NUMERICAL SIMULATION OF STRENGTHENED UNREINFORCED MASONRY (URM) WALLS BY NEW RETROFITTING TECHNOLOGIES FOR BLAST LOADING

BY
YU SU
B.E., Civil/Structural

School of Civil, Environmental and Mining Engineering
The University of Adelaide

December 2008
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Y. Su
10 December 2008
ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to his supervisors, Dr. C.Q. Wu and Associate Professor M. Griffith, for their invaluable guidance and supervision during the course of this study. Their good nature, patience, frankness, and technical expertise had a profound impact on the author’s academic experience and personal goals. Special thanks are given to Stephen Carr, Computing Support, for helping with definitely improving the software and hardware environment.

Finally, the author extends his sincerest thanks to his family for the ongoing support, especially his father Guozhi and uncle Dachen.
PUBLICATIONS FROM THE THESIS

International Journal papers:

International Conference papers:

ABSTRACT

Terrorism has become a serious threat in the world, with bomb attacks carried out both inside and outside buildings. There are already many unreinforced masonry buildings in existence, and some of them are historical buildings. However, they do not perform well under blast loading. Aiming on protecting masonry buildings, retrofitting techniques were developed. Some experimental work on studying the effect of retrofitted URM walls has been done in recent years; however, these tests usually cost a significant amount of time and funds. Because of this, numerical simulation has become a good alternative, and can be used to study the behaviour of masonry structures, and predict the outcomes of experimental tests.

This project was carried out to find efficient retrofitting technique under blast loading by developing numerical material models. It was based on experimental research of strengthening URM walls by using retrofitting technologies under out-of-plane loading at the University of Adelaide. The numerical models can be applied to study large-scaled structures under static loading, and the research work is then extended to the field of blast loading. Aiming on deriving efficient material models, homogenization technology was introduced to this research. Fifty cases of numerical analysis on masonry basic cell were conducted to derive equivalent orthotropic material properties. To study the increasing capability in strength and ductility of retrofitted URM walls, pull-tests were simulated using interface element model to investigate the bond-slip relationship of FRP plates bonded to masonry blocks. The interface element model was then used to simulate performance of retrofitted URM walls under static loads. The accuracy of the numerical results was verified by comparing with the experimental results from previous tests at the University of Adelaide by Griffith et al. (2007) on unreinforced masonry walls and by Yang (2007) on FRP retrofitted masonry walls. To study the debonding behaviours of retrofits...
bonded to masonry, and find appropriate solution to protect certain masonry walls against blast loading, various retrofitting technologies were examined. The simulation covers explosive impacts of a wide range of impulses. Based on this work, pressure-impulse diagrams for different types of retrofitted URM walls were developed as a design guideline for estimating the blast effect on retrofitted masonry walls.

The outcomes of this research will contribute to the development of numerical simulation on modelling retrofitted URM walls, improving the technique for explosion-resistant of masonry buildings, and providing a type of guideline for blast-resistant design.
CONTENTS

DELRARATION ... I

ACKNOWLEDGEMENTS ... II

PUBLICATIONS FROM THE THESIS .. III

ABSTRACT ... IV

LIST OF FIGURES ... IX

LIST OF TABLES .. XV

1. INTRODUCTION ..
 1.1. BACKGROUND ...
 1.2. SCOPE AND OBJECTIVES ..
 1.3. THESIS OUTLINE ...

2. LITERATURE REVIEW ..
 2.1. INTRODUCTION ...
 2.2. BACKGROUND OF URM STRUCTURES ..
 2.3. CONVENTIONAL METHODS FOR URM STRENGTHENING
 2.3.1. Fibre Reinforced Polymers ...
 2.3.2. Spray-on Polyurea ...
 2.3.3. Aluminium Foam ..
 2.4. ESTIMATING RESPONSE OF MASONRY WALLS UNDER BLAST LOADING ...
 2.4.1. Estimation of Blast Loading ...
 2.4.2. Finite Element Method ..
 2.4.3. Design Guideline ..
 2.5. SUMMARY ...

3. NUMERICAL SIMULATION OF URM WALLS USING THE
 HOMOGENIZATION TECHNIQUE ..
3.2.1. Homogenization Technique ... 22
3.2.2. Material Models for Brick and Mortar ... 23
3.2.3. Masonry Basic Cell and Convergence Tests 32
3.2.4. Simulated Stress-Strain Relationships of the Masonry Basic Cell .. 35
3.2.5. Equivalent Material Properties ... 40
3.2.6. Development of Failure Criterion of Masonry Basic Cell 40
3.3. SMEARED CRACK MODEL ... 42
3.4. VALIDATION OF HOMOGENIZED MODEL ... 45
 3.4.1. Experiments of Masonry Walls ... 45
 3.4.2. Simulation of Masonry Walls ... 47
 3.4.3. Experimental and Numerical Validation 49
3.5. CONCLUSIONS .. 52

4. SIMULATION OF FRP REPAIRED URM WALL UNDER OUT-OF-PLANE LOADING .. 53
 4.1. INTRODUCTION .. 53
 4.2. MATERIAL MODELS IN SIMULATION ... 54
 4.2.1. Masonry .. 54
 4.2.2. FRP Models .. 55
 4.2.3. Bond-Slip Models ... 56
 4.3. VALIDATION OF THE NUMERICAL MODEL USING PULL TESTS 60
 4.3.1. Pull Test Program ... 60
 4.3.2. Distinct Models ... 62
 4.3.3. Homogenized Model and Smeared Crack Model 66
 4.4. APPLICATION OF THE NUMERICAL MODELS FOR FRP REPAIRED URM WALLS UNDER OUT-OF-PLANE LOADING .. 70
 4.5. CONCLUSIONS ... 77

5. MITIGATION OF BLAST EFFECTS ON RETROFITTED URM WALLS .. 78
 5.1. INTRODUCTION .. 78
5.2. MATERIAL MODELS IN THE SIMULATION ...79
 5.2.1. Material Model for Spray-on Polyurea ... 79
 5.2.2. Material Model for Aluminium Foam... 80
5.3. SIMULATION OF RETROFITTED URM WALLS AGAINST BLAST
 LOADING..85
 5.3.1. Blast Loading... 85
 5.3.2. URM Walls .. 88
 5.3.3. NSM CFRP Retrofitted URM Walls ... 88
 5.3.4. EB CFRP or GFRP Retrofitted URM Walls... 90
 5.3.5. Spray-on Polyurea Retrofitted URM Walls ... 97
 5.3.6. Aluminium Foam Protected URM Walls ... 100
 5.3.7. Combination of Aluminium Foam with Other Retrofits 105
5.4. PRESSURE-IMPULSE (P-I) DIAGRAM FOR RETROFITTED URM
 WALLS..107
5.5. CONCLUSIONS.. 118

6. CONCLUSIONS AND RECOMMENDATIONS ..119
 6.1. SUMMARY AND CONCLUSIONS ..119
 6.2. RECOMMENDATIONS FOR FURTHER RESEARCH120
NOTATIONS...122
REFERENCES..125
APPENDIX A: NUMERICIAL MODEL OF THE MASONRY BASIC CELL134
APPENDIX B: NUMERICAL MODELS OF THE PULL-TESTS141
APPENDIX C: NUMERICAL MODELS OF THE ALUMINIUM FOAM
 PROTECTED URM WALLS ...152
LIST OF FIGURES

FIGURE 2.1 SAMPLES OF EB & NSM FRP PLATES .. 9
FIGURE 2.2 TYPICAL FREE-AIR PRESSURE TIME HISTORY 13
FIGURE 2.3 SURFACE BURST BLAST ENVIRONMENT ... 14
FIGURE 2.4 HOMOGENIZATION OF MASONRY MATERIAL (WU AND HA 2006) 18
FIGURE 3.1 HOMOGENIZATION OF MASONRY MATERIAL 23
FIGURE 3.2 DRUCKER-PRAGER YIELD SURFACE ... 24
FIGURE 3.3 NOMINAL DIMENSIONS OF BRICK UNIT (MM) 25
FIGURE 3.4 VOLUMETRIC STRAIN VERSUS PRESSURE CURVE FOR SOIL AND CRUSHABLE FOAM MODEL (LSTC 2007) ... 27
FIGURE 3.5 THE INPUT ELASTIC CONSTITUTIVE RELATIONSHIPS OF BRICK AND MORTAR 28
FIGURE 3.6 THEORETICAL STRESS-STRAIN RELATIONSHIP 28
FIGURE 3.7 CONFIGURATION OF THE COMPRESSION TESTS 31
FIGURE 3.8 5-LAYER-BRICK MODEL .. 31
FIGURE 3.9 STRESS-STRAIN CURVES OF THE SIMULATION AND TESTS 32
FIGURE 3.10 MASONRY BASIC CELL FINITE ELEMENT MODEL (3560 ELEMENTS) 33
FIGURE 3.11 TYPICAL STRESS-STRAIN RELATIONSHIPS OF THE BASIC CELL IN COMPRESSIVE-COMPRESSIVE STRESS STATES .. 37
FIGURE 3.12 TYPICAL STRESS-STRAIN RELATIONSHIPS OF THE BASIC CELL IN COMPRESSION-TENSION AND TENSION-TENSION STRESS STATES 38
FIGURE 3.13 STRESS-STRAIN RELATION OF THE MASONRY BASIC CELL IN A SHEAR STRESS STATE .. 39
FIGURE 3.14 FAILURE CURVE IN XY PLANE ... 42
FIGURE 3.15 SHEAR SOFTENING MODES FOR THE MODE II 44
FIGURE 3.16 LOAD-DISPLACEMENT RELATIONS DURING CRACK PROPAGATION 44
FIGURE 3.17 SMEARED CRACK MODEL UNDER MODE I AND II 45
FIGURE 3.18 SHORT RETURN WALLS USED TO STABILIZE WALLS 46
FIGURE 3.19 AIRBAG ARRANGEMENT... 47
FIGURE 3.20 CONFIGURATION OF URM WALL WITH OPENING .. 48
FIGURE 3.21 DISTINCT MODEL AND HOMOGENIZED MODEL OF THE URM WALLS WALL
OPENING.. 48
FIGURE 3.22 COMPARISON OF RESULTS FROM THE SHORT WALL WITH AND WITHOUT
PRE-COMPRESSION TEST AND SIMULATION .. 50
FIGURE 3.23 CRACK PATTERNS OF TESTS AND SIMULATIONS ... 51
FIGURE 3.24 CRACK PATTERNS OF SMEARED-CRACK MODEL ... 51
FIGURE 4.1 INTERFACE ELEMENTS MODEL AND CONTACT MODEL ... 57
FIGURE 4.2 BEHAVIOUR OF BOND-SLIP RELATIONSHIP (YANG 2007) ... 58
FIGURE 4.3 STRESS-DISPLACEMENT CURVES OF INTERFACE ELEMENT MODEL 58
FIGURE 4.4 YIELD CRITERION FOR INTERFACE MATERIAL MODEL... 59
FIGURE 4.5 PULL-TEST SPECIMENS... 61
FIGURE 4.6 GFRP FULLY DEBONDING FAILURE ... 61
FIGURE 4.7 DISTINCT NUMERICAL MODELS OF NSM AND EB PULL-TESTS... 62
FIGURE 4.8 COMPARISON OF RESULTS OF LOCAL BOND-SLIP RELATIONSHIPS IN A PULL
TEST USING INTERFACE ELEMENT MODEL ... 63
FIGURE 4.9 COMPARISON OF RESULTS OF LOAD-DEFLECTION CURVES IN A PULL TEST
USING INTERFACE ELEMENT MODEL .. 63
FIGURE 4.10 COMPARISON OF RESULTS OF LOCAL BOND-SLIP RELATIONSHIPS IN A PULL
TEST USING CONTACT MODEL .. 64
FIGURE 4.11 COMPARISON OF RESULTS OF LOAD-DEFLECTION CURVES IN A PULL TEST
USING CONTACT MODEL ... 64
FIGURE 4.12 DEBONDING FAILURE PROGRESS OF EB GFRP MODEL .. 65
FIGURE 4.13 CRACK PATTERNS ... 66
FIGURE 4.14 HOMOGENIZED MODELS OF PULL TESTS... 67
FIGURE 4.15 COMPARISON OF RESULTS OF LOCAL BOND-SLIP RELATIONSHIPS IN PULL
TESTS ... 68
FIGURE 4.16 COMPARISON OF RESULTS OF LOAD-DEFLECTION CURVES IN PULL TESTS 68
FIGURE 4.17 COMPARISON OF RESULTS OF LOCAL BOND-SLIP RELATIONSHIPS IN PULL
TESTS ... 68
FIGURE 4.18 COMPARISON OF RESULTS OF LOAD-DEFLECTION CURVES IN PULL TESTS .. 69
FIGURE 4.19 COMPARISON OF COMPUTING TIME WITH DIFFERENT MODELS IN PULL TESTS ... 70
FIGURE 4.20 CONFIGURATION OF THE DAMAGED URM WALL REPAIRED WITH TWO NSM PLATES .. 71
FIGURE 4.21 CONFIGURATION OF THE DAMAGED URM WALL REPAIRED WITH FIVE EB STRIPS ... 72
FIGURE 4.22 EXPERIMENTAL SETUP FOR THE FRP REPAIRED DAMAGED URM WALL .. 72
FIGURE 4.23 NUMERICAL MODELS OF THE FRP REPAIRED DAMAGED URM WALLS .. 73
FIGURE 4.24 LOAD-DISPLACEMENT CURVES OF THE URM WALLS UNDER THE REVERSED-CYCLIC LOADING ... 73
FIGURE 4.25 SIMULATION OF THE LAST PART OF LOAD-DISPLACEMENT CURVE WITH VARIOUS COEFFICIENTS OF FRICTION .. 74
FIGURE 4.26 SIMULATION OF NSM REPAIRED URM WALL USING THE HOMOGENIZED MODEL AND SMEAR CRACK MODEL .. 75
FIGURE 4.27 COMPARISON OF MAXIMUM STRAIN DISTRIBUTION ALONG TWO NSM CFRP PLATES ... 75
FIGURE 4.28 COMPARISON OF MAXIMUM STRAIN DISTRIBUTION ALONG TWO EB GFRP PLATES ... 76
FIGURE 4.29 SIMULATION OF EB REPAIRED URM WALL USING THE HOMOGENIZED MODEL AND SMEAR CRACK MODEL .. 77
FIGURE 5.1 SCHEMATIC STRESS- STRAIN CURVE OF ALUMINIUM FOAM (CYMAT 2003) 81
FIGURE 5.2 NUMBERING CONVENTION OF FOAM MATERIAL DIRECTIONS ... 83
FIGURE 5.3 COMPARISON OF COMPRESSIVE STRESS-STRAIN CURVES BETWEEN SIMULATION AND TEST IN DIRECTION A 84
FIGURE 5.4 CHARACTERISTICS OF COMPRESSIVE STRESS-STRAIN CURVES OF ALUMINIUM FOAM IN ORTHOTROPIC DIRECTIONS .. 84
FIGURE 5.5 SURFACE BURST BLAST ... 86
FIGURE 5.6 SURFACE BURST BLAST – VERTICAL SECTION .. 86
FIGURE 5.7 IDEALIZED PRESSURE-TIME VARIATION ... 87
FIGURE 5.8 COMPARISON OF PEAK PRESSURE P_{so} .. 87
FIGURE 5.9 PERFORMANCE OF URM WALL UNDER DIFFERENT BLAST LOADS 88
FIGURE 5.10 NSM CFRP RETROFITTED URM WALLS ... 89
FIGURE 5.11 DEBONDING FAILURE OF NSM CFRP RETROFITTED URM WALLS 90
FIGURE 5.12 EB GFRP RETROFITTED URM WALL .. 91
FIGURE 5.13 DAMAGED EB GFRP RETROFITTED URM WALL (4 PLATES ON REAR SIDE) .. 92
FIGURE 5.14 DAMAGED EB GFRP RETROFITTED URM WALL (8 PLATES ON REAR SIDE) .. 92
FIGURE 5.15 URM WALL FULLY RETROFITTED WITH EB GFRP SHEET ON REAR SURFACE .. 92
FIGURE 5.16 URM WALL FULLY RETROFITTED WITH EB GFRP SHEETS ON BOTH SURFACES .. 93
FIGURE 5.17 COMPARISON OF EB GFRP RETROFITTED URM WALLS .. 93
FIGURE 5.18 EB CFRP RETROFITTED URM WALLS (4 PLATES) .. 94
FIGURE 5.19 EB CFRP RETROFITTED URM WALLS ON ENTIRE SURFACE 95
FIGURE 5.20 FULLY EB CFRP RETROFITTED URM WALLS ON BACK SURFACE 95
FIGURE 5.21 TWO SIDES FULLY EB CFRP RETROFITTED URM WALLS 96
FIGURE 5.22 COMPARISON OF EB CFRP RETROFITTED URM WALLS 96
FIGURE 5.23 COMPARISON OF EB FRP RETROFITTED URM WALLS 97
FIGURE 5.24 THICKNESS OF SPRAY-ON POLYUREA ON BLAST MITIGATION EFFECTS 98
FIGURE 5.25 SPRAY-ON POLYUREA RETROFITTED URM WALLS UNDER BLAST LOADS... 98
FIGURE 5.26 LOCAL FAILURE OF THE SPRAY-ON POLYUREA AND MASONRY (VERTICAL SECTION) .. 99
FIGURE 5.27 TWO SIDES 15MM SPRAY-ON POLYUREA RETROFITTED URM WALLS....... 99
FIGURE 5.28 COMPARISON OF ENERGY ABSORPTION OF THE SPRAY-ON POLYUREA RETROFITTED WALLS .. 100
FIGURE 5.29 NUMERICAL MODEL OF ALUMINIUM FOAM PROTECTED URM WALL 101
FIGURE 5.30 PERFORMANCE OF ALUMINIUM FOAM PROTECTED URM WALLS UNDER
List of Figures

FIGURE 5.31 PERFORMANCE OF ALUMINIUM FOAM PROTECTED TWO SURFACES OF URM WALLS UNDER BLAST LOADS ... 102

FIGURE 5.32 COMPARISON OF ENERGY ABSORPTION OF ALUMINIUM FOAM PROTECTED URM WALLS .. 102

FIGURE 5.33 COMPARISON OF RETROFITTED URM WALLS ... 102

FIGURE 5.34 DIFFERENT DENSITIES OF ALUMINIUM FOAM ON MITIGATION OF BLAST EFFECTS ON URM WALL .. 104

FIGURE 5.35 DIFFERENT LAYER THICKNESS OF ALUMINIUM FOAM ON MITIGATION OF BLAST EFFECTS ON URM WALL ... 104

FIGURE 5.36 ALUMINIUM FOAM WITH DIFFERENT DENSITIES ... 104

FIGURE 5.37 ALUMINIUM FOAM SHEET WITH DIFFERENT THICKNESS 105

FIGURE 5.38 MASONRY WALL PROTECTED BY ALUMINIUM FOAM WITH DIFFERENT DENSITIES OR WITH DIFFERENT THICKNESS ... 105

FIGURE 5.39 COMBINATION OF ALUMINIUM FOAM WITH SPRAY-ON POLYUREA 106

FIGURE 5.40 COMBINATION OF ALUMINIUM FOAM AND STEEL PLATES 106

FIGURE 5.41 COMBINATION OF ALUMINIUM FOAM AND CFRP PLATES 107

FIGURE 5.42 COMPARISON OF EFFECTIVENESS ON ALUMINIUM FOAM PROTECTED WALL .. 107

FIGURE 5.43 P-I DIAGRAM FOR URM WALLS AGAINST AIRBLAST LOADS 108

FIGURE 5.44 DEFORMATION PROCESS OF ALUMINIUM FOAM PROTECTED URM WALL (VERTICAL SECTION) ... 109

FIGURE 5.45 DETERMINATION OF DAMAGE LEVELS BASED ON ENERGY ABSORPTION RATIO ... 111

FIGURE 5.46 ABSORBED ENERGY RATIO OF ALUMINIUM FOAM PROTECTED URM WALLS ... 112

FIGURE 5.47 ABSORBED ENERGY RATIO OF EB CFRP OR GFRP RETROFITTED URM WALLS ... 112

FIGURE 5.48 ABSORBED ENERGY RATIO OF SPRAY-ON POLYUREA RETROFITTED URM WALLS ... 112
List of Figures

FIGURE 5.49 P-I DIAGRAMS FOR ALUMINIUM FOAM PROTECTED URM WALLS (FRONT SIDE) ... 113
FIGURE 5.50 P-I DIAGRAM OF ALUMINIUM FOAM PROTECTED URM WALLS (BOTH SIDES) ... 113
FIGURE 5.51 P-I DIAGRAMS FOR URM WALLS AND FOAM PROTECTED URM WALLS... 114
FIGURE 5.52 P-I DIAGRAM FOR EB CFRP RETROFITTED URM WALLS...................... 114
FIGURE 5.53 P-I DIAGRAM FOR EB GFRP RETROFITTED URM WALLS 115
FIGURE 5.54 P-I DIAGRAM FOR SPRAY-ON POLYUREA PROTECTED URM WALLS ... 115
FIGURE 5.55 INFLUENCE OF CHARGE WEIGHT ON EFFECT OF PROTECTION IN P-I DIAGRAMS OF ALUMINIUM FOAM PROTECTED URM WALLS 116
FIGURE 5.56 INFLUENCE OF CHARGE WEIGHT ON EFFECT OF PROTECTION IN P-I DIAGRAMS OF EB FRP RETROFITTED URM WALLS ... 116
FIGURE 5.57 INFLUENCE OF CHARGE WEIGHT ON EFFECT OF PROTECTION IN P-I DIAGRAMS OF SPRAY-ON POLYUREA RETROFITTED URM WALLS 117
FIGURE 5.58 P-I DIAGRAMS FOR RETROFITTED URM WALLS AT DAMAGE LEVEL II 117
FIGURE 5.59 P-I DIAGRAMS FOR RETROFITTED URM WALLS AT DAMAGE LEVEL I 118
LIST OF TABLES

TABLE 3.1 MATERIAL PROPERTIES FOR BRICK AND MORTAR .. 26
TABLE 3.2 DESCRIPTION OF THE INPUTS .. 30
TABLE 3.3 SUMMARY OF INPUT VALUES .. 30
TABLE 3.4 AVERAGE STRESS AND STRAIN OF CENTRAL ELEMENTS 35
TABLE 3.5 EQUIVALENT MATERIAL PROPERTIES .. 40
TABLE 3.6 WALL GEOMETRY AND BOUNDARY CONDITIONS (GRIFFITH ET AL. 2007) 46
TABLE 4.1 CARBON FRP MATERIAL PROPERTIES (YANG 2007) 55
TABLE 4.2 GFRP MATERIAL PROPERTIES (YANG 2007) .. 55
TABLE 4.3 INPUTS OF INTERFACE MODEL FOR VARIOUS RETROFITS 58
TABLE 5.1 MATERIAL PROPERTIES OF SPRAY-ON POLYUREA (DAVIDSON ET AL. 2005) ... 80
TABLE 5.2 MATERIAL PROPERTIES OF A356SiC040 ALUMINIUM FOAM 84
TABLE 5.3 PROPERTIES OF A356SiC030 ALUMINIUM FOAM 103
TABLE 5.4 PROPERTIES OF A356SiC020 ALUMINIUM FOAM 103
TABLE 5.5 MATERIAL PROPERTIES OF URM WALL ... 109
TABLE 5.6 DAMAGE LEVELS FOR ALUMINIUM FOAM PROTECTED URM WALL......... 110
1. INTRODUCTION

1.1. BACKGROUND

The protection of structures against blast loads is a government research priority for “Safeguarding Australia” against terrorism. Unreinforced masonry (URM) construction, which is widely used in public buildings, is extremely vulnerable to blast loads. An effective solution to mitigate blast effects on URM construction is to strengthen the masonry using retrofit technologies. Hence, developing retrofit technologies for URM construction is necessary and imperative.

Retrofit URM constructions are currently in their infancy around the world (Buchan and Chen 2007; Davidson et al. 2005; Davidson et al. 2004b; Hamoush et al. 2001; Romani et al. 2005; Tan and Patoary 2004; Urgessa et al. 2005; Ward 2004; Yang and Wu 2007). Categories of available masonry retrofit include: conventional installation of exterior steel cladding or exterior concrete wall, and new technologies such as external bonded (EB) FRP retrofit technologies, catch systems, sprayed-on polymer and/or a combination of these technologies (Davidson et al. 2005; Davidson et al. 2004b). However, most of the current research focuses on studying the behaviours of retrofitted masonry walls under static, cyclic or seismic loading {Hamoush, 2001 #175;Malvar, 2007 #578;Silva, 2001 #512;Yang, 2007 #407}. Recently, blast tests have been conducted to investigate retrofitting techniques to strengthen unreinforced masonry (URM) walls against blast loading (Baylot et al. 2005; Carney and Myers 2005; Myers et al. 2004; Romani et al. 2005). Therefore, it is urgent to study the behaviours of retrofitted URM walls under blast loading, and develop an efficient retrofitting solution to enhance blast resistance of masonry structures.
The analyses of retrofitted masonry member against static, cyclic or seismic loading have received considerable attention in recent years (Baratta and Corbi 2007; Bastianini et al. 2005; El-Dakhakhni et al. 2004; ElGawady et al. 2006b; ElGawady et al. 2007; Hamoush et al. 2002; Hamoush et al. 2001; Korany and Drysdale 2006; Shrive 2006; Silva et al. 2001; Willis et al. 2006). Empirical, analytical and numerical methods have been developed to estimate the response of retrofitted masonry under quasi-static loads (Cecchi et al. 2004; Cecchi et al. 2005; ElGawady et al. 2006a; Hamed and Rabinovitch 2007; Korany and Drysdale 2007a; Korany and Drysdale 2007b; Wu and Hao 2007a; Wu et al. 2005). The empirical method, which is based on a collection of experimental data, is easy to use, but the accuracy of this method depends on the test data available. Although analytical methods can perform quick and reliable analysis, it is sometimes not possible to obtain analytical solutions due to the complexity of the problems. The finite element method, which is widely used in practical engineering, provides explicit and direct results.

The analysis of masonry members with retrofits subjected to blast loads is currently still in its initial stages. For example, conventional design guidelines (American Society of Civil Engineers (ASCE) 1997; American Society of Civil Engineers (ASCE) 2007; Department of Defence (DoD) 1990) reference using a “Single Degree of Freedom” (SDOF) model in the blast analysis and design of retrofitted masonry member (Biggs 1964). Although the SDOF method is easy to implement and is numerically efficient, it has a number of drawbacks. For example, it cannot capture a variation in mechanical properties of a cross-section along the member, cannot simultaneously accommodate shear and flexural deformations, and cannot allow varying distribution of blast loading spatially and temporally. All of this is in contrast to finite element analysis, where these accommodations are possible. Thus there is a need to develop a finite element model to analyse the dynamic response of retrofitted masonry members against blast loads.
1.2. SCOPE AND OBJECTIVES

The primary aim of this project is to establish numerical models to investigate the behaviours of retrofitted URM walls under blast loading. To achieve this goal, there were four milestones during the project:

1) **Simulation of URM walls using homogenization technique.** This consists of: (a) building masonry basic cell (MBC), (b) identifying material models for brick and mortar, and (c) deriving equivalent material properties of masonry basic cell. The basic material properties of brick and mortar were gained from material tests (Griffith et al. 2007). By simulating the behaviours of MBC under various load statements, the equivalent material properties were derived from the simulated stress-strain curves of MBC. Based on the equivalent material properties, a three-dimensional (3D) homogenized model was derived. This homogenized model was validated in simulating full-scaled URM walls.

2) **Developing bond-slip model by simulating pull-tests.** The interface bond/slip characteristics between FRP and masonry govern the performance of retrofits. Aiming on gaining reliable results, the bond behaviours should be simulated accurately. In this thesis, interface and contact models were used in simulating pull-test including externally bonded (EB) and near surface mounted (NSM), meaning accurate results were obtained. The validated homogenized masonry models together with reliable interface models between masonry and FRP were applied in the simulation of full-scaled retrofitted URM walls under quasi-static loads.

3) **Studying the behaviours of retrofitted URM walls subjected to blast loading.** The validated numerical models are extended to simulate
retrofitted masonry wall subjected to blast loading. Several types of retrofitting techniques were tested. Parametric studies were conducted to simulate masonry walls with different retrofitting techniques subjected to blast loading and effective retrofits are found. A comparison of the effectiveness of various retrofitted masonry walls was plotted.

4) Developing pressure-impulse (P-I) diagrams as design guideline. Based on simulation results, two critical damage levels were identified for the retrofitted masonry walls. As a type of design guideline, P-I diagrams were developed, in which both the effect of pressure and impulse were well considered.

1.3. THESIS OUTLINE

In Chapter 1, background, scope and objects of this project are introduced. The brief summary of this thesis will be presented in the following content in this chapter.

Chapter 2 presents relevant literature on URM walls and retrofitted URM walls subjected to blast loading. The commonly used retrofitting techniques on concrete and masonry structures are summarized. The brief overview of methods on estimating blast loading is described. Proposed methods, which were used to analyse behaviours of masonry walls, are also introduced.

Chapter 3 presents homogenization approach. The equivalent material properties of URM were derived from the behaviour of the constitutive materials (brick and mortar) in a basic cell. The derived homogenized properties of the masonry basic cell were used to simulate the performance of masonry under static loading. Results of the simulation under static loading were validated by experiments. Both the distinct
model in which bricks and mortar modelled separately and the derived homogenized models were used to simulate response of masonry walls under static loading and blast loading. Numerical results of URM walls by using finite element method are presented.

Chapter 4 presents the simulations of pull-tests. Based on test results, two types of bond-slip model for FRP plates bonded to masonry were employed to simulate interface between FRP plates and masonry. Validation of the numerical model for retrofitted URM walls under static loading is described. The simulation results were verified by full scale of retrofitted masonry wall tests.

In Chapter 5, numerical modelling of retrofitted URM wall under blast loading is presented. The validated numerical models, including masonry, bond-slip and retrofitting material models, were used to predict the out-of-plane capacity of retrofitted URM walls subjected to blast loading. Various retrofitting technologies were simulated, parametric studies were carried out, and their effectiveness under blast loading was compared. As final goal, P-I diagrams for different types of retrofitted masonry wall were developed.

Conclusions and recommendations are given in Chapter 6. The outcomes from this investigation are summarized.

Key input decks of masonry basic cell, URM walls and pull-tests are reported in Appendix A, B and C, respectively. Those for retrofitted URM walls under static loading and blast loading are included in Appendix D and E, respectively.
2. LITERATURE REVIEW

2.1. INTRODUCTION

Masonry walls are widely used in Australia, but are not commonly designed with blast resistance in mind. In recent years, several retrofitting reinforced technologies have been developed to strengthen reinforced concrete structures, which have been extended to apply to unreinforced masonry (URM) structures. However, few investigations have focused on strengthening URM walls to resist blast loads (Ward 2004).

This literature review summarizes the damage to unreinforced masonry walls subjected to blast loading, and examines the current available retrofitting technologies for strengthening masonry structures. Examples of such technologies are near-surface mounted FRP, external bonded FRP, sprayed-on polyurea and aluminium foam, all of which are considered appropriate for strengthening URM walls. Since this project focuses on studying the behaviours of URM walls under blast loading, methods of estimating blast loading are presented. In addition, a review of primary techniques in estimating the response of masonry walls under blast loading, especially the finite element method, is provided. A review of some current design guidelines for blast loading is also included in the following literature review.

2.2. BACKGROUND OF URM STRUCTURES

Unreinforced masonry (URM) construction is widely used in Australia, as it provides a combination of structural and architectural elements. This method is attractive and
durable, and provides effective thermal and sound insulation and excellent fire resistance (Page 1996). However, it is found that URM construction is extremely vulnerable to terrorist bomb attacks since the powerful pressure wave at the airblast front strikes buildings unevenly and may even travel through passageways, resulting in flying debris that is responsible for most fatalities and injuries. In order to protect URM construction from airblast loads, an effective solution is to strengthen the masonry using retrofitting technologies.

Old masonry construction is usually designed without considering the effects of blast-resistance. In general design, masonry is considered to have little tensile strength. For this reason, negative factors affecting the stability of masonry structures, such as the crack and breathing phenomenon observed in blast events, have not been studied widely. In Australia, a large number of buildings were constructed using masonry without additional protection to resist blast events, as bomb attacks or explosive accidents seldom happen in Australia. However, in recent years, with the rising threat of terrorism, protection of many existing buildings, structures and facilities against airblast loading is receiving more and more attention.

Some research on masonry structures against blast loading has been carried in recent years. Baylot et al. (2005) studied the blast response of lightly attached concrete masonry cell walls. Unretrofitted concrete masonry cell (CMU) walls and several different types of retrofits were tested under blast loading, with results showing that URM walls failed on light impulse and produced high velocity debris under high impulse. The researchers also found that debris from failing masonry wall and collapse are two main types of damage to URM wall subjected to blast loads. Because of the different properties of the cells and mortar, URM walls have weak planes due to the low tensile strength at each cell-mortar interface. The failures of masonry walls under blast loads are likely to be localized. They produce damage from wall fragments, which would injure the people behind the wall or destroy other structure, and debris with high velocity will damage other nearby structures. Muszynski and
Purcell (2003) tested four unretrofitted URM walls with different standoff distances. All mortar joints failed, some masonry blocks spalled and breaching occurred under high explosive detonations. Experiments (Davidson et al. 2005; Muszynski and Purcell 2003) showed that cracking usually occurred on the inter surface of masonry walls under light explosions, and appeared around breaching under high explosive blasts. Catastrophic breaching or even collapse happened when explosion came to high enough or the stand-off distances were small enough and wall failed in that case.

In summary, due to the shortcomings of masonry construction subjected to airblast loading, it is necessary to find efficient retrofitting technologies, study the behaviours of retrofitted URM walls under airblast loading, and develop an efficient mitigating solution to enhance blast resistance of URM construction.

2.3. CONVENTIONAL METHODS FOR URM STRENGTHENING

An effective solution to mitigate blast effects on URM construction is to strengthen the masonry using retrofit technologies. However, retrofit URM constructions are currently in their infancy around the world (Buchan and Chen 2007; Davidson et al. 2005; Davidson et al. 2004b; Ward 2004). Categories of available masonry retrofit include: conventional installation of exterior steel cladding or exterior concrete wall, and new technologies such as external bonded (EB) FRP plating, metallic foam cladding, sprayed-on polymer and/or a combination of these technologies (Davidson et al. 2005; Davidson et al. 2004b; Schenker et al. 2008; Schenker et al. 2005).

2.3.1. Fibre Reinforced Polymers

Fibre reinforced polymers (FRP) have a variety of advantages over other materials, such as lower density, high stiffness and strength, adjustable mechanical properties,
resistance to corrosion, solvents and chemicals, flexible manufacturing and fast application (Bastianini et al. 2005). They have been widely used in structural repairing and seismic resistance, and in recent years some studies for explosion resistance using FRP have been conducted. A variety of retrofitting technologies have been used to strengthen reinforced concrete (RC) structures (i.e. beams and columns) (Oehlers and Seracino 2004). Some of them have already been used to retrofit masonry walls, for example, near surface mounted (NSM) FRP plates and externally bonded (EB) FRP plates (Figure 2.1), which have high satisfactory performance and wide usage for enhancing RC structures. These technologies have proven to be an innovative and cost effective strengthening technique under out-of-plane static loading for strengthening masonry walls.

Near-surface mounted (NSM) FRP plates, which have been successfully used for strengthening concrete members, have been extended to retrofit masonry structures. Some recent tests under cyclic loading (Liu et al. 2006; Mohamed Ali et al. 2006) showed that the NSM plates can be used to strengthen RC structures with little loss of ductility, and increase the overall shear capacity substantially. Two experiments (Galati et al. 2006; Turco et al. 2006) showed that the NSM plates increased the flexural capacity (from 2 to 14 times), strength, and ductility of URM walls significantly. However, few studies on the behaviour of URM structures under blast loading have been conducted.

![Figure 2.1 Samples of EB & NSM FRP plates](image-url)
The key factor in increasing ductility and preventing the intrusion of wall fragments into occupant areas is the ability to absorb strain energy (Davidson et al. 2004b). Some recent experiments (Davidson et al. 2004b; Muszynski and Purcell 2003) on EB retrofitting techniques indicated that the high stiff FRP materials, such as steel plate and carbon fibre reinforced polymer (CFRP) used to retrofit masonry walls appeared less effective than low stiff materials under blast loads. An experimental work (Muszynski and Purcell 2003) tested air-entrained concrete (AEC) masonry walls retrofitted with carbon fibre reinforced polymer (CFRP) and Kevlar/glass (K/G) hybrid that is less stiff than CFRP. The residual displacements of CFRP structure were higher than the K/G Hybrid structure, which indicated the low stiff material would provide more ductility and absorb more strain energy, with bonding being another critical factor. Externally boned techniques could be applied to strengthen masonry walls, when retrofitting materials that balance stiffness, strength, and elongation capacity become available. Therefore, GFRP appears a good option, as it is cost-effective and easier to apply, compared with the rigid material such as CFRP and steel plates.

Since the performance of FRP-strengthened URM walls is often controlled by the behaviour of the interface between the FRP and masonry, it is very important to study the bond-slip relationship in detail. Debonding could occur between the inter-surfaces of high stiff FRP materials and masonry when structures are subjected to out-of-plane loads. Stress concentration is also a problem if FRP is bolted on masonry walls. Screws can be used to fix the FRP materials, but may become a significant hazard, like debris, when subjected to blast loading. Therefore, it may not be a suitable for application on masonry walls.

Strengthening techniques such as near-surface mounted (NSM) FRP plates and externally bonded (EB) FRP plates have been used to increase the flexural strength of masonry structures (Yang 2007). The behaviour at the interface between FRP and masonry is an important consideration in the analysis and design of masonry
Ch 2: Litterature Review

Chapter 2: Literature Review

2.3.2. Spray-on Polyurea

Spray-on polyurea is a new technique using urea-based or polyurea-based coating sprayed on the surface of masonry walls. It produces a tensile membrane, which prevents spalls significantly. The material is cheap, but needs careful surface preparation before application (Ward 2004). Polyurea has low stiffness, and Davidson et al.’s study (2004b) demonstrated that it could enhance the flexural ability of URM wall and reduce debris effectively. Coated and non-coated wall panels were tested to establish the effectiveness of spray-on polyurea, with results showing that compared with stiffer materials, polyurea can absorb strain energy and keep fragments within a safe area. Further research (Davidson et al. 2005) found that stiff composite materials, such as woven aramid fabrics or CFRP, can also reduce fragments effectively. However, compared with polyurea, they are more expensive, which limits their applicability. Baylot et al. (2005) studied debris hazard from masonry walls against blast loads. Three types of retrofits (FRP, polyurea, steel) with different amount of grout and reinforcement were tested to find the most effective retrofitting technology for decreasing the degree of hazard under blast loads. The panels retrofitted by
spayed-on polyurea performed well and succeeded in reducing the hazard level inside. The previous tests indicated that spray-on polyurea can be an effective technique for increasing the ductility of masonry walls.

2.3.3. Aluminium Foam

Aluminium foams are new, lightweight materials with excellent plastic energy absorbing characteristics that can mitigate the effects of an explosive charge on a structural system by absorbing high blast energy. The material behaves closely to that of a perfect-plastic material in compression, which makes aluminium foam an attractive choice for use in sacrificial layers for blast protection. Airblast tests on aluminium foam protected RC structural members have been conducted recently and it was found that aluminium foam was highly effective in absorbing airblast energy and thus successfully protected RC structural members against airblast loads (Schenker et al. 2008; Schenker et al. 2005). Due to its properties, it is believed that aluminium foam would also be very effective in protecting of URM constructions against airblast loads, although no tests have been performed. Since field airblast tests are very expensive and sometimes not even possible due to safety and environmental constraints, numerical simulations with a validated model provide an alternative method for an extensive investigating the effects of aluminium foam in mitigating airblast loads on the URM construction.

2.4. Estimating Response of Masonry Walls under Blast Loading

2.4.1. Estimation of Blast Loading

(1) Empirical methods

The explosion considered here is a surface explosion with the charge placed about one metre above the ground. Considering that a bomb attack is often carried out in a
vehicle, which isolated from the ground, the ground shock can be diminished (Luccioni et al. 2004). Henrych (1979) developed empirical formulae for estimating the blast pressure history. In 2005, (Alia and Souli 2006; Remennikov and Rose 2005; Wu and Hao 2005, Shi, 2007 #484) improved Henrych’s theory by enabling calculation of the full pressure time history. The U.S. Army developed a blast-resistant design manual TM-5-1300, which provides some empirical curves to predict blast loads. However, the load time history is simplified as a triangle shape, and the load rise period is ignored.

The typical simulated pressure shock wave time histories in the air are shown as Figure 2.2, where T_a is the shock wave front arrive time, T_r is the rising time from arrival time to peak value, P_{so} is the peak pressure, and T_d is the decreasing time from peak to ambient pressure. The shock wave rises to the peak value suddenly (this history is often ignored, as the rising time is very short), and then decreases back to ambient value before entering a negative phase.

![Figure 2.2 Typical free-air pressure time history](image)

With a ground explosion in a free-air burst, a shock wave, having a hemispherical front (Figure 2.3) is produced. The formulae for an explosion in a free-air can be used for contact explosion, except that the charge weight must be substituted for half of the
value in free-air burst.

(2) Code solution

For design purposes, a number of codes were developed to estimate blast loading and the response of structures. The codes for military and munitions use cover more comprehensive statements including:

- “Design of Structures to Resist Nuclear Weapons Effects”, *ASCE Manual 42*, American Society of Civil Engineers

Given scaled-distance, a simplified airblast load curve can be derived. Usually, the positive phase is considered and the rise time is ignored. To provide a more detailed and approximate pressure history, a computer program ConWep (Hyde 1993) was
developed as an application of the code TM-5-855-1 (Headquarters 1986), and has been incorporated into finite element programs AUTODYN and LS-DYNA (Randers-Pehrson and Bannister 1997). Given charge weight and stand-off distance, the blast history can be calculated automatically and applied to the surface of specimens.

(3) Numerical simulation of explosion

For explosions in complex environments, in which shock waves travel through complex routes or wave fronts impact on uneven surfaces, the previous methods do not give reliable results. Therefore, numerical simulations were developed to cover this shortcoming. In this method, the charge was simulated as a type of explosive material. Air is modelled as fluid and could be coupled with the charge to get a more accurate pressure history and numerical results. The whole process of explosion can be presented, and complicated phenomena can be observed. Recently, some studies (Alia and Souli 2006; Remennikov and Rose 2005; Wu and Hao 2005, Shi, 2007 #484) were carried out using this method; however, there are some disadvantages which should be noted. Firstly, the simulation involves a high number of calculations. Therefore, blast at far stand-off distances becomes time-consuming. Secondly, the application is complex, with some issues like the dimensions of the element closed to the charge and near the concerned area, such as the contact surface between air and specimens, requiring careful consideration. To have the negative phase of the pressure history, the fast reduction of air pressure due to the leakage of gas may also be a computing problem. Thirdly, equation of the gas should be modified to consider the behaviour of the air under high temperature and high pressure, especially for a close explosion.
2.4.2. Finite Element Method

Numerical simulation is a cost-effective method for investigating the behaviour of masonry structures. Compared with experiments, it gives better understanding of the detailed process of events. The numerical simulation has become a widely used method for investigating behaviours of structures under static or dynamic loading, with a significant amount of research showing that it could produce considerable coincidental results with experimental data. This section overviews the estimation of blast loading, material properties for simulation, and some major numerical methods.

(1) Continuum model and discrete model

The continuum model considers the masonry material as a continuum medium, and is applicable to analysing a large-scale masonry wall in some early investigations (Anthoine 1995; De Buhan and De Felice 1997; Pegon and Anthoine 1997). Research showed that after varying the bond pattern, neglecting the head joints, or assuming plane stress states, reasonable estimates of the global elastic behaviour of masonry were obtained. However, as Anthoine (1995) indicated, a careful examination of the elastic stresses that develop in the different constitutive materials shows that the situation might be quite different in the non-linear range (damage or plasticity). To obtain reliable equivalent material properties of masonry material, homogenization is critical in numerical analysis.

The discrete model has been developed to perform linear and nonlinear analyses of masonry structures. It is computationally intensive, making it a time-consuming method, and is therefore generally only suitable for simulating the fracture behaviours of small specimens (Ma et al. 2001). In this study, the specimens are full-scaled masonry walls made of cored brick and mortar joint. Therefore, to avoid the calculating problem, the homogenized model is preferable, which is discussed in the
following section.

(2) Homogenized model

The homogenization technique has been used in the past to derive the equivalent material properties and failure characteristics for solid brick masonry. Considerable research has been conducted in the last decade to investigate the complex mechanical behaviour of solid brick masonry structures using various theoretical and numerical homogenization techniques (Anthoine 1995; Luciano and Sacco 1997; Ma et al. 2001; Milani et al. 2006a; Milani et al. 2006b; Wu and Ha 2006; Zucchini and Lourenco 2004). It has been shown that using homogenized material properties can give a reliable estimate of masonry response under both static and dynamic loading. However, substantially less computational time is required to perform the analysis of masonry structures as compared with distinct model in which bricks and mortar joints are separately discretized. Recently, the homogenization technique has been used to derive equivalent material properties of hollow concrete block masonry (Wu and Hao 2007b), in spite of this, no study has been conducted to analyse the response of masonry structure constituted by cored brick units jointed with mortar using the homogenization technique. Due to the complex geometric properties of the cored brick unit, it is very complicated and time consuming to use the distinct model to perform the analysis on this kind of masonry structure. Therefore, it is of importance if the equivalent material properties of this masonry structure can be derived.

As masonry is a composite structure constituted by bricks and mortar, using the discrete method to compute large scale of masonry walls often requires a significant amount of time. The homogenized technique, which is used to derive the behaviour of the composite from geometry and behaviour of the basic cell, has been developed to simplify the computation. Some homogenization models of URM structures subjected
to blast loading has been investigated by researchers (Anthoine 1995; Cecchi and Di Marco 2002; ElGawady et al. 2006a; Luccioni et al. 2004; Milani et al. 2006a; Wu and Ha 2006; Zucchini and Lourenco 2004) in recent years.

The homogenization approach is shown above in Figure 2.4. Determining the basic cell is the first stage of homogenization. The basic cell contains all the geometric and constitutive information of the masonry, and is modelled to calculate the equivalent elastic constants and failure modes of masonry structures. Its volume depends on the bonding formats and retrofitting modes. Header bond shown in Figure 2.4 is commonly used for homogenization. More complex bond types require cells with greater dimensions, which are divided into small elements to calculate the constants.

Some recent research (Cecchi et al. 2004; Cecchi et al. 2005) began to focus on homogenizing CFRP retrofitted masonry structures. Firstly, the reinforcement and masonry were homogenized separately, then the homogenization of reinforced masonry was obtained by integrating the constitutive function of masonry and reinforcement along the thickness of the wall (Cecchi et al. 2005). Moreover, the authors developed a numerical finite element single-step homogenization procedure, which can be used as an example for modelling retrofitted masonry walls.
2.4.3. Design Guideline

According to previous studies, URM walls are weak, brittle, and have low ductility under blast loading. In order to develop effective retrofitting technologies, major damage levels should be studied, due to their significant hazard to occupants and surrounding constructions. Some experimental tests have been done to investigate the behaviour of URM walls under blast loads showing the major damage. Some countries, such as the U.S. through its Department of Defence, developed a blast evaluation guideline. Scaled distance is defined as $R/W^{1/3}$, where R is the stand-off distance and W is the TNT charge weight, which is used as a parameter by U.S. DoD Code (1999) to evaluate the structural safety under blast loads. The safe scaled distance is specified as $4.46 \text{ m/}kg^{1/3}$ for unstrengthened buildings to ensure the buildings are not destroyed. However, the description of damage level from U.S. DoD Code is vague, and further research (Wu and Hao 2007a) has been done to fill in this gap for concrete constructions. Wu and Hao (2007a) developed an improved approach based on the U.S. DoD Code, which defined various performance levels, including collapse. Besides the charge weight and stand-off distance, structural materials and configurations are also two important parameters. However, some tests (Baylot et al. 2005) showed by increasing the charge weight, or decreasing the stand-off distance other types of damage can be observed in addition to collapse, including cracks, catastrophic breaching, and low and high velocity debris. Therefore, the development of guidelines covering major damage levels for retrofitted masonry walls is necessary, but due to a lack of experimental data, more research is required to achieve this goal.

2.5. SUMMARY

This literature review has considered the behaviours of URM walls under blast loading, and was suggested that the retrofitting technologies can be applied to
strengthen masonry constructions. Still, a suitable solution is required to provide the
better protection against all blast loads. According to published studies, existing
retrofitting technologies are efficient in providing protection to concrete and masonry
structures. Commonly used and newly developed retrofitting technologies on masonry
structures have been reviewed, including externally bonded FRP, near-surface
mounted FRP, spray-on polyurea and aluminium foam. It is found that previous
research primarily focused on studying behaviours of URM walls under static or blast
loading, or studied the FRP retrofitted URM walls under static loading or quasi-static
loading. Hence, more research on the retrofitted URM walls against dynamic loading,
such as blast loading, is needed.

To investigate the effectiveness of various retrofitting methods, the major damage
modes were identified. It is crucial to qualify the damage levels for developing the
design guideline, and it is expected that the previous damage levels and tests data
could be used to check the effectiveness of different retrofits. Finite element analysis
with blast loading calculated from a design code can be used to study the dynamic
behaviours of retrofitted masonry walls under blast loads. At present, there is no
industry guideline available for blast-resistant design of masonry structures, and it is
therefore expected that, this project will contribute to its development.
3. NUMERICAL SIMULATION OF URM WALLS USING THE HOMOGENIZATION TECHNIQUE

3.1. INTRODUCTION

Homogenization techniques have been used to derive the equivalent material properties of masonry for many years. However, no research has been conducted to derive the homogenized model of the standard ten-core brick masonry wall, commonly used in Australia. In this chapter, the homogenization technique was used to model a three-dimensional masonry basic cell, which contains all the geometric and constitutive information of the masonry wall, in a finite element program to derive its equivalent mechanical properties. The detailed material properties of mortar and brick were modelled using a numerical analysis. By applying different loading conditions on the surfaces of a basic cell, stress-strain curves of the basic cell under various stress states were simulated. Using the simulated stress-strain relationships, the homogenized material properties and failure characteristics of the masonry unit were derived. The homogenized 3D model was then utilized to analyse the response of a masonry wall with and without pre-compression under out-of-plane loads (Griffith et al. 2007). The same masonry wall was also analysed with distinct material modelling, and the efficiency and accuracy of the derived homogenized model were demonstrated.

3.2. HOMOGENIZATION PROCESS

Homogenization techniques can be used to derive the equivalent material properties of a composite from the geometry and behaviour of the representative volume element.
Masonry is a composite structure constituted by bricks and mortar. Thus, the homogenization technique can be used to derive the equivalent material properties of masonry unit.

In this section, a highly detailed finite element model was used to model a three-dimensional basic cell to derive the equivalent material properties for a homogenous masonry unit. Various load cases were applied to the basic cell surfaces to derive average stress-strain relationships of the homogenous masonry unit under different stress states. The average elastic properties and failure characteristics of the homogenous masonry unit are obtained from the simulated results. The numerical results are verified from comparison to experimental results from previous tests undertaken at the University of Adelaide, along with numerical results from simulation using a distinct finite element model. The derived equivalent material properties can be utilized to simulate large-scale masonry structures and predict their failure modes under out-of-plane loading.

3.2.1. Homogenization Technique

Traditionally, laboratory tests are performed to obtain average stress and strain relationships of a specimen, required to find the homogenized properties of composite materials such as concrete with aggregates and cement. However, for masonry structures, it is often too difficult to conduct the laboratory test. To overcome this difficulty, the numerical homogenization method was used in this study to derive its equivalent material properties. Figure 3.1 shows the homogenization process for a basic cell, which contains all the geometric and constitutive information of the masonry wall. The basic cell was modelled, separately, with individual components of mortar and brick. Constitutive relations of the basic cell can be set up in terms of average stresses and strains from the geometry and constitutive relationships of the
individual components. The average stress and strain σ_{ij} and ε_{ij} are defined by the integral over the basic cell as

$$\sigma_{ij} = \frac{1}{V} \int_{V} \sigma_{ij} dV \quad \text{Eq. 3-1}$$

$$\varepsilon_{ij} = \frac{1}{V} \int_{V} \varepsilon_{ij} dV \quad \text{Eq. 3-2}$$

where V is the volume of the basic cell, σ_{ij} and ε_{ij} are stress and strain components in an element. By applying various displacement boundary conditions on the surfaces of the basic cell, the equivalent stress-strain relationships of the basic cell were established. In addition, the equivalent material properties of the basic cell were derived from the simulated stress-strain curves. However, to simulate the performance of the basic cell under different loading conditions in a finite element program, the material properties of mortar and brick should be determined.

![Figure 3.1 Homogenization of masonry material](image)

Figure 3.1 Homogenization of masonry material

3.2.2. Material Models for Brick and Mortar

In order to derive the equivalent inelastic material properties of the basic cell, reliable
material models for brick and mortar are important. The yield criterion for quasi-brittle materials such as brick and mortar is usually based on Drucker-Prager strength theory as shown in Figure 3.2.

![Figure 3.2 Drucker-Prager yield surface](image)

The yield criterion on Drucker-Prager yield condition is given by:

$$a I_1 + \sqrt{J_2} - k = 0$$ \hspace{1cm} \text{Eq. 3-3}

where J_2 is the second invariant of the deviatoric stress tensor S_{ij}, and I_1 is the first invariant of the stress tensor, given by

$$J_2 = \frac{1}{2} S_{ij} S_{ij} \quad \text{Eq. 3-4}$$

$$I_1 = (\sigma_1 + \sigma_2 + \sigma_3) \quad \text{Eq. 3-5}$$

a is the pressure sensitivity coefficient and k is a material constant. Let σ_t and σ_c be the yield stresses in uniaxial tension and compression respectively. On the yield surface, $J_2 = \frac{1}{3} \sigma_t^2$, k is obtained from yield condition as:

$$k = \frac{2 \sigma_t \sigma_c}{\sqrt{3} (\sigma_t + \sigma_c)} \quad \text{Eq. 3-6}$$

If,

$$m = \frac{\sigma_c}{\sigma_t} \quad \text{Eq. 3-7}$$
then,

$$\alpha = \frac{m-1}{\sqrt{3}(m+1)} \quad \text{and} \quad k = \frac{2\sigma_c}{\sqrt{3}(m+1)}$$

Eq. 3-8

The constants α and k can be determined from the yield stresses in uniaxial tension and compression.

Typical 10-core clay brick unit manufactured by Hallet Brick Ptd Ltd with nominal dimensions of $230 \times 110 \times 76$ mm3, as shown in Figure 3.3, was used in this study. The detailed dimensions and locations of ten cores are also shown in Figure 3.3. The mortar consisted of cement, lime and sand mixed in the proportions of 1:2:9, and the 10-core clay brick unit and a 10 mm thick mortar joint were used in this study. The same material properties for bed and head joints were assumed.

A set of material tests were performed to gain the primary parameters for subsequent simulations by Griffith (2007). The tests included bond wrench tests to gain flexural tensile strength of the masonry, masonry unit beam tests to gain lateral modulus of rupture of the brick units, and compression tests of a 5-layer-brick model to gain compressive strength of the masonry and Young’s modulus. Table 3.1 lists material properties for mortar and brick. Details about the masonry properties are presented elsewhere (Griffith et al. 2007).

![Figure 3.3 Nominal dimensions of brick unit (mm)](image)

Using material properties, the material constants α and k in the above Drucker-Prager
strength model were derived, with their values listed in Table 3.1, and material properties for brick and mortar were coded into a finite element program LS-DYNA (LSTC 2007). The key parameters for using in simulations of masonry basic cell are listed in Table 3.1.

<table>
<thead>
<tr>
<th>Material</th>
<th>(E_c) (GPa)</th>
<th>(v)</th>
<th>(\sigma_y) (MPa)</th>
<th>(\sigma_c) (MPa)</th>
<th>(\alpha)</th>
<th>(k) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>brick</td>
<td>5.27</td>
<td>0.2</td>
<td>3.55</td>
<td>35.5</td>
<td>0.47</td>
<td>3.73</td>
</tr>
<tr>
<td>mortar</td>
<td>0.44</td>
<td>0.3</td>
<td>0.6</td>
<td>6.14</td>
<td>0.47</td>
<td>0.65</td>
</tr>
</tbody>
</table>

A general-purpose finite element program LS-DYNA was used in this study to calculate the stress-strain relationships of the basic cell as shown in Figure 3.1b. LS-DYNA provides a variety of material models for analysing masonry structures. According to a previous research (Davidson et al. 2004a), four material models perform well in simulating bricks under blast loading. The possible candidates are “Soil and Foam”, “Brittle Damage”, “Pseudo Tensor”, and “Winfirth Concrete”. The material Soil and Foam is a cost-effective model with fewer inputs, and still gives reliable results. The yield criterion of the material model “Soil and Foam” is based on Drucker-Prager strength theory as follows

\[
\phi = J_2 - \left[a_0 + a_1 p + a_2 p^2 \right] \quad \text{Eq. 3-9}
\]

where \(p \) is hydro pressure, which is equal to \(I_1 / 3 \). On yield surface, it has

\[
J_2 - \left[a_0 + a_1 p + a_2 p^2 \right] = 0 \quad \text{Eq. 3-10}
\]

Then, constants \(a_0, a_1 \) and \(a_2 \) in Soil and Foam model are given by:
\[
\begin{align*}
 a_0 &= k^2 \\
 a_1 &= -6ak \\
 a_2 &= 9a^2
\end{align*}
\quad \text{Eq. 3-11}
\]

Considering the limited material properties and the efficiency of simulation, the “Soil and Foam” model in LS-DYNA was selected to model both brick and mortar in this study, as the model is efficient and requires fewer inputs. The model simulates crushing through the volumetric deformations, and a pressure-dependent flow rule governs the deviatoric behaviour with three user-specified constants. Volumetric yielding is determined by a tabulated curve of pressure versus volumetric strain as shown in Figure 3.4 (LSTC 2007). The actual input constitutive relationships are shown in Figure 3.5, and elastic unloading from this curve is assumed to be a tensile cut-off. One history variable, the maximum volumetric strain in compression, is given. If the new compressive volumetric strain exceeds the given value, loading is indicated. When the yield condition is violated, the updated trail stresses are scaled back. If the hydrostatic tension exceeds the cut-off value, the pressure and the deviatoric tensor would be zeroed (Davidson et al. 2005; LSTC 2007).

![Figure 3.4 Volumetric strain versus pressure curve for soil and crushable foam model (LSTC 2007)](image)
Chapter 3: Numerical Simulation of URM Walls by Using Homogenization Technique

Figure 3.5 The input elastic constitutive relationships of brick and mortar

The model simulates flow rule through the volumetric deformations. The yield surface is a surface of revolution about the hydrostat in the principal stress space. A planar end cap is assumed for the yield surface so that the yield surface is closed. Given the right input, the model turns to the Drucker-Prager model, in which pressure is taken to be positive. Volumetric strain is given by the natural log of the relative volume and is negative in compression (LSTC 2007).

Figure 3.6 Theoretical stress-strain relationship

The theoretical stress-strain relationships are presented in Figure 3.6. In actual
simulations of complex models, the equivalent tensile curve shows some ductility. This is because individual elements did not fail at the same time under tension. Therefore, there were always some elements that could carry loads until the specimen was cut-through.

(1) Identification of inputs for numerical model

Although the key parameters have been already obtained from material tests, there are still some parameters that have not yet been determined. For example, parameters such as the bulk modulus were derived by numerical simulations, while key parameters such as the shearing modulus and cut-off tensile strength were estimated from the test results directly.

For common bricks and mortar, m (Eq. 3-7) equalled 10. Thus, for brick, a_0, a_1 and a_2 equalled 2.82×10^{12}, 4.76×10^{16} and 2.008. For mortar, a_0, a_1 and a_2 equal 4.16×10^{11}, 1.83×10^6 and 2.008. The material card used in the analysis for “Soil and Foam” is listed in Table 3.2 with corresponding tabulated values. Values for the bulk unloading modulus, volumetric strain values, and their corresponding pressures were estimated from the results of Griffith’s tests (Griffith and Vaculik 2005) firstly, and then were verified by simulating the compression of 5-layer-brick model.

Description of the input parameters is listed in Table 3.2. The shear modulus G was calculated from Young’s modulus by using formula $G = \frac{E}{2(1+\gamma)}$, and a_0, a_1, a_2 were calculated from Eq.3-10. The unloading bulk modulus can be gained from test, and must be greater than Young’s modulus. However, in this study, trial simulations were carried out to estimate the value of BULK, and it was found to be approximately 2.5 times greater than Young’s modulus (1.8×10^{11} Pa). The experimental tensile strengths were reported, ignoring the presence of the cores. Hence, for the detailed finite element model, the test values were adjusted to account for the holes in the bricks.
Considering stress concentration, actual values should be greater than the calculated ones. Trial simulations were carried out to obtain the final values. The tensile strength for brick and mortar are 7.1MPa and 0.8MPa (Table 3.3), respectively.

Table 3.2 Description of the inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Elastic shear modulus</td>
</tr>
<tr>
<td>BULK</td>
<td>Unloading bulk modulus</td>
</tr>
<tr>
<td>A0, A1, A2</td>
<td>Shear failure surface parameters</td>
</tr>
<tr>
<td>PC</td>
<td>Pressure cut-off for tensile fracture</td>
</tr>
<tr>
<td>VCR</td>
<td>Volume crushing option = 0 means on</td>
</tr>
<tr>
<td>REF</td>
<td>User reference geometry to initialize the pressure =0 means off</td>
</tr>
<tr>
<td>EPS1-10</td>
<td>Logarithmic volume strains</td>
</tr>
<tr>
<td>P1-10</td>
<td>Corresponding pressures</td>
</tr>
</tbody>
</table>

Table 3.3 Summary of input values

Brick

<table>
<thead>
<tr>
<th>MID</th>
<th>RO</th>
<th>G</th>
<th>BULK</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2.40E+03</td>
<td>2.20E+10</td>
<td>1.80E+11</td>
<td>5.5548E+13</td>
<td>2.1124E+07</td>
<td>2.008E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCR</td>
<td>REF</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESP1</td>
<td>ESP2</td>
<td>ESP3</td>
<td>ESP4</td>
<td>ESP5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>-1.18E-04</td>
<td>-2.44E-04</td>
<td>-4.00E-04</td>
<td>-1.10E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td></td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>3.95E+06</td>
<td>9.88E+06</td>
<td>1.60E+07</td>
<td>5.00E+07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortar

<table>
<thead>
<tr>
<th>MID</th>
<th>RO</th>
<th>G</th>
<th>BULK</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2.40E+03</td>
<td>1.84E+08</td>
<td>1.33E+09</td>
<td>4.1540E+11</td>
<td>1.83E+06</td>
<td>2.008E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCR</td>
<td>REF</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESP1</td>
<td>ESP2</td>
<td>ESP3</td>
<td>ESP4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>-8.97E-03</td>
<td>-1.40E-02</td>
<td>-2.26E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td></td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>3.95E+06</td>
<td>6.14E+06</td>
<td>9.88E+06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) **Experimental validation**

In order to check the inputs for “Soil and Foam” model, verification was carried out by simulating compression tests. Figure 3.7 shows the configuration of the compression test. A uniform compressive load was applied on the top of the loading face of the specimen from zero at 25 kN increments up to a maximum load of 150 kN. Then, the specimen was subjected to an increasing compressive load until failure.

![Figure 3.7 Configuration of the compression tests](image)

Figure 3.7 Configuration of the compression tests

![Figure 3.8 5-layer-brick model](image)

Figure 3.8 5-layer-brick model
Aiming to simulate the compression test, a 5-layer-brick finite element model was built as shown in Figure 3.8. The boundary conditions were set the same as the test, and the results of stress and strain were obtained from the elements with the same location of the gauges in the compression test.

The comparison of the test result and simulation result are presented in Figure 3.9. Due to lack of test data in the plastic phase, the results were only compared in elastic phase. From Figure 3.9, it can be found that the trend line of the simulation result matches well with that of the test result, verifying the input material properties in Soil and Foam model.

3.2.3. Masonry Basic Cell and Convergence Tests

The first step of the homogenization process is to pick up masonry basic cell (Figure 3-1) with the common constitutive material properties form target masonry walls. The basic cell should contain all the participant materials, constitute the entire structure by periodic and continuous distribution, and also satisfy the requirement of minimum
size, that is, the cell should be small enough to make the variation of stresses and strains inside it negligible. Based on the above requirements, the basic cell shown in Figure 3.10 is used as a representative volume element.

![Masonry Basic Cell Finite Element Model](image)

Figure 3.10 Masonry Basic Cell Finite Element Model (3560 elements)
(a) Masonry basic cell, (b) brick part, (c) mortar part

The basic cell was numerically modelled with distinct consideration of individual components of mortar and ten-core brick units. As mentioned previously, the Drucker-Prager strength theory was used for both mortar and brick. The average stress-strain relationships of the basic cell under different stress states were derived by applying various displacement boundaries on the basic cell surfaces. The equivalent material properties and failure characteristics of masonry material were derived from the simulation results.
The masonry basic cell is a finely meshed, 8-node solid element, with 24 degrees of freedom was used to represent the cell. Because the full integration of the element may produce element locking problem, which makes the elements hard to deform, the one-point integration element was used to get correct results. In this case, hourglass energy was monitored to guarantee of the reliable results. Usually, the hourglass energy is limited to 5% of total internal energy.

Convergence tests were conducted to determine the minimum number of elements needed to achieve a reliable estimation. Theoretically, masonry basic cells with more elements give more reliable results, but the calculation time for such a test is significantly greater. Therefore, convergence tests were performed to choose an efficient model. The finite element mesh used in the numerical model of the basic cell is shown in Figure 3.10. As shown, the 10-core clay brick unit and mortar in the basic cell were discretized into a number of solid elements. A convergence test on the influence of element size on computational accuracy was carried out by halving the size of the element for both brick and mortar while keeping loads on the basic cell unchanged. This test was continued until the difference between the results obtained with two consecutive element sizes was less than 5%. The test was performed by applying simple elastic properties to the basic cells, and setting them under compressive state. The boundary condition was set as vertical uniaxial compression, the bottom was all fixed, and displacement through the Z axial was applied as loading on the top.

Five models with different numbers of elements were tested, with the results summarized in Table 3.4. The model with the largest number of elements (23750) was considered to provide the most reliable result, and, as such, the results of the other four models were compared with it. In this simulation, the average stress, strain and Young’s modulus of central elements were compared. From the results presented in Table 3.4, it is concluded that all the models gave reliable results. Because of this, the most effective model with 3560 elements for masonry basic cell was chosen.
Table 3.4 Average stress and strain of central elements

<table>
<thead>
<tr>
<th>Model</th>
<th>Stress (MPa)</th>
<th>Strain (1×10⁻⁴)</th>
<th>Young’s Modulus (MPa)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3560</td>
<td>-2.03</td>
<td>-5.30</td>
<td>3826</td>
<td>0.15%</td>
</tr>
<tr>
<td>5760</td>
<td>-2.03</td>
<td>-5.30</td>
<td>3829</td>
<td>0.25%</td>
</tr>
<tr>
<td>6144</td>
<td>-1.97</td>
<td>-5.16</td>
<td>3825</td>
<td>0.13%</td>
</tr>
<tr>
<td>10208</td>
<td>-2.01</td>
<td>-5.27</td>
<td>3823</td>
<td>0.07%</td>
</tr>
<tr>
<td>23750</td>
<td>-2.02</td>
<td>-5.30</td>
<td>3820</td>
<td></td>
</tr>
</tbody>
</table>

Because of the complex internal structure of the cored brick, it would be difficult to build a model with less than 3000 elements. Moreover, the dimensions of elements should be kept similar to ensure the reliability of results. Considering the influence of this factor, models with fewer elements were not tested. Thus, 3560 eight-node solid elements were used in the numerical model of the basic cell to achieve the reliable estimation. The final numerical model used in the simulation is shown in Figure 3.10(a). Figure 3.10 (b) and (c) show two parts – bricks and mortar joint, and containing 3560 elements totally.

3.2.4. Simulated Stress-Strain Relationships of the Masonry Basic Cell

The masonry basic cell was simulated under varieties of loading states to plot stress-strain curves and derive the equivalent material properties. The loading states include compression-compression, compression-tension, shearing, and compression-tension-shearing. For compressive or tensile stress state, uniform displacements were applied as compressive loading or tensile loading on the surfaces of masonry basic cell.

To gain the equivalent material properties and yield surface, the response of the basic cell under compressive-compressive, compressive-tensile, tensile-tensile,
compressive-shear and tensile-shear stress states were simulated. Over 50 cases were simulated, and the calculated results are presented in Figure 3.11, Figure 3.12, and Figure 3.13.

Figure 3.11 shows the typical stress-strain curves of the basic cell under uniaxial compressive-compressive stress states. As shown in Figure 3.11a, the uniaxial compressive strength in the Z direction is 15.7 MPa, which is quite close to the experimental result of ultimate masonry compressive strength 16.0 MPa, carried out by Griffith and Vaculik (2007). It was shown that the uniaxial compressive strengths of the basic cell in the X and Y directions were 7.88 MPa and 7.39 MPa from the simulation results of uniaxial compressive-compressive states in X and Y directions, respectively. This indicated that the geometry of hollow bricks with ten cores reduced the compressive strength of the basic cell in both X and Y directions significantly.

As the basic cell is under biaxial or triaxial compressive states, its strength enhancement in the Z direction is not observed, although there are significant strength enhancements in both X and Y directions. When the basic cell is under biaxial compressive loads in the X and Z directions, as shown in Figure 3.11d, its maximum compressive strength in the Z direction is 15.0 MPa, slightly smaller than its uniaxial strength. The maximum strength in the Y direction is 24.8 MPa, which is much higher than its uniaxial compressive strength. It is also shown in Figure 3.11f that the maximum compressive strengths of the basic cell under triaxial compressive states in X, Y and Z directions are 8.73, 17.4 and 13.8 MPa, respectively. In addition, the compressive strength in the Z direction is slightly smaller than its uniaxial compressive strength. It should be noted that due to different dimensions of the basic cell in X, Y and Z directions, the ratios of the displacement must be set appropriately. In the X and Z directions, as shown in Figure 3.11d, and in the X, Y and Z directions, as shown in Figure 3.11f, the ratios are set to be 4:3 (u:w) and 4:2:3 (u:v:w) according to the dimension of the representative element. This ensures that the strain ratios in Y and Z directions and in X, Y and Z directions are about 1:1 and 1:1:1.
Figure 3.11 Typical stress-strain relationships of the basic cell in compressive-compressive stress states.
Figure 3.12 Typical stress-strain relationships of the basic cell in compression-tension and tension-tension stress states.

Figure 3.12 shows the typical stress-strain curves in compressive-tensile and tensile-tensile stress states. The uniaxial tensile strengths in the X, Y and Z directions are 0.85 MPa, 1.84 MPa and 0.28 MPa, respectively. It can be seen that the tensile
strength of the basic cell in the Z direction is much smaller than tensile strength of mortar (0.6 MPa) as the volume of the cores is counted as part of the total volume of the basic cell, as well as geometric size influence. The simulated results also indicate that there is not a significant tensile strength enhancement in the Z direction when the basic cell is under biaxial or triaxial tensile stress. In a tensile-compressive stress state, the ultimate tensile strength slight increases and it can be observed from Figure 3.12e that the basic cell fails owing to tensile strain before the compressive strength reaches the maximum value. When the basic cell is in triaxial tensile states (see Figure 3.12f), its tensile strengths in the X and Y directions are reduced, although there is a slight increase in its tensile strength in the Z direction.

The representative stress-strain curves of the basic cell under the compressive-shear and tensile-shear stress state are shown in Figure 3.13. The ultimate shear strengths τ_{zx}, τ_{zy}, and τ_{zy} under pure shear condition are 0.78 MPa, 1.58 MPa and 1.28 MPa, respectively. It is also shown in Figure 3.13b that under compressive-shear stress state, the basic cell fails due to shear strain before the compressive strength reaches the maximum value.

![Stress-strain relation of the masonry basic cell in a shear stress state](image)

Figure 3.13 Stress-strain relation of the masonry basic cell in a shear stress state
3.2.5. Equivalent Material Properties

The properties of masonry can be obtained from the simulated stress-strain relations shown in Figure 3.11 to Figure 3.13. The equivalent elastic moduli and Poisson’s ratio of the masonry material can be calculated using the stress-strain relations corresponding to the uniaxial compressive conditions in the three directions presented in Eq. 3-12. Based on the simulated stress-strain curves, the equivalent material properties of the basic cell such as Young’s moduli, shear moduli and Poisson’s ratio were derived as listed in Table 3.5.

\[
\begin{align*}
\bar{E}_{xx} &= \frac{\bar{\sigma}_{xx}}{\bar{\varepsilon}_{xx}}, \quad V_{xy} = \frac{\bar{\varepsilon}_{yy}}{\bar{\varepsilon}_{xx}}, \quad V_{xz} = \frac{\bar{\varepsilon}_{zz}}{\bar{\varepsilon}_{xx}} \\
\bar{E}_{yy} &= \frac{\bar{\sigma}_{yy}}{\bar{\varepsilon}_{yy}}, \quad V_{yx} = \frac{\bar{\varepsilon}_{xx}}{\bar{\varepsilon}_{yy}}, \quad V_{yz} = \frac{\bar{\varepsilon}_{zz}}{\bar{\varepsilon}_{yy}} \\
\bar{E}_{zz} &= \frac{\bar{\sigma}_{zz}}{\bar{\varepsilon}_{zz}}, \quad V_{zx} = \frac{\bar{\varepsilon}_{xx}}{\bar{\varepsilon}_{zz}}, \quad V_{zy} = \frac{\bar{\varepsilon}_{yy}}{\bar{\varepsilon}_{zz}} \\
\bar{G}_{xy} &= \frac{\bar{\tau}_{xy}}{\bar{\varepsilon}_{xy}}, \quad \bar{G}_{yz} = \frac{\bar{\tau}_{yz}}{\bar{\varepsilon}_{yz}}, \quad \bar{G}_{zx} = \frac{\bar{\tau}_{zx}}{\bar{\varepsilon}_{zx}}
\end{align*}
\]

Eq. 3-12

<table>
<thead>
<tr>
<th>Table 3.5 Equivalent material properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s Modulus / Pa</td>
</tr>
<tr>
<td>E_{xx}</td>
</tr>
<tr>
<td>7.49E+9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressive strength / Pa</th>
<th>Tensile strength / Pa</th>
<th>Shearing strength / Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>-7.88E+6</td>
<td>-7.39E+6</td>
<td>-1.57E+7</td>
</tr>
</tbody>
</table>

3.2.6. Development of Failure Criterion of Masonry Basic Cell

The equivalent strength envelope for ten-core brick masonry can be derived using the
ultimate strength from the simulated stress-strain curves. Since the masonry is an orthotropic material, conventional strength criteria such as the Drucker-Prager or Mohr-Coulomb strength criterion, are not suitable for representing the strength envelope of the orthotropic basic cell. The observations demonstrate that there is little strength enhancement in the Z direction and therefore the failure criteria in this direction follows maximum normal stress criteria for both tensile and compressive strength. Orthotropic failure criteria were derived from Hashin’s work (1980) on composite material. In the XY plane its failure surface of the basic cell is shown in Figure 3.14. Therefore, the failure criteria are represented by tensile and compressive failure in the Z direction, as

\[
\sigma_z = X_c \quad \text{Eq. 3-13}
\]

\[
\sigma_z = X_T \quad \text{Eq. 3-14}
\]

Tensile and compressive failure in the XY plane, are given as

\[
\frac{1}{Y_T}(\sigma_{xx} + \sigma_{yy})^2 + \frac{\tau_{xy}^2 - \sigma_{xx}\sigma_{yy}}{S_c^2} = 1 \quad \text{Eq. 3-15}
\]

\[
\frac{1}{Y_C} \left(\frac{Y_C}{2S_c} \right)^2 - 1 \left(\sigma_{xx} + \sigma_{yy} \right) + \frac{1}{4S_c^2} \left(\sigma_{xx} + \sigma_{yy} \right)^2 - \frac{(\tau_{xy}^2 - \sigma_{xx}\sigma_{yy})}{S_c^2} = 1 \quad \text{Eq. 3-16}
\]

where \(X_T\) and \(X_C\) are the tensile strength and compressive strength in Z direction; \(Y_T\) and \(Y_C\) are average tensile and compressive strength in X and Y directions; \(S_c\) is shear strength in the XY plane. Using the simulated data, it is found that \(X_T = 0.28\) MPa, \(X_C = 15.7\) MPa, \(Y_T = 1.35\) MPa, \(Y_C = 7.65\) MPa. To simplify the problem, the failure criteria in XY plane is expressed in terms of the principle stresses in the XY plane, \(\sigma_1\) and \(\sigma_2\), which are derived from \(\sigma_X\), \(\sigma_Y\) and \(\tau_{XY}\) in plane stress system.
3.3. SMEARED CRACK MODEL

Smeared crack models have been used to simulate the non-linear macro-level behaviour of URM structures for many years, as they are computationally inexpensive and often provide reasonably accurate results (Burnett et al. 2007; Lee and Fenves 1998; Lotfi and Shing 1991). In this model, many parallel cracks of infinitely small opening are assumed to be continuously distributed over the element where the crack develops. Due to this, the material stiffness and strength are reduced in the direction normal to the cracks after the peak strength of the masonry is reached. Therefore, the model considers an equivalent material in which the influence of the opening cracks is incorporated into the constitutive law which is non-linear and exhibits strain-softening behaviour. This enables the evolution of the cracking process from crack initiation down to full fracture to be modelled. This constitutive law (LSTC 2007) is given by

\[
\sigma_i = \begin{cases}
\frac{E\varepsilon_i}{\sigma} \left(1 - \frac{\varepsilon_i - \varepsilon_{ini}}{\varepsilon_{i,ult} - \varepsilon_{ini}}\right) & 0 \leq \varepsilon_i \leq \varepsilon_{ini} \\
\varepsilon_{ini} < \varepsilon_i \leq \varepsilon_{i,ult} & \varepsilon_i > \varepsilon_{i,ult}
\end{cases}
\]

Eq. 3-17
with $\bar{\sigma}$ the ultimate stress, ε^{ult}_i the threshold strain and equal to σ / E, E is masonry stiffness, and ε^{ult}_i the ultimate strain which is obtained by relating the crack growth energy and the dissipated energy,

$$\varepsilon^{ult}_i = \frac{2G_A}{V\bar{\sigma}}$$
Eq. 3-18

where G_c is the fracture energy release rate, V is the element volume and A is the area perpendicular to the principal strain direction. The tensile fracture energy released rate G_{I_t}, taken from experimental work by Rots (1991), was 10N/m for brick-mortar interface and, from a study by van Zijl (2004), it was 12N/m for clay brick masonry. According to the experimental study by Pluijm (1997) on masonry under tensile strength ranging from 0.22 MPa to 0.36 MPa, the values of G_I could be range from 1.7 N/m to 6.8 N/m. In this study, the tensile fracture energy release rate G_{I_t} was estimated to be 12.6 N/m, using the simulated tensile stress-strain curves of the representative basic cell of masonry as shown in Figure 3.10. The shear fracture energy release rate G_{II} was found to be 59 N/m for brick-mortar interface by Burnetta et al. (2007). According to the study by Moyneaux et al. (2002), a linear relationship between shear fracture energy G_{II} and the normal compressive stress σ was identified as $G_{II} = 130\sigma + 30$. In this study, the shear fraction energy release rate was calculated as the area between the shear stress-displacement curve and residual shear stress lever, shown in Figure 3.15. Based on the simulated shear stress-strain curves from the representative basic cell of masonry, G_{II} was found to be 45.7 N/m, quite similar to the value estimated by Burnetta et al. (2007). The above parameter values for the smeared crack models were used in this study for the analysis of the out-of-plane test.

Orthotropic elastic material properties of the homogenized model were used in the smeared crack model, and failure was assumed to be perpendicular to the direction of principle strain. Damage described using linear softening stress strain relationship can occur in interlaminar normal and interlaminar shear direction. An initial crack length
a and crack opening displacement u are assumed existing inside masonry elements. When the crack opening displacement increases by Δa, crack length grows from a to $a+\Delta a$, and the resistant load will decrease by ΔF. The process is illustrated in Figure 3.16.

![Figure 3.15 Shear softening modes for the Mode II](image1)

![Figure 3.16 Load-displacement relations during crack propagation](image2)

Failure is described using linear softening stress strain curves for interlaminar normal and interlaminar shear direction, which must firstly be specified. Damage can occur in
interlaminar normal direction and a single interlaminar shear direction. For the normal component, failure can only occur under tensile loading and for the shear component, the behaviour is symmetric around zero. There are two ways of applying a force to enable a crack to propagate are identified in this model, being “Mode I crack”, opening mode (Figure 3.17I, a tensile stress normal to the plane of the crack) and “Mode II crack”, sliding mode (Figure 3.17II, a shear stress acting parallel to the plane of the crack and perpendicular to the crack front).

![Figure 3.17 Smeared crack model under mode I and II](image)

Two principle failure directions were specified for this model. Z axial was defined as the normal direction, and an ultimate normal tensile stress was given as 0.85 MPa. Due to torsion shear failure in bed joint, stepped failure was observed in the tests of URM walls by Griffith et al. (2007). Therefore, XY was defined as the shear direction, and a derived ultimate shear stress was given as 1.28 MPa.

3.4. VALIDATION OF HOMOGENIZED MODEL

3.4.1. Experiments of Masonry Walls

Two short masonry walls were tested under uniform static loading by Griffith et al.
The experimental results were used to validate the numerical results. And the configuration of this experiment is presented in Table 3.6. Bottom edges were mortar bonded to the floor, and laterally supported by steel members, meaning, the edge connection was considered as fixed. Steel angles were used to provide lateral restrain on the top edges for both the wall with pre-compression and the wall without pre-compression. Restrained of the vertical edges was carefully considered, due to its significant effect on the results of two-way bending test. As shown in Figure 3.18, return walls were used to support the main walls, and were restrained from rotation. A uniform vertical pre-compression 0.1 MPa of stress was applied to the top of a short wall.

Table 3.6 Wall geometry and boundary conditions (Griffith et al. 2007)

<table>
<thead>
<tr>
<th>Wall Geometry and Support Conditions</th>
<th>Pre-compression (σ_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 MPa</td>
</tr>
<tr>
<td></td>
<td>0 MPa</td>
</tr>
</tbody>
</table>

Figure 3.18 Short return walls used to stabilize walls
A uniform out-of-plane pressure was applied on the outside surface of the main wall. Airbags were used to provide the static loading, and distribute the pressure uniformly. Only the solid portions of the walls were acted on by airbags, meaning the opening part did not carry any loads. The arrangement of the airbags is shown in Figure 3.19. The load applied on the wall from the airbags was measured using load cells positioned between the airbag backing board and the reaction frame. In addition, the pressure acting on the wall surface was calculated by dividing the total load by the area of the wall. Linear variable differential transformers (LVDT) were used to measure displacements at different targets. The out-of-plane pressure applied to both of the short walls reached 8.5KPa. Details about the experimental study can be found in (Griffith et al. 2007).

![Airbag arrangement](image)

Figure 3.19 Airbag arrangement

3.4.2. Simulation of Masonry Walls

The developed homogenized material model was used to simulate the response of an unreinforced masonry (URM) wall under out-of-plane static loading, with and without pre-compression 0.1 MPa in the vertical direction as shown in Figure 3.20. The wall was 2.5m × 2.5m in dimension and had a concentrically positioned opening of 1.2m × 1.0m. The same masonry wall was also analysed with a distinct model in which brick and mortar materials were discretized. The distinct model was built based on the masonry basic cell, consisting of about 50 thousand elements. As this model
has the same structure as the actual walls, it was expected to present reliable results for numerical validation of the much simple homogenized model. Figure 3.21 shows the distinct and homogenized models of the masonry walls, which included 319,854 and 3,988 elements respectively. The material models of mortar and brick as well as the homogenized material model for masonry, including the equivalent elastic properties and failure criteria, were inputted into the computer program LS-DYNA in an orthotropic composite damage model for analysis.

(a) Masonry wall with pre-compression (b) Masonry wall without pre-compression
(F = Fixed support, SS = Simple support.)

Figure 3.20 Configuration of URM wall with opening

(a) Distinct model (b) Homogenized model

Figure 3.21 Distinct model and homogenized model of the URM walls wall opening
3.4.3. Experimental and Numerical Validation

The test data was used to verify the experimental results. The numerical verification was achieved by comparing the simulation results of the distinct and homogenized models with test data. Results of the pressure-displacement relationship and crack patterns were compared with results from simulations of distinct models as experimental validation.

Figure 3.22 shows the pressure-displacement relationship derived from tests and a numerical simulation of the wall with and without pre-compression 0.1 MPa at a target. As shown in Figure 3.22a, both the homogenized model and distinct model give a good prediction of the URM wall response without pre-compression, as compared with those obtained by experimental tests. However, with the same computer system, the time required to obtain a solution using the distinct model was 20 hours, while only 4 minutes were needed for the simple homogenized model. Again, similar responses were observed from the both models in comparison with the test results with pre-compression 0.1 MPa, as shown in Figure 3.22b. The results of the simulation with the smeared-crack model are also plotted in Figure 3.22b, and it can be seen that the curves of the simulation and test match well. However, crack patterns affect the section of curve where step cracks appear in the test. In the simulation using the smeared-crack model, the crack pattern (Figure 3.24) was not as accurate as in the distinct model. Therefore, from comparison of the pressure-displacement curves, more stiffness was observed from the smeared-crack model. With the same computer system, the calculation time for the smeared-crack model was 15 minutes.
By defining an ultimate strain for materials, elements can be removed during simulation. In this way, cracks were simulated using a distinct model on URM walls shown in Figure 3.23. Compared with test results, crack patterns match quite well in these two cases. The cut-through cracks were not observed, indicating that the failure of bricks was not accurately modelled in the numerical simulation.

It should be noted that although the homogenized model gives a reliable estimation of the global response of URM wall to static loads in far less time than the distinct model, it may yield inferior predictions of crack patterns of the URM wall compared with the distinct model. This is because the weak mortar joints may significantly affect the crack patterns. Figure 3.23 shows cracking patterns from tests with pre-compression 0.1 MPa in comparison with simulation of distinct model. The shading indicates the displacement distribution normal to the plane of the wall. As shown, the distinct model gives an accurate prediction of the crack patterns, whereas, the homogenized model does not simulate crack patterns well. Therefore, for simulating local damage of URM walls, the distinct model is a useful tool, although it is computational intensive.
Chapter 3: Numerical Simulation of URM Walls by Using Homogenization Technique

Observed cracking patterns from tests	Simulated cracking patterns
Short wall with 0.1MPa precompression

Short wall without pre-compression

Figure 3.23 Crack patterns of tests and simulations

Figure 3.24 Crack patterns of smeared-crack model
3.5. CONCLUSIONS

This chapter presented numerical investigation of the ten-core brick URM wall using the homogenization technique. The equivalent material properties of the masonry unit such as the elastic moduli and failure characteristics were derived by numerical simulation of a basic cell under various boundary conditions. The developed homogenized model is then used to simulate the response of a URM wall with an opening under static loading. It was found that the simulated results using the homogenized model agree well with those obtained from the distinct model and test results. However, far less time is required for a solution using the homogenized model in comparison with distinct model. The developed homogenized model can be used to simulate large-scale masonry structures under various loads. It is worth noting that although the homogenized model has demonstrated its computational efficiency to predict the global response of the URM wall, it may not give a good simulation of local damage such crack patterns of the URM wall in comparison with the distinct model.
4. SIMULATION OF FRP REPAIRED URM WALL UNDER OUT-OF-PLANE LOADING

4.1. INTRODUCTION

The retrofitting of masonry structures with near-surface mounted (NSM) FRP plates and externally bonded (EB) FRP plates has proven to be an innovative and cost effective strengthening technique. The behaviour of such FRP-strengthened URM walls is often controlled by the behaviour of the interface between the FRP and masonry, which is investigated using a pull-test commonly. In modelling the performance of the FRP retrofitted URM wall properly, the key step is to simulate the interface behaviour between masonry and FRP retrofits.

Numerical methods have been used to simulate the interfacial behaviour of FRP-to-concrete (Al-Mahaidi and Hii 2007; Lu et al. 2006; Lu et al. 2007). Usually, there are two approaches to model debonding behaviour in FRP strengthened RC members. One approach is to employ a layer of interface elements with zero-thickness between the FRP and concrete element to simulate debonding failure. Although the bond slip behaviour can be specified in the interface elements, it is not a truly predictive model due to the zero thickness assumption for the interface elements. The second approach is to use a thin layer of concrete elements adjacent to the adhesive to simulate cracking and debonding failure. However, some research has shown that it is difficult to use appropriate concrete models to simulate debonding behaviour. Although the interfacial behaviour of FRP-to-concrete bond has been studied in pull tests recently, few studies have been conducted to investigate the bond-slip and load-displacement behaviour of the FRP-to-masonry interface in pull tests.
In this Chapter, a numerical model will be used to simulate the response of the FRP repaired URM wall under out-of-plane loads. The FRP-to-masonry interface is modelled by a layer of interface elements or contact surface of zero thickness. The interface element model and contact surface model were validated by simulating the bond-slip behaviour of pull tests of both EB and NSM CFRP plate bonded to a five-brick high masonry prism. The masonry prism in pull tests was modelled either by the derived homogenized model or by the commonly used smeared crack model. A distinct model was also employed to model masonry prism behaviour for a comparison. The efficiency and accuracy of the homogenized model was verified from simulation of the pull tests in comparison with the distinct model and the smeared crack model. The homogenized model, together with the interface element model, was then employed to simulate a severely damaged URM full-scale wall, previously tested under reversed-cyclic loading, repaired with NSM CFRP plates under out-of-loads. The smeared crack model was also used to model the response of the FRP repaired URM wall. It was found that the simulated results predicted using the homogenized model fitted well with test data.

4.2. MATERIAL MODELS IN SIMULATION

4.2.1. Masonry

The distinct model, homogenized model and smeared crack model validated in Chapter 3 were used to model the performance of the 10-core clay brick masonry in both pull tests and full scale wall under out-of-plane loading tests.
4.2.2. FRP Models

FRP composites, which are adhesively bonded to the masonry, can be modelled using an elastic-brittle material model. Both CFRP and GFRP plates were used in pull-tests. The reinforcing strips used in NSM pull-test were carbon fibre strip CFRP. The width of the carbon FRP strip was 20mm, and the thickness was 1.2mm. The material properties of CFRP were tested by Yang (2007) and the manufacture with results shown in Table 4.1. The average values appear to be comparable with the manufacturer’s data.

Table 4.1 Carbon FRP material properties (Yang 2007)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>160 MPa</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>95 GPa</td>
</tr>
</tbody>
</table>

Table 4.2 GFRP material properties (Yang 2007)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>250 MPa</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>85 GPa</td>
</tr>
</tbody>
</table>

The glass FRP (GFRP) material properties were determined based on the tensile test performed by Yang (2007) and are summarised in Table 4.2. The average of rupture
strain was found to be approximately 11500 microstrain. The experimental values for Young’s modulus and strength of the GFPR strip are 19.3 MPa and 223 MPa, respectively.

4.2.3. Bond-Slip Models

Adhesive material is used in practice to produce a continuous bond between the FRP and masonry. It can help FRP strips to develop full performance by transferring shear stress inside the layer of interface between FRP and masonry. Therefore, the interface is the key component of FRP-to-masonry bond. The behaviour of interface between the masonry and FRP is based on the strength properties of the epoxy adhesive. The adhesive had tensile strength of 13.9 MPa and Young’s modulus of 6.7 GPa. The tensile strength of the adhesive material is much greater than that of masonry, hence, a failure surface was found in the masonry, but not in the adhesive layer in experiments. Therefore, to achieve the goal of simulating the pull test and studying the debonding behaviours, the interface consisting of the adhesive layer and a thin masonry layer must be simulated accurately. The interface was modelled using two methods in this study: a thin layer of interface element model and a contact surface model.

Figure 4.1 illustrates the interface element model and contact surface model. As shown in Figure 4.1a, the interface elements with a thickness of 1mm are adjacent to FRP plates and masonry while the FRP plate and masonry are contacted directly in a contact model as shown in Figure 4.1b. Since there is no thin layer of interface elements in the contact surface model, the number of elements used model will be reduced. Therefore, the contact model can be solved much more quickly.
For the interface element model, the interface was modelled as a thin layer of elements with thickness of 1 mm. The interface element behaved like an isotropic elastic material. The strength criterion of the interface material was dominated by debonding failure, i.e., shear failure. The post-failure process of the interface elements was controlled by fracture energy, which can be determined from the shear-slip curve. Figure 4.2a shows the experimental local bond-slip curves from pull tests, which can be idealised as a bi-linear bond-slip model as shown in Figure 4.2b (Yang 2007). Both shear debonding failure and tensile failure dominate the strength criterion of the thin layer interface material. The post-failure process of the interface material is controlled by shear fracture energy and tensile fracture energy, which equals to the area under the curves as shown in Figure 4.3a, and can be estimated by the local bond-slip models in pull tests. The relationship between shear stress and local slip can be identified by defining the ultimate stress τ_f, the corresponding slip at peak shear stress, δ_f, and slip at zero shear stress, δ_f. The shear fracture energy was estimated according to the average value of the areas under experimental bond-slip curves in a previous study (Yang 2007). $\sigma_{f_{t}}$ is assumed to be the tensile strength of brick units and tensile fracture energy rate $G_{f_{t}}= 13.2J/m^2$, $\sigma_{f_{t}}=3.55MPa$ (Seracino et al. 2007). The inputs of τ_f and G_{f} will vary with different retrofitting techniques. It was found that for the NSM model, the maximum shear strength was 14.5 MPa, and shear fraction energy was 5000N/m. For EB model, the maximum shear strength and shear fraction energy were found to be 5.87MPa and
1700N/m, respectively. The above parameter values were introduced in the material model MAT_ARUP_ADHESIVE in LS-DYNA to simulate the interface between FRP strips and masonry. Inputs are summarized in Table 4.1.

![Figure 4.2 Behaviour of bond-slip relationship](Yang 2007)

![Figure 4.3 Stress-displacement curves of interface element model]

Table 4.3 Inputs of interface model for various retrofits

<table>
<thead>
<tr>
<th>Retrofits</th>
<th>τ_f (MPa)</th>
<th>G_f (J/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSM CFRP</td>
<td>14.5</td>
<td>5000</td>
</tr>
<tr>
<td>EB CFRP</td>
<td>7.87</td>
<td>600.8</td>
</tr>
<tr>
<td>EB GFRP</td>
<td>5.87</td>
<td>1700</td>
</tr>
<tr>
<td>Steel plate</td>
<td>7.87</td>
<td>600.8</td>
</tr>
</tbody>
</table>
Before yielding, the material model behaves like an isotropic elastic material. The yield and failure surfaces of the interface elements are treated as a power-law combination of direct normal stress and shear stress across the bond in Eq. 4-1. The yield criterion considered both tension and shearing for the interface element as defined and shown in Figure 4.4.

\[
\left(\frac{\sigma_j}{\sigma_{fj}}\right)^2 + \left(\frac{\tau}{\tau_f}\right)^2 = 1
\]

Eq. 4-1

![Figure 4.4 Yield criterion for interface material model](image)

As an alternative method, the FRP-to-masonry interface was also modelled using contact between FRP plates and masonry directly. The bond-slip behaviour in the contact surface models was also defined as a bi-linear shear-slip curve (Figure 4.3a). The failure shear stress \(\tau_f\), failure tensile stress \(\sigma_f\) and failure slip \(\delta_f\) were input as control parameters. In the contact surface model, FRP plates and masonry were considered as initially tied with contact nodes. Tiebreak will not occur until the failure stress criterion is satisfied. A separation of contact parts at specific shear or normal stresses is provided in the failure criterion, which is identified by

\[
\left(\frac{\sigma_n}{\sigma_f}\right)^2 + \left(\frac{\tau_s}{\tau_f}\right)^2 \geq 1
\]

Eq. 4-2

where \(\sigma_n\) and \(\tau_s\) denote the normal and shear stresses, and \(\sigma_f\) and \(\tau_f\) denote the ultimate normal and shear stresses, respectively. The damage is defined as a linear
function of deformation between nodes initially in contact. After the stress reaches the ultimate stresses, damage initiates and stress is scaled by the linear damage function. When the deformation is increased to the critical failure slip δ_f, the damage is completed, and the contact fails. After the failure, only friction was considered between the initially contacted parts. Assuming there is no load reversals, the energy released rate due to the failure of the interface is approximately $0.5 \times S \times \delta_f$, where

$$S = \sqrt{\text{max}(\sigma_{\mu,0})^2 + |\sigma_s|^2}$$ \hspace{1cm} \text{Eq. 4-3}$$

at initiation of damage.

In LS-DYNA, contact model “CONTACT AUTOMATIC SURFACE TO SURFACE TIEBREAK” was selected to perform the contact analysis. For the NSM model and EB model, the ultimate shear stress τ_f is equal to 14.5MPa and 5.9MPa, respectively. Because the failure surface was observed to be in experimental masonry tests, the ultimate normal stress for the FRP-masonry interface element was defined as 0.6MPa and 1.8MPa for the NSM and EB models, respectively. Based on experimental results, the failure slip was set as 1.25mm and 0.95mm for the NSM model and EB model, respectively.

4.3. VALIDATION OF THE NUMERICAL MODEL USING PULL TESTS

4.3.1. Pull Test Program

Pull tests are usually used to investigate the bond behaviours of EB GFRP and NSM CFRP to masonry (Griffith et al. 2007). Figure 4.5 shows the experimental specimens. As shown, a five-brick high masonry model was used for each pull-test and bricks were bonded by using 10 mm thick common mortar. Glass FRP strips were used in the externally bonded specimen in the tests, while carbon FRP strips
were used in the near surface mounted specimen. In the testing, the bottoms of the specimens were fixed, and a tensile load was applied to the top of FRP strips until debonding occurred. The load and strains along FRP strips were recorded in these pull tests as shown in Figure 4.5. The local bond-slip curves and global load-displacement curves were estimated from the recorded data. Figure 4.6 shows debonding failed along the FRP strips within masonry, while the adhesive material was undamaged. Therefore, the interface between masonry and FRP strip was the key component. Coding the material models for FRP, masonry and the interface into a finite element program LS-DYNA, the interface element model and contact surface model were validated by simulating the bond behaviours of EB GFRP and NSM CFRP plates to masonry in the pull tests.
4.3.2. Distinct Models

A distinct model for masonry introduced in Chapter 3 was used in the simulation of the pull tests. Figure 4.7 shows distinct numerical models of NSM and EB pull-tests. The top surface of the masonry block was fixed in the vertical direction to model the restraint plate, and the bottom of the model was fixed in all degrees of freedom. The tensile load in the numerical model was applied on the top of FRP strips by the displacement control method until debonding occurred. Both CFRP and GFRP were modelled using an elastic-brittle material model. Rupture of FRP plates was controlled using principle strain values in this study. Both the interface element model and contact surface were used to model the interface between FRP and masonry prism in the simulation.

Figure 4.7 Distinct numerical models of NSM and EB pull-tests

Figure 4.8 shows the local bond-slip relationships from experiments and numerical simulation of the pull tests using interface element method. As shown in Figure 4.8a, the interface element model gave good predictions of the local bond-slip relationship
for the EB CFRP strip at 56 mm below the top surface as compared with those obtained from pull tests. Similar results were observed from the simulated local bond-slip relationships of NSM CFRP plate at 20.5 mm below the top surface from pull tests in comparison with the test results as shown in Figure 4.8b. Figure 4.9 shows the corresponding global load-displacement curves from the numerical simulation and test data, where it can be seen that the numerical simulation agreed reasonably well with test data.

![Figure 4.8 Comparison of results of local bond-slip relationships in a pull test using interface element model](image1)

(a) EB GFRP retrofitted model (b) NSM CFRP retrofitted model

Figure 4.8 Comparison of results of local bond-slip relationships in a pull test using interface element model

![Figure 4.9 Comparison of results of load-deflection curves in a pull test using interface element model](image2)

(a) EB GFRP retrofitted model (b) NSM CFRP retrofitted model

Figure 4.9 Comparison of results of load-deflection curves in a pull test using interface element model
The simulation of local bond-slip relationships in pull tests using contact surface model were also conducted and compared with test data as shown in Figure 4.10. It can be observed that the contact model also predicted the local bond-slip relationships from both NSM and EB FRP plates to masonry very well. Figure 4.11 shows a comparison of results of global load-displacement curves in a pull test using the contact model. As shown, reasonable predictions were obtained for the NSM and EB FRP retrofitted models.

(a) EB GFRP retrofitted model (b) NSM CFRP retrofitted model

Figure 4.10 Comparison of results of local bond-slip relationships in a pull test using contact model

(a) EB GFRP retrofitted model (b) NSM CFRP retrofitted model

Figure 4.11 Comparison of results of load-deflection curves in a pull test using contact model
In the numerical simulation using an interface element model, failure progress was observed by tracking erosion of interface elements in details (Figure 4.12). Debonding occurred at the top of the bond area while the shear stress reached the ultimate value, after which, failure extended to the bottom quickly. Figure 4.13 shows crack patterns of the simulation, which meshes well with test results.

Figure 4.12 Debonding failure progress of EB GFRP model
It should be noted that although both the interface element method and contact surface method gave reliable estimations of local bond-slip relationships and global load-displacement curves for NSM and EB FRP retrofitted models in pull tests, the time spent in contact model is less than that in interface element model, due to its simple stress transference process. In the models with same number of elements, the contact model saved approximately 50% to 80% calculation time, indicating this model is more efficient than NSM and EB retrofitted members. Moreover, compared with the interface element model, there is less limitation in meshing geometric models, and thus numerical models can be further simplified to save more calculation time. However, the contact surface model may not yield reasonable predictions of debonding failure mechanism of the pull tests as good as the interface element model due to the zero thickness of the interface.

4.3.3. Homogenized Model and Smeared Crack Model

The homogenized model derived in Chapter 3 for masonry together with the elastic material model for FRP and interface element model were coded into the finite element program LS-DYNA to simulate the bond behaviours of EB GFRP and NSM CFRP plates to masonry in pull tests. Figure 4.14a and Figure 4.14b show the
homogenized models of pull-tests of NSM CFRP plates and EB GFRP strips bonded to two five-brick high masonry prisms. In order to check the reliability and computational efficiency of the homogenized model in the numerical simulation, the same pull tests were also analysed with the distinct model and the smear crack model.

Figure 4.14 Homogenized models of pull tests

(a) Homogenized model of EB pull test (b) Homogenized model of NSM pull test

Figure 4.15 shows the local bond-slip relationships from experiments and numerical simulation of the pull tests using the homogenized model and the distinct model. It can be observed in Figure 4.15a that both the homogenized model and the distinct model gave good predictions of the local bond-slip relationship for the EB GFRP strip at 56 mm below the top surface as compared with those obtained from pull tests. More accurate results were observed from the simulated local bond-slip relationships of NSM CFRP plate at 20.5 mm below the top surface from pull tests in comparison with the test results as shown in Figure 4.15b. Figure 4.16 shows the corresponding global load-displacement curves from the numerical simulation and test data, where it can be seen that numerical results from the homogenized model and distinct model agreed reasonably well with test data. It should be noted that although the layout of the five-brick high masonry prism in Figure 4.14a was different from that of basic cell shown in Figure 4.14b, the simulation demonstrated
that both models gave good results, indicating that the homogenized model derived from basic cell of masonry in Chapter 3 can also be used to simulate EB GFRP and NSM CFRP plates to five-brick high masonry prism.

Figure 4.15 Comparison of results of local bond-slip relationships in pull tests

Figure 4.16 Comparison of results of load-deflection curves in pull tests

The same local bond-slip relationships in the above pull tests were also simulated using the smear crack model. Figure 4.17 shows a comparison of the simulated results using the smeared crack model and the distinct model with the test data. It can be observed that the smear crack model also predicted the local bond-slip relationships for both NSM and EB FRP plates bonded to masonry prisms very well. Figure 4.18 shows a comparison of global load-displacement curves in a pull test.
using the smear crack model and distinct model. As shown, reasonable predictions were obtained for both FRP strips or plates bonded to masonry prisms in pull tests.

![Shear stress vs Slip](image1.png)

(a) EB GFRP retrofitted model

![Shear stress vs Slip](image2.png)

(b) NSM CFRP retrofitted model

Figure 4.17 Comparison of results of local bond-slip relationships in pull tests

![Load vs Displacement](image3.png)

(a) EB GFRP retrofitted model

![Load vs Displacement](image4.png)

(b) NSM CFRP retrofitted model

Figure 4.18 Comparison of results of load-deflection curves in pull tests

It should be noted that while distinct, smeared crack and homogenized models all gave reliable estimates of local bond-slip and global load-displacement for pull tests, the solution time varied significantly. In the same pull test simulation, the homogenized model could save about 75% and 90% calculation time, in comparison with the smear crack model and the distinct model. This is shown in Figure 4.19, and indicates that the homogenized model is the most efficient to model NSM and EB plates bonded to masonry prisms in pull tests. It should also be noted that although both the homogenized model and smear crack model gave accurate
prediction of results of pull tests with far less time compared with the distinct model, it may not yield reasonable prediction of debonding failure mechanism of the pull tests as good as the distinct model because the weak mortar joints may significantly affect the debonding process.

![Figure 4.19](image.png)

Figure 4.19 Comparison of computing time with different models in pull tests

4.4. APPLICATION OF THE NUMERICAL MODELS FOR FRP REPAIRED URM WALLS UNDER OUT-OF-PLANE LOADING

The above validated numerical models were coded into the finite element program LS-DYNA to simulate the response of two FRP repaired URM walls (with window openings), under reversed-cyclic loading. The two walls were repaired, respectively, with NSM CFRP plates and EB GFRP strips and tested under two-way monotonic out-of-plane bending with pre-compression 0.1 MPa in the vertical direction. The same tests were also analyzed with the smear crack model for a comparison. Figure 4.20 shows the damaged URM wall with opening repaired with two NSM CFRP strips with 20 mm wide x 1.4 mm thick symmetric fixed in vertical direction. The wall configurations and existing crack patterns in the experimental study were also illustrated in Figure 4.20. Figure 4.21 shows the damaged URM wall repaired with
five EB 77 mm wide x 2.0 mm thick prefabricated GFRP strips spaced at 500 mm, with two strips also placed adjacent to the window opening. The details of existing crack patterns are depicted in Figure 4.21 and the experimental setup of the two FRP repaired damaged URM walls were shown in Figure 4.22. In these experimental tests, airbags were used to apply lateral pressure onto the FRP strengthened URM wall specimens to simulate out-of-plane load induced by earthquakes. The load applied on the wall using the airbags was measured using load cells positioned between the airbag backing board and the reaction frame and the pressure acting on the wall surface was calculated by dividing the total load by the area of the wall. Linear variable differential transformers (LVDT) were used to measure displacements at different targets. Strain gauges were placed on the FRP plates at different points to record stress-strain curves. Details about the experimental study can be found in (Yang 2007).

Figure 4.20 Configuration of the damaged URM wall repaired with two NSM plates
Chapter 4: Simulation of FRP Repaired URM Walls under Out-of-plane Loading

(a) Crack patterns
(b) Locations of five EB strips

Figure 4.21 Configuration of the damaged URM wall repaired with five EB strips

(a) NSM FRP repaired URM wall
(b) EB FRP repaired URM wall

Figure 4.22 Experimental setup for the FRP repaired damaged URM wall

Figure 4.23 shows the numerical models for the two FRP repaired URM walls. Both the homogenized model and smear crack model were used to model the behaviour of masonry. The validated interface element models in the above section were used to model the behaviour of the bond-slip of FRP-to-masonry interface for NSM and EB retrofitting. In the numerical model, existing crack patterns of the two specimens tested under reversed-cyclic loading, shown in Figure 4.20a and Figure 4.21a, were modelled as contact surfaces between different parts of masonry as shown in Figure 4.23. Friction ratio of cracks on the contact surfaces can range from 0.7 to 2.5 (Willis et al. 2004). Since the post-static test cracking patterns on the damaged specimens were generated by the reversed-cyclic loading, the friction coefficient of
these existing cracks on the URM test specimen was determined by simulating the last part of load-displacement curve of the specimen under the repeated cyclic load as shown in Figure 4.24. Trail analysis was carried out by varying friction coefficients between 0.7 and 1.3. Figure 4.25 shows the simulation of the last part of load-displacement curve with various friction coefficients. It was found that a friction coefficient of 0.9 fitted well with test results. Thus the friction coefficient 0.9 was used in the contact model in LS-DYNA program to perform the analysis.

Figure 4.23 Numerical models of the FRP repaired damaged URM walls

Figure 4.24 Load-displacement curves of the URM walls under the reversed-cyclic loading
Figure 4.25 Simulation of the last part of load-displacement curve with various coefficients of friction

Figure 4.26 shows load-displacement curves from tests and numerical simulations at the target using the homogenized model and the smear crack model. As shown in Figure 4.27, both the homogenized model and smear crack model gave good predictions of the NEM CFRP repaired URM wall response as compared with those obtained by experimental tests. The distribution of maximum strains along the two EB GFRP plates obtained from numerical simulation using the homogenized model and smear crack model was in comparison with test data as shown in Figure 4.28. As shown, the homogenized model gave a more accurate prediction than the smear crack model. Similar responses were observed from the both models in comparison with the test results of EB GFRP plates repaired URM long wall as shown in Figure 4.29. It should be noted that with the same computer system the time spent for the smeared crack model to solve the problem was much more than for the simple homogenized model.
Figure 4.26 Simulation of NSM repaired URM wall using the homogenized model and smear crack model

Figure 4.27 Comparison of maximum strain distribution along two NSM CFRP plates
Chapter 4: Simulation of FRP Repaired URM Walls under Out-of-plane Loading

Figure 4.28 Comparison of maximum strain distribution along two EB GFRP plates
Chapter 4: Simulation of FRP Repaired URM Walls under Out-of-plane Loading

4.5. CONCLUSIONS

Pull tests have been simulated using a contact model and interface element model in the finite element program LS-DYNA. It was found that both the contact model and interface element model gave a reasonable prediction of local bond-slip relationships and global load-deflection curves for both NSM and EB FRP plates to masonry in pull tests. However, less time was required to obtain a solution using the contact model in comparison with interface element model. The contact surface model may not simulate debonding failure mechanism of the pull tests as well as the interface element model due to its zero thickness.

The homogenized model, smear crack model and distinct model have been used to analyse the response of FRP plated masonry prisms in pull tests. It was found that far less time was spent using the homogenized model in comparison with distinct model and smear crack model. The homogenized model and smear crack model together with the interface element model were used to simulate two seriously damaged URM walls retrofitted with NSM and EB plates under out-of-plane loads. The homogenized model has again demonstrated its computational efficiency to predict global response of the two FRP repaired URM walls.

Figure 4.29 Simulation of EB repaired URM wall using the homogenized model and smear crack model
5. MITIGATION OF BLAST EFFECTS ON RETROFITTED URM WALLS

5.1. INTRODUCTION

Unreinforced masonry (URM) construction is extremely vulnerable to terrorist bomb attacks since the powerful pressure wave at the airblast front strikes buildings unevenly and may even travel through passageways, resulting in flying debris that is responsible for most fatalities and injuries. One way to protect URM construction from airblast loads is to strengthen the masonry or to enhance its ductility. Categories of available masonry retrofit include conventional installation of exterior steel cladding or exterior concrete walls, externally bonded FRP plating, metallic foam cladding, spray-on polymer and/or a combination of these technologies (Davidson et al. 2005; Davidson et al. 2004b). However, limited research has been conducted to investigate retrofitting techniques to strengthen unreinforced masonry (URM) walls against airblast loading (Baylot et al. 2005; Carney and Myers 2005; Eamon et al. 2004; Myers et al. 2004; Ward 2004). Therefore, it is necessary to study the behaviours of retrofitted URM walls under airblast loading, and develop efficient retrofit solutions to enhance blast resistance of URM construction.

This chapter presents the results of numerical studies that were conducted to investigate the effectiveness of structural retrofit of URM walls by external bonded (EB) FRP plating, aluminium foam cladding, spray-on polymer and/or a combination of these technologies. A distinct model was used to model the performance of masonry, and the Drucker-Prager strength model verified in Chapter 3 was used to simulate the behaviour of mortar and bricks for masonry structures. An elastic-brittle material model was employed to model the FRP material. The interface element
model described and validated in Chapter 4 was used to model the “partial-interaction” behaviours between the URM wall and the various retrofit materials. The aluminium foam was modelled by a nonlinear elastoplastic material model which was validated by test data from the manufacturer (CYMAT 2003). The spray-on polyurea and steel skin for aluminium foam was simulated using elastoplastic model. The material model “MAT_MODIFIED_HONEYCOMB” in LS-DYNA (Whirley and Englemann 1991) program was used to simulate the performance of aluminium foam protected URM walls subjected to airblast loads. Parametric studies were carried out to investigate the respective efficiency of different retrofitting technologies. Pressure-impulse (P-I) diagrams were used to assess damage levels of the retrofitted URM walls under airblast loads.

5.2. MATERIAL MODELS IN THE SIMULATION

Distinct model for masonry derived in section §3.2.2, and FRP models introduced in section §4.2.2 were used to build models of retrofitted URM walls. With regard to debonding failure due to tension at the interface between the masonry and the bonded retrofit material, tensile failure was employed into the interface element model varied in Chapter 4. Thus, material models for spray-on polyurea, and aluminium foam were introduced in this section.

5.2.1. Material Model for Spray-on Polyurea

Spray-on polyurea is a type of low-stiffness polymer without any fiber reinforcement. Davidson et al. (Davidson et al. 2005; Willis et al. 2004) who tested spray-on polyurea retrofitted concrete masonry walls, reported that the polyurea provided a high level effectiveness of migration against blast by absorbing strain energy and
preventing fragmentation. Compared with stiffer material such as CFRP, it provides a cost-effective solution, and is easy to apply. The material model MAT_PLASTIC_KINEMATIC developed for plastic material in LS-DYNA was used to simulate the spray-on polyurea. It was modelled as an elastoplastic material with material properties obtained from Davidson’s tests as summarized in Table 5.1. The failure strain for eroding elements was set as 89% (Davidson et al. 2005).

Table 5.1 Material properties of spray-on polyurea (Davidson et al. 2005)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of elasticity</td>
<td>400 MPa</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>80 MPa</td>
</tr>
<tr>
<td>Post-peak toughness</td>
<td>60 MPa</td>
</tr>
</tbody>
</table>

NOTE:
This table is included on page 80 of the print copy of the thesis held in the University of Adelaide Library.

5.2.2. Material Model for Aluminium Foam

Aluminium foams are new, lightweight materials with excellent plastic energy absorbing characteristics that can mitigate the effects of an explosive charge on a structural system by absorbing high blast energy. The typical behaviour of aluminium foam in uniaxial compression is illustrated in Figure 5.1 (CYMAT 2003). As shown, the material closely resembles to that of a perfect-plastic material in compression that makes aluminium foam attractive for use in sacrificial layers for blast protection. Airblast tests on aluminium foam protected RC structural members have been conducted recently what it was found that aluminium foam was very effective to absorb airblast energy (Schenker et al. 2008; Schenker et al. 2005). Due to these results, it was believed that aluminium foam would also be very effective for protection of URM construction against airblast loads although no tests have been performed. Since field airblast tests are very expensive and sometimes not even possible to conduct due to safety and environmental constraints, numerical
simulations with a validated numerical model was used here to provide an alternative method for investigating the effectiveness of aluminium foam to mitigate airblast loads on URM construction.

Figure 5.1 Schematic stress-strain curve of aluminium foam (CYMAT 2003)

Aluminium foam sheets have a natural directionality, and the numbering convention of material directions is shown in Figure 5.2. As noted above, it has the ability to dissipate energy as a cellular solid due to very early onset of plastic yielding and large plastic deformation capability as shown in Figure 5.1. To model the real anisotropic behaviour of the aluminium foam, a nonlinear elastoplastic material model (LSTC 2007) was used separately for all normal and shear stresses. For the uncompacted material, the trial stress components in the local coordinate system are updated according to

\[
\sigma_{ij}^{trial} = \sigma_{ij}^n + E_y \Delta e_{ij}
\]
\[
E_y = E_y^u + \beta (E - E_y^u)
\]

in which \(E_y^u\) is elastic/shear modulus in uncompressed configuration,
\[\beta = \max \left[\min \left(\frac{1-V}{1-V_f}, 1 \right), 0 \right] \] \hspace{1cm} \text{Eq. 5-3}

Each component of the updated stresses is independently checked to ensure that it does not exceed the permissible value determined by the load curve; if

\[|\sigma_{ij}^{n+1}_{\text{trial}}| > \lambda \sigma_y(V) \] \hspace{1cm} \text{Eq. 5-4}

then

\[\sigma_{ij}^{n+1} = \sigma_y(V) \left(\frac{\lambda \sigma_{ij}^{n+1}_{\text{trial}}}{\sigma_{ij}^{n+1}_{\text{trial}}} \right) \] \hspace{1cm} \text{Eq. 5-5}

where \(\sigma_y(V) \) is defined as the stress component by the stress versus volumetric strain curves; and \(\lambda \) is defined as a function of strain rate as the Euclidean norm of the deviatoric strain-rate tensor. For fully compacted material, it was assumed that the material behaviour is elastic-perfectly plastic and the stress components updated based on

\[s_{ij}^{n+1}_{\text{trial}} = s_{ij}^n + 2G \Delta \varepsilon_{ij}^{\text{dev},n+1/2} \] \hspace{1cm} \text{Eq. 5-6}

where the deviatoric strain increment is defined as

\[\varepsilon_{ij}^{\text{dev}} = \Delta \varepsilon_{ij} - \Delta \varepsilon_{ik} \delta_{kj} / 3 \] \hspace{1cm} \text{Eq. 5-7}

If the effective trial stress exceeds the yield stress for the fully compacted material,

\[s_{\text{eff}}^{\text{trial}} = \left(3s_{ij}^{\text{trial}} s_{ij}^{\text{trial}} / 2 \right)^{1/2} > \sigma_y \] \hspace{1cm} \text{Eq. 5-8}

the stress components are simply scaled back to the yield surface.
\[S_{ij}^{n+1} = \frac{\sigma_{ij}^{trial}}{S_{ij}^{trial}} S_{ij}^{trial} \]

Eq. 5-9

Then the hydro pressure is updated as

\[p^{n+1} = p^n - K\Delta e_k^{n+1/2} \]

Eq. 5-10

\[K = \frac{E}{3(1-2\nu)} \]

Eq. 5-11

from which, the Cauchy stress is now obtained by

\[\sigma_{ij}^{n+1} = S_{ij}^n - p^{n+1} \delta_{ij} \]

Eq. 5-12

After completing the stress update, they are transformed back to the global coordinate system.

![Figure 5.2 Numbering convention of foam material directions](image)

Compressive tests on an aluminium foam sheet (A356SiC040) with length of 400 mm, width of 400 mm and thickness of 40 mm were simulated with the nonlinear elastoplastic material model using LS-DYNA program. Material properties of such aluminium foam are listed in Table 5.2. Figure 5.3 shows a comparison of the simulated stress-strain curve with test data in direction a. It was found that the simulated results agreed well with the experimental data in the manufacturer manual (CYMAT 2003), indicating that performance of the aluminium foam sheet can be effectively simulated with the nonlinear elastoplastic material model. Orthotropic
properties were inputted to get reliable material behaviours according to the manufacturer manual (CYMAT 2003). The simulated stress-strain relationship is plotted in Figure 5.4.

Table 5.2 Material properties of A356SiC040 aluminium foam

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>400</td>
</tr>
<tr>
<td>Elastic modulus in a direction (GPa)</td>
<td>0.5</td>
</tr>
<tr>
<td>Young’s modulus of al (GPa)</td>
<td>71.0</td>
</tr>
<tr>
<td>Elastic modulus in b direction (GPa)</td>
<td>0.7</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>Elastic modulus in c direction (GPa)</td>
<td>0.85</td>
</tr>
<tr>
<td>Yield stress of al (GPa)</td>
<td>0.322</td>
</tr>
<tr>
<td>Shear modulus (GPa)</td>
<td>0.92</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>4.0</td>
</tr>
<tr>
<td>Densification Strain (%)</td>
<td>68</td>
</tr>
</tbody>
</table>

Figure 5.3 Comparison of compressive stress-strain curves between simulation and test in direction a

Figure 5.4 Characteristics of compressive stress-strain curves of aluminium foam
5.3. SIMULATION OF RETROFITTED URM WALLS AGAINST BLAST LOADING

The material models for masonry, FRP, polyurea and aluminium foam as well as interface element model were coded into the finite element program LS-DYNA to numerically calculate the response and damage of 2.5m long (b) × 2.5m high (h) × 110mm thick URM wall with and without retrofitting under airblast loads.

5.3.1. Blast Loading

The blast environment was set as surface burst blast shown in Figure 5.5. By changing the charge weight (W) and stand-off distance (R) between masonry walls and charge centre, the correlation between the scaled distances \(Z = R/W^{1/3} \) and impulse was identified. The charge weight discussed in section §5.3 is 1000kg TNT. Specimens were located at different stand-off distances to vary the scaled distance. When dimensions of the masonry wall are small compared to the stand-off distance R, the blast loads can be considered as uniform pressure. As shown in Figure 5.6, usually, if the angle \(\theta \) is less than 5°, the blast wave can be considered to apply a uniform pressure to the wall. In this study, the value of angle \(\theta \) ranged between 0.6° and 4.2° so that uniform pressure was used and applied on the front surface of URM walls. The blast pressure time history was charted from the U.S DoD code – TM-5-1300 (Department of Defence (DoD) 1990).
The blast loads were estimated using the idealized pressure-time variation shown in Figure 5.7. The blast wave is characterized by an initial positive phase which consisting of an abrupt rise from ambient \((P_o)\) to peak pressure \((P_{so})\) followed a decreasing period back to ambient pressure, and the a negative phase in which the pressure drops below the ambient pressure (Department of Defence (DoD) 1990). The pressure-time relationship was approximated in this study by an equivalent triangle curve (idealized positive phase) that is indicated in Figure 5.7.
The time history was calculated by from empirical methods (Henrych 1979; Wu and Hao 2005) and code solution (Department of Defence (DoD) 1990) which were discussed in Chapter 2.4.1. The peak pressure can be seen in Figure 5.8 for the three methods. Compared with the peak pressure derived from the chart solution, the values calculated by using the empirical theory are much smaller than the DoD value at scaled-distance one. However, the values for all three methods match well at scaled-distances between two and six. Considering that the data for the chart solution using TM-5-1300 were based on tests, which should be more reliable, they were selected for use in the following sections.

Figure 5.7 Idealized pressure-time variation

![Pressure-time variation diagram](image)

Figure 5.8 Comparison of peak pressure P_{so}

![Pressure comparison chart](image)
5.3.2. URM Walls

Parametric studies were carried out to estimate the response of the URM walls against airblast loads with a scaled distance increment of 0.01 m/kg$^{1/3}$. It was found that the critical scaled distance to prevent the URM wall from collapse is 9.0 m/kg$^{1/3}$. For URM walls under smaller blast loading (i.e. $Z \geq 9$ m/kg$^{1/3}$), damage was due to a combination of growing shear cracks and tensile cracks in mortar joints, demonstrating like step-like cracks as shown in Figure 5.9a. However, URM walls were observed to collapse immediately as shown in Figure 5.9b when subjected to larger blast loading (e.g. $Z = 4$ m/kg$^{1/3}$), and shear failure was found near supports. The performance of non-retrofitted URM walls under blast loads was used as a “control” case for comparison purposes.

![Figure 5.9 Performance of URM wall under different blast loads](image)

5.3.3. NSM CFRP Retrofitted URM Walls

The NSM CFRP technique for the retrofitted URM walls against blast loading was considered first. CFRP plates were applied vertically or horizontally (Figure 5.10) on
the URM wall which was simply supported at its four edges. Blast loading at different scaled distances was applied on the front surface of the wall. Simulation results are shown in Figure 5.11. It was found that maximum blast loads for the vertical or horizontal NSM CFRP retrofitted walls to resist are at scaled distances of $9 \text{ m/kg}^{1/3}$.

The failure models were similar as that of the URM wall. Under light impulse, the tensile and shear failure models were observed in mortar. Step-like cracks were seen and due to the FRP strips, more cracks were found in the central part of the rear side of the wall due to the tensile failure of the mortar. For the horizontal NSM CFRP retrofitted wall, mortar closed to the CFRP strips was damaged due to tensile failure, and horizontal cracks in the mortar were observed near the CFRP strips that reduced the integrity by separating the wall into several pieces. Debonding failure happened near the edges of the vertical NSM CFRP retrofitted wall, and the wall lost the enhancement from NSM CFRP strips in early stage. Compared with the behaviour of URM wall under same blast loading, the vertical or horizontal NSM CFRP retrofits do not increase the load capacity. Therefore, the NSM CFRP retrofitted technique is not considered as a suitable method to retrofit URM walls against blast loading, even if the wall is subjected to light impulse.
5.3.4. EB CFRP or GFRP Retrofitted URM Walls

The EB FRP retrofitting technique was selected next. Figure 5.12a shows four 100mm×2mm GFRP plates applied on the rear surface of URM wall. Numerical simulation results are illustrated in Figure 5.13. As shown, when scaled-distance $Z \geq 5.0 \text{ m/kg}^{1/3}$, step-like cracks were distributed on the most portions of rear surface of the wall, and the debonding of FRP plates was found around the cracks. The GFRP plates still carried loads, and the retrofitted URM wall was kept under light damage level, on which little debonding was observed (Figure 5.13). Some local failure of masonry was seen in the centre of the wall with the debonding failure level at $Z = 5.0 \text{ m/kg}^{1/3}$, and wall failure level was observed at $Z = 4.7 \text{ m/kg}^{1/3}$. Local failure of the masonry was found at the portion of wall without being covered by GFRP plates. It was observed that once the debonding area exceeds 10% of the whole bonded area, the retrofitted walls begin to lose the protection from the FRP retrofits. Thus, the relevant scaled-distance and impulse were defined as critical values of the debonding failure level. The debonding patterns are shown Figure 5.13. The combined effect of horizontal plus vertical GFRP plates was then investigated by applying four vertical and four horizontal GFRP plates with dimension of 100mm×2mm on the rear surface of the URM wall as shown in Figure 5.12b. The scaled-distance of wall failure level is at $4.3 \text{ m/kg}^{1/3}$ (see Figure 5.14), therefore, the additional GFRP plates on the rear.
surface slightly enhance the resistance capability. The URM wall with EB GFRP retrofitted on the entire rear surface (Figure 5.12c) was then investigated. Simulation results are summarized in Figure 5.15, indicating the EB GFRP plates installed on the entire surfaces can significantly enhance the blast resistance of the URM wall.

![Figure 5.12 EB GFRP retrofitted URM wall](image)

<table>
<thead>
<tr>
<th>Light damage</th>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z < 5 m/kg(1/3)</td>
<td>Z = 5 m/kg(1/3)</td>
<td>Z = 4.7 m/kg(1/3)</td>
</tr>
<tr>
<td>Crack patterns</td>
<td>Debonding patterns</td>
<td>Wall failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

Figure 5.13 Damaged EB GFRP retrofitted URM wall (4 plates on rear side)

<table>
<thead>
<tr>
<th>Light damage</th>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z<5 m/kg$^{1/3}$</td>
<td>Z=5 m/kg$^{1/3}$</td>
<td>Z=4.3 m/kg$^{1/3}$</td>
</tr>
</tbody>
</table>

Figure 5.14 Damaged EB GFRP retrofitted URM wall (8 plates on rear side)

<table>
<thead>
<tr>
<th>Light damage</th>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z<4 m/kg$^{1/3}$</td>
<td>Z=4 m/kg$^{1/3}$</td>
<td>Z=3.8 m/kg$^{1/3}$</td>
</tr>
</tbody>
</table>

Figure 5.15 URM wall fully retrofitted with EB GFRP sheet on rear surface

The URM walls with EB GFRP retrofitted on the rear surface or on both rear and front surfaces were also investigated by applying GFRP plates on the front surface of the URM wall to prevent the masonry from continuous being damaged during rebounding process. Firstly, four 100mm×2mm GFRP plates were applied on both sides of the wall. The effectiveness of the protection was defined using the
comparison of the maximum impulse capability of the retrofitted walls. Simulation results were compared with other configuration (Figure 5.17) indicating that the additional retrofits on front surface provided little enhancement in comparison with rear surface retrofits only. The URM walls with EB GFRP retrofitted on the entire both rear and front surfaces (Figure 5.12d) were then investigated, and simulation results were summarized in Figure 5.16. As shown, additional GFRP sheets retrofitted on the entire front side improved the enhancement of the URM wall further.

![Figure 5.16 URM wall fully retrofitted with EB GFRP sheets on both surfaces](image)

![Figure 5.17 Comparison of EB GFRP retrofitted URM walls](image)
A comparison of effectiveness of EB GFRP retrofitted URM walls against blast loading is shown in Figure 5.17. It is observed that GFRP applied on both surfaces provides the best protection by increasing the capability of blast-resistance to 464% compared with unretrofitted URM wall. However, it may not be cost-effective due to increase of cost for the additional layer of FRP sheets.

CFRP retrofitting on URM wall was also investigated. Figure 5.18 shows the URM wall retrofitted by four CFRP plates with dimension of 50mm×1.2mm on the rear surface subjected to blast loading. The simulation results shows that debonding occurred at a scaled distance of 9 m/kg$^{1/3}$ and wall failure occurs at the scaled distance of 6 m/kg$^{1/3}$. Thus, the CFRP retrofitting does not increase substantially the blast resistance capability of URM wall.

<table>
<thead>
<tr>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z=9$ m/kg$^{1/3}$,</td>
<td>$Z=6$ m/kg$^{1/3}$,</td>
</tr>
<tr>
<td>Impulse=0.852MPa·ms</td>
<td>Impulse=1.211MPa·ms</td>
</tr>
</tbody>
</table>

![Figure 5.18 EB CFRP retrofitted URM walls (4 plates)](image-url)

For the walls with CFRP plates bonded on the entire rear surface (Figure 5.19a), wall failure occurred at a scaled distance of 3.5 m/kg$^{1/3}$ (see Figure 5.20), indicating that entire surface CFRP retrofitting is similarly effective compared with the four vertical
EB CFRP plate retrofitted wall. However, when a layer of CFRP was added to the entire front surface (Figure 5.19b), the wall failed at a scaled distance of $3.3 \text{ m/kg}^{1/3}$, and debonded at scaled distance of $3.7 \text{ m/kg}^{1/3}$, as shown in Figure 5.21. Protection effectiveness of the various EB CFRP retrofits was compared in Figure 5.22, which shows that the effectiveness of blast resistance increases with more CFRP plates. The CFRP installed on both entire sides of the walls provides the best protection to the wall, however, compared with the wall retrofitted only on the entire rear side, the effectiveness was not improved double. The Therefore, CFRP retrofitted on front side is not a cost-effective protection.

(a) Fully applied on rear side (b)Fully applied on two sides

Figure 5.19 EB CFRP retrofitted URM walls on entire surface

<table>
<thead>
<tr>
<th>Light damage Z<4 m/kg(^{1/3})</th>
<th>I. Debonding failure Z=4 m/kg(^{1/3})</th>
<th>II. Wall failure Z=3.5 m/kg(^{1/3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear side</td>
<td>Rear side</td>
<td>Rear side</td>
</tr>
</tbody>
</table>

Figure 5.20 Fully EB CFRP retrofitted URM walls on back surface
Light damage
\[Z < 3.7 \, \text{m/kg}^{1/3} \]
I. Debonding failure
\[Z = 3.7 \, \text{m/kg}^{1/3} \]
II. Wall failure
\[Z = 3.3 \, \text{m/kg}^{1/3} \]

Figure 5.21 Two sides fully EB CFRP retrofitted URM walls

Figure 5.22 Comparison of EB CFRP retrofitted URM walls

A comparison of energy absorption for all of the carbon and glass EB FRP retrofits is shown in Figure 5.23. As shown, the EB GFRP retrofits on both surfaces can increase the unretrofitted URM wall blast-resistance by up to 464%. In general, the trend in results suggest, that full-surface treatments rather than strips will be more efficient. However, due to the expensiveness of the material and other practical issue of application, FRP full-surface retrofitting is a cost effective method.
5.3.5. Spray-on Polyurea Retrofitted URM Walls

A parametric study was carried out to investigate the effectiveness of spray-on polyurea as obviers. The spray-on polyurea retrofitted URM wall was used to study the relationship between the thickness of spray-on polyurea and deflection of the wall at scaled-distance $3\text{ m/kg}^{1/3}$ and $4\text{ m/kg}^{1/3}$. The polyurea was applied on both surfaces of the wall and the results are plotted in Figure 5.24. It was found that the thickness influences the effectiveness of the retrofit, with thicker spray-on polyurea giving better protection.

The blast mitigation effectiveness of a layer of 15mm spray-on polyurea was applied to the rear surface of the URM wall is shown in Figure 5.25. In the simulation, the debonding failure was identified by the eroded bricks on the rear surface of the masonry wall. Once the debonding area of eroded surface exceeds about 10% of the entire bonding surface, the mitigation effect begins to decrease seriously. Figure 5.25 shows two failure modes for the retrofits observed in the simulations. Under great pressure, the polyurea would be mutilated closed to supports. Shown in Figure 5.26, local failure and debonding failure were observed. Debonding failure started from the
centre of rear surface and four corners of the masonry wall. Some shear failure of masonry was also observed around the centre and corners of the walls.

Figure 5.24 Thickness of spray-on polyurea on blast mitigation effects

<table>
<thead>
<tr>
<th>Defomation</th>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Z=4 \text{ m/kg}^{1/3}$, Impulse=2.468MPa·ms</td>
<td>$Z=3.7 \text{ m/kg}^{1/3}$, Impulse=2.786MPa·ms</td>
</tr>
<tr>
<td>Interface</td>
<td>debonding patterns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.25 Spray-on polyurea retrofitted URM walls under blast loads
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

Figure 5.26 Local failure of the spray-on polyurea and masonry (vertical section)

The results for polyurea sprayed on the both surfaces is shown in Figure 5.27. It was observed from the simulation results, that the polyurea on the front surface can enhance the wall by absorbing more strain energy. It was found that the key factor influencing the effectiveness of the retrofits is energy absorbing capability. A comparison of the effectiveness of spray-on polyurea is shown in Figure 5.28. The wall retrofitted by a layer of 15mm spray-on polyurea on its rear surface absorbed three times more impulse energy than the unretrofitted URM wall. The increase of impulse ratio was 859% for the wall retrofitted by spray-on polyurea on both surfaces, indicating that by increasing the ductility, the masonry wall can survive much higher blast impulses.

<table>
<thead>
<tr>
<th>I. Debonding failure</th>
<th>II. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = 3.3 \text{ m/kg}^{1/3}$, Impulse = 3.257MPa·ms</td>
<td>$Z = 2.3 \text{ m/kg}^{1/3}$, Impulse = 7.322MPa·ms</td>
</tr>
</tbody>
</table>

Figure 5.27 Two sides 15mm spray-on polyurea retrofitted URM walls
5.3.6. Aluminium Foam Protected URM Walls

Parametric studies were also conducted to study the response of URM walls retrofitted with a layer of aluminium foam sheet (thickness of 40 mm) covered by two 1.5mm steel sheets on the front surface (Figure 5.29). For a scaled distance of more than 4 m/kg$^{1/3}$ as shown in Figure 5.30a, the protected URM wall suffered only light damage. Once the scaled distance reached 3.3 m/kg$^{1/3}$, the aluminium foam sheet began to be damaged, and debonding between the steel sheets/masonry interface was found as shown in Figure 5.30b, which demonstrates that the aluminium foam sheet absorbs the airblast energy and mitigates blast effects on the URM wall, even though the URM wall is still kept under light damage condition. The aluminium foam protected URM wall collapsed as shown in Figure 5.30c as the scaled distance reaches 2.3 m/kg$^{1/3}$. Once the URM wall retrofitted with a layer of a layer of 40mm thick aluminium foam on the both surfaces in Figure 5.31a, debonding failure between the aluminium foam and steel sheets/URM wall did not occur until the scaled distance reached 2.3 m/kg$^{1/3}$ as shown in Figure 5.31b. URM wall failure only occurred when
the scaled distance reached 1.8 m/kg\(^{1/3}\) as shown in Figure 5.31c. Figure 5.32 shows a comparison of the energy absorption for the aluminium foam protected URM walls. As shown, URM walls retrofitted with aluminium foam sheets on both surfaces can absorb 14 times more blast energy than the unstrengthened URM wall. Even compared with the walls retrofitted with either spray-on polyurea or EB GFRP, the aluminium foam increases the blast-resistance of URM wall about two and four times, respectively, as shown in Figure 5.33. The aluminium foam sheets are very promising for mitigation of blast effects on URM walls.

![Figure 5.29 Numerical model of aluminium foam protected URM wall](image)

<table>
<thead>
<tr>
<th>Scaled distance</th>
<th>(a) Undamaged Z=4 m/kg(^{1/3})</th>
<th>(b) Debonding damage Z=3.3 m/kg(^{1/3})</th>
<th>(c) Wall failure Z=2.3 m/kg(^{1/3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness 40 mm</td>
<td>Rear side</td>
<td>Rear side</td>
<td>Rear side</td>
</tr>
</tbody>
</table>

![Figure 5.30 Performance of aluminium foam protected URM walls under blast loads](image)
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

<table>
<thead>
<tr>
<th>Scaled distance</th>
<th>(a) Undamaged Z=4 m/kg$^{1/3}$</th>
<th>(b) Debonding damage Z=2.3 m/kg$^{1/3}$</th>
<th>(c) Wall failure Z=1.8 m/kg$^{1/3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>40 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Undamaged</td>
<td>Z=4 m/kg$^{1/3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Debonding damage</td>
<td>Z=2.3 m/kg$^{1/3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Wall failure</td>
<td>Z=1.8 m/kg$^{1/3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.31 Performance of aluminium foam protected two surfaces of URM walls under blast loads

![Figure 5.31](image-url)

Figure 5.32 Comparison of energy absorption of aluminium foam protected URM walls

![Figure 5.32](image-url)

Figure 5.33 Comparison of retrofitted URM walls

![Figure 5.33](image-url)
Furthermore, different types of aluminium foam sheets can have great influence on its blast energy absorption capacity. Tables 5.3 and Table 5.4 list the material properties for A356SiC030 and A356SiC020 aluminium foams. Parametric studies were conducted to investigate how the material properties of aluminium foam sheets (keeping all the other material properties constant) affect the blast energy absorption capacity on URM walls. Figure 5.34 shows different densities of aluminium foam sheets on the mitigation of blast effects on URM walls. The corresponding response of the aluminium foam protected wall is compared in Figure 5.36. As shown, the higher the density, the smaller the response, that is, the more effective it mitigates blast effects on URM wall. Figure 5.35 shows how thickness of aluminium foam sheets influence mitigation of blast effects on the URM wall and corresponding response of the aluminium foam protected URM walls are compared in Figure 5.37, where it can be seen that the larger the thickness, the smaller the response. Figure 5.38 plots the energy absorption of the aluminium foam retrofitted front wall with different density and thickness. As before, the higher density and thicker foam layers absorb more energy.

Table 5.3 Properties of A356SiC030 aluminium foam

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>300</td>
</tr>
<tr>
<td>Elastic modulus in a direction (GPa)</td>
<td>0.300</td>
</tr>
<tr>
<td>Young’s modulus of al (GPa)</td>
<td>71.0</td>
</tr>
<tr>
<td>Elastic modulus in b direction (GPa)</td>
<td>0.460</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>Elastic modulus in c direction (GPa)</td>
<td>0.575</td>
</tr>
<tr>
<td>Yield stress of al (GPa)</td>
<td>0.322</td>
</tr>
<tr>
<td>Shear modulus (GPa)</td>
<td>1.0</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>2.4</td>
</tr>
<tr>
<td>Densification Strain (%)</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 5.4 Properties of A356SiC020 aluminium foam

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>200</td>
</tr>
<tr>
<td>Elastic modulus in a direction (GPa)</td>
<td>0.185</td>
</tr>
<tr>
<td>Young’s modulus of al (GPa)</td>
<td>71.0</td>
</tr>
<tr>
<td>Elastic modulus in b direction (GPa)</td>
<td>0.200</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>Elastic modulus in c direction (GPa)</td>
<td>0.270</td>
</tr>
<tr>
<td>Yield stress of al (GPa)</td>
<td>0.322</td>
</tr>
<tr>
<td>Shear modulus (GPa)</td>
<td>0.2</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>1.2</td>
</tr>
<tr>
<td>Densification Strain (%)</td>
<td>80</td>
</tr>
</tbody>
</table>
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

<table>
<thead>
<tr>
<th>Density</th>
<th>200 kg/m³</th>
<th>300 kg/m³</th>
<th>400 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z=3 m/kg(^{1/3})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.34 Different densities of aluminium foam on mitigation of blast effects on URM wall

<table>
<thead>
<tr>
<th>Thickness</th>
<th>40 mm</th>
<th>24 mm</th>
<th>12 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z=3 m/kg(^{1/3})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.35 Different layer thickness of aluminium foam on mitigation of blast effects on URM wall

Figure 5.36 Aluminium foam with different densities
5.3.7. Combination of Aluminium Foam with Other Retrofits

Finally, retrofits using combinations of aluminium foam with other materials such as 15mm spray-on polyurea, 5mm steel plates or 1.2 mm CFRP plates were applied on URM walls to check the mitigation of blast effect. These results are presented in Figure 5.39, Figure 5.40 and Figure 5.41, respectively. As shown, the spray-on polyurea and CFRP plates increased the flexibility of the masonry wall, but they did not work well under high impulse. That was because the masonry wall is just weak regardless of the impulse, and the aluminium foam can help with reducing the impulse
transferred to the wall by absorbing more of the blast energy. However, the remaining impulse acted on the masonry wall was still too great for the soft retrofits. Therefore, a strong rear support was expected to work best with the aluminium foam. Thus, a layer of 5mm thick steel sheet was applied on the rear surface of the wall. The steel sheet on the rear surface provided better support, allowing the aluminium foam to absorb more energy. A comparison of effectiveness for the URM walls protected by aluminium foam and the combined retrofits is shown in Figure 5.42. The combination of aluminium foam with steel plate performed better than all other combinations, except the double-sided aluminium foam sheet retrofit.

<table>
<thead>
<tr>
<th>II. Debonding damage</th>
<th>I. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z = 3.3 \text{ m/kg}^{1/3}, \text{Impulse}=3.257 \text{MPa} \cdot \text{ms})</td>
<td>(Z = 2 \text{ m/kg}^{1/3}, \text{Impulse}=10.05 \text{MPa} \cdot \text{ms})</td>
</tr>
</tbody>
</table>

Figure 5.39 Combination of aluminium foam with spray-on polyurea

<table>
<thead>
<tr>
<th>II. Debonding damage</th>
<th>I. Wall failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z = 2.3 \text{ m/kg}^{1/3}, \text{Impulse}=7.322 \text{MPa} \cdot \text{ms})</td>
<td>(Z = 1.95 \text{ m/kg}^{1/3}, \text{Impulse}=11.13 \text{MPa} \cdot \text{ms})</td>
</tr>
</tbody>
</table>

Figure 5.40 Combination of aluminium foam and steel plates
II. Debonding damage
\[Z = 2.7 \text{ m/kg}^{1/3}, \text{Impulse} = 3.955\text{MPa} \cdot \text{ms} \]

I. Wall failure
\[Z = 2 \text{ m/kg}^{1/3}, \text{Impulse} = 10.05\text{MPa} \cdot \text{ms} \]

Figure 5.41 Combination of aluminium foam and CFRP plates

Figure 5.42 Comparison of effectiveness on aluminium foam protected wall

5.4. PRESSURE-IMPULSE (P-I) DIAGRAM FOR RETROFITTED URM WALLS

Current design permit specify the use of pressure-impulse (P-I) diagrams to assess damage levels of structures against airblast loads. Using the numerical model, parametric studies were conducted to derive P-I diagrams for damage assessment of aluminium foam (A356SiC040) protected URM walls. Before deriving the P-I
diagram, damage levels for aluminium foam protected URM walls should be defined.

For URM wall, the ultimate deflection at instability δ_u is predicted by using a one-way vertical bending theory derived by Willis (Willis et al. 2004),

$$\delta_u = t \left(1 - \frac{\sigma_c + 0.25 \rho gh}{f_{mc}}\right)$$ \hspace{1cm} \text{Eq. 5-13}

where t is the thickness of the URM wall, σ_c is the pre-compressive stress, ρ is the density of the URM, g is the acceleration due to gravity, h is the height of wall, and f_{mc} is the ultimate compressive stress of mortar. The relationship of f_{mc} and f_{mt} is expressed as follows (MacGregor 1988),

$$f_{mt} = 0.53 \sqrt{f_{mc}}$$ \hspace{1cm} \text{Eq. 5-14}

where f_{mt} is the ultimate tensile stress of mortar. The material properties used in this study are presented in Table 5.5, which gives an ultimate deflection of the 2500mm × 2500mm × 110mm URM wall was estimated to be 108mm based on Eq. 5-13. The ultimate deflection of 108mm was used as the failure criterion for the URM wall, and was also used to decide the failure mode of the foam protected URM walls. Figure 5.43 shows P-I diagram for the URM wall based on the above failure criterion.

![Figure 5.43 P-I diagram for URM walls against airblast loads](image-url)
Table 5.5 Material properties of URM wall

<table>
<thead>
<tr>
<th>ρ (kg/m^3)</th>
<th>g (m/s^2)</th>
<th>f_{in} (Mpa)</th>
<th>t (mm)</th>
<th>σ (MPa)</th>
<th>h (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>9.8</td>
<td>0.614</td>
<td>110</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

Figure 5.44 Deformation process of aluminium foam protected URM wall (vertical section)

For aluminium foam protected URM walls, two damage levels are defined: Level 1 foam debonding failure, and Level 2, as an URM wall failure. Debonding between foam and steel sheets/masonry walls will occur when the ultimate deflection of an URM wall exceeds the debonding deflection. Since the elastic modulus of steel sheet is much greater than masonry, debonding begins to occur between the foam and steel sheets rather than between the foam and the masonry. When the debonding area exceeds 10% of the bonding area between foam and steel sheets, the aluminium foam began to damage. Thus, it affects the retrofit effectiveness greatly and characterized as debonding failure, that is, the damage Level 1. Figure 5.44 shows the debonding...
failure process of aluminium foam protected URM wall. When a foam protected URM wall is subjected to airblast loads, the foam and the steel sheet will initially deform together with the URM wall (see Figure 5.44b). However, as the deformation of the URM wall increases, debonding occurs between the foam and steel sheets as shown in Figure 5.44c. When the ultimate deflection of the foam protected URM wall reaches 108 mm, it reaches the Damage Lever 2, that is, URM wall failure. Table 5.6 characterizes damage levels for aluminium foam protected URM walls under airblast loads.

<table>
<thead>
<tr>
<th>Damage level</th>
<th>Description</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Debonding failure</td>
<td>The debonding area exceeds 10% of the bonding area between foam and steel sheets, aluminium foam begin to disintegrate.</td>
<td>Failure of foam happens. Steps cracks can be observed in mortar joints.</td>
</tr>
<tr>
<td>II. Wall failure</td>
<td>Protected URM wall reaches its maximum blast resistant capability. Ultimate deflection of foam protected URM wall exceeds the critical deflection 108mm.</td>
<td>Foam definitely fails, and wall collapses. Almost all the mortar joints are damaged.</td>
</tr>
</tbody>
</table>

In this study, damage levels for foam protected URM walls are identified using energy absorption ratio method. The total input energy from a blast impulse is converted into kinetic energy, with the elastic strain energy primarily stored by steel cover sheets, and inelastic deformation strain energy stored by crushing and plastic deformation of masonry and aluminium foam. At the end of the blast event, the retrofitted walls get steady, with most of the input energy being converted to deformation energy stored as internal energy mainly by wall and aluminium foam. Under small impulses, the ratio of energy absorbed by the foam and URM wall (as shown in Figure 5.45) is roughly constant since the foam and the steel sheet deform together with the URM wall. Under greater impulses, the aluminium foam is compacted, and the steel sheets may...
also start to debond from the foam. The starting debonding point was defined as Damagel Level 1 as shown in Figure 5.45. Further increasing the impulse cause more and more energy to be absorbed by the foam due to more foam cells rupturing until the wall reaches Damage Level 2, as shown in Figure 5.45. At Damage Level 2, the ratio of the energy absorbed by foam reaches a maximum so that it is easily identified in the curves in Figure 5.45 and Figure 5.46. Further impulse increases cause the aluminium foam to be destroyed and the URM wall to collapse. Similar phenomena were observed in the EB FRP plates (Figure 5.47) and spray-on polyurea (Figure 5.48) retrofitted URM walls.

![Figure 5.45 Determination of Damage Levels based on energy absorption ratio](image)

Figure 5.45 Determination of Damage Levels based on energy absorption ratio
Based on the damage levels defined in Table 5.6, parametric studies were carried out to derive P-I diagrams for foam protected URM walls. Figure 5.49 and Figure 5.50 show the P-I diagrams for URM walls protected by aluminium foam on the front...
surface and the both surfaces at two damage levels. A comparison of the P-I diagrams for URM walls and foam protected URM walls is also shown in Figure 5.51. As shown in Figure 5.50, the foam protected URM walls greatly increase the blast resistant capacity of the URM walls. Using this method, P-I diagrams for URM walls retrofitted by EB CFRP, EB GFRP and spray-on polyurea on rear surface at two damage levels are shown in Figure 5.52, Figure 5.53 and Figure 5.54, respectively.

Figure 5.49 P-I diagrams for aluminium foam protected URM walls (front side)

Figure 5.50 P-I diagram of aluminium foam protected URM walls (both sides)
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

Figure 5.51 P-I diagrams for URM walls and foam protected URM walls

Figure 5.52 P-I diagram for EB CFRP retrofitted URM walls
For the same charge weight, pressure and impulse is plotted in Figure 5.55 as a linear relationship. If using impulse to identify the blast-resistant capability of different retrofitting methods, the effect will vary with charge weight. For different charge weights such as 125kg, 512kg and 1000kg having the same impulse, the mitigation effect is more significant for large charge weight compared with small charge weight.
The relationships acting on the URM wall retrofitted by EB FRP or spray-on polyurea are plotted in Figure 5.56 and Figure 5.57.

Figure 5.55 Influence of charge weight on effect of protection in P-I diagrams of aluminium foam protected URM walls

Figure 5.56 Influence of charge weight on effect of protection in P-I diagrams of EB FRP retrofitted URM walls
Comparisons of the P-I diagrams for the URM wall and retrofitted URM walls at damage level II and damage level I are shown in Figure 5.58 and Figure 5.59, respectively. P-I curves for various retrofitting techniques are usually parallel to each other, except the curve for the wall retrofitted by spray-on polyurea. Under small charge weight, the mitigation effect of spray-on polyurea is better than other solutions.

Figure 5.58 P-I diagrams for retrofitted URM walls at damage level II

Figure 5.57 Influence of charge weight on effect of protection in P-I diagrams of spray-on polyurea retrofitted URM walls
Chapter 5: Mitigation of Blast Effects on Retrofitted URM Walls

5.5. CONCLUSIONS

The performance of URM walls protected by various types of retrofitting technologies was simulated numerically in this study. The numerical results indicate that the aluminium foam is the most effective technique for mitigation of blast effects on URM walls. This is because the foam absorbs more blast energy compared with the other retrofitting techniques considered in this study. It was also found that both thickness and density of aluminium foam sheets greatly influences mitigation effectiveness against blast loads on URM walls. Damage levels were defined based on a collapse failure mechanism and energy absorption method. P-I diagrams for EB FRP, spray-on polyurea and aluminium foam protected URM walls based on the simulated results.
6. CONCLUSIONS AND RECOMMENDATIONS

6.1. SUMMARY AND CONCLUSIONS

Masonry buildings exhibit the vulnerability of poor blast-resistant capacity with little ductility. Aiming to find effective strengthening solutions to enhance masonry walls against explosion, this project focused on studying the performance of retrofitting techniques, such as EB FRP and NSM FRP, which have been widely used to strengthen concrete structures, because of its light weight, high strength and durability. However, the performance of the EB and NSM strips retrofits on masonry walls against blast loading was poor. This research showed that, such retrofits failed in shear or bending between strips. Hence, several other new materials, such as spray-on polyurea and aluminium foam, were also studied for mitigation of blast effect. These retrofitting systems were much more efficient.

To study the bonding behaviours between masonry and retrofits, bond-slip models coded in LS-DYNA were used, and compared with pull tests for validation. Stress-slip curves and load-displacement relationship were compared, from which it was found the bond-slip model worked well. A homogenized model which performs efficiently was derived for simulating full scaled retrofitted masonry walls under out-of-plane loading. The models based on test data were verified with test results, and load-displacement curves and strain distribution along the height were compared. Results from the homogenized model matched well with experimental results. It was found that the homogenized model could represent the elastic and plastic behaviours of masonry walls. However, it did not give accurate results for post-failure zone.

The numerical models developed in this study were applied to simulate the behaviours
of retrofitted masonry wall under blast loading. To increase ductility of the wall, a new technique known as spray-on polyurea was employed in this study. It was found that the capability of absorbing strain energy was the key factor that influenced performance. A new energy absorbing material, aluminium foam, was applied to the masonry walls. To investigate the effectiveness of different types of retrofitting materials, two critical damage levels were defined. Based on simulation results, debonding failure level and wall failure level were identified and then extended to greater range of pressure and impulse relationship. Thus, pressure-impulse diagrams for various retrofitting techniques were developed.

It should be noted that the numerical models and developed P-I diagrams were based on one layer of brick masonry wall with thickness of 110 mm, and panel dimensions of 2500mm × 2500mm. The performance of the retrofits will vary if the thickness or dimensions are changed, especially for the aluminium foam protected masonry walls. If applying the aluminium foam material on stronger masonry wall, the retrofits would likely perform better by enhancing its capability of absorbing energy. The study provides a general approach for simulating the retrofitted masonry walls. However, further research on derived dimensionless P-I diagrams are recommended, which can be applied to wide range of masonry structures.

In summary, it can be conducted that FRP material on masonry used against earthquake loads may not have the same performance in blast environments. The ability to absorb strain energy is important for protecting masonry walls against blast impulses. Further studies should be conducted that focus on the new materials.

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH

Based on the studies described herein, some related aspects requiring further research
have become apparent, namely,

1. Material models for bricks and mortar could be improved to consider microscopic material failures and the effect of strain rate. This would mean more accurate results could be obtained, the relationship between retrofits and masonry would be more reliable, and accurate local failure could be observed in simulation.

2. The bond-slip model in current research is efficient, but could be improved by extending to transfer 3-D stress and strain between masonry and retrofits to simulating the physical behaviours accurately. The reasons behind different types of debonding failures could be further studied in simulation.

3. Experiments on masonry and retrofitted masonry walls under blast loading are required to verify the numerical models. Some phenomena such as local failure at different locations which influence the debonding failure should be checked using test results. Moreover, the P-I diagrams should be validated using experimental data.

4. Dimensionless P-I diagrams are required for design purposes. More data would be required to qualify the damage levels, and other failure modes would also be observed which should be considered in guidelines.

5. Investigation into retrofitted masonry walls under close bursts or explosions at small stand-off distances is deemed to be worthwhile and results could be included in P-I diagrams to improve design guidelines.
NOTATIONS

\(A \) = area perpendicular to the principal strain direction

\(a_{0.2} \) = shear failure surface constants in Drucker-Prager model

\(E \) = modulus of elasticity

\(E_c \) = compressive modulus of elasticity

\(E_t \) = tensile modulus of elasticity

\(E_{ij} \) = elastic moduli of aluminium foam

\(E'_{ij} \) = elastic/shear modulus in uncompressed configuration

\(\overline{E} \) = equivalent moduli of elasticity

\(f_{mc} \) = ultimate compressive stress of mortar

\(f_{mt} \) = ultimate tensile stress of mortar

\(G \) = Elastic shear modulus

\(G_c \) = fracture energy release rate in smeared crack model

\(G_f \) = shearing fracture energy release rate in bond-slip model

\(G_{ft} \) = tensile fracture energy release rate in bond-slip model

\(G_I \) = fracture energy release rate of mode I in smeared crack model

\(G_{II} \) = fracture energy release rate of mode II in smeared crack model

\(g \) = acceleration due to gravity

\(h \) = height of the masonry wall

\(I \) = impulse of blast loading

\(I_1 \) = first invariant of the stress tensor

\(J_2 \) = second invariant of the deviatoric stress tensor \(S_{ij} \)

\(k \) = material constant in Drucker-Prager model

\(P \) = airblast over pressure

\(P_o \) = ambient over pressure

\(P_r \) = reflected pressure

\(P_{so} \) = peak value of incident pressure
\(p^{n+1} \) = hydro pressure \\
\(R \) = stand-off distance \\
\(S_C \) = shear strength in XY plane in the homogenized model \\
\(S_{ij} \) = deviatoric stress tensor \\
\(S_{ij}^{n+1} \) = stress components of aluminium foam \\
\(S_{ij}^{n+1\text{trial}} \) = updated stress components \\
\(T_a \) = shock wave front arrive time \\
\(T_d \) = decreasing time from peak to ambient pressure \\
\(T_r \) = rising time from arrival time to peak value \\
\(t \) = thickness of the URM wall \\
\(V \) = volume \\
\(V_f \) = fully compacted volume of aluminium foam \\
\(W \) = charge weight \\
\(X_T \) = tensile strength in Z direction of the homogenized model \\
\(X_C \) = compressive strength in Z direction of the homogenized model \\
\(Y_T \) = average tensile strength in X and Y directions \\
\(Y_C \) = average compressive strength in X and Y directions \\
\(Z \) = scaled distance \\
\(\alpha \) = pressure sensitivity coefficient in Drucker-Prager model \\
\(\Delta a \) = crack opening displacement increment \\
\(\delta_f \) = slip at zero shear stress \\
\(\delta_l \) = slip at peak shear stress \\
\(\varepsilon_{ij} \) = strain components in an element \\
\(\bar{\varepsilon}_y \) = average strain defined by integral over the basic cell \\
\(\varepsilon_{i}^{\text{ini}} \) = threshold strain \\
\(\varepsilon_{i}^{\text{ult}} \) = ultimate strain \\
\(\varepsilon_{ij}^{\text{dev}} \) = deviatoric strain increment \\
\(\lambda \) = function of strain rate of the deviatoric strain-rate tensor
\(\nu \) = Poisson’s ratio
\(\rho \) = density of the masonry
\(\sigma_c \) = yield stress in uniaxial compression
\(\sigma_t \) = yield stress in uniaxial tension
\(\sigma_f \) = ultimate normal stress
\(\sigma_n \) = normal stress
\(\sigma_v \) = pre-compressive stress
\(\sigma_{ij} \) = stress in an element
\(\sigma_{ft} \) = tensile strength of brick units
\(\sigma_{ij}(V) \) = stress component by the stress versus volumetric strain curves
\(\overline{\sigma}_{ij} \) = average stress defined by integral over the basic cell
\(\sigma_{ij}^{n+1} \) = Cauchy stress
\(\tau_f \) = ultimate shear stress
\(\tau_s \) = shear stress
REFERENCES

behavior of surface-reinforced masonry walls." *Construction and Building Materials*, 16(6), 341-351.

LSTC. (2007). "LS-DYNA 971." Livermore Software Technology Corporation,
Livermore, CA 94550.
Moyneaux, T. C. K., Beattie, G., Gilbert, M., Burnett, S., Hobbs, B., and Newton, P.

Blast Loading with CFRP Strips with CFRP Strips." 12th International Symposium on the Interaction of the Effects of Munitions with Structures, New Orleans, USA.

References

Urgessa, G., Maji, A., and Brown, J. "Analysis and testing of blast effects on walls strengthened with GFRP and shotcrete." Long Beach, CA, United States, 1135-1144.

APPENDIX A: NUMERICAL MODEL OF THE MASONRY BASIC CELL

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
LS-DYNA(970) DECK WRITTEN BY: eta/FEMB-PC version 28.0
$ TEMPLATE #: 20040810
$ ENGINEER:
$ PROJECT:
$ UNITS: M, KG, SEC, N
$ TIME: 12:58:56 PM
$ DATE: Tuesday, November 14, 2006
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*TITLE
LS-DYNA USER INPUT
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ CONTROL CARD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
0.15 0 0 0 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
DATABASE CONTROL FOR BINARY
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_BINARY_D3PLOT
$ DT/CYCL LCDT BEAM NPLTC
0.010 0 0 0
$ IOOPT
1
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
DATABASE EXTENT CARDS
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_EXTENT_BINARY
$EXTENT_1
$ NEIPH NEIPS MAXINT STRFLG SIGFLG EPSFLG RLTFLG ENGFLG
0 0 3 1 1 1 1 1
Appendix A: Numerical Model of the Masonry Basic Cell

$ CMPFLG IEVERP BEAMIP DCOMP SHGE STSSZ N3THDT
 0 0 0 0 0 0 2
$ NINTSLD
 1
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ PART CARDS
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
PART
BRICK
$ PID SECID MID EOSID HGID GRAV ADPOPT TMID
 1 1 3 0 0 0 0 0
PART
MORTAR
$ PID SECID MID EOSID HGID GRAV ADPOPT TMID
 2 1 4 0 0 0 0 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
SECTION CARDS
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
SECTION_SOLID_TITLE
P-1
$ SECID ELFORM AET
 1 1 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ MAT CARDS
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MAT_SOIL_AND_FOAM_TITLE
Brick
$ MID RO G BULK A0 A1 A2 PC
 1 2400.02.2000E+101.800E+111.3887E+131.0562E+07 2.0083-3550000.0
$ VCR REF
 0.0 0.0
$ EPS1 EPS2 EPS3 EPS4 EPS5 EPS6 EPS7 EPS8
 0.0-7.503E-05-0.0001876-0.0003037-0.0009494
$ EPS9 EPS10
$ P1 P2 P3 P4 P5 P6 P7 P8
 0.0 3950000.0 988000.01.600E+075.00000E+07
$ P9 P10
Appendix A: Numerical Model of the Masonry Basic Cell

*MAT_SOIL_AND_FOAM_TITLE

Mortar

$\begin{array}{cccccccc}
\text{MID} & \text{RO} & \text{G} & \text{BULK} & \text{A0} & \text{A1} & \text{A2} & \text{PC} \\
2 & 2400.01.8438E+08 & 1.3300E+09 & 4.1540E+11 & 1830000.0 & 2.0083 & 6140000.0 \\
\text{VCR} & \text{REF} \\
0.0 & 0.0 \\
\text{EPS1} & \text{EPS2} & \text{EPS3} & \text{EPS4} & \text{EPS5} & \text{EPS6} & \text{EPS7} & \text{EPS8} \\
0.0-0.0094003-0.0165071-0.0236648 & \\
\text{EPS9} & \text{EPS10} \\
\text{P1} & \text{P2} & \text{P3} & \text{P4} & \text{P5} & \text{P6} & \text{P7} & \text{P8} \\
0.0 3950000.0 6140000.0 9880000.0 & \\
\text{P9} & \text{P10} \\
\end{array}$

Brick-2

$\begin{array}{cccccccc}
\text{MID} & \text{RO} & \text{G} & \text{BULK} & \text{A0} & \text{A1} & \text{A2} & \text{PC} \\
3 & 2400.02.2000E+10 & 1.8000E+11 & 1.3887E+13 & 1.0562E+07 & 2.0083 & 3550000.0 \\
\text{VCR} & \text{REF} \\
0.0 & 0.0 \\
\text{EPS1} & \text{EPS2} & \text{EPS3} & \text{EPS4} & \text{EPS5} & \text{EPS6} & \text{EPS7} & \text{EPS8} \\
0.0 -0.000075 -0.000188 -0.000304 -0.000949 & \\
\text{EPS9} & \text{EPS10} \\
\text{P1} & \text{P2} & \text{P3} & \text{P4} & \text{P5} & \text{P6} & \text{P7} & \text{P8} \\
0.0 3950000.0 9880000.01.6000E+075.0000E+07 & \\
\text{P9} & \text{P10} \\
\end{array}$

*MAT_SOIL_AND_FOAM_FAILURE_TITLE

Mortar-2

$\begin{array}{cccccccc}
\text{MID} & \text{RO} & \text{G} & \text{BULK} & \text{A0} & \text{A1} & \text{A2} & \text{PC} \\
4 & 2400.01.8400E+08 & 1.3300E+09 & 4.1540E+11 & 1830000.0 & 2.0083 & 800000.0 \\
\text{VCR} & \text{REF} \\
0.0 & 0.0 \\
\text{EPS1} & \text{EPS2} & \text{EPS3} & \text{EPS4} & \text{EPS5} & \text{EPS6} & \text{EPS7} & \text{EPS8} \\
0.0 -0.0094 -0.0165 -0.0237 & \\
\text{EPS9} & \text{EPS10} \\
\text{P1} & \text{P2} & \text{P3} & \text{P4} & \text{P5} & \text{P6} & \text{P7} & \text{P8} \\
0.0 3950000.0 6140000.0 9880000.0 & \\
\text{P9} & \text{P10} \\
\end{array}$

$---+1----2----+----3----+----4----+----5----+----6----+----7----+----8$
$DAMPING CARDS$

$DAMPING_GLOBAL$

*DAMP__1

$LCID\ VADMP\ STX\ STY\ STZ\ SRX\ SRY\ SRZ$

0 30.0 0.0 0.0 0.0 0.0 0.0 0.0

$NODE SET CARDS$

$SET_NODE_LIST_TITLE$

$SID\ DA1\ DA2\ DA3\ DA4$

1 0.0 0.0 0.0 0.0

$NID1\ NID2\ NID3\ NID4\ NID5\ NID6\ NID7\ NID8$

1 2 3 4 10 11 18 19

$SET_NODE_LIST_TITLE$

$SID\ DA1\ DA2\ DA3\ DA4$

2 0.0 0.0 0.0 0.0

$NID1\ NID2\ NID3\ NID4\ NID5\ NID6\ NID7\ NID8$

25905 25906 25907 25908 25913 25914 25917 25918

$BOUNDARY PRESCRIBED CARDS$

$BOUNDARY_PRESCRIBED_MOTION_SET_ID$

*PRESCRIBED_MOTION_CARD_1

ID

1

$NSID\ DOF\ VAD\ LCID\ SF\ VID\ DEATH\ BIRTH$

2 3 2 2 0.0040 01.0000E+28 0.0
Appendix A: Numerical Model of the Masonry Basic Cell

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8$
$\$
$\$
$\$
\begin{verbatim}
*BOUNDARY_SPC_SET_ID
 ID
 1
 NSID CID DOFX DOFY DOFZ DOFRX DOFRY DOFRZ
 1 0 0 0 1 1 1 1
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8$
$\$
$\$
$\$
\begin{verbatim}
*DEFINE_CURVE_TITLE
 LCur_1
 LCID SIDR SFA SFO OFFA OFFO DATTYP
 1 0 1.0 1.0 0.0 0.0 0
 A1 O1
 0.0 0.0
 0.020 0.00098
 0.040 0.00019
 0.060 0.000277
 0.080 0.00036
 0.10 0.000438
 0.12 0.00051
 0.14 0.000577
 0.16 0.00064
 0.18 0.000698
 0.20 0.00075
 0.22 0.000798
 0.24 0.00084
 0.26 0.000877
 0.28 0.00091
 0.30 0.000937
 0.32 0.00096
 0.34 0.000977
 0.36 0.00099
 0.38 0.000998
 0.40 0.0010
 1.0 0.0010
 1.0 0.0010

*DEFINE_CURVE_TITLE
 LCur_2
\end{verbatim}

\end{verbatim}

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
$\$
<table>
<thead>
<tr>
<th>LCID</th>
<th>SIDR</th>
<th>SFA</th>
<th>SFO</th>
<th>OFFA</th>
<th>OFFO</th>
<th>DATTYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

$ L C I D S I D R S F A S F O O F F A O F F O D A T T Y P $

A1 0 0 0 0 0 0 0

$ A 1 O 1 $

0.0 0.0

$ A 1 O 1 $

0.0050 0.00098

0.010 0.00019

0.015 0.000277

0.020 0.00036

0.025 0.000438

0.030 0.00051

0.035 0.000577

0.040 0.00064

0.045 0.000698

0.050 0.00075

0.055 0.000798

0.060 0.00084

0.065 0.000877

0.070 0.00091

0.075 0.000937

0.080 0.00096

0.085 0.000977

0.090 0.00099

0.095 0.000998

0.10 0.00010

$ N O D E I N F O R M A T I O N $

*NODE

$ N I D X Y Z T C R C $

1 0.0 0.0 0.0 0.0 0.0

27757 0.150132 0.0711325 0.134 0.0 0.0

$ S O L I D E L E M E N T S $

*ELEMENT_SOLID

$ EID PID NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8 $
Appendix A: Numerical Model of the Masonry Basic Cell

\begin{verbatim}
 1 1 1 2 3 4 5 6 7 8

 3560 2 27037 27184 27116 26956 24167 25760 24935 23343

 *END
\end{verbatim}
Appendix B: Numerical Models of the Pull-tests

APPENDIX B: NUMERICAL MODELS OF THE PULL-TESTS

1. EB interface element model

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ LS-DYNA(970) DECK WAS WRITTEN BY: eta/VPG VERSION 3.2
$
$ ENGINEER:
$ PROJECT:
$ UNITS: M, KG, SEC, N
$ DATE: Jul 10, 2007 at 9:43:39
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*TITLE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_BULK_VISCOITY
$ q1 q2 type
 1.500 0.06000 1
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_CONTACT
$ slsfac rwpnal ischk shlthk penopt thkchg orien enmass
 0.10000 0 1 0 1 0 1 0
$ usrsr usrfrc nsbcs interim xpene ssthk ecdt tiedprj
 0 0 10 0 4.000 0 0 0
$ sfric dfrc edc vfc th th_sf pen_sf
 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ ignore frceng skiprwg outseg spotstp spoldel
 0 0 0 0 0 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_ENERGY
$ hgen rwen slnten rylen
 2 2 1 1
*CONTROL_HOURGLASS
$ ihq qh
 6 0.05000
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_OUTPUT
$ npopt neecho nrefup iaccop opifs ipnint ikedit iflush
 1 3 0 0 0.0 0 100 5000
$ iprft
 0
*CONTROL_TERMINATION
$ endtim endcyc dtmin endeng endmas

141
Appendix B: Numerical Models of the Pull-tests

```
0.04600  0  0.0  0.0  0.0

$*CONTROL_TIMESTEP
$  dtinit  tssfac  isdo  tslimit  dt2ms  lctm  erode  ms1st
$  0.0  0.90000  0  0.0 -.4000E-6  0  0  0

$*DATABASE_GLSTAT
$  dt  binary
$.1000E-2  1

$*DATABASE_MATSUM
$  dt  binary
$.1000E-2  0

$*DATABASE_BINARY_D3PLOT
$  dt/cycl  lcmd  beam  npilc
$. 100E-3  0  0  0
$  ioopt
1

$*DATABASE_BINARY_D3DUMP
$  dt/cycl
100000.00

$*DATABASE_EXTENT_BINARY
$CardName:EXTENT_1
$  neiph  neips  maxint  strflg  sigflg  epsflg  rltflg  engflg
2  0  3  1  1  1  1  1
$  cmpflg  ieverp  beamip  dcomp  shge  stssz  n3thdt
0  0  0  0  0  0  2
$  nintsld
1

$*PART
BRICK
$  pid  secid  mid  eosid  hgid  grav  adpopt  tmid
1  1  1  0  0  0  0  0

$*PART
MORTAR
2  1  2  0  0  0  0  0

$*PART
FRP
3  1  3  0  0  0  0  0

$*PART
Adhesive
4  1  4  0  0  0  0  0
```

142
Appendix B: Numerical Models of the Pull-tests

*SECTION_SOLID_TITLE

P-1

$ secid eform aet

1 1 0

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*MAT_ADD_EROSION

$CardName: Used by Matl: 1

$ mid excl

1 999999.0

$ pfail sigp1 sigvm epsp1 epssh sigth impulse failtm

999999.0 999999.0 999999.0 0.02000 999999.0 999999.0 999999.0 999999.0

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*MAT_ADD_EROSION

$CardName: Used by Matl: 2

$ mid excl

2 999999.0

$ pfail sigp1 sigvm epsp1 epssh sigth impulse failtm

999999.0 999999.0 999999.0 0.02500 999999.0 999999.0 999999.0 999999.0

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*MAT_SOIL_AND_FOAM_FAILURE_TITLE

Brick

$ mid ro g bulk a0 a1 a2 pc

1 2400.000 .2200E+11 .1800E+12 .5555E+14 .2112E+8 2.008 -710E+7

$vcr ref

0.0 0.0

$ eps1 eps2 eps3 eps4 eps5 eps6 eps7 eps8

0.0 -.7500E-4 -.1880E-3 -.3040E-3 -0.00949 -0.09490 0.0 0.0

$ eps9 eps10

0.0 0.0

$ p1 p2 p3 p4 p5 p6 p7 p8

0.0 3950000. 9880000. .1600E+8 .5000E+9 .5000E+10 0.0 0.0

$p9 p10

0.0 0.0

*MAT_SOIL_AND_FOAM_FAILURE_TITLE

Mortar

$ mid ro g bulk a0 a1 a2 pc

2 2400.000 .2200E+9 .1328E+10 .4156E+12 1827000. 2.008 -800000.0

$vcr ref

0.0 0.0

$ eps1 eps2 eps3 eps4 eps5 eps6 eps7 eps8

0.0 -0.00940 -0.01650 -0.23700 -2.370 0.0 0.0 0.0

$ eps9 eps10

0.0 0.0

$p1 p2 p3 p4 p5 p6 p7 p8

0.0 3950000. 6140000. .9880E+8 .9880E+9 0.0 0.0 0.0
Appendix B: Numerical Models of the Pull-tests

```
$p9  p10
 0.0  0.0

*MAT_ELASTIC_TITLE
GFRP
$p mid  ro  e  pr  da  db
  3 1500.000 1930E+11  0.33000  0.0  0.0

*MAT_ARUP_ADHESIVE
$p mid  ro  e  pr  TENMAX  GCTEN  SHRMAX  GCSHR
  4 2400.000 0.065E+09  0.29000  1.84E+06  1.0E+20  5.87E+06  1.3E+03

*pWRT  PWRS  SHRP  SHT_SL  EDOT0  EDOT2
  2  2  0  0  1  0

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*HOURGLASS_TITLE

$p hgid  ihq  qm  ibq  q1  q2  qb  qw
  1  6  0.05000  0  1.500  0.06000  0.0  0.0

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DAMPING_GLOBAL

$p icid  valdmp  stx  sty  stz  srx  sry  srez
  0  30.000  0.0  0.0  0.0  0.0  0.0  0.0

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*SET_NODE_LIST_TITLE

NODE SET_1
$p sid  da1  da2  da3  da4
  1

$p nid1  nid2  nid3  nid4  nid5  nid6  nid7  nid8
  1  4  3  2  10  9  14  13

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*SET_PART_LIST_TITLE

PART SET_1
$p sid  da1  da2  da3  da4
  1

$p pid1  pid2  pid3
  1  2  3

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*SET_SEGMENT_TITLE

SEGMENT SET_1
$p sid  da1  da2  da3  da4
  1

$p N1  N2  N3  N4
  16764  16765  16766  16767
```
Appendix B: Numerical Models of the Pull-tests

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*BOUNDARY_SPC_SET_ID

$ id

1

$ nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 1 1 0 0 0

*BOUNDARY_SPC_SET_ID

$ id

2

$ nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 1 1 1 0 0 0

*BOUNDARY_SPC_SET_ID

$ id

3

$ nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 1 1 0 0 0 0

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*LOAD_SEGMENT_SET

$ ssid lcid sf at

1 1 -1.000 0.0

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DEFINE_CURVE_TITLE

$ lcid sidr sfa sfo offa offo dattyp

1 0 1.000 1.000 0.0 0.0 0.0

$ abscissa (time) ordinate (value)

0.000000E+00 0.000000E+00

0.460000E-01 0.264000E+09

1.000000E-01 0.574000E+09

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*NODE

$ nid x y z tc rc

1 0.000000000E+00 1.099999994E-01 0.000000000E+00

.

.

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*END
2. NSM interface element model

```plaintext
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ LS-DYNA(970) DECK WAS WRITTEN BY: eta/VPG VERSION 3.2
$
$ ENGINEER:
$ PROJECT:
$ UNITS: M, KG, SEC, N
$ DATE: Jul 5, 2007 at 14:07:24
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*TITLE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_BULK_VISCOSITY
$ q1  q2  type
  1.500  0.06000  1
*CONTROL_CONTACT
$ slsfac rwpnal isichk shlthk penopt thckhg orien enmass
  0.10000  0.0  1  0  1  0  1  0
$ usrsfr usfrfc nsbcs intern xpene sssthk edct tiedprj
  0  0  10  0  4.000  0  0  0
$ sfric dfric edc vfc th th_sf pen_sf
  0.0  0.0  0.0  0.0  0.0  0.0  0.0
$ ignore frceng skiprwg outseg spotstp spotdel
  0  0  0  0  0  0  0
*CONTROL_ENERGY
$ hgen nwen slnten rylen
  2  2  1  1
*CONTROL_HOURGLASS
$ ihq qh
  6  0.05000
*CONTROL_OUTPUT
$ npopt neecho nrefup iaccop opifs ipnint ikedit iflush
  1  3  0  0  0.0  0  0  100  5000
$ iprtf
  0
*CONTROL_TERMINATION
$ endlim endcyc dtmin endeng endmas
  0.02980 0  0.0  0.0  0.0
*CONTROL_TIMESTEP
```

146
Appendix B: Numerical Models of the Pull-tests

<table>
<thead>
<tr>
<th>$ \text{dtinit} $</th>
<th>$ \text{tssfac} $</th>
<th>$ \text{isdo} $</th>
<th>$ \text{tslimt} $</th>
<th>$ \text{dt2ms} $</th>
<th>$ \text{lctm} $</th>
<th>$ \text{erode} $</th>
<th>$ \text{ms1st} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.90000</td>
<td>0</td>
<td>0.0</td>
<td>-2000E-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DATABASE_GLSTAT

<table>
<thead>
<tr>
<th>$ \text{dt} $</th>
<th>$ \text{binary} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1000E-2</td>
<td>0</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DATABASE_MATSUM

<table>
<thead>
<tr>
<th>$ \text{dt} $</th>
<th>$ \text{binary} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1000E-2</td>
<td>0</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DATABASE_BINARY_D3PLOT

<table>
<thead>
<tr>
<th>$ \text{dt/cycl} $</th>
<th>$ \text{lcdt} $</th>
<th>$ \text{beam} $</th>
<th>$ \text{npitc} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>.500E-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$ \text{iiopt} $ 1

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DATABASE_BINARY_D3DUMP

<table>
<thead>
<tr>
<th>$ \text{dt/cycl} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000.0</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*DATABASE_EXTENT_BINARY

CardName: EXTENT_1

<table>
<thead>
<tr>
<th>$ \text{neiph} $</th>
<th>$ \text{neips} $</th>
<th>$ \text{maxint} $</th>
<th>$ \text{strflg} $</th>
<th>$ \text{sigflg} $</th>
<th>$ \text{epsflg} $</th>
<th>$ \text{rltflg} $</th>
<th>$ \text{engflg} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$ \text{cmpflg} $ $ \text{ieverp} $ $ \text{beamip} $ $ \text{dcomp} $ $ \text{shge} $ $ \text{stssz} $ $ \text{n3thdt} $ 0 0 0 0 0 0 2

<table>
<thead>
<tr>
<th>$ \text{nintsl}d $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*PART

BRICK

<table>
<thead>
<tr>
<th>$ \text{pid} $</th>
<th>$ \text{secid} $</th>
<th>$ \text{mid} $</th>
<th>$ \text{eosid} $</th>
<th>$ \text{hgid} $</th>
<th>$ \text{grav} $</th>
<th>$ \text{adpopt} $</th>
<th>$ \text{tmid} $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*PART

MORTAR

2 1 2 0 0 0 0 0

*PART

FRP

3 1 3 0 0 0 0 0

*PART

Adhesive material

4 1 4 0 0 0 0 0

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

*SECTION_SOLID_TITLE

P-1
Appendix B: Numerical Models of the Pull-tests

<table>
<thead>
<tr>
<th>CardName: Used by Matl: 1</th>
<th>mid</th>
<th>excl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CardName: Used by Matl: 2</td>
<td>mid</td>
<td>excl</td>
</tr>
</tbody>
</table>

MAT_ADD_EROSION

<table>
<thead>
<tr>
<th>CardName: Used by Matl: 1</th>
<th>mid</th>
<th>excl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CardName: Used by Matl: 2</td>
<td>mid</td>
<td>excl</td>
</tr>
</tbody>
</table>

MAT_SOIL_AND_FOAM_FAILURE TITLE

Brick

<table>
<thead>
<tr>
<th>mid</th>
<th>ro</th>
<th>g</th>
<th>bulk</th>
<th>a0</th>
<th>a1</th>
<th>a2</th>
<th>pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vcr</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eps1</th>
<th>eps2</th>
<th>eps3</th>
<th>eps4</th>
<th>eps5</th>
<th>eps6</th>
<th>eps7</th>
<th>eps8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-7500E-4</td>
<td>-1880E-3</td>
<td>-3040E-3</td>
<td>-0.0094</td>
<td>-0.0949</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eps9</th>
<th>eps10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
<th>p7</th>
<th>p8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3950000.</td>
<td>9880000.</td>
<td>.1600E+8</td>
<td>.5000E+9</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p9</th>
<th>p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Mortar

<table>
<thead>
<tr>
<th>mid</th>
<th>ro</th>
<th>g</th>
<th>bulk</th>
<th>a0</th>
<th>a1</th>
<th>a2</th>
<th>pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vcr</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eps1</th>
<th>eps2</th>
<th>eps3</th>
<th>eps4</th>
<th>eps5</th>
<th>eps6</th>
<th>eps7</th>
<th>eps8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-0.0094</td>
<td>-0.0165</td>
<td>-0.2370</td>
<td>-2.370</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eps9</th>
<th>eps10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
<th>p7</th>
<th>p8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3950000.</td>
<td>6140000.</td>
<td>.9880E+8</td>
<td>.9880E+9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p9</th>
<th>p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Appendix B: Numerical Models of the Pull-tests

*MAT_ELASTIC_TITLE

CFRP
$ mid ro e pr da db
 3 1500.000 1.600E+12 0.15000 0.0 0.0

*MAT_ARUP_ADHESIVE

$ mid ro e pr TENMAX GCTEN SHRMAX GCSHR
 4 2400.000 0.28E+09 0.25000 0.85E+06 1.0E+20 14.50E+06 5.0E+03
$ PWRT PWRS SHRP SHT_SL EDOT0 EDOT2
 2 2 0.1 0 1 0

*HOURGLASS_TITLE

$ hg id ih q qm ibq q1 q2 qb qw
 1 6 0.05000 0 1.500 0.06000 0.0 0.0

*DAMPING_GLOBAL

$ lc id valdmp stx sty stz srx sry srz
 0 30.000 0.0 0.0 0.0 0.0 0.0 0.0

*SET_NODE_LIST_TITLE

NODE SET_1
$ sid da1 da2 da3 da4
 1
$ nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8
 1 4 3 2 10 9 14 13

*SET_PART_LIST_TITLE

PART SET_1
$ sid da1 da2 da3 da4
 1
$ pid1 pid2 pid3 pid4
 1 2 3 4

*SET_SEGMENT_TITLE

SEGMENT SET_1
$ sid da1 da2 da3 da4
 1
$ N1 N2 N3 N4
 12225 12226 12227 12228
 12229 12225 12228 12230
 12231 12229 12230 12232
Appendix B: Numerical Models of the Pull-tests

BOUNDARY_SPC_SET_ID

```
$ id
1
$ nsid cid dofx dofy dofz dofrx dofry dofrz
   1 0 1 1 1 0 0 0
```

BOUNDARY_SPC_SET_ID

```
$ id
2
$ nsid cid dofx dofy dofz dofrx dofry dofrz
   2 0 1 1 1 0 0 0
```

BOUNDARY_SPC_SET_ID

```
$ id
3
$ nsid cid dofx dofy dofz dofrx dofry dofrz
   3 0 1 1 0 0 0 0
```

CONTACT_AUTOMATIC_SINGLE_SURFACE_ID

```
$ cid
1
$ ssid msid ssstyp mstyp sboid msoid spr mpr
   1 0 2 0 0 0 0 0
$ fs fd dc vc vdc penchk bt dt
0.60000 0.40000 100.000 0.0 20.000 1 0.0 .1000E+21
$ sfs sfm ssst mst st sfsf mstf vsf
1.000 1.000 0.0 0.0 1.000 1.000 1.000 1.000
$ soft sofsc1 lcidab maxpar sbopt depth bsort frcfreq
2 0.50000 0 1.200 5.000 5 0 1
$ penmax thkopt shlthk snlog isym i2d3d slidthk sldstf
0.40000 0 0 0 1 1 0.0 0.0
$ igap ignore
1 0
```

LOAD_SEGMENT_SET

```
$ ssid lcid sf at
1 1 -1.00 0.0
```

DEFINE_CURVE_TITLE

```
$ lcid sidr sfa sfo offa offo dattyp
1 0 1.00 1.00 0.0 0.0 0
$ abscissa (time) ordinate (value)
  0.000000E+00 0.000000E+00
  1.800000E-03 2.125000E+08
```
Appendix B: Numerical Models of the Pull-tests

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>t</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000000E+00</td>
<td>1.09999994E-01</td>
<td>0.000000000E+00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>2.5000000E-03</td>
<td>2.5000000E+08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.3000000E-03</td>
<td>3.2083000E+08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0300000E-02</td>
<td>8.5833000E+08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.7300000E-02</td>
<td>1.5000000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.0800000E-02</td>
<td>1.7958000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.1400000E-02</td>
<td>1.6958000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.4000000E-02</td>
<td>1.9000000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.6800000E-02</td>
<td>2.0833000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.7300000E-02</td>
<td>1.9792000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.8900000E-02</td>
<td>2.0208000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.9200000E-02</td>
<td>1.9292000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.9800000E-02</td>
<td>1.8875000E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8$

*NODE

$\text{n id} \quad x \quad y \quad z \quad t \quad r$

1 0.000000000E+00 1.099999994E-01 0.000000000E+00

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8$

*END
APPENDIX C: NUMERICAL MODELS OF THE ALUMINIUM FOAM PROTECTED URM WALLS

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ LS-DYNA(971) DECK WAS WRITTEN BY: eta/VPG VERSION 3.3
$
$ ENGINEER:
$ PROJECT:
$ UNITS: M, KG, SEC, N
$ DATE: Aug 5, 2008 at 18:55:08
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*TITLE
Distinct_W4_1Foam_40mm_A356SiC040_SD2.7_Interface
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_BULK_VISCOSITY
$ q1 q2 type
1.5000 0.06000 1
$ CONTROL_CONTACT
$ slsfac rwpnal isichk shlthk penopt thkchg orien enmass
0.80000 0.0 1.0 0.0 1.0 0.0 1.0 0.0
$ usrsr usrfrc nsbcs intern xpene ssthk ecdt tiedprj
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
$ sfic dfic edc vfc th th_sf pen_sf
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
$ ignore frceng skipwrw outseg spotstp spotdel spothin
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
$ isym nserod rwgaps rwgdth rwksf icov swradf ithoff
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
$ CONTROL_ENERGY
$ hgen nwen slinten rylen
2.00000 2.00000 2.00000 2.00000
$ CONTROL_HOURGLASS
$ ihq qh
6.00000 0.05000
$ CONTROL_OUTPUT
$ npopt neecho nrefup iaccop opifs iprint ikedit iflush
1.00000 3.00000 0.00000 0.00000 0.00000 0.00000 100.00000 5000.00000
$ iprtf ierode tet10 msgmax ipcurv
0.00000 0.00000 2.00000 0.00000 0.00000
$ CONTROL_TERMINATION

152
<table>
<thead>
<tr>
<th>$</th>
<th>endtim</th>
<th>endcyc</th>
<th>dtmin</th>
<th>endeng</th>
<th>endmas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04000</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

CONTROL_TIMESTEP

<table>
<thead>
<tr>
<th>$</th>
<th>dtinit</th>
<th>tssfac</th>
<th>isdo</th>
<th>tslimt</th>
<th>dt2ms</th>
<th>lctm</th>
<th>erode</th>
<th>ms1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.90000</td>
<td>0</td>
<td>0.0</td>
<td>-2700E-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$</th>
<th>dt2msf</th>
<th>dt2mslc</th>
<th>imsc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

DATABASE_GLSTAT

<table>
<thead>
<tr>
<th>$</th>
<th>dt</th>
<th>binary</th>
<th>lcur</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1000E-2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

DATABASE_MATSUM

<table>
<thead>
<tr>
<th>$</th>
<th>dt</th>
<th>binary</th>
<th>lcur</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1000E-2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

DATABASE_BINARY_D3PLOT

<table>
<thead>
<tr>
<th>$</th>
<th>dt/cycl</th>
<th>lcdn</th>
<th>beam</th>
<th>npclt</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1000E-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$ ioopt
1

DATABASE_BINARY_D3DUMP

<table>
<thead>
<tr>
<th>$</th>
<th>dt/cycl</th>
</tr>
</thead>
<tbody>
<tr>
<td>200000.0</td>
<td></td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

DATABASE_EXTENT_BINARY

<table>
<thead>
<tr>
<th>$</th>
<th>CardName:EXTENT_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>neigh</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$</th>
<th>cmpflg</th>
<th>ieverp</th>
<th>beamip</th>
<th>dcomp</th>
<th>shge</th>
<th>stssz</th>
<th>n3thdt</th>
<th>ialemat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$</th>
<th>nintslid</th>
<th>pkp_sen</th>
<th>sclp</th>
<th>blank</th>
<th>msscl</th>
<th>them</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

PART

<table>
<thead>
<tr>
<th>BRICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

PART

<table>
<thead>
<tr>
<th>MORTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

PART

<table>
<thead>
<tr>
<th>Foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

PART
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

Steel

\[
\begin{array}{cccccccc}
4 & 1 & 4 & 0 & 4 & 0 & 0 & 0 \\
\end{array}
\]

*PART

Interface

\[
\begin{array}{cccccccc}
6 & 1 & 6 & 0 & 6 & 0 & 0 & 0 \\
\end{array}
\]

*SECTION_SOLID_TITLE

P-1

\[
\begin{array}{cccccccc}
1 & 1 & 0 \\
\end{array}
\]

*SECTION_SOLID_TITLE

S0000003

\[
\begin{array}{cccccccc}
2 & 9 & 0 \\
\end{array}
\]

*MAT_ADD_EROSION

$CardName:USED BY MATL: 1$

\[
\begin{array}{cccccccccccc}
1 & 999999.0 & 0.0 & 0.0 & \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 & 999999.0 & 999999.0 & 0.03000 & 999999.0 & 999999.0 & 999999.0 & 999999.0 & \\
\end{array}
\]

*MAT_ADD_EROSION

$CardName:USED BY MATL: 2$

\[
\begin{array}{cccccccccccc}
2 & 999999.0 & 0.0 & 0.0 & \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
2 & 999999.0 & 999999.0 & 0.03000 & 999999.0 & 999999.0 & 999999.0 & 999999.0 & \\
\end{array}
\]

*MAT_SOIL_AND_FOAM_TITLE

Brick

\[
\begin{array}{cccccccccccc}
1 & 2400.000 & 2200E+11 & 1800E+12 & 5555E+14 & 2112E+8 & 2.008 & -7100000. & \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 & 2400.000 & 2200E+11 & 1800E+12 & 5555E+14 & 2112E+8 & 2.008 & -7100000. & \\
\end{array}
\]

*MAT_SOIL_AND_FOAM_TITLE

Mortar

\[
\begin{array}{cccccccccccc}
1 & 3950000. & 9880000. & 1600E+8 & 5000E+9 & 5000E+10 & 0.0 & 0.0 & \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 & 3950000. & 9880000. & 1600E+8 & 5000E+9 & 5000E+10 & 0.0 & 0.0 & \\
\end{array}
\]
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

$\begin{array}{ccccccccc}
\text{mid} & \text{ro} & g & \text{bulk} & a0 & a1 & a2 & pc \\
2 & 2400.000 & 0.2200E+9 & 0.1328E+10 & 0.4156E+12 & 1827000. & 2.008 & -800000.0 \\
\end{array}$

$\begin{array}{cccc}
\text{vcr} & \text{ref} \\
0.0 & 0.0 \\
\end{array}$

$\begin{array}{cccccccc}
\text{eps1} & \text{eps2} & \text{eps3} & \text{eps4} & \text{eps5} & \text{eps6} & \text{eps7} & \text{eps8} \\
0.0 & -0.00940 & -0.01650 & -0.23700 & -2.3700 & 0.0 & 0.0 & 0.0 \\
\end{array}$

$\begin{array}{cccc}
\text{eps9} & \text{eps10} \\
0.0 & 0.0 \\
\end{array}$

$\begin{array}{cccccccc}
\text{p1} & \text{p2} & \text{p3} & \text{p4} & \text{p5} & \text{p6} & \text{p7} & \text{p8} \\
0.0 & 3950000. & 6140000. & .9880E+8 & .9880E+9 & 0.0 & 0.0 & 0.0 \\
\end{array}$

$\begin{array}{cc}
\text{p9} & \text{p10} \\
0.0 & 0.0 \\
\end{array}$

*MAT_MODIFIED_HONEYCOMB_TITLE

Foam_15%

$\begin{array}{cccccccccccc}
\text{MID} & \text{RO} & E & PR & SIGY & VF & MU & BULK \\
3 & 4.069E+02 & 7.10E+10 & 0.33 & 3.22E+08 & 0.23418 & 0.05 & 0.0 \\
\end{array}$

$\begin{array}{cccccccccccc}
\text{LCA} & \text{LCB} & \text{LCC} & \text{LCS} & \text{LCAB} & \text{LCBC} & \text{LCCA} & \text{LCR} \\
6 & 6 & 6 & 7 & 7 & 7 & 7 \\
\end{array}$

$\begin{array}{cccccccccccc}
\text{EAAU} & \text{EBBU} & \text{ECCU} & \text{GABU} & \text{GBCU} & \text{GCAU} & \text{AOPT} \\
4.266E+08 & 4.266E+08 & 4.266E+08 & 1.5997E+8 & 1.5997E+8 & 1.5997E+8 & 0.0 \\
\end{array}$

$\begin{array}{cccc}
\text{XP} & \text{YP} & \text{ZP} & \text{A1} & \text{A2} & \text{A3} \\
0.77 & 0.77 & \\
\end{array}$

*MAT_PLASTIC_KINEMATIC_TITLE

Steel

$\begin{array}{cccccccc}
\text{mid} & \text{ro} & e & pr & sigy & etan & beta \\
4 & 7830.000 & 0.2070E+12 & 0.28000 & 0.3100E+9 & 0.7630E+9 & 0.0 \\
\end{array}$

$\begin{array}{cccc}
\text{src} & \text{srp} & \text{fs} & \text{vp} \\
40.000 & 5.000 & 0.75000 & 0.0 \\
\end{array}$

*MAT_ARUP_ADHESIVE_TITLE

M0000006

$\begin{array}{cccccccccccc}
\text{mid} & \text{ro} & e & pr & tenmax & gcten & shrmx & gcshr \\
6 & 2400.000 & 0.08E+09 & 0.29000 & 1.84E+06 & 0.25E+03 & 0.0 \\
\end{array}$

$\begin{array}{cccccccccccc}
pwrt & pwr & shrp & sh organized & edot0 & edot2 & blank & xedge \\
2 & 2.000 & 0.0 & 0.0 & 1.000 & 0.0 & 0.0 \\
\end{array}$

*HOURGLASS>Title

$\begin{array}{cccccccc}
\text{hg} & \text{id} & \text{iq} & \text{qm} & \text{ibq} & \text{q1} & \text{q2} & \text{qb} \\
1 & 6 & 0.01000 & 0 & 1.500 & 0.06000 & 0.0 & 0.0 \\
\end{array}$

*HOURGLASS>Title

$\begin{array}{cccccccc}
\text{hg} & \text{id} & \text{iq} & \text{qm} & \text{ibq} & \text{q1} & \text{q2} & \text{qb} \\
\end{array}$

155
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

2 6 0.01000 0 1.500 0.06000 0.0 0.0
*HOURGLASS>Title

$ hg id ihq qm ibq q1 q2 qb/vdc qw
3 2 0.10000 0 1.500 0.06000 0.0 0.0
*HOURGLASS>Title

$ hg id ihq qm ibq q1 q2 qb/vdc qw
4 5 0.10000 0 1.500 0.06000 0.0 0.0
*HOURGLASS>Title

$ hg id ihq qm ibq q1 q2 qb/vdc qw
6 6 1.000 0 1.500 0.06000 0.0 0.0
*HOURGLASS>Title

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DAMPING_GLOBAL

$ lcid valdmp stx sty stz srx sry szr
0 30.000 0.0 0.0 0.0 0.0 0.0 0.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*SET_NODE_LIST_TITLE

NODE SET_1
$ sid da1 da2 da3 da4
1
$ nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8
20443 20446 20448 20450 20452 20454 20444 20447
.
.
.
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*BOUNDARY_SPC_SET_ID

$ id
1
$ nsid cid dofx dofy dofz dofrx dofry dofrz
1 0 0 1 0 0 0 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONSTRAINED_GLOBAL

$ tc rc dir x y z
1 5 1 0.0 0.0 0.0
3 4 3 0.0 0.0 0.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTACT_AUTOMATIC_SINGLE_SURFACE_ID

$ cid
1
$ ssid msid sttyp mstyp sboxid mboxid spr mpr
0 0 5 0 0 0 0 0
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

$ fs fd dc vc vdc penchk bt dt
0.90000 0.0 0.0 0.0 0.0 1 0.0 .1000E+21

$ sfs sfm sst mst sfst sfmt fs vsf
1.000 1.000 0.0 0.0 1.000 1.000 1.000 1.000

$ soft softscl lcidab maxpar sbopt depth bsort frcfrq
2 0.80000 0 1.200 0.0 5 0 1

$ penmax thkopt shlthk snlog isym i2d3d sldthk sldstf
4.000 0 0 0 0 1 0.0 0.0

$ igap ignore dprfac dtstif blank blank flag
1 0 .1000E-2 0.0 0.0

*LOAD_SEGMENT_SET_ID

$ id
1

$ ssid lcid sf at dt
1 1 1.000 0.0 0.0

*DEFINE_COORDINATE_NODES_TITLE

COORDINATE 00000001

$ cid n1 n2 n3 flag dir
1 156601 61249 173539 0 X

*DEFINE_CURVE_TITLE

LCur_1

$ lcid sidr sfa sfo offa offo dattyp
1 0 1.000 1.000 0.0 0.0 0

$ abscissa (time) ordinate (value)
0.000000E+00 3.000000E+06
0.020000E-01 0.000000E+00

*DEFINE_CURVE_TITLE

LCA

$ lcid sidr sfa sfo offa offo dattyp
2 0 1.000 1.000 0.0 0.0 0

$ abscissa (time) ordinate (value)
-0.266667E-02 -0.320000E+07
0.000000E+00 0.000000E+00
0.800000E-02 0.420000E+07
0.200000E-01 0.200000E+07
0.680000E+00 0.400000E+07
0.850000E+00 0.120000E+11

*DEFINE_CURVE_TITLE

LCB

$ lcid sidr sfa sfo offa offo dattyp
3 0 1.000 1.000 0.0 0.0 0
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

\[
\begin{array}{c|c}
\text{abscissa (time)} & \text{ordinate (value)} \\
-0.284615E-02 & -0.370000E+07 \\
0.000000E+00 & 0.000000E+00 \\
0.714000E-02 & 0.500000E+07 \\
0.120000E-01 & 0.500000E+07 \\
0.680000E+00 & 0.500000E+07 \\
0.850000E+00 & 0.120000E+11 \\
\end{array}
\]

*DEFINE_CURVE_TITLE LCC

\[
\begin{array}{c|c|c|c|c|c|c|c}
lcid & sidr & sfa & sfo & offa & offo & dattyp \\
4 & 0 & 1.000 & 1.000 & 0.0 & 0.0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{abscissa (time)} & \text{ordinate (value)} \\
-0.333333E-02 & -0.500000E+07 \\
0.000000E+00 & 0.000000E+00 \\
0.706000E-02 & 0.600000E+07 \\
0.120000E-01 & 0.600000E+07 \\
0.680000E+00 & 0.600000E+07 \\
0.850000E+00 & 0.120000E+11 \\
\end{array}
\]

*DEFINE_CURVE_TITLE LCS

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
lcid & sidr & sfa & sfo & offa & offo & dattyp \\
5 & 0 & 1.000 & 1.000 & 0.0 & 0.0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{abscissa (time)} & \text{ordinate (value)} \\
-0.300000E-02 & -0.210000E+07 \\
-0.228200E-02 & -0.210000E+07 \\
0.000000E+00 & 0.000000E+00 \\
0.113000E-02 & 0.100000E+07 \\
0.228200E-02 & 0.210000E+07 \\
0.300000E-02 & 0.210000E+07 \\
\end{array}
\]

*DEFINE_CURVE

\[
\begin{array}{c|c|c|c|c|c}
\text{LCID} & \text{SIDR} & \text{SCLA} & \text{SCLO} & \text{OFFA} & \text{OFFO} \\
6 & 0 & 1.0 & 1.0 & & \\
\text{A1} & \text{O1} & & & & \\
0.000000 & 2.531531E+06 & & & & \\
0.033184 & 2.531531E+06 & & & & \\
0.100000 & 3.705721E+06 & & & & \\
0.150000 & 4.328555E+06 & & & & \\
0.200000 & 4.538712E+06 & & & & \\
0.250000 & 4.512386E+06 & & & & \\
0.300000 & 4.533725E+06 & & & & \\
0.350000 & 4.854431E+06 & & & & \\
0.400000 & 5.611365E+06 & & & & \\
0.450000 & 6.802155E+06 & & & & \\
0.500000 & 8.318809E+06 & & & & \\
\end{array}
\]

158
Appendix C: Numerical Models of the Aluminium Foam Protected URM Walls

0.550000 1.003933E+07
0.600000 1.197732E+07
0.650000 1.448963E+07
0.700000 1.854196E+07
0.765820 2.959121E+07

*DEFINE_CURVE
$ LCID SIDR SCLA SCLO OFFA OFFO
7 0 1.0 0.5773503
$ A1 O1
0.000000 2.531531E+06
0.033184 2.531531E+06
0.100000 3.705721E+06
0.150000 4.328555E+06
0.200000 4.538712E+06
0.250000 4.512386E+06
0.300000 4.533725E+06
0.350000 4.854431E+06
0.400000 5.611365E+06
0.450000 6.802155E+06
0.500000 8.318809E+06
0.550000 1.003933E+07
0.600000 1.197732E+07
0.650000 1.448963E+07
0.700000 1.854196E+07
0.765820 2.959121E+07

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*NODE
$ nid x y z tc rc
10430 6.250000000E-01 2.749999985E-02 0.000000000E+00

.$

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*END