NK, T and NK T-cells in ageing, coeliac disease and inflammatory bowel disease

BY
RANDALL HILTON GROSE
B.Biotech (Hons)
A thesis submitted to the University of Adelaide as the requirement for the degree of Doctor of Philosophy

The Department of Medicine, the University of Adelaide;
The Basil Hetzel Institute for Medical Research and the Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital

March 2008
For Riley
TABLE OF CONTENTS

TABLE OF CONTENTS .. III
ABSTRACT ... VIII
PUBLICATIONS ARISING FROM THIS THESIS: .. XI
DECLARATION BY STUDENT .. XIII
ACKNOWLEDGMENTS ... XIV
ABBREVIATIONS AND SYMBOLS USED IN THIS THESIS XVI

1. CHAPTER 1 LITERATURE REVIEW ... 1
 1.1 NATURAL KILLER CELLS ... 2
 1.1.1 NK phenotypic markers ... 3
 1.2 T-CELLS ... 4
 1.3 NATURAL KILLER T-CELLS (NK T-CELLS) .. 5
 1.4 NATURAL KILLER T-CELLS AND AUTOIMMUNE DISORDERS 12
 1.4.1 Infant immune system ... 14
 1.4.2 Ageing of the immune system ... 15
 1.4.3 Immunosenescence and the innate immune system 16
 1.4.4 Immunosenescence and the adaptive immune system 19
 1.4.5 Immunosenescence and NK T-like cells .. 20
 1.4.6 Immunosenescence and $V\alpha24^+$ T-cells 21
 1.5 COELIAC DISEASE .. 22
 1.5.1 Immunology of coeliac disease .. 22
 1.5.2 Susceptibility ... 24
 1.5.3 Natural killer cells in coeliac disease ... 26
 1.5.4 NK T-like cells in coeliac disease .. 28
 1.5.5 $V\alpha24^+$ T-cells in coeliac disease ... 28
 1.6 INFLAMMATORY BOWEL DISEASE ... 28
 1.6.1 Immunology of IBD .. 29
 1.6.2 Natural killer cells in IBD ... 31
 1.6.3 $V\alpha24^+$ T-cells in IBD ... 32
 1.7 AIMS AND HYPOTHESIS .. 33

2. CHAPTER 2 MATERIAL AND METHODS ... 34
 2.1 MATERIALS ... 35
 2.1.1 Antibodies .. 35
2.1.2 REAGENTS ... 38
2.1.3 BUFFERS AND SOLUTIONS ... 41

2.2 METHODS ... 44

2.2.1 Sample collection .. 44
2.2.2 Isolation of PBMCs ... 44
2.2.3 Flow cytometry ... 44
2.2.4 In vitro anti-CD3 and PMA:ionomycin stimulation of PBMCs 46
2.2.5 Depletion of Vα24+ NK T-cells by magnetic beads 46
2.2.6 Determination of intracellular cytokines 46
2.2.7 Intestinal biopsy collection ... 48
2.2.8 Total RNA extraction ... 48
2.2.9 DNAse treatment of RNA .. 49
2.2.10 Nucleic acid quantification .. 49
2.2.11 Conversion of mRNA to cDNA 49
2.2.12 Polymerase chain reaction (PCR) 50
2.2.13 Semi quantification of cDNA 50
2.2.14 Agarose gel electrophoresis 51
2.2.15 Real time PCR (RT-PCR) .. 51
2.2.16 RT-PCR purification .. 52
2.2.17 Sequencing ... 53
2.2.18 Immunohistochemistry ... 53
2.2.19 Statistics ... 53

3 CHAPTER 3 NK T-CELL PHENOTYPE AND FUNCTION 55

3.1 INTRODUCTION .. 56
3.2 AIMS AND HYPOTHESIS .. 57

3.3 METHODS AND MATERIALS ... 58

3.3.1 Subjects ... 58
3.3.2 Flow cytometry ... 58
3.3.3 In vitro anti-CD3 and PMA stimulation of peripheral blood T-cells 58
3.3.4 Sequencing ... 58
3.3.5 Statistics ... 59

3.4 RESULTS ... 60

3.4.1 Circulating NK, bona fide NK and NK T-like cells in normal healthy subjects .. 60
3.4.2 Circulating CD3+, CD4+, Vα24+, Vβ11+ and Vβ13+ T-cells in normal healthy subjects 62
3.4.3 Circulating CD56+, CD57+, CD94+ and CD161+ Vα24+ NK T-cells in normal healthy subjects 65
3.4.4 Circulating Vα24+ SP (CD4+) T-cells in normal healthy subjects 67
3.4.5 Circulating Vα24+ Vβ11+ and Vα24+ Vβ13+ T-cells in normal healthy subjects ... 67
3.4.6 Comparison of circulating 6B11+ iNK T-cells in normal healthy subjects ... 69
3.4.7 Comparison of the number of circulating α-GalCer/CD1d tetramer+ iNK T-cells in normal healthy subjects ... 69
3.4.8 Intestinal Vα24+ T-cell mRNA expression in normal healthy subjects 74
3.4.9 Comparison of cytokine production from Vα24+ T-cells 77
3.4.10 Comparison of cytokine production from 6B11+ and Vα24+ α-GalCer/CD1d iNK T-cells ... 80

3.5 DISCUSSION .. 86

4 CHAPTER 4 NK CELLS, T-CELLS AND NK T-CELLS; INFANCY THROUGH TO ADULTHOOD ... 90

4.1 INTRODUCTION .. 91
4.2 AIMS AND HYPOTHESIS ... 91
4.3 MATERIALS AND METHODS .. 93
4.3.1 Subjects ... 93
4.3.2 Flow cytometry ... 93
4.3.3 In vitro anti-CD3 stimulation of peripheral blood T-cells 93
4.3.4 Statistics ... 93
4.4 RESULTS .. 95
4.4.1 Comparison of CD161+ NK cells, CD3+, CD4+, Vα24+ and Vα24+ CD4+ T-cells in infants that were either exclusively breast- or formula-fed ... 95
4.4.2 Comparison of circulating NK cell number and age 98
4.4.3 Comparison of circulating T-cell number and age 102
4.4.4 Comparison of Vα24+, Vβ11+ and Vβ13+ T-cell number and age... 102
4.4.5 Comparison of circulating Vα24+ SP, Vα24+Vβ11+ and Vα24+ Vβ13+ T-cell number and age ... 104
4.4.6 Comparison of circulating CD56+, CD57+, CD94+ and CD161+ Vα24+ NK T-cell number and age ... 105
4.4.7 Comparison of circulating Vα24+ 6B11+ and Vα24+ Vβ11+ α-GalCer/CD1d tetramer+ iNK T-cells and age .. 107
4.4.8 Comparison of intestinal Vα24 mRNA expression and age 108
4.4.9 Cytokine production by Vα24+ T-cells, 6B11+ and Vα24+ α-GalCer/CD1d tetramer+ iNK T-cells and age .. 109
4.5 DISCUSSION .. 114

5 CHAPTER 5 NK, T AND NK T-CELLS IN COELIAC DISEASE120

5.1 INTRODUCTION .. 121
5.2 AIMS AND HYPOTHESIS ... 121
5.3 MATERIALS AND METHODS ... 122
5.3.1 Subjects .. 122
5.3.2 Flow cytometry ... 122
5.3.3 In vitro anti-CD3 stimulation of peripheral blood T-cells 122
5.3.4 Depletion of Vα24+ NK T-cells by magnetic beads 123
5.3.5 In vitro gluten fraction 3 stimulation of peripheral blood T-cells .. 123
5.4 RESULTS ... 124
5.4.1 Comparison of NK cells in coeliac disease 124
5.4.2 Comparison of CD3+, CD4+, Vα24+, Vβ11+ and Vβ13+ T-cells in coeliac disease .. 127
5.4.3 Comparison of CD56+, CD57+, CD94+ and CD161+ Vα24+ NK T-cells in coeliac disease .. 131
5.4.4 Comparison of Vα24+ SP T-cells in coeliac disease 133
5.4.5 Comparison of Vα24+ Vβ11+ and Vα24+ Vβ13+ T-cells in coeliac disease ... 133
5.4.6 Comparison of Vα24+ 6B11+ and Vα24+ Vβ11+ α-GalCer/CD1d tetramer+ iNK T-cells in coeliac disease 134
5.4.7 Comparison of Vα24+ T-cells in the intestine using immunofluorescence .. 139
5.4.8 Intestinal Vα24 T-cell mRNA expression in coeliac disease 139
5.4.9 Comparison of CD3+ T-cell cytokine production in coeliac disease .. 142
5.4.10 Comparison of Vα24+ T-cells cytokine production in coeliac disease 147
5.4.11 Comparison of iNK T-cells cytokine production in coeliac disease. .. 149
5.5 DISCUSSION .. 154

6 CHAPTER 6 NK, T AND NK T-CELLS IN IBD 159
6.1 INTRODUCTION ... 160
6.2 AIMS AND HYPOTHESIS ... 161
6.3 MATERIALS AND METHODS ... 162
6.3.1 Subjects .. 162
6.3.2 Flow cytometry ... 162
6.3.3 In vitro anti-CD3 and PMA/ionomycin stimulation of peripheral blood T-cells .. 163
6.3.4 Statistics ... 163
6.4 RESULTS ... 164
6.4.1 Comparison of circulating NK cells in IBD 164
6.4.2 Comparison of CD3+, CD4+, Vα24+, Vβ11+ and Vβ13+ T-cells in IBD ... 166
6.4.3 Comparison of CD56+, CD57+, CD94+ and CD161+ Vα24+ NK T-cells in IBD .. 169
6.4.4 Comparison of Vα24+ CD4+ (SP) T-cells in IBD 171
6.4.5 Comparison of Vα24+ Vβ11+ and Vα24+ Vβ13+ T-cells in IBD 171
6.4.6 Comparison of Vα24+ 6B11+ and Vα24+ Vβ11+ α-GalCer/CD1d tetramer+ iNK T-cells in IBD .. 172
6.4.7 Comparison of Vα24+ T-cells in the intestine of IBD using immunofluorescence ... 178
6.4.8 Intestinal Vα24+ T-cell mRNA expression in IBD 178
6.4.9 Comparison of cytokine production from Vα24 T-cells in IBD 181
6.4.10 Comparison of cytokine production from 6B11+ and Vα24+ α-GalCer/CD1d tetramer+ iNK T-cells in IBD 183
6.4.11 Comparison of cytokine production from CD3+ T-cells in IBD 187
6.5 DISCUSSION .. 190

7 CHAPTER 7 GENERAL CONCLUSIONS ... 197

8 APPENDIX ... 205

8.1 APPENDIX 1: PUBLICATIONS ARISING FROM THIS THESIS 206

9 REFERENCES .. 219
ABSTRACT

This thesis investigated the number and function of natural killer T-cells (NK T-cells) as a function of age, in coeliac disease, Crohn’s disease and ulcerative colitis.

NK T-cells are a newly appreciated class of immune cells that are able to regulate the activity of the broader T-cell population. NK T-cells have been implicated in animal models of autoimmune disease and in human autoimmune disease. A subset of NK cells express the T-cell receptor (TCR) and are termed NK T-cells. In humans a further small subset of NK T-cells express an invariant TCR α chain (Vα24Jα18) and contain the immunoregulatory cell population that is distinguished from classical T-cells by promptly producing interleukin-4 (IL-4). Invariant NK T-cells (iNK T-cells) have the surface phenotype of Vα24+ Vβ11+ T-cells and express CD1d+ CD1d restricted and are α-galactosylceramide (α-GalCer) reactive.

NKT cells have been implicated in numerous autoimmune disorders. Early work showed a major deficiency of NKT cell numbers in nonobese diabetic (NOD) mice, a well-established model of spontaneous, autoimmune T-cell mediated insulin-dependent diabetes. Both the number of NKT cells and function, as assessed by IL-4 release following TCR ligation, are dramatically reduced in NOD mice. NK T-cells have been implicated in other models of autoimmunity such as, experimental allergic encephalomyelitis (EAE). They have since been investigated and shown to be deficient in a number of human autoimmune diseases including, systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), multiple sclerosis, atopic asthma, atopic dermatitis, rheumatoid arthritis, type 1 diabetes mellitus and scleroderma. The basis of the work presented within this thesis originated from the deficiency of NK T-cells in models of autoimmune diseases and human autoimmune diseases.
The initial aim of this thesis was to investigate the phenotype and function of \(V\alpha 24+ \) NK T-cells in normal healthy control subjects and with respect to age. The original aim was to investigate whether NK cells, T-cells, NK T-like cells and invariant NK T-cells (iNK T-cells) are deficient in coeliac disease, Crohn’s disease and/or ulcerative colitis.

Blood was collected for flow cytometry from normal control subjects, subjects with coeliac disease, Crohn’s disease and ulcerative colitis. The number of circulating NK cells, T-cells, NK T-like cells and iNK T-cells was assessed by three-colour flow cytometry. Intracellular cytokine production was measured after \textit{in vitro} anti-CD3/anti-CD28 antibodies, gluten fraction 3 and PMA:ionomycin stimulation. \(V\alpha 24+ \) T-cells were quantified in ileocolonic biopsies by immunofluorescence and as mRNA by relative and real-time PCR (RT-PCR).

The number of circulating \(V\alpha 24+ \) T-cells and iNK T-cells decrease with age in normal healthy control subjects. Cytokine production was also affected by age. The work of this thesis has identified a subpopulation of otherwise normal healthy individuals whom have normal numbers of circulating \(V\alpha 24+ \) T-cells, reduced numbers of circulating \(V\alpha 24+ V\beta11+ \) T-cells and consequently iNK T-cells.

Circulating CD161+ NK cells, \(V\alpha 24+ \) T-cells and the SP subset of \(V\alpha 24+ \) T-cells were reduced in coeliac disease. The low numbers of circulating \(V\alpha 24+ \) T-cells was independent of diet. The number of circulating \(V\alpha 24+ V\beta11+ \) T-cells were reduced in coeliac disease, and as a consequence, the number of circulating \(V\alpha 24+ V\beta11+ \alpha\text{-GalCer/CD1d tetramer}^+ \) and \(V\alpha 24+ 6B11+ \) iNK T-cells were reduced. The deficiency of \(V\alpha 24+ \) T-cells was not confined to the blood, but observed within the intestinal mucosa. Intestinal \(V\alpha 24 \) mRNA expression from subjects with coeliac disease was reduced compared to levels in normal subjects as assessed by relative and RT-PCR. Thus, \(V\alpha 24+ \) T-cells were deficient in coeliac disease both systemically and mucosally. Cytokine
production by $\alpha 24+$ T-cells, 6B11+ and $\alpha 24+$ α-GalCer/CD1d tetramer+ iNK T-cells after 4 h *in vitro* anti-CD3 stimulation was also impaired in subjects with coeliac disease.

Circulating CD56+, CD57+, CD94+, CD161+ NK cells were reduced in Crohn’s disease and ulcerative colitis. $\alpha 24+$ T-cells and the SP subset of $\alpha 24+$ T-cells were reduced in Crohn’s disease but not in ulcerative colitis. Circulating $\alpha 24+$ $\beta 11+$ T-cells, $\alpha 24+$ $\beta 11+$ α-GalCer/CD1d tetramer+ and $\alpha 24+$ 6B11+ iNK T-cells were deficient in both Cohn’s disease and ulcerative colitis. The deficiency of $\alpha 24+$ T-cells was also observed within the intestinal mucosa. Intestinal $\alpha 24+$ mRNA expression from Crohn’s disease and ulcerative colitis was reduced compared to levels in normal subjects as assessed by relative and RT-PCR. Cytokine production by $\alpha 24+$ T-cells, 6B11+ and $\alpha 24+$ α-GalCer/CD1d tetramer+ iNK T-cells after 4 h *in vitro* anti-CD3 stimulation was impaired for subjects with Crohn’s disease and ulcerative colitis.

In summary, $\alpha 24+$ T-cell number and function were affected by age. Further investigations are warranted to see if deficiency of this immunoregulatory population is associated with disease. The decrease and dysfunction in immunoregulatory cells, $\alpha 24$ T-cells and iNK T-cells could contribute to the pathogenesis of coeliac disease, Crohn’s disease and ulcerative colitis. Coeliac disease, Crohn’s disease and ulcerative colitis are polygenetic diseases in which environmental factors play a significant role in disease development and state. The reduced numbers of iNK T-cell along with their impaired function may only be two factors. Presumably, other factors are involved. Nevertheless, iNK T-cells offer a potential target for the therapeutic intervention of coeliac disease, ulcerative colitis and Crohn’s disease.
PUBLICATIONS ARISING FROM THIS THESIS:

PUBLISHED ABSTRACTS

Cummins AG, **Grose, RH** and Thompson FM. 2000. V\(\alpha\)24+ NK T-cell deficiency in blood is present in Crohn's disease but not in ulcerative colitis. *J Gastroenterol Hepatol* 15: J103.

DECLARATION BY STUDENT
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis being made available in the University Library.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder/s of those works.

Randal Hilton Grose

Signature…………………………………………………………
Date…………/………/………….
ACKNOWLEDGMENTS

I would like to start by thanking my supervisors Fiona Thompson and Adrian Cummins for their constant support, guidance and patience. Thank you for letting me have a long enough leash particularly during the difficult writing up period. Adrian you are a brilliant doctor, keeping a busy schedule with patients, surgery and research, yet still being very approachable. Thank you for providing me with the opportunity to travel overseas and interstate to present this work during my PhD candidature.

I would particularly like to thank Professor Ian Roberts-Thompson, the head of the Gastroenterology and Hepatology Department for allowing me to undertake this work within the Department at The Queen Elizabeth Hospital (TQEH).

I am indebted to TQEH Research Foundation for my PhD scholarship. I would also like to thank the Broad Medical Research Program in IBD and for recognizing the important work presented in this thesis in the form of further funding.

I would like to thank my colleagues and friends at TQEH, WCH and RAH, Department of Gastroenterology, Rheumatology, Transplantation Immunology, Child Health Research Institute (CHRI) and Mucositis Laboratories; including Gary Goland, Wendy Uylaki, Ravi Krishnan, Henry Betts, Lan Lan Zhang, Rachel Gibson, Joanne Bowen, Ashley Newland, Madelyn Zamitkowski, Wai Lim, Shilpa Prasad, Emma Leedham, Julie Johnston, Svjetlana Kireta, Xanthe Strudwick, Michaela Sherer and not to forget all the Honours and 3rd year Physiology students that have passed through TQEH, including Kimberley Camac, Laura Watson, Rebecca Skinner, Nick Mabarrack, Boris Fedoric, Joshua Woeing, Simon Fallon, Arlyn Gamache, Georgia Bradtke, and Emmy Bauer.
I would like to thank my fellow PhD student Nicola Leung, with whom I briefly shared an office. I am confident that she will do well.

I would especially like to thank the nurses and staff in the Department of Gastroenterology, IMVS and Manse who were responsible for collecting blood and intestinal biopsy samples.

Thank you also to the Grose, Zarucki, Hendry and Jessup families who have always shown an interest in my work. Thank you everyone for knowing when to and not to ask me about my thesis. Thank you everyone, especially Tara for taking an interest and for always sounding convinced when I told you “I was nearly finished”.

Thanks Chris Mavrangelous, “an all round good guy”, who was always only a phone call away. Thanks for answering all my concentration questions and allowing me to ‘borrow’ reagents and antibodies. Thanks for including me in all your ‘mid life crisis’ sports activities, including; squash, baseball, gym and cycling. No excuses now, I must finally join the Southern Veteran Cycling Club.

Finally, the work presented within this thesis would not have been possible if it weren’t for those patients with coeliac disease, Crohn’s disease and ulcerative colitis that have generously provided their time, and ultimately blood and intestinal biopsy samples. Without their generosity my sample size would be very small (n=1).
ABBREVIATIONS AND SYMBOLS USED IN THIS THESIS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>~</td>
<td>Approximately</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>More than</td>
</tr>
<tr>
<td>±</td>
<td>Plus or minus</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>Aa</td>
<td>Amino acid</td>
</tr>
<tr>
<td>AGA</td>
<td>Anti-gliadin antibody</td>
</tr>
<tr>
<td>ARA</td>
<td>Anti-reticulum antibody</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster defined antigen</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>C_{t}</td>
<td>Threshold temperature</td>
</tr>
<tr>
<td>DDH_{2}O</td>
<td>Double distilled water</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Dinucleotide triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental autoimmune encephalomyelitis</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EMA</td>
<td>Endomysial antibody</td>
</tr>
<tr>
<td>ESPGAN</td>
<td>European Society for Paediatric Gastroenterology and Nutrition</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorter</td>
</tr>
</tbody>
</table>
FCS Foetal calf serum
FITC Fluorescein isothiocyanate
G Gram
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GFD Gluten free diet
H Hours
HLA Human leukocyte antigen
IDDM Insulin-dependent diabetes mellitus
IEL Intraepithelial Lymphocyte
IFN-γ Interferon gamma
Ig Immunoglobulin
iGb3 Isoglobotrihexosylceramide
IL Interleukin
iNK T-cell invariant Natural Killer T-cell
Kb Kilobase
L Litre
LGL Large granular lymphocytes
M Molar
mAb Monoclonal antibody
Mg Milligram
MHC Major histocompatibility complex
Ml Millilitre
Mm Millimetre
mM Millimolar (10⁻³ M)
mRNA Messenger ribonucleic acid
MW Molecular weight
N Sample size
NaCl Sodium chloride
Ng Nanogram
NK cell Natural killer cell
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK T-cell</td>
<td>Natural killer T-cell</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanometres</td>
</tr>
<tr>
<td>o/n</td>
<td>Overnight</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol 12-myristate 13-acetate</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real time polymerase chain reaction</td>
</tr>
<tr>
<td>SAPE</td>
<td>Streptavidin phycoerythrin</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>SSc</td>
<td>Systemic sclerosis</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris borate EDTA</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-beta</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TTG</td>
<td>Tissue transglutaminase</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>Y</td>
<td>Year</td>
</tr>
<tr>
<td>Δ</td>
<td>Delta</td>
</tr>
<tr>
<td>α-GalCer/CD1d</td>
<td>α- galactosylceramide /CD1d</td>
</tr>
<tr>
<td>IL-2R</td>
<td>Interleukin-2 receptor</td>
</tr>
</tbody>
</table>