CARDIOVASCULAR AND MENTAL HEALTH BENEFITS OF SOY CONSUMPTION:
ROLE OF SOY ISOFLAVONES

Alicia A Thorp
B Med Pharm Biotech (Hons)

A thesis submitted for the degree of Doctor of Philosophy

Discipline of Physiology
University of Adelaide
South Australia

May 2008
TABLE OF CONTENTS

ABSTRACT ... iii
DECLARATION ... xv
ACKNOWLEDGEMENTS ... xvii
GLOSSARY OF ABBREVIATIONS ... xix
LIST OF FIGURES ... xxiii
LIST OF TABLES .. xxvii
PUBLICATIONS .. xxix

1.0 INTRODUCTION ... 1
1.1 Overview .. 1
1.2 Health Benefits of Soy Consumption - Epidemiological Evidence 2
1.3 Soybeans .. 3
 1.3.1 Composition .. 3
 1.3.2 Methods of Processing Soybeans ... 4
 1.3.3 Food Products Manufactured from Soybeans .. 5
1.4 Soybean Isoflavones ... 6
 1.4.1 Variability of Isoflavone Content in Soy foods .. 6
 1.4.2 Sources of Isoflavones ... 8
 1.4.3 Typical Dietary Soy Isoflavone Intakes ... 8
1.5 Properties of Isoflavones ... 9
 1.5.1 Phytoestrogens ... 9
 1.5.2 Isoflavones and their Biosynthesis .. 10
 1.5.3 Soy Isoflavones ... 12
 1.5.3.1 Distribution of Isoflavones in the Soybean ... 12
 1.5.4 Bioavailability of Isoflavones in Humans .. 13
 1.5.4.1 Factors that Influence Isoflavone Bioavailability .. 14
 1.5.5 Absorption of Isoflavones .. 15
 1.5.6 Metabolism of Isoflavones .. 16
 1.5.6.1 Formation of Isoflavone Metabolites ... 17
 1.5.6.2 Factors that Influence Isoflavone Metabolite Formation 18
 1.5.7 Pharmacokinetics of Isoflavones .. 19
 1.5.8 Discovery of Equol ... 19
 1.5.9 Diversity of Equol Production ... 20
 1.5.10 Biological and Structural Properties of Equol .. 21
1.6 Mechanism of Action of Isoflavones ... 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.2.2 Intake 2</td>
<td>72</td>
</tr>
<tr>
<td>2.8.2.3 Intake 3</td>
<td>72</td>
</tr>
<tr>
<td>2.9 Anthropometric Assessments</td>
<td>72</td>
</tr>
<tr>
<td>2.9.1 Weight</td>
<td>72</td>
</tr>
<tr>
<td>2.9.2 Height</td>
<td>72</td>
</tr>
<tr>
<td>2.9.3 Waist and Hip Circumference Measurements</td>
<td>72</td>
</tr>
<tr>
<td>2.9.4 Body Mass Index (BMI)</td>
<td>73</td>
</tr>
<tr>
<td>2.10 Study Foods</td>
<td>73</td>
</tr>
<tr>
<td>2.10.1 Range</td>
<td>73</td>
</tr>
<tr>
<td>2.10.2 Nutritional Composition of Study Foods</td>
<td>73</td>
</tr>
<tr>
<td>2.10.3 Availability of Study Foods to Intakes</td>
<td>74</td>
</tr>
<tr>
<td>2.10.4 Assessment of Palatability and Market Potential of Study Foods</td>
<td>75</td>
</tr>
<tr>
<td>2.11 Dietary Assessments of Subjects</td>
<td>76</td>
</tr>
<tr>
<td>2.11.1 Macronutrient Intake of Subjects during Diets</td>
<td>76</td>
</tr>
<tr>
<td>2.11.2 Isoflavone Intake and Measures of Compliance</td>
<td>76</td>
</tr>
<tr>
<td>2.11.2.1 Food Record Forms</td>
<td>76</td>
</tr>
<tr>
<td>2.11.2.2 Overnight Urine Collection</td>
<td>77</td>
</tr>
<tr>
<td>2.12 Analysis of Isoflavones in Overnight Urine Samples</td>
<td>77</td>
</tr>
<tr>
<td>2.12.1 Method Development</td>
<td>77</td>
</tr>
<tr>
<td>2.12.1.1 HPLC Conditions</td>
<td>77</td>
</tr>
<tr>
<td>2.12.1.2 Extraction Protocol</td>
<td>78</td>
</tr>
<tr>
<td>2.12.2 Final Method</td>
<td>78</td>
</tr>
<tr>
<td>2.12.2.1 External Standards</td>
<td>78</td>
</tr>
<tr>
<td>2.12.2.2 HPLC Conditions</td>
<td>79</td>
</tr>
<tr>
<td>2.12.2.3 Extraction Protocol</td>
<td>80</td>
</tr>
<tr>
<td>2.12.2.4 Recovery of Isoflavones in Urine Sample</td>
<td>81</td>
</tr>
<tr>
<td>2.13 Quantification of Equol Production</td>
<td>82</td>
</tr>
<tr>
<td>2.14 HPLC Analysis of Isoflavones in Trial Foods</td>
<td>83</td>
</tr>
<tr>
<td>2.14.1 Standards</td>
<td>83</td>
</tr>
<tr>
<td>2.14.2 HPLC Conditions</td>
<td>83</td>
</tr>
<tr>
<td>2.14.3 Extraction Method</td>
<td>83</td>
</tr>
<tr>
<td>2.14.3.1 Extraction Protocol for Solid Study Foods</td>
<td>83</td>
</tr>
<tr>
<td>2.14.3.2 Extraction Protocol for Study Milks</td>
<td>84</td>
</tr>
<tr>
<td>2.14.4 Hydrolysis Method for Solid and Milk Study Foods</td>
<td>85</td>
</tr>
<tr>
<td>2.15 Statistical Analyses</td>
<td>85</td>
</tr>
<tr>
<td>2.16 Results</td>
<td>86</td>
</tr>
</tbody>
</table>
3.6 Discussion .. 111

3.6.1 Effect of Trial Foods on Blood Cholesterol ... 111
3.6.2 Influence of Isoflavones on Lipids .. 113
3.6.3 Influence of Equol Production on Lipids .. 114
3.6.4 Effect of Soy Foods in Relation to Reducing Cardiovascular Disease Risk 114

3.7 Summary .. 115

4.0 EFFECT OF SOY FOODS ON METABOLIC RISK FACTORS 117
4.1 Introduction ... 117
4.2 Aims .. 118
4.3 Methods ... 118

4.3.1 Subjects and Recruitment ... 118
4.3.2 Study Design and Protocol .. 118
4.3.3 Anthropometric Assessments .. 118
4.3.4 Metabolic Assessments .. 118

4.3.4.1 Plasma Glucose and Insulin .. 118
4.3.4.2 HOMA 2 Calculation .. 119
4.3.5 Study Foods, Intake and Compliance .. 119
4.3.6 Identification of Equol Producers in the Intervention ... 119

4.4 Statistics ... 119
4.5 Results ... 120

4.5.1 Effect of Diets on Anthropometric and Metabolic Factors 120
4.5.2 Influence of Equol Production on Anthropometric and Metabolic Measures 122
4.5.3 Correlation between Isoflavone Intake and Changes in Anthropometric and Metabolic Markers ... 123
4.5.4 Influence of Gender and Age on Anthropometric and Metabolic Measures 123

4.6 Discussion .. 124

4.6.1 Effect of Diets on Metabolic Measures ... 124
4.6.2 Effects of Diets on Anthropometric Measures .. 124
4.6.3 Effect of Equol Production on Anthropometric and Metabolic Measures 125

4.7 Summary ... 126

5.0 EFFECT OF SOY FOODS ON MARKERS OF CIRCULATORY FUNCTION 127
5.1 Introduction .. 127
5.2 Aims of the Intervention in Relation to Vascular Function 129
5.3 Methods .. 129
 5.3.1 Subjects and Recruitment 129
 5.3.2 Study Design and Protocol 129

5.4 Protocols for Vascular Assessments 130
 5.4.1 Measuring Blood Pressure 130
 5.4.2 Measuring Arterial Compliance 130
 5.4.3 Measuring Peripheral Vascular Function 132
 5.4.3.1 Endothelial Dependent Vasodilatation 133
 5.4.3.2 Endothelial Independent Vasodilatation 133
 5.4.3.3 Analysis of Peripheral Vascular Function Assessments 134

5.5 Study Foods, Intake and Compliance 135

5.6 Statistics .. 135

5.7 Results .. 136
 5.7.1 Subjects .. 136
 5.7.2 Effects of Diets on Vascular Function 136
 5.7.2.1 Arterial Compliance and Blood Pressure for All Subjects (n=91) 136
 5.7.2.2 Peripheral Vascular Function for Adelaide Based Subjects (n=55) 138
 5.7.3 Influence of Isoflavone Intake on Vascular Function 139
 5.7.4 Influence of Equol Production on Vascular Function ... 140
 5.7.5 Influence of Plasma Lipids on Flow Mediated Dilatation 140
 5.7.6 Influence of Age and Gender on Vascular Function ... 141

5.8 Discussion ... 141
 5.8.1 Effects of Trial Foods on Peripheral Endothelial Function 141
 5.8.2 Effects of Diet Treatments on Arterial Compliance and Blood Pressure 144

5.9 Summary ... 145

6.0 EFFECT OF ISOFLAVONE SUPPLEMENTATION ON COGNITIVE FUNCTION 147

6.1 Introduction .. 147

6.2 Aims ... 150

6.3 Hypotheses .. 151

6.4 Significance and Expected Outcomes 151

6.5 Subjects ... 152
 6.5.1 Inclusion and Exclusion Criteria 152
 6.5.2 Justification of Exclusion Criteria 152

6.6 Recruitment of Subjects ... 153

6.7 Screening of Subjects .. 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.1 Suitability Assessment and Telephone Screening Interview</td>
<td>153</td>
</tr>
<tr>
<td>6.7.2 Screening Visit and Information Session</td>
<td>153</td>
</tr>
<tr>
<td>6.8 Study Design</td>
<td>154</td>
</tr>
<tr>
<td>6.9 Study Protocol</td>
<td>155</td>
</tr>
<tr>
<td>6.10 Ethical Considerations</td>
<td>156</td>
</tr>
<tr>
<td>6.11 Cognitive Assessments</td>
<td>156</td>
</tr>
<tr>
<td>6.11.1 Memory and Learning</td>
<td>157</td>
</tr>
<tr>
<td>6.11.2 Auditory Memory Recall</td>
<td>158</td>
</tr>
<tr>
<td>6.11.2.1 Rey Auditory Verbal Learning Test</td>
<td>159</td>
</tr>
<tr>
<td>6.11.2.2 Paired-Associated Learning Task</td>
<td>159</td>
</tr>
<tr>
<td>6.11.3 Working Memory</td>
<td>160</td>
</tr>
<tr>
<td>6.11.3.1 Backwards Digit Span Task</td>
<td>160</td>
</tr>
<tr>
<td>6.11.3.2 Letter Number Sequencing Task</td>
<td>160</td>
</tr>
<tr>
<td>6.11.4 Spatial Working Memory Task</td>
<td>161</td>
</tr>
<tr>
<td>6.11.5 Visual-Spatial Processing</td>
<td>161</td>
</tr>
<tr>
<td>6.11.5.1 Metal Rotation Task</td>
<td>162</td>
</tr>
<tr>
<td>6.11.6 Executive Mental Function</td>
<td>162</td>
</tr>
<tr>
<td>6.11.6.1 Initial Letter Fluency Task</td>
<td>162</td>
</tr>
<tr>
<td>6.11.7 Planning Ability</td>
<td>163</td>
</tr>
<tr>
<td>6.11.7.1 Trail Making Test</td>
<td>163</td>
</tr>
<tr>
<td>6.12 Assessment of Peripheral Vascular Function</td>
<td>164</td>
</tr>
<tr>
<td>6.13 Composition of Isoflavone and Matching Placebo Supplements</td>
<td>164</td>
</tr>
<tr>
<td>6.14 Measures of Compliance</td>
<td>165</td>
</tr>
<tr>
<td>6.15 Overnight Urine Collection</td>
<td>165</td>
</tr>
<tr>
<td>6.16 Identification of Equol Producers in the Intervention</td>
<td>165</td>
</tr>
<tr>
<td>6.17 Statistics</td>
<td>165</td>
</tr>
<tr>
<td>6.18 Results</td>
<td>166</td>
</tr>
<tr>
<td>6.18.1 Subjects</td>
<td>166</td>
</tr>
<tr>
<td>6.18.2 Equol Producers in Intervention</td>
<td>167</td>
</tr>
<tr>
<td>6.18.3 Compliance during Intervention</td>
<td>167</td>
</tr>
<tr>
<td>6.18.4 Isoflavone Intake of Subjects during Active Treatment of Intervention</td>
<td>167</td>
</tr>
<tr>
<td>6.18.5 Effect of Isoflavone Supplementation on Cognitive Performance</td>
<td>169</td>
</tr>
<tr>
<td>6.18.6 Effect of Isoflavone Supplementation on Peripheral Endothelial Function</td>
<td>169</td>
</tr>
<tr>
<td>6.18.7 Influence of Peripheral Endothelial Function on Cognition</td>
<td>171</td>
</tr>
<tr>
<td>6.18.8 Correlation between Isoflavone Intake and Changes in Cognitive and Vascular Function</td>
<td>171</td>
</tr>
</tbody>
</table>
6.18.8.1 Isoflavone Consumption and Cognitive Performance .. 171
6.18.8.2 Isoflavone Consumption and Peripheral Endothelial Function 173
6.18.9 Influence of Equol Production on Cognitive and Vascular Function 174
 6.18.9.1 Influence of Equol on Cognition ... 174
 6.18.9.2 Influence of Equol on Flow Mediated Dilatation 175
6.18.10 Influence of Age on Cognitive and Vascular Function 175
6.19 Discussion .. 175
 6.19.1 Cognitive Performance during Intervention and the Effect of Equol Production 175
 6.19.2 Effect of Isoflavones on Cognitive Tests with Known Sexual Differences 177
 6.19.3 Effect of Isoflavones on Peripheral Endothelial Function 180
 6.19.4 Correlation between Cognitive Performance and Flow Mediated Dilatation Response of Subjects in the Intervention .. 181
6.20 Summary ... 182

7.0 GENERAL DISCUSSION .. 183
7.1 Key Outcomes from the Interventions .. 183
 7.1.1 Benefits of Novel Soy Foods in Relation to Cardiovascular Risk Reduction 183
 7.1.2 Benefits of Isoflavones in Relation to Cognition in Healthy Males 185
7.2 Significance of Key Outcomes from Interventions .. 186
7.3 Study Limitations of Interventions ... 188
 7.3.1 Soy Food Intervention ... 188
 7.3.2 Isoflavone Supplement Intervention ... 190
7.4 Future Directions of Research .. 190

APPENDICES .. 193
APPENDIX 1- Ethics Approval for Interventions .. 195
APPENDIX 2- Recruitment Material for Soy Food Intervention 205
APPENDIX 3- Assessment Tools for Soy Food Intervention 231
APPENDIX 4- Macronutritent Profile of Trial Foods used in Soy Food Intervention 243
APPENDIX 5- Recruitment Material for Isoflavone Supplement Intervention 259
APPENDIX 6- Isoflavone Supplement Specification Information 273
APPENDIX 7- Cognitive Tests used in Isoflavone Supplement Intervention 281

BIBLIOGRAPHY ... 291
ABSTRACT

Regular soy consumption has been shown to reduce cardiovascular (CV) risk through plasma cholesterol reduction. According to the current health claim, this benefit is attributed to soy protein (SP). Dietary intervention trials indicate that isoflavones (ISO), weak phytoestrogens in soy, may also contribute by offering additional vascular and metabolic protection. Equol, a metabolite of the ISO daidzein (DAZ) with greater estrogenic potency, may be an important mediator of such effects.

This thesis examines effects of soy, in particular, ISO consumption on CV risk factors and the potential for ISOs to enhance cognition, possibly through improvements of circulatory function. Two crossover design intervention trials were undertaken: a food-based intervention, investigating differential effects of SP and ISO on plasma lipids and other risk factors for CVD, and an ISO supplementation trial, examining effects on cognition and vascular function. Both addressed whether benefits were dependent on equol production.

In the first trial, 91 subjects with untreated mild hypercholesterolemia were randomised to consume each of the following three diets in random order for sequential 6 week periods: (S) soy foods containing 24 g of SP and 75-90 mg ISO per day, (SD) soy/dairy foods containing 12 g SP, 12 g dairy protein (DP) and 75-90 mg ISO per day or (D) dairy foods containing 24 g DP only per day. At the end of each diet period, blood lipids, flow-mediated dilatation (FMD) of the brachial artery, blood pressure, arterial compliance and anthropometric measures were assessed. Compared with the control diet (D), there was a small but significant reduction in total cholesterol on the S diet only (2.8 ± 1.1%, P<0.05), which could be accounted for by a decrease in saturated fat intake. FMD was found to be significantly improved when SD and S diet data were nested (P=0.03). Plasma triglycerides (TG) improved on both the SD and S diets compared with D (P<0.01). Other lipid, metabolic and vascular parameters did not differ between diets. There were no differences in outcomes between equol (n=30) and non equol producers (n=61).

In a subsequent 12 week double-blind supplementation trial, 34 healthy males were randomised to take 4 capsules providing 120mg ISO per day or a matching placebo for 6 weeks, after which they crossed over to the alternate supplement. FMD and cognitive assessments relating to measures of
memory and executive function were performed at the beginning and end of each treatment phase. Spatial working memory, a test in which females consistently perform better than males, was significantly improved by ISO supplementation (P<0.02). However, other measures of cognition and FMD were unaffected and there were no differences between equol (n=8) and non-equol producers (n=26).

These interventions indicate that ISOs offer specific health benefits, independent of equol production. ISO supplementation can enhance specific cognitive processes which appear dependent on estrogen activation. Additionally, soy foods containing ISOs improved FMD and TG but were unable to improve LDL cholesterol, even in equol producers. Thus dietary ISOs may reduce CV risk but the validity of the current health claim for SP is questioned.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Signed: Ms Alicia Thorp

(Wednesday 28th May, 2008)
ACKNOWLEDGEMENTS

I would like to acknowledge the Australian Research Council, So Natural Foods and Soy Health Pty Ltd who provided financial assistance and food products/supplements to conduct research for my PhD.

To my principal supervisor Professor Peter Howe, thank you allowing me the opportunity to work with you over the last five years. It’s been a genuine privilege to be able to utilise your extensive skills and expertise in the area of nutrition research. The knowledge and advice you shared with me during the numerous hours spent in your counsel is sincerely appreciated.

To my co-supervisors, Associate Professor Jon Buckley and Dr Alison Coates thank you for your enthusiasm, patience and friendship over the years. I have learnt a great deal from you both and am extremely appreciative how approachable and supportive you have been as supervisors.

To those researchers I collaborated with throughout my candidature; Associate Professor Barbara Meyer, Dr Trevor Mori, Dr Jonathon Hodgson and Dr Natalie Sinn. Thank you for all your advice, the technical assistance you provided in order for me to conduct my research and for helping critique my manuscript and thesis drafts. I am especially grateful to Roger King for teaching me how to operate the HPLC system and perform isoflavone analysis. Your time and support was truly invaluable!

To my fellow NPRC postgraduates and my amazing circle of friends, thank you for all your uplifting words, keeping me grounded and never letting me lose site of my ultimate goal.

And last but not least to my beautiful family, thank you for all your love and encouragement. I can honestly say I would not have been able to complete my PhD if it had not been for your tremendous support over the last few years.
Glossary of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-DHT</td>
<td>5α-dihydrotestosterone</td>
</tr>
<tr>
<td>AMP</td>
<td>adenylate cyclase</td>
</tr>
<tr>
<td>ANPA</td>
<td>atrial natriuretic peptide receptor A</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>β-conglycinin</td>
<td>7S globulin</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain derived neurotrophic factor</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>Ca2+</td>
<td>calcium</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenylate cyclase</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complimentary DNA</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>ChAT</td>
<td>choline acetyl transferase</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>COX</td>
<td>cyclo-oxygenase</td>
</tr>
<tr>
<td>CO2</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CPT-1</td>
<td>carnitine-palmitoyl transferase 1</td>
</tr>
<tr>
<td>CV</td>
<td>cardiovascular</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>D</td>
<td>dairy diet</td>
</tr>
<tr>
<td>DAZ</td>
<td>daidzein</td>
</tr>
<tr>
<td>DBP</td>
<td>diastolic blood pressure</td>
</tr>
<tr>
<td>DP</td>
<td>dairy protein</td>
</tr>
<tr>
<td>GEN</td>
<td>genistein</td>
</tr>
<tr>
<td>EC50</td>
<td>transcriptional potency</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ECD</td>
<td>electrochemical detection</td>
</tr>
<tr>
<td>ECE-1</td>
<td>endothelin converting enzyme-1</td>
</tr>
<tr>
<td>EDHF</td>
<td>endothelium derived hyperpolarizing factor</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>ER</td>
<td>estrogen receptor</td>
</tr>
<tr>
<td>ERα</td>
<td>estrogen receptor alpha subtype</td>
</tr>
<tr>
<td>ERβ</td>
<td>estrogen receptor beta subtype</td>
</tr>
<tr>
<td>ERE</td>
<td>estrogen response element</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>ERR-α1</td>
<td>estrogen related receptor alpha 1</td>
</tr>
<tr>
<td>ET-1</td>
<td>endothelin</td>
</tr>
<tr>
<td>FATP</td>
<td>fatty acid transport protein</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug administration</td>
</tr>
<tr>
<td>FMD</td>
<td>flow mediated dilatation</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>GLY</td>
<td>glycitin</td>
</tr>
<tr>
<td>Glycinin</td>
<td>11S globulin</td>
</tr>
<tr>
<td>H2O2</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HAEC</td>
<td>human aortic endothelial cell</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HDL-C</td>
<td>high density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>hydroxymethyl glutaryl- CoA</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRT</td>
<td>hormone replacement therapy</td>
</tr>
<tr>
<td>HREC</td>
<td>human research ethics committee</td>
</tr>
<tr>
<td>ISO</td>
<td>soy isoflavone</td>
</tr>
</tbody>
</table>
K+ = potassium
LAEI = large artery elasticity index
LBD = ligand binding domain
LDL-C = low density lipoprotein cholesterol
LDL-R = low density lipoprotein receptor
LPH = lactase phlorizin hydrolase enzyme
LXR-α = nuclear liver X receptor
MAP = mean arterial pressure
MAPK = mitogen-activated protein kinase
mDNA = messenger DNA
MeOH = methanol
MnSOD = manganese superoxide dismutase
Na2+ = sodium
NADPH = nicotinamide adenine dinucleotide phosphate
NGF = nerve growth factor
NO = nitric oxide
NTG = nitrotriglycerate
O- = superoxide
O-DMA = O-desmethylandogensin
PET = photo emission tomography
PGI2 = prostacyclin
PPAR = peroxisome proliferator activator receptor
PPRE = peroxisome proliferator hormone response element
PKG = cGMP- dependent protein kinase
PTK = protein tyrosine kinase
PWV = pulse wave velocity
RAVLT = rey’s auditory verbal learning task
RBA% = relative binding affinity as a percentage compared to estradiol
RIA = radio immunoassay
ROS = reactive oxygen species
RXR = retinoid X receptor
S = soy diet
SD = combination soy and dairy diet
SAC = systemic arterial compliance
SAEI = small artery elasticity index
SBP = systolic blood pressure
SERMs = selective estrogen receptor modulators
SHBG = sex hormone binding globulin
SMC = smooth muscle cell
smRLC = smooth muscle myosin regulatory light chains
SP = soy protein
SREBP = sterol regulatory element binding protein
SVR = systemic vascular resistance
TChol = total cholesterol
TG = triglyceride
TNF-α = tumour necrosis factor α
TVI = total vascular impedance
vLDL = very low density lipoprotein
VSMC = vascular smooth muscle cell
WHR = waist hip ratio
WT = wild type
LIST OF FIGURES

Figure 1.1: Processing methods for soybean products ..5

Figure 1.2: The effect of processing on the average mg concentration of isoflavone/100g of soy flour…7

Figure 1.3: Structure and source of notable phytoestrogens ..9

Figure 1.4: A partial diagram of the phenylpropanoid pathway showing intermediates and enzymes
involved in isoflavone synthesis, as well as some branch pathways ..11

Figure 1.5: Structure of soy and red clover derived isoflavones ...11

Figure 1.6: Four chemical forms of three analogues of isoflavones found in soybeans12

Figure 1.7: Transformation of esterified malonyl glucoside into an aglycone15

Figure 1.8: Mechanism of intestinal absorption and metabolism of isoflavone glycosides16

Figure 1.9: Main metabolites and respective intermediates produced from daidzein and genistein ...17

Figure 1.10: In vitro metabolism of daidzein in a colonic model of fermentation of human faecal flora
showing the influence of a high carbohydrate milieu on the rate of conversion of daidzein
 to the intestinal bacterially derived metabolite equol ..18

Figure 1.11: Pathway for equol formation after hydrolysis of the glycoside conjugates daidzein from soy,
and the methoxylated isoflavone, formononetin found in clover ...20

Figure 1.12: Comparison of the structure of the isoflavone metabolite equol with that of estradiol22

Figure 1.13: Comparison of the chemical structures of the diastereoisomers of equol to estradiol,
showing the site position of the chiral carbon centre ..22

Figure 1.14: Anatomical distribution of estrogen receptors; ERα and ERβ in males and females23

Figure 1.15: Structural comparison of ERα and ERβ. The approximate percentage of the amino-acid
identity between the structural domains of the two subtypes is given under the ERβ
figure ..24

Figure 1.16: ERβ inhibits ERα mediated gene transcription in the presence of ERα, whereas it can
partially replace ERα in the absence of ERα ...25

Figure 1.17: Genomic and non genomic actions of estrogen and ligands for estrogen receptors26

Figure 1.18: Schematic diagram of processes involved in atherosclerosis33
Figure 1.19: Physiological events which precede atherosclerosis..............................33
Figure 1.20: Nitric oxide production from the L-Arginine pathway and its activation of smooth muscle relaxation...34
Figure 1.21: Summary of the multiple causes and locations of arterial stiffness................37
Figure 1.22: General mechanism of PPAR activated transcription................................45
Figure 1.23: Postulated estrogen receptor – dependent genomic and non genomic mechanism by which isoflavones improve vascular function..49
Figure 1.24: Mechanisms by which soy isoflavones may increase antioxidant gene expression (as well as endothelial nitric oxide synthase; eNOS)...51
Figure 1.25: The NF-kB pathway as a potential molecular target of isoflavones..............52
Figure 1.26: Genistein and other isoflavones increase the survival and growth of a neuron, and synaptic plasticity via antioxidant and estrogen receptor-mediated pathways......................60
Figure 2.1: Outline of protocol design for Soy Food Intervention..................................71
Figure 2.2: Urinary Isoflavone Concentration Chromatograph from HPLC Analysis........81
Figure 2.3: Subject recruitment, randomisation and completion rates during the Soy Food Intervention..88
Figure 2.4: Log 10 of mean equol:daidzein concentration ratio of all subjects....................93
Figure 3.1: Change in lipids on SD and S Diets from D (control) for all subjects................106
Figure 3.2: Change in lipids on the SD Diet compared to D (control) for equol and non-equol producers..108
Figure 3.3: Change in lipids on the S Diet compared to D (control) for equol and non-equol producers..108
Figure 3.4: Percent change in Lipids on SD Diet from D for genders.................................110
Figure 3.5: Percent Change in Lipids on S Diet from D for genders....................................110
Figure 5.1: Interpretation of blood pressure waveform derived from CV Profiler..............131
Figure 5.2: Model of CV Profiler rationale for analysis and determination of LAEI (C1) and SAEI (C2)...132
Figure 5.3: Ultrasound analysis of brachial arterial diameter using digital callipers…………………134

Figure 5.4: Analysis of brachial arterial diameter using either the posterior and anterior M-lines or I-lines..135

Figure 5.5: Nested analysis for effect of SD and S Diets on FMD compared to D for n=55 subjects…139

Figure 5.6: Correlation between mean isoflavone intake/day and % change in SAEI for all subjects (n=91) on the SD diet..140

Figure 6.1: Outline of protocol for Isoflavone Supplement Intervention……………………154

Figure 6.2: Schematic diagram of Novel Spatial Working Memory Task..161

Figure 6.3: Schematic diagram of question from the Mental Rotation Task..162

Figure 6.4: Subject recruitment, randomisation and completion rates for the Isoflavone Supplement Intervention..168

Figure 6.5: Correlation between mean daily isoflavone intake and total recall component of the RAVLT for non equol producers (n=26) only...172

Figure 6.6: Correlation between mean daily isoflavone intake and Initial Letter Fluency Task for equol producers (n=8) only...172

Figure 6.7: Correlation between mean daily isoflavone intake on the active treatment and % change in FMD for all subjects (n=34)...173

Figure 6.8: Correlation between mean daily isoflavone intake on the active treatment and % change in FMD for non equol producers (n=24) only...174
LIST OF TABLES

Table 1.1: Typical isoflavone concentrations of commercial soy products.................................7

Table 1.2: Relative binding affinity expressed as a percentage (RBAa %) and transcriptional potencies (EC50C) of isoflavones and equol for ERα and ERβ at equivalent concentrations...........30

Table 1.3: Selective and co-expression of estrogen receptors in the brain..................................56

Table 1.4: Areas of the brain where ERβ are located and their potential role in cognition..............57

Table 2.1: General exclusion criteria for Soy Food Intervention..67

Table 2.2: Randomisation of Treatments on the Soy Food Intervention.....................................70

Table 2.3: Protein and isoflavone content per serve of each trial food......................................74

Table 2.4: Individual serving size of trial foods and their availability to the different intakes of subjects during each of the dietary phases...75

Table 2.5: Baseline characteristics of all subjects in Soy Food Intervention.................................86

Table 2.6: Total isoflavone content (in mg) of trial foods per serving...89

Table 2.7: Mean daidzein, genistein and glycitein concentrations in trial foods............................90

Table 2.8: Macronutrient intake of subjects during intervention based on Food Frequency Questionnaire data analysis...91

Table 2.9: Percent energy derived from macronutrients on diet treatments for all subjects.........91

Table 2.10: Summary of trial food consumption rates (as a percentage of total serves) for intakes.....92

Table 2.11: Mean daily and treatment isoflavone consumption rates for all subjects and across intakes..93

Table 2.12: Mean hedonic scores for trial foods used during the Soy Food Intervention.................94

Table 2.13: Percentage of subjects willing to purchase the trial foods used in the Soy Food Intervention...95

Table 3.1: Lipid concentrations and changes across diets for all subjects..................................106

Table 3.2: Lipid concentrations and changes on diets based on equol status..............................107

Table 3.3: Influence of gender on lipid concentrations on the diets...109

Table 3.4: Correlation between changes in isoflavone intake/day and changes in lipid parameters....111
Table 4.1: Anthropometric and metabolic measurements of all subjects on the diets ..120
Table 4.2: Anthropometric and metabolic measures on the diets based on glucose tolerance121
Table 4.3: Baseline anthropometric and metabolic measures for equol and non equol producers122
Table 4.4: Anthropometric and metabolic measures on diets for equol and non equol producers123
Table 5.1: Baseline vascular characteristics of subjects ...136
Table 5.2: Effect of diet treatments on arterial compliance for all subjects ...137
Table 5.3: Effect of diet treatments on blood pressure for all subjects ..137
Table 5.4: Effect of diets on peripheral endothelial dependent and independent vasodilatation138
Table 6.1: General exclusion criteria for Isoflavone Supplement Intervention ..152
Table 6.2: Battery of cognitive tests used in the Isoflavone Supplement Intervention157
Table 6.3: Composition of isoflavone supplements used in the intervention ...164
Table 6.4: Screening characteristics of males in the Isoflavone Supplement Intervention167
Table 6.5: Absolute and change scores of cognitive tests in Isoflavone Supplement Intervention for all
subjects, equol and non equol producers ..170
Table 6.6: Effect of treatments on FMD response of subjects in the Isoflavone Supplement
Intervention ..169
Publications arising from PhD Thesis

Papers- In Press
Thorpe AA, Howe PRC, Mori TA, Coates AM, Buckley JD, Hodgson J, Mansour J, Meyer BJ. Soy food consumption does not lower LDL-cholesterol in either equol or non-equol producers. American Journal of Clinical Nutrition (accepted for publication on April 24th, 2008)

Abstracts and Conference Presentations

Awarded Best Student Oral Presentation; Nutrition Society of Australia (NSA), 30th Annual Scientific Meeting, 29 November 2006 Sydney

Awarded Healthy Aging Research Cluster (HARC) and Australian Society of Medical Research (ASMR) Healthy Ageing Research Prize for best oral presentation; ASMR Annual Scientific Meeting, 15 June, 2005.
Additional Publications during PhD Candidature

Papers - Published

Buckley JD, Thorp AA, Murphy KJ, Howe PRC. Dose-Dependent Inhibition of the Post-Prandial Glycaemic Response to a Standard Carbohydrate Meal following Incorporation of Alpha-Cyclodextrin. Ann Nutr Metab 2006; 50:108-114

Abstract-Published