.2 AIMS ...106
4.3 EXPERIMENTAL APPROACH ..106
4.4 MAJOR FINDINGS ..107
 4.4.1 CD40L gene transfer augments RSV-specific type 1 responses and viral clearance108
 4.4.2 CD40L gene transfer augments RSV-specific humoral immunity108
 4.4.3 RSV subunit DNA vaccines alone do not augment antibody responses to RSV infection 109
 4.4.4 Genetic immunisation accelerated pulmonary viral clearance109
 4.4.5 RSV subunit DNA vaccines induce cellular responses to clear RSV109
 4.4.6 CD40L-expressing DNA vaccines enhance RSV immunity and pulmonary viral clearance 110
TRIPP RA ET AL. 2000 ...111
HARCOURT JL ET AL., 2003 ..121

CHAPTER 5
CD40L GENE AUGMENTATION INDUCES ANTI-TUMOUR IMMUNITY..........................138

5.1 BACKGROUND AND RATIONALE...138
5.2 AIMS ...140
5.3 EXPERIMENTAL APPROACH ..140
5.4 MAJOR FINDINGS ..142
 5.4.1 Human prostate cancer does not express CD40 ...142
 5.4.2 Transgenic CD40L expression induces death among CD40-expressing myeloma cells 143
 5.4.3 CD40L-expressing myeloma cells induce alloreactivity via APC activation143
 5.4.4 Transgenic CD40L expression stimulates autologous cell cultures144
 5.4.5 Transgenic CD40L expression induces a type 1 cytokine response in vitro144
 5.4.6 Minimal transgenic CD40L expression is required to abrogate tumorigenicity144
 5.4.7 Transgenic CD40L expression induces systemic anti-tumour immunity145
 5.4.8 CD8+ T cells mediate the reduced tumorigenicity of CD40L-expressing tumours 145
 5.4.9 Transgenic expression of CD40L and IL-12 abrogates tumorigenicity146
 5.4.10 Transgenic CD40L and IL-12 expression paradoxically prevents tumour protection 146
 5.4.11 Transgenic CD40L produces early-onset and heavy lymphocytic infiltrates146
 5.4.12 Transgenic CD40L and IL-2 expression cured mice of pre-existing leukaemia146
 5.4.13 Induced anti-leukaemia immunity was mediated by T and NK cells147
 5.4.14 The IL-2 and CD40L vaccine produced intra-tumoral activation of APC and T cells 147
 5.4.15 The clinical leukaemia vaccine relied on bystander transgenic expression147
 5.4.16 The clinical leukaemia vaccine was relatively safe ...147
 5.4.17 Most leukaemia patients remained in remission after immunisation148
 5.4.18 The leukaemia vaccine induces local immune responses to immunisation148
 5.4.19 The leukaemia vaccine induces leukaemia-specific immune responses148
 5.4.20 Local and systemic anti-leukaemia immune responses correlate149
MOGHADDAMI M ET AL., 2001 ...150
DOTTI G ET AL., 2001 ...157
GROSSMANN ME ET AL., 1997 ..168
LOSØG A ET AL., 2001 ...178
DILLOO D ET AL., 1997 ...184
ROUSSEAU RF ET AL., 2006 ...192

CHAPTER 6
CONCLUSIONS ..203
6.1 CD40L GENE REPLACEMENT CORRECTS CD40L DEFICIENCY AND INDUCES THYMIC MALIGNANCY ...203
6.1.1 Prerequisites for successful gene therapy of primary immunodeficiency diseases ...203
6.1.2 Requirements for successful gene therapy of inherited CD40 ligand deficiency ..204
6.1.3 The cause of thymic malignancy in CD40L gene therapy remains unknown ..205
6.1.4 Deleterious consequences of deregulated transgenic expression of CD40 ligand ...206
6.1.5 Normally regulated transgenic CD40 ligand expression avoids thymic malignancy ...208
6.1.6 Other approaches to therapy of CD40L deficiency ...209
6.2 CD40 LIGAND GENE AUGMENTATION PROMOTES RSV IMMUNITY ...209
6.2.1 Immunoopathogenesis of RSV infection ...209
6.2.1.1 Viral proteins modulate host immune responses to infection ..209
6.2.1.2 The host immune response to RSV infection produces pulmonary disease ...210
6.2.1.3 Innate immune responses to RSV infection guide the adaptive immune response ..210
6.2.1.4 The RSV-G protein has a significant immunomodulatory role ...211
6.2.2 Immunological immaturity of the neonate ..212
6.2.2.1 Neonatal mice later develop enhanced pulmonary disease after re-infection with RSV ...212
6.2.2.2 Hyporesponsiveness of CD40L expression may predispose to RSV infection ..213
6.2.3 Aging is associated with more extensive RSV infection and type 2 cytokine responses ..213
6.2.4 Respiratory syncytial virus vaccine options ...214
6.2.5 Transgenic CD40L expression may reverse reduced type 1 immune responses to RSV ..214
6.2.6 The prospects and hazards of transgenic CD40L expression in RSV vaccines ...215
6.3 CD40 LIGAND GENE AUGMENTATION INDUCES ANTI-TUMOUR IMMUNITY ...216
6.3.1 The significance of CD40 expression by tumour cells ...216
6.3.1.1 Malignant transformation alters CD40-dependent signalling circuits ...217
6.3.1.2 Aberrant CD40 signalling prevents antigen presentation of CD40+ tumours ...217
6.3.1.3 CD40 ligation increases the immunogenicity of CD40 tumour cells ..218
6.3.1.4 Transgenic CD40L expression enhances tumour apoptosis and antigen presentation ..219
6.3.1.5 Transgenic CD40L expression modulates B-CLL in vivo inducing clinical responses ...220
6.3.2 CD40L/CD40 interactions may be pro-tumorigenic ..221
6.3.2.1 CD40 activation is pro-angiogenic and pro-tumorigenic ...222
6.3.2.2 CD40L/CD40 interactions may operate autocrine and/or paracrine growth loops ...222
6.3.3 The potential consequences of epithelial loss of CD40 expression ..224
6.3.3.1 Anti-myeloma effects of transgenic CD40L expression irrespective of CD40 status ..224
6.3.3.2 Rationale for investigating transgenic CD40L expression in CD40-negative tumours ...225
6.3.3.3 Transgenic CD40L-mediated effects on CD40-negative tumours via APC activation ...225
6.3.3.4 CD40 activation is potentiated by the addition of dendritic cells ...226
6.3.4 Transgenic CD40L expression counteracts tumour immunosuppression ...227
6.3.5 Salient features of transgenic CD40L-expressing tumour vaccines ..228
6.3.5.1 Syngeneic or autochthonous tumour cells were used to minimise against malignancy ...229
6.3.5.2 Tumour vaccines were deposited subcutaneously ..229
6.3.5.3 Efficacy of transgenic CD40L expression and tumour cell death in situ ...229
6.3.5.4 Cellular recruitment at the immunisation site may influence effector mechanisms ..230
6.3.5.5 Tumour vaccine immunogenicity was augmented by transgenic CD40L expression ...231
6.3.5.6 CD40L gene-modified tumour vaccines induced systemic tumour-specific immunity ...232
6.3.5.7 IFNγ and tumorigenicity and immunogenicity ..232
6.3.6 Lymphopenia and immunisation efficiency ...234
6.3.6.1 Anti-tumour effects of homeostatic proliferation in sub-lethally irradiated mice ...234
6.3.6.2 Pre-transplant myeloablative conditioning; post-transplant anti-tumour immunisation ...234
6.3.7 Chemotherapy and CD40 activation synergise to produce anti-tumour immunity ...236
6.3.8 Future systemic CD40-directed chemoimmunotherapy ..237

BIBLIOGRAPHY ...240

APPENDIX A

STATEMENTS OF THE CONTRIBUTIONS OF JOINTLY AUTHORED PAPERS ...275
TABLE OF FIGURES AND TABLES

FIGURE 1: NFκB SIGNAL TRANSDUCTION MACHINERY ...39
FIGURE 2: CD40 LIGAND PLAYS CRITICAL ROLES IN BOTH INNATE AND ADAPTIVE IMMUNITY40
FIGURE 3: COSTIMULATION RESULTS IN PRODUCTIVE IMMUNITY AND PREVENTS TOLERANCE INDUCTION43
FIGURE 4: ANTIGEN PROCESSING AND PRESENTATION VIA THE IFNγ-RESPONSIVE MHC CLASS I PATHWAY44
FIGURE 5: CAN CANCER BE CONSIDERED THE IMMUNOLOGICAL ‘FLIP SIDE’ OF AUTOIMMUNITY?46
FIGURE 6: CONDITIONAL AND RECIPROCAL INTERACTIONS PRIME T CELLS ..49
FIGURE 7: CD40L/CD40 INTERACTIONS PRODUCE MATURE HIGHLY FUNCTIONAL ANTIBODIES53
FIGURE 8: SCHEMATIC DIAGRAM OF CD40-DEPENDENT SIGNALLING IN B CELLS ..56
FIGURE 9: SCHEMATIC DEPICTION OF THE PROGRESSION OF APOPTOSIS THROUGH VARIOUS STAGES IN VITRO70
FIGURE 10: ENDOGENOUS ‘DANGER’ MAY SUPPLY ADDITIONAL DENDRITIC CELL MATURATION SIGNALS73
FIGURE 11: CD40L/CD40 INTERACTIONS SUPPLY PROTECTIVE IL-12 AND IFNγ CYTOKINES94
FIGURE 12 (OVER PAGE): CD40 SIGNALLING DEFENDS AGAINST INFECTION, INFLAMMATION AND CANCER96
FIGURE 13: ANTI-TUMOUR CELLULAR IMMUNE RESPONSES REQUIRE EFFECTIVE ANTIGEN PRESENTATION233

TABLE I: CHARACTERISTICS OF CD40 LIGAND AND CD40 ..25
TABLE II: THE HYPERIgM SYNDROMES ..57
TABLE III: LOCAL AND SYSTEMIC ANTI-LEUKAEMIA IMMUNE RESPONSES ...149
The CD40 ligand (CD40L) molecule is central to innate and adaptive immunity. CD40L expression is very tightly regulated whereas its CD40 receptor is constitutively expressed by many different cell types. CD40L is expressed transiently on helper T cells (Th) only after activation by specific immune recognition molecules carried by professional antigen presenting cells, in particular, dendritic cells (DC). CD40L subsequently binds to CD40 on DC to enable full Th activation. CD40 ligated DC produce interleukin-12 (IL-12) and contribute both to the development of IFNγ-secreting natural killer cells, a vital component of innate immunity, and of IFNγ-secreting type 1 Th (Th$_1$) cells. CD40 ligated DC also contribute to the development of IL-4- and IL-10-secreting Th$_2$ cells. CD40L on Th cells also binds CD40 on macrophages to enhance their cytotoxic functions. CD40L-expressing Th cells provide the ‘help’ pivotal required to activate other components of adaptive immunity responsible both for clearing invading pathogens and generating the memory cells required to prevent re-infection. Th-supplied CD40L binds (i) B cell CD40 to switch production of antibodies to more potent effector molecules that have higher avidity for antigen, and (ii) DC CD40 to prime then expand antigen-specific cytotoxic T lymphocytes (CTL). Activated NK cells and CTL are required both to eradicate malignant cells and cells infected with viruses or other intracellular pathogens.

Genetic CD40L deficiency causes the very rare HyperIgM Syndrome Type 1 (HIGM1), which is realistically modelled by genetically engineered CD40L-deficient mice. Neither CD40L-deficient patients nor mice make effective antibodies or mount cellular immune responses that would defend them against intracellular pathogens such as parasites. Consequently, the only potentially curative therapy is allogeneic stem cell transplantation or CD40L gene replacement. Here, we used a retroviral vector, which constitutively expressed CD40L, to genetically modify CD40L-deficient bone marrow cells, which were used to reconstitute partially the immunity of CD40L-deficient mice. The crucial importance of tight regulation of CD40L expression was revealed when these mice later developed lethal thymic T cell malignancy.

Growing tumours escape immune vigilance by genetic alterations that reduce their sensitivity to IFNγ. Using murine tumour models, we incorporated transgenic CD40L expression in therapeutic tumour vaccines to show that CD40L gene transfer augmented the immunogenicity of the host’s tumour thus reducing its tumorigenicity. We translated this finding clinically to safety and immunogenicity testing of a transgenic CD40L- and IL-2-expressing leukaemia vaccine.

Finally, the common viral respiratory pathogen, respiratory syncytial virus (RSV) mainly infects young infants and the elderly to cause potentially lethal pneumonia. Both groups have reduced cellular and humoral immunity, which predisposes them to re-infection with RSV. Using a murine model, we showed first that simultaneous adenoviral expression of CD40L augmented primary RSV-specific Th1 responses that were associated with accelerated pulmonary viral clearance. Second, we showed that expression of CD40L in RSV-F and RSV-G subunit DNA vaccines elevated antibody and cellular immune responses to RSV challenge four and eight months after the initial immunisation.

These results demonstrate the potent ability of CD40L gene transfer to solve the absolute immune deficiency caused by genetic lesions of CD40L. However, physiological regulation of the transgene is required to prevent serious adverse consequences. In contrast, no adverse effects were observed after transgenic CD40L expression was used to overcome relative immune deficiencies imposed by malignancy and RSV infection.
The crucial significance of the ligand for CD40

The ligand for CD40 is a molecule critical in human biology and medicine (Chapters 1 and 2). CD40 ligand (CD40L) acts at the point of specific immune recognition of an antigen to activate the immune system and so produce immunity. If immune activation results then a chain of events is set in motion that result in elimination of antigen from the body. An integral feature of immunity is immunological memory, which is the ability to mount a similar or augmented immune response in the event that the antigen is again encountered. CD40L plays a vital role in coordinating, amplifying and recalling the immune response, which necessarily includes CD40L-mediated cooperation between the innate and adaptive arms of the immune system. If CD40L does not act and immune activation does not occur then the immune system sleeps in a state of immunological tolerance for the antigen. Although there are other causes of immunological tolerance, tolerance is the functional outcome as tumours grow in the body.

After antigen recognition, the decision within the immune system to activate, or not, may be considered a binary ‘on’ or ‘off’ response that may produce outcomes deleterious to the organism’s survival if the decision is made out of its proper context. Hence, an evolutionary imperative will have dictated that appropriate mechanisms be built into the organism’s immune system to control appropriately ‘on’ or ‘off’ decisions and so maximise the organism’s ability to survive and reproduce. The term antigen is nominally an experimental construct. In the real world, antigens are part of infectious pathogens, the altered body components of cancer, and normal body components subject to autoimmune attack. Consequently, failure of the organism’s immune system to make correct ‘on’ or ‘off’ decisions in response to antigen recognition may impair the organism’s chances of survival.

How is this key ‘on’ or ‘off’ decision made and controlled?

The antigen recognition event initiates the decision making. A peptide derived from the antigen is bound by the major histocompatibility complex (MHC) molecule on the surface of an antigen presenting cell (APC), which is required to be a dendritic cell (DC) in order to prime rather than recall the T cell responses of immunity or tolerance. If the ‘key fits the lock’ then the peptide-MHC (pMHC) complex interacts with the T cell receptor (TCR) on the surface of a CD4-expressing T helper lymphocyte. The duration and strength of this cognate interaction determines the probability that T cell activation will occur. The first essential signal after T cell activation is the induction of CD40L expression. By ligating its CD40 receptor on the DC surface, CD40L then conditions the DC to engage further in crosstalk with the T cell so that a more durable immunological synapse between the two cells is assembled. Subsequently, the DC is licensed to prime the killer CD8-expressing T lymphocyte, which kills virally infected cells and tumour cells. Thus, CD40L expression promotes the development of type 1 immune responses, which are cytolytic. The CD4- and CD40L-expressing T lymphocyte can also provide ‘help’ to B lymphocytes in the form of ligation of its CD40 receptor so that it can produce more effective antibodies able to neutralise pathogens. Finally, antigen-experienced and CD40L-expressing T lymphocytes traffic to peripheral tissues at the site of antigen challenge where, via the ligation of CD40 on accessory immune cells, inflammation is promoted. In the permissive inflammatory microenvironment, CD40L is also expressed by other accessory immune cells and, via CD40 ligation, inflammation is reinforced and the ongoing development of immunity is enhanced.

To control this cascade of possibly injurious events, it will be noted that CD40L expression is for the most part only inducible in the most temporally and spatially restricted circumstances following lymphocyte activation whereas its CD40 receptor is constitutively expressed by both immune and non-immune cells such as endothelial cells, fibroblasts and epithelial cells.
throughout the body. This compartmentation of the CD40L activating signal ensures that the responding cells receive it only in the context of immune recognition.

What are the implications if the CD40L-dependent activation signal is not made and it should be?

Absolute loss of the CD40L-dependent activation signal results in profound cellular and humoral immunodeficiency, which may be complicated by lethal opportunistic infections and, less comprehensibly, by malignancy of the hepatobiliary tree. The most straightforward although rare cause of absolute signal loss is inherited mutations in the genes for CD40L or its receptor. Thus, a clear rationale exists for the replacement of the CD40L gene in the case of its genetic deficiency (Chapters 2 and 3).

Relative loss of the CD40L-dependent activation signal occurs in the neonatal period and early infancy when CD40L expression is less responsive to T cell activation. A teleological explanation for the relative deficiency of CD40L expression would be that the immature immune system is less responsive because it has the important tasks of positively selecting lymphocytes that recognise foreign antigens and negatively selecting autoreactive lymphocytes. ‘Hair-trigger’ induction of CD40L expression may compromise the elimination of autoreactive lymphocytes and predispose to autoimmune disease. To continue the teleological argument, while thymic T cell education is underway, transfer of mature maternal antibodies via the placenta and breast milk compensates for the relative lack of CD40L-dependent antibody maturation and so reduces the infant’s susceptibility to infection. However, the most common respiratory pathogen of early infancy is respiratory syncytial virus (RSV), which does not evoke effective immunity and predisposes to re-infection even in adults, which includes the mothers of susceptible infants. RSV infection tends toward the induction of type 2 rather than type 1 immune responses and so deviates the host immune response toward a less effective anti-viral response. Given that peak exposure to RSV occurs in early infancy, relative CD40L deficiency may also contribute to the development of ineffective RSV-specific immune responses. In the presence of ineffective RSV-specific immunity and immune deviation, it is reasonable to test the hypothesis that CD40L gene augmentation will correct the immune deviation and provoke effective RSV-specific immunity (Chapter 4).

A plethora of defects in immune function accompany malignancy. One of the most outstanding is the state of immunological tolerance or even frank immune suppression that progresses as the malignancy itself progresses. Here, it is important to note that abundant evidence now exists to indicate that immune recognition of tumour associated antigens does occur. Therefore, the host’s immunological tolerance of the malignancy belies the threat that it poses to life.

A distinction will be made between the malignancies that express CD40 and those that do not. CD40-expressing malignancies more commonly originate from the lympho-haemopoietic system although a significant proportion arise from the epithelium, which is the most important source of malignancy overall. In many instances, CD40 ligation of CD40-expressing malignancies induces at least one of two effects. First, CD40 ligation induces upregulation of MHC, costimulatory and cell adhesion molecules, which together directly enhance the antigen processing and presentation functions of the tumour cell itself. Second, CD40 ligation induces tumour cell death, which indirectly promotes antigen processing and presentation by bystander APC. In this second event, it is both the greater efficiency in APC uptake of tumour antigens and CD40L-mediated enhancement of bystander APC function that promote anti-tumour immunity. On the other hand, in CD40-negative malignancies, CD40 ligation of bystander APC is most important, and anti-tumour immune effects may be reinforced if another modality of anti-tumour treatment such as cytotoxic chemotherapy induces tumour cell death. Of course, in any one malignancy, tumours may or may not express CD40 and any of the abovementioned mechanisms may operate to increase anti-tumour immunity. Hence, it is reasonable to test the hypothesis that genetic augmentation
with the gene for CD40L, which is a critical positive regulator of immunity, will induce effective anti-tumour immune responses (Chapter 5).

What are the implications if the CD40L-dependent activation signal is made and it should not be?

Several studies show that transgenic unregulated overexpression of CD40L induces autoimmunity. However, although retroviral gene transfer partially corrected CD40L deficiency in the mouse model, unregulated transgenic expression of CD40L by bone-marrow derived cells, which had repopulated the CD40L-deficient mice, produced thymic lymphoproliferations and lymphoblastic lymphoma after a latent period (Brown MP et al., 1998). In contrast, a later study of regulated transgenic CD40L expression also corrected the immunodeficiency but did not cause malignancy and, therefore, vindicated the physiological relevance of regulated CD40L expression (Chapter 6).

Summary of the laboratory research program

The complementary DNA (cDNA) for murine CD40L (mCD40L) was cloned (Dilloo D et al., 1997) and the cDNA for human CD40L (hCD40L) was obtained. The mCD40L cDNA was subcloned into the retroviral shuttle plasmid, pG1a, which was subsequently used to make and clonally select a high-titre retroviral producer cell line (Grossmann ME et al., 1997). The supernatants obtained from this mCD40L retroviral producer clone were frozen in aliquots and stored for later use. The pG1a.mCD40L was provided to make a fibroblast cell line, which stably expressed mCD40L (Dilloo D et al., 1997). The mCD40L retroviral producer supernatants were provided to make a neuro2a cell line, which stably expressed mCD40L (Grossmann ME et al., 1997). The mCD40L retroviral producer supernatants were used to transduce CD40L-deficient murine bone marrow cells in readiness for transplantation (Brown MP et al., 1998). Bone marrow transplantation, measurement of gene transfer efficiencies, harvesting and phenotypic analysis of thymic tumours, and analysis of dinitrophenol-specific IgE responses were done as described (Brown MP et al., 1998). The mCD40L cDNA was subcloned into an adenoviral transfer plasmid, which was used to make a mCD40L-expressing adenoviral vector (Ad-mCD40L) after triple-plaque purification. An empty vector control (Ad-VC) was made in a similar way. Scaled-up stocks of these vectors were provided for co-infection experiments with RSV in BALB/c mice (Tripp RA et al., 2000) and a scaled-up stock of Ad-mCD40L was also supplied to perform transductions of MB49 murine bladder cancer cells (Loskog A et al., 2001). The hCD40L cDNA was subcloned into an adenoviral transfer plasmid and used to make a hCD40L-expressing adenoviral vector (Ad-hCD40L), which after triple-plaque purification was used subsequently to perform adenoviral transductions of human myeloma cell lines in vitro (Dotti G et al., 2001). The same vector was used to create the clinical leukaemia vaccines reported by Rousseau RF et al. (2006).

Significance of the major research findings

A recent survey conducted under the auspices of the U.S. National Cancer Institute ranked CD40L and anti-CD40 monoclonal antibodies fourth out of 20 molecules with high potential for use in treating cancer (http://web.ncifcrf.gov/research/brb/site/home.asp.). The publications presented herein were the first to show that:

(i) Genetic correction of CD40L deficiency was possible by gene replacement (Brown MP et al., 1998)
(ii) Deleterious effects resulted from constitutive CD40L transgene expression (Brown MP et al., 1998)
(iii) Transgenic CD40L gene expression conferred anti-tumour properties using in vivo models of CD40-positive and CD-negative malignancies (Dilloo D et al., 1997; Grossmann ME et al., 1997)
(iv) CD40 was not detected on primary human prostate cancer cells (Moghaddami M et al., 2001)
(v) Transgenic CD40L gene expression enhanced anti-RSV immunity in a model of RSV infection (Tripp RA et al., 2000; Harcourt JL et al., 2003).

Consequently, the nine publications included in this thesis have been cited 251 times in total.
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

Signed: [Signature]

Date: 23 May 2007

xii
DEDICATION

This work is dedicated to the memories of my late father, Reginald Frederick Brown, my late aunt, Heather Gabrielle Brown, and my late father-in-law, Peter William Gage, who all at various stages of my life provided the inspiration or impetus for this work.
ACKNOWLEDGMENTS

I am greatly indebted for the support, encouragement and mentorship of my supervisors, Professors Malcolm Brenner and Ian Olver. My wife, Michelle Anne Gage Brown, has provided the encouragement and sustenance that I needed to complete this task during which I depended also on the forbearance of our children, Liam, Alice, and Daniel.
STATEMENTS OF THE CONTRIBUTIONS OF JOINTLY AUTHORED PAPERS

Each publication included in this thesis was jointly authored. As permitted by Professor Richard Russell, Dean of Graduate Studies, University of Adelaide, appended to this thesis (Appendix A) is a statement for each publication, which gives written and signed permission by each author for the paper to be included in the thesis and which provides a detailed description of the contribution made by the PhD candidate as an author on each paper.