The Role and Optimal Timing of Flexible Bronchoscopy and Broncho-alveolar Lavage Chemokine Measurement in Severely Immunocompromised Febrile Neutropenic Patients

Chien-Li Liew: 1042406

Thesis submission for Master of Clinical Science, Discipline of Medicine, Adelaide University

Supervisors: Professor L B To, A/Professor P N Reynolds

Submission date: 8th August 2008
The Role and Optimal Timing of Flexible Bronchoscopy and Bronchoalveolar Lavage Chemokine Measurement in Severely Immunocompromised Febrile Neutropenic Patients

Chien-Li Liew

TABLE of CONTENTS

1. Abstract

2. Introduction
 o 2.1 Febrile neutropenia
 ▪ 2.1a Use of empirical antibiotics in febrile neutropenia
 ▪ 2.1b Pulmonary infection in severely immunocompromised patients
 o 2.2 Pulmonary complications in acute leukaemia and allogeneic bone marrow (stem cell) transplantation
 ▪ 2.2a Update on current issues
 ▪ 2.2b Current consensus on diagnosis, prophylaxis and treatment
 o 2.3 The role of flexible bronchoscopy in diagnosis of pulmonary infections
 ▪ 2.3a Flexible Bronchoscopy in non-immunocompromised population
 ▪ 2.3b Flexible Bronchoscopy in severely immunocompromised patients
 ▪ 2.3c Yield of flexible bronchoscopy
 • i. Overview of literature on bronchoscopic yield compared to other techniques
 • ii Factors aiding yield
 • iii. Yield of individual techniques: bronchial washings/bronchoalveolar lavage, protected specimen brush, transbronchial biopsy
 ▪ 2.3d Safety of flexible bronchoscopy
 ▪ 2.3e Timing of bronchoscopy
 ▪ 2.3f Impact of bronchoscopic results on clinical management and outcome measures
 ▪ 2.3g Open lung biopsy
2.3h The diagnosis of invasive pulmonary aspergillosis

- i Role of flexible bronchoscopy
- ii Role of CT chest and other methods of detecting invasive fungal disease

 o 2.4 Chemokines in pulmonary disease

3. Aims

4. Methodology

 o 4.1 Clinical trial design
 o 4.2 Bronchoscopy technique
 o 4.3 Analysis of specimens – microbiological
 o 4.4 Analysis of specimens – chemokine measurement

5. Results

 o 5.1 Patient characteristics
 o 5.2 Bronchoscopic parameters
 o 5.3 Safety of bronchoscopy
 o 5.4 Yield
 o 5.5 Antibiotic Use
 o 5.6 Chemokine analysis
 o 5.7 Other clinical outcome measures
 o 5.8 Survival

6. Discussion

7. Development of a protocol for the management of severely immunocompromised febrile neutropenic patients

8. References
Statement of Originality

I, Chien-Li Liew, declare the research work described in this thesis to be original. This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and, to the best of my knowledge and believe, contains no material previously published or written by another person, except where due reference has been made within the text.

I give consent for a copy of my thesis to be made available to the university library for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that the copyright of published works contained within this thesis, as listed as references, resides with the copyright holders of those works.

Signed __ Date ___________________

Name ___________________________ Date ________________

Witnessed __________________________ Name______________ Date ________

Acknowledgements

Professor L B To\(^1\): for supervision of research development and thesis
Professor P N Reynolds\(^2,3\): for supervision of research development and thesis
Dr G Hodge\(^3\): for supervision of cytokine analysis
Professor M D Holmes\(^2,3\): for assistance with methodology and thesis
Professor H P A Jersmann\(^2\): for assistance with methodology
Dr P C Robinson\(^2\) for assistance with methodology
Dr M M Chia\(^2\): for assistance with methodology
Dr N Horvath\(^1\): for assistance with methodology and thesis
Professor A R Glanville\(^4\): for assistance with data analysis

1. Royal Adelaide Hospital and Institute of Medical and Veterinary Science, Department of Haematology
2. Royal Adelaide Hospital Department of Thoracic Medicine
3. Royal Adelaide Hospital and Institute of Medical and Veterinary Science, Lung Research Laboratory
4. St Vincent’s Hospital Department of Thoracic Medicine
1. ABSTRACT:
Respiratory infection remains a leading cause of morbidity and death in severely immunocompromised febrile neutropenic haematology patients, despite the introduction of numerous prophylactic strategies and advances in diagnosis and treatment. Prognosis is improved if an organism can be isolated and specific therapy commenced as soon as possible. Current practice in this population group is to commence empirical antibiotics and perform flexible bronchoscopy (FB) if temperature does not settle or after patients develop clinical or radiological features suggesting a respiratory source. This delay may result in a lower procedural diagnostic yield due to prior or prolonged anti-microbial treatment, and increased risk of respiratory compromise and procedural complications due to advanced respiratory infections. We hypothesised that proceeding to FB as early as possible after developing febrile neutropenia would improve treatment outcomes. With this randomised, prospective trial, we aim to further define the role of FB with reference to optimal timing of the procedure and its impact on diagnostic yield, future management and complication rate. We also aim to analyse the impact of proven infection on the cytokine profile of immunocompromised patients.

Methods: Patients with acute leukaemia, allogeneic bone marrow transplantation or chronic lymphocytic leukaemia (CLL) being treated with Fludarabine/ Mabthera without an obvious non-respiratory source of infection were prospectively randomised into early bronchoscopy or conventional management groups at onset of febrile neutropenia. Bronchoalveolar lavage (BAL) fluid chemokine levels (IP-10, RANTES, MIG, IL-8, MCP-1) were measured using a human Chemokine cytometric bead array (CBA) kit.

Results: Thirty-one episodes of febrile neutropenia in 29 patients were analysed; 17 conventional and 14 early. There was an increased yield in fungal growth in the early bronchoscopy group, which was not predicted by prior clinical or radiological changes. However, this had no impact on clinical management in the short-term due to the delayed growth. Overall diagnostic yield was not significantly different between the two groups. Procedural complication rate was negligible overall and there was no difference associated with either group. IP-10 and MIG were significantly lower in those patients who had a fungal pathogen isolated, compared with those study patients who did not (175.17 vs 1157.8, p=0.03, 30.33 vs 247.8, p=0.03 respectively). IP-10 levels were higher in the conventional than early group (1253.0 vs 261.14, p = 0.035) and the study population had higher MCP-1 (734 vs 2.83, p=0.006) and IL-8 levels (606.9 vs 14.25, p=0.00655) than normal controls. Those cases with fungal infection had higher mean MCP-1, RANTES and IL-8 levels than in normal controls (844.0 vs 2.83, p=0.007; 17.5 vs 2.1, p=0.03; 156.0 vs 14.25, p=0.004).

Conclusions: Early bronchoscopy as a component of the septic screen in febrile neutropenic patients was feasible and safe. A significant difference in fungal yield was seen in the early bronchoscopy group compared to conventional methods, with a negligible complication rate, but this did not result in a change in immediate clinical management or outcomes.