
 

PUBLISHED VERSION  

   

 

 

Tuck, E. O.; Kouzoubov, A..  
A laminar roughness boundary condition, Journal of Fluid Mechanics, 1995; 300:59-70. 

Copyright © 1995 Cambridge University Press 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/511 

 

PERMISSIONS 

http://journals.cambridge.org/action/stream?pageId=4088&level=2#4408 

 

The right to post the definitive version of the contribution as published at Cambridge 
Journals Online (in PDF or HTML form) in the Institutional Repository of the institution 
in which they worked at the time the paper was first submitted, or (for appropriate 
journals) in PubMed Central or UK PubMed Central, no sooner than one year after first 
publication of the paper in the journal, subject to file availability and provided the 
posting includes a prominent statement of the full bibliographical details, a copyright 
notice in the name of the copyright holder (Cambridge University Press or the 
sponsoring Society, as appropriate), and a link to the online edition of the journal at 
Cambridge Journals Online.  Inclusion of this definitive version after one year in 
Institutional Repositories outside of the institution in which the contributor worked at the 
time the paper was first submitted will be subject to the additional permission of 
Cambridge University Press (not to be unreasonably withheld). 

 

10th December 2010 

 

http://hdl.handle.net/2440/511
http://journals.cambridge.org/action/stream?pageId=4088&level=2#4408


J .  Fluid Mech. ( 1  995), vol. 300, pp. 59-70 
Copyright 0 1995 Cambridge University Press 

59 

A laminar roughness boundary condition 

By E. 0. T U C K  A N D  A. KOUZOUBOVT 
Applied Mathematics Department, The University of Adelaide, Australia 5005 

(Received 23 August 1994 and in revised form 28 April 1995) 

A modified slip boundary condition is obtained to represent the effects of small 
roughness-like perturbations to an otherwise-plane fixed wall which is acting as a 
boundary to steady laminar flow of a viscous fluid. In its simplest form, for low local 
Reynolds number and small roughness slope, this boundary condition involves a 
constant apparent backflow at the mean surface or, equivalently, represents a shift of 
the apparent plane boundary toward the flow domain. Extensions of the theory are 
also made to include finite local Reynolds number and finite roughness slope. 

1. Introduction 
When a viscous fluid is in steady motion with x-wise velocity u over a stationary 

rough wall whose mean surface is the plane y = 0, the no-slip boundary condition 
u = 0 is properly applied not on y = 0 but rather on the actual rough surface. 
Nevertheless, for small roughness, the fluid will appear to be at  rest at y = 0, and near 
y = 0 the flow will be a shear flow of the form u = ay, for some apparent wall shear 
uy = a determined by the macroscopic flow far from the wall. If we seek to model the 
leading-order effect of (microscopic) roughness on such a macroscopic flow by 
applying a boundary condition on y = 0, we must expect that this boundary condition 
involves a non-zero apparent slip velocity. 

Indeed, it is intuitively clear that when a > 0, the slip velocity must represent a 
backflow, with u < 0 at the mean wall surface y = 0; the ability of the x-directed 
forcing represented by the wall shear a to move fluid in that direction is inhibited by 
the roughness. It is also intuitively clear that if e is a measure of the amplitude of height 
of the roughness, this slip velocity is of second order in e ;  first-order corrections vary 
only on the (horizontal) roughness lengthscale l / k ,  and average to zero. 

The first result obtained here is that, under certain rather restrictive conditions, the 
appropriate boundary condition is precisely 

u = -e2ka. (1.1) 

The quantities E, k can be defined in terms of means in a spectrum of random 
roughness, but can be thought of temporarily as the actual amplitude and wavenumber 
respectively in a pure sinusoidal wavy disturbance to the mean plane y = 0. The result 
(1.1) holds in two-dimensional flow when ke and a / (k2v )  are both small, where v is the 
kinematic viscosity. The first restriction is that of small-slope roughness (roughness 
height + roughness length), The second assumption is essentially that of low-Reynolds- 
number flow, on the roughness lengthscale 1 / k ,  with typical velocity a / k .  We shall seek 
to relax both of these assumptions. 

Present address: Centre for Advanced Numerical Computation in Engineering and Science, The 
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We first give a small-t. expansion for the flow that will be used as a fundamental inner 
solution on the roughness lengthscale, before returning to a more general discussion, 
and extensions to finite-slope roughness and non-small Reynolds number. 

There is of course a vast literature on roughness in fluid mechanics. Much of this 
literature concerns turbulent flow, or is of an experimental nature, and does not 
address the apparent-slip boundary-condition concern of the present paper. Never- 
theless, the general theme is often how microscopic roughness parameters influence 
macroscopic flows. Textbooks such as Schlichting (1979) cover the classical literature, 
including (p. 624) the famous Moody diagram giving the influence of roughness on 
resistance to flow in pipes. Other useful reviews are in Lachmann (1961). Samples of 
very recent roughness papers with good bibliographies are Benhalilou, Anselmet & 
Fulachier (1994), Choudhari (1994), Mazouz, Labraga & Tournier (1994). 

The simplest result (1.1) of the present work actually has much more in common 
with a classical study of G. I. Taylor (1951) on swimming motions of a sinusoidally 
waving plate. The common feature is that when one carries a perturbation expansion 
to second order in E ,  there appears to be a uniform stream far from the wall, which in 
Taylor’s case is interpreted as the swimming speed, but which in the present case is an 
apparent backflow. The extension to finite local Reynolds number has a similar 
analogy to inclusion of inertia in the swimming problem, as was treated by Reynolds 
(1965) and Tuck (1968). The extension to finite roughness slope is also similar to work 
on Stokes flow over periodic boundaries done in some other contexts, a recent example 
being Wang (1994). The actual boundary condition (1.1) or its generalizations, is 
equivalent to the slipping boundary conditions which were in vogue in the early years 
of viscous fluid theory, and associated with the names of Navier and Helmholtz, as 
reviewed by Bateman in Dryden, Murnaghan & Bateman (1956, e.g. p. 159). 

Some related work has also been done by Jansons (1988), Richardson (1973), and 
Nye (1969, 1970), using the opposite assumption to that in the present paper, namely 
that the true (microscopic) boundary condition is one of zero shear rather than exact 
non-slip, and showing that this leads to a macroscopic boundary condition which to 
leading order is of a non-slip type, but as a correction allows for a small apparent slip 
velocity. Richardson (1973) also solves a finite-slope problem with non-zero wall shear 
as in the present 95, finding an apparent slip velocity proportional to the shear, as in 
(1.1). 

Hocking (1 976) carries this Richardson approach further, and finds numerical values 
for the apparent slip velocity for a sinusoidal wavy wall, as a function of the slope k~ 
of this sinusoid. By curve-fitting to the small-slope behaviour of these computations, 
Hocking conjectures an empirical formula whose term of second-order in the slope is 
in agreement with (1.1). A very recent paper by Miksis & Davis (1994) also obtains an 
apparent slip velocity for general roughness geometry, but this slip velocity is of first- 
order, rather than second-order, in the roughness amplitude E. This is consistent with 
the present results and those of Hocking (1976) in those cases where the origin of 
coordinates is located at a plane such that the mean roughness is zero, since then the 
first-order apparent slip predicted by Miksis & Davis would vanish. 

2. Shear flow over a wavy wall 
The canonical (inner) problem to be solved is as sketched in figure 1. We seek a 

solution of the Navier-Stokes equations such that (u ,  v )  --f (ay, 0)  as y + + 00, subject to 
boundary conditions (u,  v )  = (0,O) on y = E C O S  kx. We use a stream function @(x, y ;  t.) 
and expand for small E, retaining terms up to order 2. 
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n 2n x = o  X ' T  x =x 
FIGURE 1. Sketch of shear flow over a wavy wall. 

That is, we write 

$(x, y ; €1 = $cr.y2 + E$l(x, y )  + e2$,(x, y )  + . . . 
The result of substitution into the Navier-Stokes equation 

is 
and 

where 

VV4$, - cr.yv"lx = 0 
vV4$, - UYV'$~, = J ,  

Similarly, su,stituting the expansion (2.1) into the exact b o u n a r y  conditions on 
y = ECOS kx yields conditions on y = 0 for the separate terms in the expansion, namely 

$ly = - CI cos k x ,  $zy = - $lyy cos kx (2.6) 
(2.7) 

$c.,(x,y) = Re[Y1(Y)eikxl> (2.8) 
and $ k Y )  = Re W Z ( . Y )  eZikXI + !w (2.9) 

and = 0, y?zz = - $lxy cos kx = - kcr. sin kx cos kx.  

We now assume that the x-dependence is sinusoidal, in the sense that 

for some to-be-determined functions Y, (y ) ,  Y 2 ( y ) ,  Y ( y ) ;  however, we shall have no 
interest in the second-harmonic term in Y2. 

The Navier-Stokes equations (2.2), (2.3) then give fourth-order ordinary differential 
equations for these functions of y alone. The equation for Yl is best expressed in terms 
of a vorticity function 

W( y) = Ui(y )  - k2 Yl 
= D 2 Y l ( y ) ,  (2.10) 

where (2.11) 
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Then (2.3) shows that W satisfies the Airy equation 
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- @ - ( k z + y )  ikoly w = 0. d2 W 
(2.12) 

Once W ( y )  is determined by solving the homogeneous seconL order ODE (2.12), Y l ( y )  
follows by solving the inhomogeneous second-order ODE (2. 10). 

Similarly, (2.4) can be used to give equations for U',(y) and Y ( y ) .  We are only 
interested in the latter, and, if an overbar denotes an average with respect to x, the 
required equation is 

where J is given by (2.5). After some manipulation, it can be seen that 

d2 1 
dy2 2 J ( y )  = --kRei Y i ( y )  YT(y), 

(2.13) 

(2.14) 

where a star denotes a complex conjugate. 
A similar x-representation of the boundary conditions gives 

Y1(O) = 0, Yi(0) = -a  (2.15) 

and Y(0) = 0, Y ( 0 )  = -$ Re Yy(O), (2.16) 

noting that the right-hand side of (2.7) has zero x-average. 
Our task is to solve the fourth-order ODES (2.12), (2.13). We need four boundary 

conditions; we already have two on the mean wall surface y = 0. The other two 
conditions express the fact that we must return to the shear flow u = oly as y + co. That 
is, each term in the stream function expansion (2.1) must be of smaller magnitude with 
respect to y than the leading O ( y 2 )  term as y + 00. Hence we may take as our two extra 
boundary conditions a simple requirement that the second and third derivatives of $ 
with respect to y tend to zero at infinity. 

In practice, this means for the first-order term !PI that this function and all of its 
derivatives must tend to zero, since the only alternative is an exponential growth. On 
the other hand, no such limitation applies to the mean second-order function Y(y ) .  
Thus although we do demand that the second and third (and hence all higher) 
derivatives of Y ( y )  tend to zero at infinity, this still allows Y ( y )  to behave as a linear 
function of y .  Indeed, the non-zero limiting value as y --f 00 of the derivative Y'(y)  is 
the prime output of the present study. 

Before attempting to solve the above ODE problems, we first discuss the use we shall 
make of their solution, and in particular of the value of Y(co), in the context of an 
apparent wall boundary condition. 

3. Matching conditions 
Let us for the time being retain the assumption that the wall is a pure sinusoidal wavy 

perturbation to the plane y = 0, with wavelength h = 2x/k. In the present section, it 
is not necessary to assume that this wave has a small slope k~ or € / A ,  so long as the 
roughness has only a small effect on the flow far from the wall. This can be so if both 
E and A are small relative to some outer lengthscale L, even if their ratio is not small. 

For example, L might be the width of a channel within which occurs a plane 
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Poiseuille flow. If this flow has (negative) pressure gradient p, ,  and is symmetric 
relative to the mid-plane y = L / 2  of the channel, then it has velocity 

P Z  u = u0+-(y2-Ly),  
2PV 

where u,, is the wall slip velocity at y = 0. The latter is usually taken to be zero, but we 
now allow for a more general boundary condition with non-zero slip. The behaviour 
of this flow near the wall y = 0 is thus of the form 

u = uo+GLy, (3.2) 

with P5 a=-L- .  
2p v (3 .3)  

Equation (3.2) may be considered as an ‘inner expansion of the outer expansion’ in 
the sense of matched asymptotic expansions with respect to a small parameter h/L. 
The outer expansion (on the lengthscale L)  is one where no actual roughness wave is 
seen, but where there is an apparent slip velocity u,, at y = 0. The magnitude of this 
apparent slip velocity can only be determined by matching with an inner expansion, on 
the lengthscale h 6 L. This matching principle (Van Dyke 1975) asserts that (3.2) is also 
the ‘outer expansion of the inner expansion’: that is, an apparent outer boundary 
condition as y +  co (relative to A), to be applied to the solution of the problem 
discussed in the previous section. 

We have in fact used (3.2) already as our boundary condition as y + co, except that 
u,, plays no input role, since it is dominated by the shear term ay.  On the other hand, 
u,, appears as an output (of second order with respect to e), and takes the value 

u, = eZY(C0). (3.4) 

That is, once we have solved the inner problem for the x-averaged second-order 
stream function Y(y) ,  this immediately yields the apparent slip velocity u, for use in the 
outer problem. 

We now consider the effect of a general distribution of small-amplitude roughness. 
At least for gentle roughness with ke small, this can be considered as a stationary 
random process, obtained by summing infinitely many sinusoidal waves of random 
phase, each with amplitude c proportional to the square root of a power spectrum 
which is a general function of wavenumber k. The nature of the x-averaging process 
at second order in s is such that the final contribution to the slip velocity is just 
proportional to this power spectrum. That is, we have to average (3.4) over all 
members of the ensemble of sinusoidal waves making up the roughness spectrum. 

4. Low Reynolds number limit for small-slope roughness 
The formulation of the inner problem for gentle roughness with ks small in $2 can 

be rendered non-dimensional using the lengthscale l/k and velocity scale a/k. 
Although there is no need to do such an explicit scaling, the resulting equations would 
involve the Reynolds number 

and the inner problem is consistent when R is order 1 .  In the present section we discuss 
the further simplification that results when R is small. 
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In effect, this is the limit as v-t co. The Airy ODE (2.12) reduces to a constant- 
coefficient equation, and the final solution for Yl satisfying all boundary conditions is 
simply 

y = -eye-k^". (4.2) 
Turning to the solution for the second-order stream function Y(y ) ,  we see first that 

the Jacobian J i s  zero (since Yl is real), so Y must have zero fourth derivative, i.e. must 
be a cubic expression in y. The y2 and y 3  terms must vanish by the boundary condition 
at  infinity, and the constant term must be zero by the boundary condition on the wall. 
Hence Y is just a multiple of y, namely 

Y ( y )  = - f Re ul;l(O) y 
= - kay. (4.3) 

Thus we have shown that !P'(co) = - k a ,  and hence using (3.4) have found the 
apparent wall slip velocity 

verifying (1.1) since (3.2) has u = uo on y = 0. In this low-R limit, the whole O(t.') mean 
flow is nothing more than a uniform stream of magnitude uo. A similar conclusion was 
obtained by Taylor (1951) in his study of swimming. 

Equation (4.4) holds in the first place for a pure sinusoidal wave of amplitude c and 
wavenumber k .  It extends immediately to a general periodic roughness of zero mean, 
represented by a Fourier series 

U" = - 2 k a ,  (4.4) 

cc 

y = c C a, cos nkx + 6, sin nkx 
n=1 

(4.5) 

for some coefficients a,, b,. The pure sine wave has a, = 1 and all other Fourier 
coefficients zero. The apparent slip velocity corresponding to the general periodic 
roughness (4.5) is 

(4.6) 

which reduces to (4.4) for the pure sine wave. The discussion at the end of the previous 
section can now be formalized to generalize (4.6) further to the case of a non-periodic 
random roughness, where the coefficients a,, b, are suitably random. In a sense, the 
general result (4.6), whether for periodic or random roughness, may be considered to 
be still of the simple form (4.4), provided the constant k appearing in it is re-defined 
as a suitable weighted mean wavenumber of the roughness, and E is the RMS roughness 
amplitude. 

r 
u,, = - e2ka 2 n(ai + bi ) ,  

n=l 

Since a = u,, equation (4.4) can also be written as 

u+Su, = 0 (4.7) 

S = 2 k .  (4.8) 

on y = 0, where the constant 6 is given by 

This type of slip boundary condition (4.7) is of some antiquity, being sometimes 
referred to as Navier's or Helmholtz's boundary condition (Dryden et al. 1956, p. 163). 
In one sense it is trivial, since it is also the condition that one would obtain simply by 
transferring the no-slip condition from y = 0 to y = 6, as discussed by Butcher (1876). 
Thus if there was a no-slip plane wall at y = S, we would have u(x, 6) = 0, which is 
approximated for small 6 by the truncated Taylor series u(x, 0) + Su,(x, 0) = 0, and this 
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is identical to (4.7). Hence 6 may be interpreted as a displacement thickness, and the 
Navier boundary condition (4.7) simply reflects the role of the roughness in creating a 
planar displacement of the apparent boundary. 

Yet another interpretation of this result is that, for a given non-sinusoidal (especially 
random) roughness distribution, it may not be obvious in advance what to choose as 
a fluid-dynamically significant ‘mean’ plane. What we have shown is that if y = 0 
defines the geometric mean surface (i.e. a plane with as much volume of roughness 
peaks above it as roughness troughs below it), the flow behaves as if there were a non- 
slip plane boundary at  y = S rather than at  y = 0. Intuitively, this apparent plane 
boundary is nearer to the peaks of the roughness than it is to the troughs, since (at least 
in the low-Reynolds-number limit) fluid trapped in the microscopic roughness pores 
appears to the macroscopic flow as if it were almost solid, so effectively removing some 
of the deeper troughs. 

In this context, it is interesting to note that Hocking (1976) locates his origin of 
coordinates for a pure-sinusoidal wavy wall not at the mean surface, but rather at the 
crests of the sine wave. He then finds an apparent slip coefficient which contains a 
(positive) term of the first order in the wave amplitude, but this first-order term simply 
shifts the apparent origin of coordinates back to the geometric mean surface. The 
remainder of Hocking’s apparent slip coefficient is negative, and to leading (second) 
order in wave slope agrees with the present results. The correct location for a fluid- 
dynamically significant apparent mean surface is neither at the geometric mean plane 
nor at the roughness crests, but somewhere in between. 

5. Low Reynolds number solution for finite-slope periodic roughness 
To illustrate the effect of the small-slope assumption, let us relax it while retaining 

the low-Reynolds-number assumption. Suppose that the boundary is a wall y =Ax) of 
a general periodic nature, the function f(x) being specified on a half-wavelength 
0 < x < n/k. Our main example (for which figure 1 remains relevant) is the same 
sinusoidal waveflx) = ecoskx as was used earlier, but without the assumption that ke 
is small. 

We shall attempt to solve the biharmonic equation 

v4+ = 0 (5.1) 
for the stream function +(x, y ) ,  assuming symmetry with respect to x at both planes 
x = 0 and x = n / k ,  and zero velocity +z = +c., = 0 on the wall y =.f(x) .  The boundary 
condition at infinity is that we recover the shear flow (3.2). 

There are a number of techniques for solving the biharmonic equation (5.1) 
numerically, subject to these boundary conditions. In particular, finite difference 
methods are suitable and of good general applicability, but with the defect that the grid 
must in some way be extended toward y = cn. An alternative (cf. Wang 1994; Tuck & 
Schwartz 1994) is to use a truncated eigenfunction expansion, as follows. Richardson 
(1 973) used a special inverse solution for a similar purpose. 

A representation as a sum of elementary biharmonic functions with the appropriate 
symmetries is 

cz 

@(x, y )  = $zyz + uo y + C [aj + yb,] e-j’y cos Gkx),  (5.2) 
j=1 

where u,, aj, bj are all constants to be determined. Since the series part of (5.2) tends to 
zero exponentially fast as y + co, (3.2) holds in that limit, upon y-differentiation. 
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FIGURE 2. Reduction factor on apparent slip velocity, due to finite roughness slope 

All we have left to do  is to force (5.2) to satisfy the zero-velocity conditions on the 
wall y =Ax). Hocking (1976) did this semi-analytically for the special sinusoidal case, 
expanding in a double series and collecting Fourier terms. We do it here in the 
somewhat cruder way, collocating at N distinct points inside the interval 0 < x < x/k, 
and truncating the series (5.2) after the Nth term. There are then a total of 2N+1 
unknowns, namely u, and (uj, bj), j = 1,2, . . ., N .  We get 2N equations by this interior 
collocation, and add one more by demanding that u = 0 on the wall at the right-hand 
end of the interval x = x / k .  Note that v = 0 already at both ends, by symmetry; the 
choice of making u = 0 at the right-hand end is arbitrary, and consistent numerical 
results were also obtained using the left-hand end x = 0. 

The method was tested on the sinusoidal wave with amplitude s. The results for 
u,/( - ks2a) are given as a function of the slope ke in figure 2. The small-slope theory 
indicates that this ratio should be 1, and this is indeed the limit as k s i 0 .  The present 
method gives good results for moderate slopes (in agreement with Hocking 1976), but 
fails suddenly when the nonlinearity becomes too severe, specifically when ke > 0.5, 
because the exponentials in late terms of the series (5.2) overflow at the troughs where 
y < 0. Meanwhile, however, it indicates that nonlinearity reduces the apparent 
backflow u, by up to about 15 % at just below the failure point. 

Failure of the method occurs just at the point where (according to small-slope 
theory) actual inner-region backflow would begin in the troughs of the roughness 
wave. To illustrate this, figure 3 shows a plot of the computed wall shear 
uy = $,,(x/k,  -s) at the extreme point of the trough in the roughness wave (point T 
of figure l), as a function of the wave slope. It is not hard to use the small-slope theory 
(carrying the analysis a step further to give the second-harmonic term !P2(y) in (2.9)) 
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FIGURE 3. Actual wall shear a t  the extreme trough point, as a function of roughness slope. 

to show that, according to that theory, the wall shear at the trough decreases linearly 
with wall slope, becoming negative for ke > 0.5. This is shown by the dashed line on 
figure 3.  If that conclusion was sustained by the nonlinear theory, local backflow would 
occur, and there would be a standing eddy in the trough whenever ks > 0.5. However, 
the actual nonlinear computations, the solid curve in figure 3, suggest that the wall 
shear remains positive beyond ks = 0.5, up to significantly greater slopes, perhaps for 
ever. 

This question could only be settled properly by use of a numerical method such as 
finite differences which handled extreme nonlinearity better than does the series 
expansion (5.2). However, it is notable that Wang (1994) does obtain standing eddies 
for walls with a periodic array of perpendicular plate projections, using a series 
truncation method. We have carried out some preliminary finite-difference compu- 
tations for a stepped (square-wave) wall, giving apparent-slip results similar to those 
obtained by the series method, and indicating reversed flow in the troughs at  
sufficiently high steps. However, further work is needed to confirm this trend; for such 
a stepped roughness, the series in (4.6) diverges, so that there is no finite small-s limit 
to the ratio u ~ / E ~ .  

In effect, the present results generalize (1.1) to 

u = -s2kaF,(ks) (5.3) 

for some function F,(s) such that F , ( O )  = 1. Our results as in figure 2 suggest that 
F,(s) < 1 for slopes s > 0, at least for sinusoidal perturbations. The program has also 
been tested on some other periodic perturbations, e.g. a saw-tooth wall, with a similar 
qualitative conclusion of reduced backflow due to finite-slope effects. The nonlinear 
dependence of the slip velocity on the wavenumber k makes it difficult to extend the 
present results to random (non-periodic) roughness. 
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6. Finite Reynolds number solution for small-slope roughness 
The general solution of the ODE (2.12) can be expressed as a linear combination of 

Airy functions, or equivalently in terms of Bessel functions of order 1/3. Choosing the 
latter approach, a particular solution is 

W = W,(y) = zli3Kli3(z), (6.1) 
where Kis the modified Bessel function of the third kind (Abramowitz & Stegun, 1964, 
p. 374), and 

312 

The general solution of (2.12) is a linear combination of the solution W, defined in (6.1) 
and another linearly independent solution involving the first-kind modified Bessel 
function Z&). However, we exclude the latter on the basis that it becomes unbounded 
as y + + 00 (assuming Re z > 0). 

Thus the appropriate solution of (2.12) for our purpose is 

WbJ) = aW(.Y) (6.3) 
for some constant a to be determined. Then (at fixed a)  the solution of the 
inhomogeneous ODE (2.10) for !PI is 

a 
k Yl(y) = 1 sinh k( y - t )  W,( t )  dt - - sinh ky  , 

which satisfies both boundary conditions on the plane y = 0. However, it is not yet 
assured of correct behaviour at  infinity, and we must choose the constant a so this is 
so. Namely, if we let y+ + GO and cancel the exponentially growing term, we find 

Equation (6.4) subject to (6.5) is the complete solution for the first-order stream 
function !Pl. Let us for the present assume that this function and hence the Jacobian 
J (y )  is fully known. If (2.13) is integrated twice, we have 

vE= $kkei'Y;(y) q ( y ) .  
dY2 

In general, a linear function of y might be added to (6.6), but this is incompatible with 
the boundary condition at y = + co ; note that the right-hand side of (6.6) tends to zero 
exponentially rapidly as y + + 00. 

Integrating (6.6) twice more and applying the boundary conditions (2.16) gives 

Y(y)  = -+Re ( y - t )  Yi(t) YF(t)dt. 2v 

Hence on differentiation and letting y --f + 00, we obtain our fundamental output 
quantity 

!J"(Go) =-;Re 
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FIGURE 4. Increased apparent slip factor (dashed curve) due to finite Reynolds number effects. 
Solid curve shows the result of ignoring inertia terms. 

The apparent slip velocity is given by (3.4), and !P'(co) is now known, since (6.8) 
involves only the quantity Y , ( y )  which is prescribed by (6.4) and (6.5). 

It is notable that, in contrast to the low-R theories, the final results from this finite- 
R theory depend nonlinearly on the wall shear a. Thus (1.1) generalizes (in a similar 
manner to (5.3)) to 

u = - e2kaF, (k) 
for some function F,(R) such that h ( 0 )  = 1. This function can be determined by 
numerical integration of equations (6.8). We used Simpson's rule on the integrals in 
(6.4), (6.5) and (6.7), with appropriate series or asymptotic representations for the 
Bessel function in (6.1). 

Our numerical results are given in the dashed curve of figure 4. We find that 
F,(R) > 1 for R > 0: that is, the apparent slip velocity is increased by finite-Reynolds- 
number effects. This increase is mainly due to the first term of ( 6 4 ,  which arises from 
boundary-condition corrections. The second term of (6.8), which arises from the 
quadratic inertia terms in the Navier-Stokes equations, has the effect of reducing this 
increase. This conclusion about the negative effect of the inertia terms is similar to that 
obtained by Tuck (1968) for the Taylor swimming problem. In that problem, the net 
result was a decreased swimming speed, whereas an earlier study by Reynolds (1965) 
which omitted the second (inertia) term had reached an opposite conclusion. Figure 4 
also shows (solid curve) the result in the present case that would hold if only the first 
term of (6.8) was retained. The present numerical computations have been checked by 
a low-R asymptotic expansion, showing that 6 z 1 + R2/8; if only the first term of 
(6.8) is retained, the result is F2 z 1 +3R2/16. 

The nonlinear dependence of (6.9) on a makes it difficult to use the Butcher 
interpretation of the boundary condition in the form (4.7) as a shift of the apparent 
plane boundary. As with the finite-slope extension (5.3), the nonlinear dependence on 
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wavenumber k also makes it difficult to extend these sinusoidal results by summation 
to the case of random roughness. 
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