THE INFLUENCE OF COMPRESSIVE CYCLIC LOADING ON THE RETENTION OF CAST CROWN COPINGS CEMENTED TO IMPLANT ABUTMENTS

A thesis submitted in partial fulfillment for the Degree of Doctor of Clinical Dentistry (Prosthodontics)

James Dudley
BDS (Adel), GradDipHlthServMt (Mon), MHIthServMt (Mon)

Dental School
Faculty of Health Sciences
The University of Adelaide

September 2008
LAYOUT OF THIS THESIS

This thesis is presented in two sections:

Section 1: Thesis as detailed in Contents

Section 2: Article submitted and accepted for publication in the Australian Dental Journal 2008; 53(4)
SECTION 1
CONTENTS

Summary .. i

Acknowledgements .. iii

Abbreviations .. iv

Chapter 1 .. 1
 1.1 Introduction .. 1
 1.2 Aims of the study .. 3

Chapter 2 Literature Review .. 5
 2.1 Dental implants .. 5
 2.1.1 History .. 5
 2.1.2 Implant types ... 6
 2.1.3 Abutment types .. 7
 2.1.4 Clinical use .. 7
 2.2 Cement versus screw-retained crowns ... 7
 2.2.1 Cement-retained crowns ... 8
 2.2.2 Screw-retained crowns .. 10
 2.3 Dental cements .. 11
 2.3.1 Cement film thickness .. 13
 2.3.2 Marginal leakage .. 15
 2.3.3 Cement failure ... 16
 2.4 Filling abutment screw access channels ... 17
 2.5 In vitro conditions ... 19
 2.5.1 Crown seating pressure ... 20
 2.5.2 Humidifier .. 22
4.3 Conversion of mean retentive values to megapascals 87
4.4 Statistical analysis 88
 4.4.1 Two-way ANOVA analysis 88
 4.4.2 Post test analysis 89
4.5 Data cleaning 92
4.6 Null hypothesis 95

Chapter 5 Discussion 96
 5.1 Method of cement failure 96
 5.1.1 Crown copings 96
 5.1.2 Abutments 98
 5.1.3 Clinical implications 102
 5.2 Panavia-F specimens 103
 5.3 KetacCem specimens 107
 5.4 TempBond NE specimens 109
 5.5 Comparison to other similar studies 118
 5.5.1 Panavia-F 120
 5.5.2 KetacCem 122
 5.5.3 TempBond NE and TempBond 122
 5.5.3.1 TempBond NE 122
 5.5.3.2 TempBond 124
 5.4 Conclusions 125
 5.6 Cement film thickness 126
 5.7 Abutment screw access channels 130
 5.8 Abutment screw access channel wax seal 132
 5.9 Cement failure values and the “hang-on” effect 135
 5.10 Sources of potential bias during testing 139
 5.10.1 In vitro conditions bias 139
 5.10.2 Experimental bias 140
 5.10.2.1 Component construction 140
 5.10.2.2 Cementation 140
5.10.2.3 Thermocycling ... 141
5.10.2.4 Compressive cyclic loading 142
5.10.2.5 Uniaxial tensile testing 144
5.10.2.6 Cleaning specimens .. 145
5.11 Compressive cyclic loading .. 145
5.12 Cleaning specimens ... 147
5.13 Scanning electron microscopy analysis 149
5.14 Experimental limitations .. 154
5.15 Potential clinical relevance 155

Chapter 6 Conclusions .. 157

Bibliography .. 158
STATEMENT

This thesis is submitted in partial fulfillment for the requirements for the Degree of Doctor of Clinical Dentistry (Prosthodontics) at the University of Adelaide. This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference is made in the text of the report.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

..

James Dudley

September 2008
Summary

Background

The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Most current dental cements were developed primarily for use with natural tooth crowns, but must act in a different manner with implant components. Cements are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments.

Method

Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. Data analysis was conducted using two-way ANOVA and paired post tests.
Results

Statistical analysis arising from post tests following two-way ANOVA testing revealed the mean retention values for crown copings cemented with Panavia-F cement (5.103, 2.681, 3.178, 2.986MPa) were statistically significantly greater than both KetacCem (0.646, 0.701, 1.083, 0.914MPa) and TempBond non–eugenol (0.074, 0.181, 0.190, 0.303MPa) cements at each compressive cyclic loading quantity. KetacCem and TempBond non–eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Compressive cyclic loading had no overriding statistically significant effect on the retention of all specimens as a population.

Conclusions

Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with Panavia-F, KetacCem, and TempBond non-eugenol was significantly affected by cement type but not compressive cyclic loading. Panavia-F is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested. The implications of these results relate to the choice of cement to provide the desired crown coping retention.
Acknowledgements

Professor Lindsay Richards, whose expertise, guidance and positivity has been invaluable throughout my postgraduate study.

Associate Professor John Abbott, whose knowledge and willingness to discuss matters at length has provided great support.

Victor Marino, for his guidance in the experimental component of this research.

Staff at Adelaide Microscopy for their tutelage in the use of the scanning electron microscope.

The staff of Clinic 1.4 in the Adelaide Dental Hospital, particularly Amanda and Carol, for their assistance and persistence with mixing cements.

I would like to express my sincere appreciation to Straumann Australia for the generous supply of implant components used in this research.

Finally, to my wife, Sara, and daughter, Indira, for your endless support, encouragement and patience.
Abbreviations

Ave – average

CAD-CAM – computer-aided design / computer-aided manufacture

CTE – coefficient of thermal expansion

Hz - Hertz

IRM – Intermediate restorative material

ISO – International Organization for Standardization

kg – kilogram

MDP - 10-methacryloyloxydecyl dihydrogen phosphate

mm - millimetre

MPa – MegaPascals

N – Newtons

no. – number

SA – surface area

SD – standard deviation

SEM – Scanning Electron Microscopy

TempBond NE – TempBond non-eugenol

VBATDT - 6-[N-(4-vinylbenzyl)propylamino]-1,3,5-triazine 2,4-dithione
SECTION 2
Article submitted and accepted for publication in the
Australian Dental Journal 2008; 53(4)