EFFECT OF SOIL VARIABILITY ON THE BEARING CAPACITY OF FOOTINGS ON MULTI-LAYERED SOIL

By

Yien Lik Kuo

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

THE UNIVERSITY OF ADELAIDE
SCHOOL OF CIVIL, ENVIRONMENTAL AND MINING ENGINEERING

OCTOBER 2008
To my wife Caryn

and my parents NguongTeck and MeeDing
PREFACE

This work was undertaken between November 2002 and October 2008 within the School of Civil, Environmental and Mining Engineering at the University of Adelaide. Throughout the thesis, any materials, techniques, methods and concepts obtained from other sources have been acknowledged and credited. The following sections list the works which the author claims originality.

In Chapter 4:
- The implementation and incorporation of the random field simulator (i.e. local average subdivision (LAS) into finite element limit analysis formulation;

In Chapter 5:
- The analyses and quantification of the effect of soil variability on the bearing capacity of footings founded on two-layered, purely cohesive soil;

In Chapter 6:
- The analyses of strip footings on four- and ten-layered, purely cohesive soil;
- Development of ANN-based models for predicting the bearing capacity of strip footings on multi-layered, cohesive soil profiles;

In Chapter 7:
- The analyses of strip footings on ten-layered, purely cohesive-frictional soil; and
• Development of ANN-based models for predicting the bearing capacity of strip footing on multi-layered cohesive-frictional soil profiles;

Listed below are the publications, which have been published as a direct result of this study:

ABSTRACT

Footings are often founded on multi-layered soil profiles. Real soil profiles are often multi-layered with material constantly varying with depth, which affects the footing response significantly. Furthermore, the properties of the soil are known to vary with location. The spatial variability of soil can be described by random field theory and geostatistics. The research presented in this thesis focuses on quantifying the effect of soil variability on the bearing capacity of rough strip footings on single and two-layered, purely-cohesive, spatially variable soil profiles. This has been achieved by using Monte Carlo analysis, where the rough strip footings are founded on simulated soil profiles are analysed using finite element limit analysis. The simulations of virtual soil profiles are carried out using Local Average Subdivision (LAS), a numerical model based on the random field theory. An extensive parametric study has been carried out and the results of the analyses are presented as normalized means and coefficients of variation of bearing capacity factor, and comparisons between different cases are presented. The results indicate that, in general, the mean of the bearing capacity reduces as soil variability increases and the worstcase scenario occurs when the correlation length is in the range of 0.5 to 1.0 times the footing width.

The problem of estimating the bearing capacity of shallow strip footings founded on multi-layered soil profiles is very complex, due to the incomplete knowledge of interactions and relationships between parameters. Much research has been carried out on single- and two-layered homogeneous soil profiles. At present, the inaccurate weighted average method is the only technique available for estimating the bearing capacity of footing on soils with three or more layers. In this research, artificial neural networks (ANNs) are used to develop meta-models for bearing capacity estimation. ANNs are numerical modelling techniques that imitate the human brain capability to learn from experience. This research is limited to shallow strip footing founded on soil mass consisting of ten layers, which are weightless, purely cohesive and cohesive-frictional.
A large number of data has been obtained by using finite element limit analysis. These data are used to train and verify the ANN models. The shear strength (cohesion and friction angle), soil thickness, and footing width are used as model inputs, as they are influencing factors of bearing capacity of footings. The model outputs are the bearing capacities of the footings. The developed ANN-based models are then compared with the weighted average method. Hand-calculation design formulae for estimation of bearing capacity of footings on ten-layered soil profiles, based on the ANN models, are presented. It is shown that the ANN-based models have the ability to predict the bearing capacity of footings on ten-layered soil profiles with a high degree of accuracy, and outperform traditional methods.
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Signed: Date: 10th October 2008
ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude and sincere appreciation to Associate Professor Mark Jaksa, my principal supervisor, for advising me on this research topic. He has been a continuous source of inspiration throughout my study here. Without his timely support, encouragement and advice this thesis would not have been completed. I would also like to thank Dr. William Kaggwa, my co-supervisor, for his encouragements during this study. Their insights and ideas helped me overcome a number of hurdles in the course of doing this research toward the completion of this thesis. This work would not be possible without their contribution.

I also wish to thank the School of Civil, Environmental and Mining Engineering, at the University of Adelaide and, in particular, Dr. Stephen Carr, Ms Josie Peluso and Ms Diane Keable for their assistance. Thanks are also due to all of my fellow postgraduate students in the School their friendship and encouragement.

I would like to acknowledge four additional people who have made contribution to this project: Professor Scott Sloan and Associate Professor Andrei Lyamin, from the University of Newcastle; Professor Gordon Fenton, from Dalhousie University in Canada; and Professor Vaughan Griffiths, from the Colorado School of Mines. Professor Sloan and Associate Professor Lyamin graciously provided the finite element limit analysis code, LOWER and UPPER that has been used intensively in this project. Associate Professor Lyamin provided invaluable explanations and directions regarding to the two-dimensional analysis of rough strip footing using the computer programs, LOWER and UPPER. I would also like to thank Professor Fenton who offered the use of his random field generator, which simulates random soil profiles and enabled the analysis the effect of soil variability of on the bearing capacity of strip footings.

My thanks go to Australian Research Council who funded this research as part of Discovery Project Grant. This research would not have been possible without their financial contribution.
I appreciate and am much obliged to my parents, NguongTeck Kuo and MeeDing Loi, brother and sisters, as well as my family-in-law for their supports, patience and encouragement. Words cannot express the help, understandings and patience extended by my beloved wife, Caryn (Nya Koong) Chan, not only in completing this degree but also in all aspects of my life. Last but not the least, I would like to thank my lovely and wonderful daughter, Zoevy (Jiu Wei) Kuo, who made me to laugh and relax even in the toughest of situations.
CONTENTS

- Preface I
- Abstract III
- Statement of Originality V
- Acknowledgments VI
- Contents VIII
- List of Figures XVI
- List of Tables XXXIX
- Notations XLIV

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION 2
1.2 AIMS AND SCOPE OF THE STUDY 3
1.3 THESIS OUTLINE 4

CHAPTER 2

HISTORICAL REVIEW 7
2.1 INTRODUCTION 8
2.2 BEARING CAPACITY OF FOOTING 8
2.3 MULTI-LAYERED SOIL PROFILE 15
CHAPTER 3

NUMERICAL FORMULATION

3.1 INTRODUCTION

3.2 NUMERICAL METHODS IN GEOMECHANICS

3.3 THEORY OF LIMIT ANALYSIS

3.3.1 Perfectly Plastic Material

3.3.2 Yield Criterion

3.3.3 Stability Postulate

3.3.4 Flow Rule

3.3.5 Small Deformations and the Principle of Virtual Work

3.3.6 The Limit Theorems

3.4 LOWER BOUND LIMIT ANALYSIS FORMULATION

3.4.1 Constraints from Equilibrium Conditions

3.4.2 Constraints from Stress Discontinuity

3.4.3 Constraints from Stress Boundary Conditions

3.4.4 Constraints from Yield Conditions

3.4.5 Formulation of Lower Bound Objective Function
3.5 UPPER BOUND LIMIT ANALYSIS FORMULATION 55
3.5.1 Constraints from Plastic Flow in Continuum 56
3.5.2 Constraints from Plastic Shearing in Discontinuities 59
3.5.3 Constraints from Velocity Boundary Conditions 62
3.5.4 Formulation of Upper Bound Objective Function 64

3.6 NONLINEAR FORMULATION OF LOWER BOUND AND UPPER BOUND THEOREM 67

3.7 DISPLACEMENT FINITE ELEMENT METHOD 69

3.8 HETEROGENEOUS SOILS 71
3.8.1 Random Field Theory 72
3.8.2 Classical Statistical Properties 73
3.8.3 Spatial Correlation 74
3.8.4 Local Average Subdivision (LAS) 75
3.8.5 Applications of Random Field 79
3.8.6 Soil delineation 81

3.9 ARTIFICIAL NEURAL NETWORKS 82
3.9.1 Natural Neural Networks (NNNs) 83
3.9.2 Artificial Neural Networks (ANNs) 83
3.9.3 Development of Artificial Neural Networks (ANNs) 90
3.9.4 Model Inputs 90
3.9.5 Division of Data 91
3.9.6 Data Pre-processing 92
3.9.7 Determination of Model Architecture 93
3.9.8 Model Optimisation (Training) 95
3.9.9 Stopping Criteria 96
CHAPTER 4

NUMERICAL MODELLING OF FOUNDATIONS AND RANDOM FIELDS

4.1 INTRODUCTION

4.2 PLANE STRAIN LIMIT ANALYSIS MODELLING

4.2.1 Mesh Generation Guidelines

4.2.2 Mesh Details

4.3 PLANE STRAIN DISPLACEMENT FINITE ELEMENT ANALYSIS (DFEA) MODELLING

4.4 MODEL VERIFICATION

4.4.1 Two-Layered Homogeneous Purely Cohesive Material

4.4.2 Two-Layered Spatially Variable Purely Cohesive Material

4.4.3 Single-Layered Spatially Variable Cohesive-Frictional Material

4.5 STOCHASTIC RANDOM FIELD VALIDATION

4.6 SUMMARY

CHAPTER 5

QUANTIFYING THE RISK OF A FOOTING ON A TWO-LAYERED SPATIAL VARIABLE, PURELY COHESIVE SOIL PROFILE
CHAPTER 5

5.1 INTRODUCTION

5.2 PROBLEM DEFINITION AND PARAMETRIC STUDIES

5.3 FINITE ELEMENT LIMIT ANALYSIS AND MONTE CARLO SIMULATION

5.4 RESULTS OF NUMERICAL LIMIT ANALYSIS

5.4.1 Results of a Footing on a Purely Cohesive Single-Layered Spatially Random Soil

5.4.2 Results of a Footing on a Purely Cohesive Two-Layered Homogeneous Soil

5.4.3 Results of a Footing on a Purely Cohesive Two-Layered Spatially Variable Soil (for \(\mu_{c_1} / \mu_{c_2} < 1.0 \) cases)

5.4.4 Results of a Footing on a Purely Cohesive Two-Layered Spatially Variable Soil (for \(\mu_{c_1} / \mu_{c_2} > 1.0 \) cases)

5.5 CONCLUSIONS AND SUMMARY

CHAPTER 6

ANN-BASED MODEL FOR PREDICTING BEARING CAPACITY ON A MULTI-LAYERED COHESIVE SOIL PROFILE

6.1 INTRODUCTION

6.2 DATA GENERATION USING NUMERICAL FORMULATION OF UPPER AND LOWER BOUND THEOREM

6.3 MULTIPLE-REGRESSION ANALYSIS

6.4 DEVELOPMENT OF NEURAL NETWORK MODELS
CHAPTER 7

ANN-BASED MODELS FOR PREDICTING BEARING CAPACITY ON A MULTI-LAYERED COHESIVE-FRICTIONAL SOIL PROFILE

7.1 INTRODUCTION

7.2 PROBLEM DEFINITION AND PROPOSED METHODOLOGIES

7.3 DATA GENERATION USING NUMERICAL FORMULATION OF LOWER BOUND THEOREM

7.4 DEVELOPMENT OF NEURAL NETWORK MODELS

7.5 BEARING CAPACITY EQUATION

7.6 SENSITIVITY AND ROBUSTNESS OF THE MLP-BASED BEARING CAPACITY EQUATIONS

7.6.1 Variation of Predicted $q_{u(c-\phi)}$ with Respect to Variation of c in each of the 10 Layers
7.6.2 Variation of Predicted $q_{ul(c-\phi)}$ with Respect to Variation of ϕ in Each of the 10 Layers 234
7.6.3 Variation of Predicted Value of $q_{ul(c-\phi)}$ with Respect to Variation of h_i in Each of the 10 Layers 237
7.6.4 Variation of Predicted $q_{ul(c-\phi)}$ with Respect to Variation of B 240

7.7 COMPARISON OF MLP MODELS WITH CURRENT METHODS 244
7.7.1 Foundation on 10-Layered Purely-cohesive Soil Profiles 244
7.7.2 Foundation on a 10-layered Cohesive-frictional Soil Profiles 244

7.8 ILLUSTRATIVE NUMERICAL EXAMPLES 249
7.9 SUMMARY AND CONCLUSIONS 253

CHAPTER 8
SUMMARY AND CONCLUSIONS 255
8.1 SUMMARY 256
8.2 RECOMMENDED FURTHER RESEARCH 261
8.3 CONCLUSIONS 263

REFERENCES 265

APPENDIX A 287

APPENDIX B 299
LIST OF FIGURES

CHAPTER 1

INTRODUCTION

CHAPTER 2

HISTORICAL REVIEW

Figure 2.1 Foundation types: (1) spread or pad footing (2) combined or strip footing. 8
Figure 2.2 Bearing capacity and excessive settlement failure of Transcona Grain Elevator, Canada. (After Baracos, 1957) 9
Figure 2.3 Bearing capacity of footing on single homogeneous soil. (After Das, 1997). 10
Figure 2.4 Bearing capacity of footing on two-layered soil (A strong layer overlying a soft layer soil). (After Das, 1997) 11
Figure 2.5 General shear failure concept. (After Vesić, 1973; Das, 1997) 11
Figure 2.6 Load settlement plot for general shear failure type. (After Vesić, 1973; Das, 1997) 12
Figure 2.7 Punching shear failure and its load settlement plot. (After Vesić, 1973; Das, 1997) 12
Figure 2.8 Local shear failure and its load settlement plot. (After Vesić, 1973; Das, 1997) 13
Figure 2.9 Strip footing on three-layered soil deposit. 16
List of Figures

<table>
<thead>
<tr>
<th>Figure 2.10</th>
<th>Bearing capacity approximation on two-layered clay profile.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(After Chen, 1975)</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Load spread mechanism. (After Houlsby et al., 1989)</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Failure mechanism proposed by Okamura et al. (1998) for</td>
</tr>
<tr>
<td></td>
<td>thin sand overlying soft clay.</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Bearing capacity factors, N^*_c, for two layered clay</td>
</tr>
<tr>
<td></td>
<td>$(H/B = 0.125$ and $H/B = 0.25)$. (After Merifield et al., 1999)</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Bearing capacity factors, N^*_c, for two layered clay</td>
</tr>
<tr>
<td></td>
<td>$(H/B = 0.375$ and $H/B = 0.5)$. (After Merifield et al., 1999)</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Bearing capacity of sand on clay for (a) $D/B = 0.25$ (b)</td>
</tr>
<tr>
<td></td>
<td>$D/B = 1$. (After Shiau et al., 2003)</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Punching shear models on layered soil. *(After Meyerhof,</td>
</tr>
<tr>
<td></td>
<td>1974; Das, 1997)*</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Bearing Capacity factor, F, for a strip footing on non-</td>
</tr>
<tr>
<td></td>
<td>homogeneous clay (After Davis and Booker, 1973)</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Bearing Capacity factor, F, for a strip footing on non-</td>
</tr>
<tr>
<td></td>
<td>homogeneous clay (After Davis and Booker, 1973)</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>Typical deformed mesh at failure. *(After Fenton and</td>
</tr>
<tr>
<td></td>
<td>Griffiths, 2003)*</td>
</tr>
</tbody>
</table>

CHAPTER 3

NUMERICAL FORMULATION

<table>
<thead>
<tr>
<th>Figure 3.1</th>
<th>Stress and deformation fields in the equation of virtual work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.2</td>
<td>Stress sign convention. (After Sloan, 1988)</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Elements types for lower bound analysis. (After Sloan, 1988)</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Stress discontinuity. (After Sloan, 1988)</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Stress boundary conditions.</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Three-noded triangular element. (After Sloan and Kleeman, 1995)</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Velocity discontinuity geometry.</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Velocity discontinuity variables.</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Hyperbolic approximation to Mohr-Coulomb yield function. (After Lyamin and Sloan, 2002)</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Top down approach to the LAS construction. (After Fenton and Vanmarcke, 1990)</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>1-D LAS indexing schemes for stage i (top) and stage $i + 1$ (bottom). (After Fenton, 1990)</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>A series of plausible possibility of random fields: (a) $\delta_v = 2.0$, (b) $\delta_v = 64.0$.</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Typical structure of biological neuron (After Fausett, 1994)</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Typical structure and operation of ANNs (After Maier and Dandy, 1998)</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Node j in hidden layer.</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>The structure of the optimal ANN model in Shahin et al. (2002).</td>
</tr>
</tbody>
</table>
CHAPTER 4

NUMERICAL MODELLING OF FOUNDATIONS
AND RANDOM FIELDS

Figure 4.1 Fan elements at footing edge. 106
Figure 4.2 Typical mesh for lower bound analysis. 107
Figure 4.3 Typical mesh for upper bound analysis. 107
Figure 4.4 Lower bound finite element interface details. 108
Figure 4.5 Upper bound finite element interface details. 109
Figure 4.6 Typical mesh for displacement finite element analysis. 110
Figure 4.7 Displacement vectors at near failure for footing founded on homogeneous, single-layered purely cohesive material. 111
Figure 4.8 Displacement vectors at near failure for footing founded on homogeneous, two-layered clay: (a) weak layer underlain by strong layer ($c_1 < c_2$); (b) strong layer underlain by weak layer ($c_1 > c_2$). 111
Figure 4.9 Displacement vectors at near failure for footing founded on homogeneous, single-layered cohesive-frictional soil. 111
Figure 4.10 Displacement vectors at near failure for footing founded on homogeneous, two-layered cohesive-frictional soil: (a) weak layer underlain by strong layer ($c_1 - \phi_1 < c_2 - \phi_2$); (b) strong layer underlain by weak layer ($c_1 - \phi_1 > c_2 - \phi_2$). 112
Figure 4.11 Shallow footing on 2-layered clay deposit. 112
Figure 4.12 Illustrations of displacement vectors at near failure obtained from the DFEA of (1) first and (2) second of 25 realizations. 115
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>Example of a log-normally distributed single-layered random field. 119</td>
</tr>
<tr>
<td>4.14</td>
<td>Histogram of log-normally distributed single layer random field. 119</td>
</tr>
<tr>
<td>4.15</td>
<td>Histogram distributions and summary statistics of 4 realizations of random fields using LAS. 120</td>
</tr>
<tr>
<td>4.16</td>
<td>The graphical presentation of the results of parametric studies. (a) variation of mean vs. correlation length; (b) variation of standard deviation vs correlation length. 122</td>
</tr>
<tr>
<td>4.17</td>
<td>Example of a log-normally distributed two-layered random field A. 123</td>
</tr>
<tr>
<td>4.18</td>
<td>Example of a log-normally distributed two-layered random field B. 124</td>
</tr>
<tr>
<td>4.19</td>
<td>Histogram of a log-normally distributed two-layered random field A. 124</td>
</tr>
<tr>
<td>4.20</td>
<td>Histogram of a log-normally distributed two-layered random field B. 125</td>
</tr>
<tr>
<td>4.21</td>
<td>Sample of independent realization of the LAS generated 2-D process, with $\theta = 50$. 125</td>
</tr>
<tr>
<td>4.22</td>
<td>Sample of independent realization of the LAS generated 2-D process, with $\theta = 25$. 126</td>
</tr>
<tr>
<td>4.23</td>
<td>(a) Comparison of theoretical and experimental covariance structure of the LAS generated 2-D process, averaged over 1000 fields, (b) The covariance function of 250 independent realization with $\theta = 50$. 127</td>
</tr>
</tbody>
</table>
CHAPTER 5

QUANTIFYING THE RISK OF A FOOTING ON A TWO-LAYERED SPATIAL VARIABLE, PURELY COHESIVE SOIL PROFILE

Figure 5.1 Shallow strip footing founded on two-layered clay deposit. 130
Figure 5.2 Typical mesh and boundary conditions for lower bound analysis. 134
Figure 5.3 Typical mesh and boundary conditions for upper bound analysis. 135
Figure 5.4 Values of (a) $\mu_{N^c AV}$ and (b) $COV_{N^c AV}$ for a strip footing founded on single-layered spatially random c-field. 137
Figure 5.5 The variation of normalised (a) $\mu_{N^c AV}$ and (b) $COV_{N^c AV}$ of a strip footing founded on a single-layered spatially random c-field. 141
Figure 5.6 Variation of $N^c AV$ for cases COH_A to COH_L. ($c_{u1} / c_{u2} < 1.0$) 144
Figure 5.7 Variation of $N^c AV$ for cases COH_M to COH_X. ($c_{u1} / c_{u2} > 1.0$) 144

Figure 4.24 (a) Comparison of theoretical and experimental covariance structure of the LAS generated 2-D process, averaged over 1000 fields, (b) The covariance function of 250 independent realization with $\theta = 25$. 128
Figure 5.8 The variation of (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_0.25 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 0.25$). 147

Figure 5.9 The variation of (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_0.50 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 0.5$). 148

Figure 5.10 The variation of (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_1.00 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 1.0$). 149

Figure 5.11 The variation of normalised (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_0.25 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 0.25$). 150

Figure 5.12 The variation of normalised (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_0.50 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 0.5$). 151

Figure 5.13 The variation of normalised (a) $\mu_{N^c\ AV}$ and (b) $COV_{N^c\ AV}$ with respect to COV_c and θ_c/B for the COH_0.25_1.00 case (where $\mu_{c1} / \mu_{c2} = 0.25$ and $H/B = 1.0$). 152

Figure 5.14 Upper bound failure mechanism for COH_0.25_0.25 case (i.e. $\mu_{cu1} / \mu_{cu2} = 0.25$, $H/B = 0.25$), (a) $\theta_c = 0.2$m, $COV_c = 5\%$; (b) $\theta_c = 100.0$m, $COV_c = 5\%$; (c) $\theta_c = 0.2$m, $COV_c = 100\%$; (d) $\theta_c = 100.0$m, $COV_c = 100\%$. 153
Figure 5.15 Variation of the standardised $\mu_{Nc\ AV}$ for cases COH_0.25_0.25, COH_0.25_0.50 and COH_0.25_1.00 when $COV_c = 100\%$ and comparison to single layered case.

Figure 5.16 Histogram of the c_{u1}/c_{u2} ratio when $\mu_1/\mu_2 = 0.25$, $COV_c = 100\%$ and $\theta_c/B \rightarrow \infty$.

Figure 5.17 Histogram of the c_{u1}/c_{u2} ratio when $\mu_1/\mu_2 = 0.25$, $COV_c = 50\%$ and $\theta_c/B \rightarrow \infty$.

Figure 5.18 Variation of the normalised (a) $\mu_{Nc\ AV}$ and (b) $COV_{Nc\ AV}$ with respect to COV_c and θ_c/B for the COH_0.1_0.25 case (where $\mu_1/\mu_2 = 0.1$ and $H/B = 0.25$).

Figure 5.19 Variation of the normalised (a) $\mu_{Nc\ AV}$ and (b) $COV_{Nc\ AV}$ with respect to COV_c and θ_c/B for the COH_0.1_0.50 case (where $\mu_1/\mu_2 = 0.1$ and $H/B = 0.5$).

Figure 5.20 Variation of the normalised (a) $\mu_{Nc\ AV}$ and (b) $COV_{Nc\ AV}$ with respect to COV_c and θ_c/B for the COH_0.1_1.00 case (where $\mu_1/\mu_2 = 0.1$ and $H/B = 1.0$).

Figure 5.21 Variation of (a) $\mu_{Nc\ AV}$ and (b) $COV_{Nc\ AV}$ with respect to COV_c and θ_c/B for the COH_4.0_0.25 case (where $\mu_1/\mu_2 = 4.0$ and $H/B = 0.25$).

Figure 5.22 Variation of (a) $\mu_{Nc\ AV}$ and (b) $COV_{Nc\ AV}$ with respect to COV_c and θ_c/B for the COH_4.0_0.50 case (where $\mu_1/\mu_2 = 4.0$ and $H/B = 0.5$).
Figure 5.23 Variation of (a) $\mu_{Nc, AV}^c$ and (b) $COV_{Nc, AV}^c$ with respect to COV_c and θ_c/B for the COH_4.0_1.00 case (where $\mu_{c1} / \mu_{c2} = 4.0$ and $H/B = 1.0$). 164

Figure 5.24 Variation of the normalised (a) $\mu_{Nc, AV}^c$ and (b) $COV_{Nc, AV}^c$ with respect to the COV_c and θ_c/B for the COH_4.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 4.0$ and $H/B = 0.25$). 165

Figure 5.25 Variation of the normalised (a) $\mu_{Nc, AV}^c$ and (b) $COV_{Nc, AV}^c$ with respect to COV_c and θ_c/B for the COH_4.0_0.50 case (where $\mu_{c1} / \mu_{c2} = 4.0$ and $H/B = 0.5$). 166

Figure 5.26 Variation of the normalised (a) $\mu_{Nc, AV}^c$ and (b) $COV_{Nc, AV}^c$ with respect to COV_c and θ_c/B for the COH_4.0_1.00 case (where $\mu_{c1} / \mu_{c2} = 4.0$ and $H/B = 1.0$). 167

Figure 5.27 Histogram of c_{u1}/c_{u2} ratio when $\mu_{c1} / \mu_{c2} = 4.0$, $COV_c = 100\%$ and $\theta_c/B \rightarrow \infty$. 169

Figure 5.28 Variation of the normalised $\mu_{Nc, AV}^c$ for cases COH_4.0_0.25, COH_4.0_0.50 and COH_4.0_1.0 when $COV_c = 50\%$. 170

Figure 5.29 Variation of the normalised $\mu_{Nc, AV}^c$ for cases COH_4.0_0.25, COH_4.0_0.50 and COH_4.0_1.0 when $COV_c = 100\%$. 170

Figure 5.30 Upper bound failure mechanism for COH_V case (i.e. $\mu_{cu1}/\mu_{cu2} = 40.0$, $H/B = 0.25$), (a) $\theta_c = 0.2m$, $COV = 5\%$; (b) $\theta_c = 100.0m$, $COV = 5\%$; (c) $\theta_c = 0.2m$, $COV = 100\%$; (d) $\theta_c = 100.0m$, $COV = 100\%$. 172
CHAPTER 6

ANN-BASED MODEL FOR PREDICTING THE BEARING CAPACITY ON A MULTI-LAYERED COHESIVE SOIL PROFILE

Figure 6.1 Problem definition for 10-layered cohesive soil. 177
Figure 6.2 Typical mesh for analysis of strip footing and directions of extensions for lower bound implementation. 179
Figure 6.3 Typical mesh for upper bound implementation. 180
Figure 6.4 Bearing capacity for the first 200 realizations. (4-layered case) 181
Figure 6.5 Bearing capacity for the first 200 realizations. (10-layered case) 181
Figure 6.6 Scatterplots of predicted versus actual values for 4-layered clay case using multiple-regression, Equations 6.8, 6.9, 6.10 and 6.11. 183
Figure 6.7 Root mean square error versus number of hidden layer nodes for the 4-layer-case. 194
Figure 6.8 Root mean square error versus number of hidden layer nodes for the 10-layer-case. 196
Figure 6.9 Structure of optimum MLP model for 4-layered cohesive soil. 196

Figure 6.10 Structure of optimum MLP model for 10-layered cohesive soil. 197

Figure 6.11 Variation of $q_u(c)$ versus varying soil cohesion, c_i (4-layer-case). 201

Figure 6.12 Variation of $q_u(c)$ versus varying layer thickness, h_i. 202

Figure 6.13 Variation of $q_u(c)$ versus B and c_i (4-layer-case). 202

Figure 6.14 Variation of $q_u(c)$ versus varying soil cohesion, c_i (10-layer-case). 203

Figure 6.15 Variation of $q_u(c)$ versus varying layer thickness, h_i (10-layer-case). 203

Figure 6.16 Variation of $q_u(c)$ versus B and c_i (10-layer case). 204

Figure 6.17 Comparison of the result of bearing capacity calculated using averaging method (Bowles, 1988) versus actual values for 4-layered case. 206

Figure 6.18 Comparison of the result of bearing capacity calculated using averaging method (Bowles 1988) versus actual values for 10-layered case. 206

Figure 6.19 Actual versus predicted bearing capacity for MLP model for 4-layered soil profiles. 207

Figure 6.20 Actual versus predicted bearing capacity for MLP model for 10-layered soil profiles. 207
CHAPTER 7

ANN-BASED MODELS FOR PREDICTING BEARING CAPACITY ON A MULTI-LAYERED COHESIVE-FRICTIONAL SOIL PROFILE

Figure 7.1 Problem definition for 10-layered cohesive-frictional soil profile. 214

Figure 7.2 Typical mesh for analysis of strip footing and directions of extensions for lower bound implementation. 216

Figure 7.3 Flow chart of the proposed methodologies. 217

Figure 7.4 Root mean square error versus number of hidden layer nodes for $q_{u(c-\phi)}$. 223

Figure 7.5 Root mean square error versus number of hidden layer nodes for \bar{N}_c. 223

Figure 7.6 Root mean square error versus number of hidden layer nodes for $\bar{N}_{c-\phi}$. 224

Figure 7.7 Structure of optimum MLP model for $q_{u(c-\phi)}$. 225

Figure 7.8 Structure of optimum MLP model for \bar{N}_c. 226

Figure 7.9 Structure of optimum MLP model for $\bar{N}_{c-\phi}$. 227
Figure 7.10 Variation of $q_{ul(c-\phi)}$ versus varying soil cohesion, c_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.12 and 7.13) 235

Figure 7.11 Variation of $q_{ul(c-\phi)}$ versus varying soil cohesion, c_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.14 to 7.17) 235

Figure 7.12 Variation of $q_{ul(c-\phi)}$ versus varying friction angle, ϕ_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.12 and 7.13) 238

Figure 7.13 Variation of $q_{ul(c-\phi)}$ versus varying friction angle, ϕ_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.14 to 7.17) 238

Figure 7.14 Variation of $q_{ul(c-\phi)}$ versus varying layer thickness, h_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.12 and 7.13) 241

Figure 7.15 Variation of $q_{ul(c-\phi)}$ versus varying layer thickness, h_i. ($q_{ul(c-\phi)}$ is determined by Equations 7.14 to 7.17) 242

Figure 7.16 Three cases considered in the sensitivity analyses. 242

Figure 7.17 Variation of $q_{ul(c-\phi)}$ versus varying footing width, B. ($q_{ul(c-\phi)}$ is determined by Equations 7.12 and 7.13) 243

Figure 7.18 Variation of $q_{ul(c-\phi)}$ versus varying footing width, B. ($q_{ul(c-\phi)}$ is determined by Equations 7.14 to 7.17) 243

Figure 7.19 Comparison of the bearing capacities calculated using the MLP model with \bar{N}_c versus actual values for 10-layered purely-cohesive soil. 245

Figure 7.20 Comparison of the bearing capacities calculated using the weighted averaging method versus actual values for purely-cohesive soil. 245
List of Figures

Figure 7.21	Comparison of actual versus predicted values of bearing capacity using the MLP model for \(q_{u(c-\phi)} \).	247
Figure 7.22	Comparison of actual versus predicted values of \(\bar{N}_c \) using the MLP model with \(\bar{N}_c \).	247
Figure 7.23	Comparison of actual versus predicted values of \(\bar{N}_{c-\phi} \) using the MLP model with \(\bar{N}_{c-\phi} \).	248
Figure 7.24	Actual versus predicted values of bearing capacities using the MLP models with \(\bar{N}_c \) and \(\bar{N}_{c-\phi} \).	248
Figure 7.25	Comparison of the bearing capacities calculated using the averaging method (Bowles, 1988) versus actual values for cohesive-frictional soil.	249

CHAPTER 8

SUMMARY AND CONCLUSIONS

APPENDIX A

| Figure A.1 | Displacement vectors at near failure (two-layered spatially variable purely cohesive material). | 292 |
| Figure A.2 | Displacement vectors at near failure (single-layered spatially variable cohesive frictional material). | 295 |

APPENDIX B

| Figure B.1 | Upper bound failure mechanism for COH_0.025_0.25 case (i.e. \(c_{u1}/c_{u2} = 0.025, H/B = 0.25 \)). | 300 |
Figure B.2 Upper bound failure mechanism for COH_0.025_0.50 case (i.e. $c_{u1}/c_{u2} = 0.025, H/B = 0.5$). 300

Figure B.3 Upper bound failure mechanism for COH_0.025_1.00 case (i.e. $c_{u1}/c_{u2} = 0.025, H/B = 1.0$). 301

Figure B.4 Upper bound failure mechanism for COH_0.05_0.25 case (i.e. $c_{u1}/c_{u2} = 0.05, H/B = 0.25$). 301

Figure B.5 Upper bound failure mechanism for COH_0.05_0.5 case (i.e. $c_{u1}/c_{u2} = 0.05, H/B = 0.5$). 302

Figure B.6 Upper bound failure mechanism for COH_0.05_1.0 case (i.e. $c_{u1}/c_{u2} = 0.05, H/B = 1.0$). 302

Figure B.7 Upper bound failure mechanism for COH_0.1_0.25 case (i.e. $c_{u1}/c_{u2} = 0.1, H/B = 0.25$). 303

Figure B.8 Upper bound failure mechanism for COH_0.1_0.5 case (i.e. $c_{u1}/c_{u2} = 0.01, H/B = 0.5$). 303

Figure B.9 Upper bound failure mechanism for COH_0.1_1.0 case (i.e. $c_{u1}/c_{u2} = 0.1, H/B = 1.0$). 304

Figure B.10 Upper bound failure mechanism for COH_0.25_0.25 case (i.e. $c_{u1}/c_{u2} = 0.25, H/B = 0.25$). 304

Figure B.11 Upper bound failure mechanism for COH_0.25_0.5 case (i.e. $c_{u1}/c_{u2} = 0.25, H/B = 0.5$). 305

Figure B.12 Upper bound failure mechanism for COH_0.25_1.0 case (i.e. $c_{u1}/c_{u2} = 0.25, H/B = 1.0$). 305

Figure B.13 Upper bound failure mechanism for COH_0.333_0.25 case (i.e. $c_{u1}/c_{u2} = 0.333, H/B = 0.25$). 306
Figure B.14 Upper bound failure mechanism for COH_0.333_0.5 case
(i.e. \(c_{u1}/c_{u2} = 0.333, H/B = 0.5 \)). 306

Figure B.15 Upper bound failure mechanism for COH_0.333_1.0 case
(i.e. \(c_{u1}/c_{u2} = 0.333, H/B = 1.0 \)). 307

Figure B.16 Upper bound failure mechanism for COH_0.5_0.25 case (i.e. \(c_{u1}/c_{u2} = 0.5, H/B = 0.25 \)). 307

Figure B.17 Upper bound failure mechanism for COH_0.5_0.5 case (i.e. \(c_{u1}/c_{u2} = 0.5, H/B = 0.5 \)). 308

Figure B.18 Upper bound failure mechanism for COH_0.5_1.0 case (i.e. \(c_{u1}/c_{u2} = 0.5, H/B = 1.0 \)). 308

Figure B.19 Upper bound failure mechanism for COH_0.75_0.25 case (i.e. \(c_{u1}/c_{u2} = 0.75, H/B = 0.25 \)). 309

Figure B.20 Upper bound failure mechanism for COH_0.75_0.5 case (i.e. \(c_{u1}/c_{u2} = 0.75, H/B = 0.5 \)). 309

Figure B.21 Upper bound failure mechanism for COH_0.75_1.0 case (i.e. \(c_{u1}/c_{u2} = 0.75, H/B = 1.0 \)). 310

Figure B.22 Upper bound failure mechanism for single-layered deterministic case (i.e. \(c_{u1}/c_{u2} = 1.0 \)). 310

Figure B.23 Upper bound failure mechanism for COH_1.333_0.25 case (i.e. \(c_{u1}/c_{u2} = 1.333, H/B = 0.25 \)). 311

Figure B.24 Upper bound failure mechanism for COH_1.333_0.5 case (i.e. \(c_{u1}/c_{u2} = 1.333, H/B = 0.5 \)). 311

Figure B.25 Upper bound failure mechanism for COH_1.333_1.0 case (i.e. \(c_{u1}/c_{u2} = 1.333, H/B = 1.0 \)). 312
Figure B.26	Upper bound failure mechanism for COH_2.0_0.25 case (i.e. \(c_{ul}/c_{u2} = 2.0, H/B = 0.25\)).	
Figure B.27	Upper bound failure mechanism for COH_2.0_0.5 case (i.e. \(c_{ul}/c_{u2} = 2.0, H/B = 0.5\)).	
Figure B.28	Upper bound failure mechanism for COH_2.0_1.0 case (i.e. \(c_{ul}/c_{u2} = 2.0, H/B = 1.0\)).	
Figure B.29	Upper bound failure mechanism for COH_3.0_0.25 case (i.e. \(c_{ul}/c_{u2} = 3.0, H/B = 0.25\)).	
Figure B.30	Upper bound failure mechanism for COH_3.0_0.5 case (i.e. \(c_{ul}/c_{u2} = 3.0, H/B = 0.5\)).	
Figure B.31	Upper bound failure mechanism for COH_3.0_1.0 case (i.e. \(c_{ul}/c_{u2} = 3.0, H/B = 1.0\)).	
Figure B.32	Upper bound failure mechanism for COH_4.0_0.25 case (i.e. \(c_{ul}/c_{u2} = 4.0, H/B = 0.25\)).	
Figure B.33	Upper bound failure mechanism for COH_4.0_0.5 case (i.e. \(c_{ul}/c_{u2} = 4.0, H/B = 0.5\)).	
Figure B.34	Upper bound failure mechanism for COH_4.0_1.0 case (i.e. \(c_{ul}/c_{u2} = 4.0, H/B = 1.0\)).	
Figure B.35	Upper bound failure mechanism for COH_4.0_0.25 case (i.e. \(c_{ul}/c_{u2} = 10.0, H/B = 0.25\)).	
Figure B.36	Upper bound failure mechanism for COH_4.0_0.5 case (i.e. \(c_{ul}/c_{u2} = 10.0, H/B = 0.5\)).	
Figure B.37	Upper bound failure mechanism for COH_4.0_1.0 case (i.e. \(c_{ul}/c_{u2} = 10.0, H/B = 1.0\)).	
Figure B.38	Upper bound failure mechanism for COH_4.0_0.25 case (i.e. $c_{u1}/c_{u2} = 20.0, H/B = 0.25$).	318
Figure B.39	Upper bound failure mechanism for COH_4.0_0.5 case (i.e. $c_{u1}/c_{u2} = 20.0, H/B = 0.5$).	319
Figure B.40	Upper bound failure mechanism for COH_4.0_1.0 case (i.e. $c_{u1}/c_{u2} = 20.0, H/B = 1.0$).	319
Figure B.41	Upper bound failure mechanism for COH_4.0_0.25 case (i.e. $c_{u1}/c_{u2} = 40.0, H/B = 0.25$).	320
Figure B.42	Upper bound failure mechanism for COH_4.0_0.5 case (i.e. $c_{u1}/c_{u2} = 40.0, H/B = 0.5$).	320
Figure B.43	Upper bound failure mechanism for COH_4.0_1.0 case (i.e. $c_{u1}/c_{u2} = 40.0, H/B = 1.0$).	321
Figure B.44	The variation of $\mu_{N^*c_{AV}}$ and $COV_{N^*c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.025_0.25 case (where $\mu_{c1}/\mu_{c2} = 0.025$ and $H/B = 0.25$).	321
Figure B.45	The variation of $\mu_{N^*c_{AV}}$ and $COV_{N^*c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.025_0.5 case (where $\mu_{c1}/\mu_{c2} = 0.025$ and $H/B = 0.5$).	322
Figure B.46	The variation of $\mu_{N^*c_{AV}}$ and $COV_{N^*c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.025_1.0 case (where $\mu_{c1}/\mu_{c2} = 0.025$ and $H/B = 1.0$).	322
Figure B.47	The variation of $\mu_{N^*c_{AV}}$ and $COV_{N^*c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.05_0.25 case (where $\mu_{c1}/\mu_{c2} = 0.05$ and $H/B = 0.25$).	323
Figure B.48 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.05_0.5 case (where $\mu_{c1}/\mu_{c2} = 0.05$ and $H/B = 0.5$).

323

Figure B.49 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.05_1.0 case (where $\mu_{c1}/\mu_{c2} = 0.05$ and $H/B = 1.0$).

324

Figure B.50 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.1_0.25 case (where $\mu_{c1}/\mu_{c2} = 0.1$ and $H/B = 0.25$).

324

Figure B.51 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.1_0.5 case (where $\mu_{c1}/\mu_{c2} = 0.1$ and $H/B = 0.5$).

325

Figure B.52 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.1_1.0 case (where $\mu_{c1}/\mu_{c2} = 0.1$ and $H/B = 1.0$).

325

Figure B.53 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.333_0.25 case (where $\mu_{c1}/\mu_{c2} = 0.333$ and $H/B = 0.25$).

326

Figure B.54 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.333_0.5 case (where $\mu_{c1}/\mu_{c2} = 0.333$ and $H/B = 0.5$).

326

Figure B.55 The variation of $\mu_{Nc_{AV}}$ and $COV_{Nc_{AV}}$ with respect to COV_c and θ_c/B for COH_0.333_1.0 case (where $\mu_{c1}/\mu_{c2} = 0.333$ and $H/B = 1.0$).

327
Figure B.56	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.50_0.25 case (where $\mu_{c1} / \mu_{c2} = 0.50$ and $H/B = 0.25$).
Figure B.57	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.50_0.5 case (where $\mu_{c1} / \mu_{c2} = 0.50$ and $H/B = 0.5$).
Figure B.58	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.50_1.0 case (where $\mu_{c1} / \mu_{c2} = 0.50$ and $H/B = 1.0$).
Figure B.59	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.75_0.25 case (where $\mu_{c1} / \mu_{c2} = 0.75$ and $H/B = 0.25$).
Figure B.60	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.75_0.5 case (where $\mu_{c1} / \mu_{c2} = 0.75$ and $H/B = 0.5$).
Figure B.61	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_0.75_1.0 case (where $\mu_{c1} / \mu_{c2} = 0.75$ and $H/B = 1.0$).
Figure B.62	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_1.333_0.25 case (where $\mu_{c1} / \mu_{c2} = 1.333$ and $H/B = 0.25$).
Figure B.63	The variation of $\mu_{N^c_{AV}}$ and $COV_{N^c_{AV}}$ with respect to COV_c and θ_c/B for COH_1.333_0.5 case (where $\mu_{c1} / \mu_{c2} = 1.333$ and $H/B = 0.5$).
Figure B.64 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_1.333 _1.0 case (where $\mu_{c1} / \mu_{c2} = 1.333$ and $H/B = 1.0$).

Figure B.65 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_2.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 2.0$ and $H/B = 0.25$).

Figure B.66 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_2.0_0.5 case (where $\mu_{c1} / \mu_{c2} = 2.0$ and $H/B = 0.5$).

Figure B.67 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_2.0_1.0 case (where $\mu_{c1} / \mu_{c2} = 2.0$ and $H/B = 1.0$).

Figure B.68 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_3.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 3.0$ and $H/B = 0.25$).

Figure B.69 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_3.0_0.5 case (where $\mu_{c1} / \mu_{c2} = 3.0$ and $H/B = 0.5$).

Figure B.70 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_3.0_1.0 case (where $\mu_{c1} / \mu_{c2} = 3.0$ and $H/B = 1.0$).

Figure B.71 The variation of $\mu_{Nc AV}$ and $COV_{Nc AV}$ with respect to COV_c and θ_c/B for COH_10.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 10.0$ and $H/B = 0.25$).
Figure B.72	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_10.0_0.5 case (where $\mu_{c1} / \mu_{c2} = 10.0$ and $H/B = 0.5$).	335
Figure B.73	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_10.0_1.0 case (where $\mu_{c1} / \mu_{c2} = 10.0$ and $H/B = 1.0$).	336
Figure B.74	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_20.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 20.0$ and $H/B = 0.25$).	336
Figure B.75	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_20.0_0.5 case (where $\mu_{c1} / \mu_{c2} = 20.0$ and $H/B = 0.5$).	337
Figure B.76	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_20.0_1.0 case (where $\mu_{c1} / \mu_{c2} = 20.0$ and $H/B = 1.0$).	337
Figure B.77	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_40.0_0.25 case (where $\mu_{c1} / \mu_{c2} = 40.0$ and $H/B = 0.25$).	338
Figure B.78	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_40.0_0.5 case (where $\mu_{c1} / \mu_{c2} = 40.0$ and $H/B = 0.5$).	338
Figure B.79	The variation of $\mu_{N^c AV}$ and $COV_{N^c AV}$ with respect to COV_c and θ_c/B for COH_40.0_1.0 case (where $\mu_{c1} / \mu_{c2} = 40.0$ and $H/B = 1.0$).	339
APPENDIX C
LIST OF TABLES

CHAPTER 1
INTRODUCTION

CHAPTER 2
HISTORICAL REVIEW

Table 2.1 General cases for soil deposits with three layers. 17

CHAPTER 3
NUMERICAL FORMULATION

Table 3.1 Comparison of existing methods of analysis. (*After Merifield, 2002*) 36

Table 3.2 Summaries of different matrix storage strategies. 71

Table 3.3 Scale of fluctuation with respect to theoretical autocorrelation functions. (*After Vanmarcke, 1977a, 1983*) 75

CHAPTER 4
NUMERICAL MODELLING OF FOUNDATIONS AND RANDOM FIELDS

Table 4.1 Comparison of results ($c_{u1} / c_{u2} < 1$). 114

Table 4.2 Comparison of results ($c_{u1} / c_{u2} > 1$). 115
Table 4.3 Comparison of results from FLA and DFEA, showing time (in seconds) required to obtain a solution. 116

Table 4.4 Comparison of results from FLA and DFEA. 118

Table 4.5 Sensitivity study of mean and standard deviation of sample size 2,000. 121

CHAPTER 5

QUANTIFYING THE RISK OF A FOOTING ON A TWO-LAYERED SPATIAL VARIABLE, PURELY COHESIVE SOIL PROFILE

Table 5.1 Input parameters used in the studies. 132

Table 5.2 Values of μN^c for a footing founded on a single-layered spatially random clay deposit. 138

Table 5.3 Values of COV_{N^c} for a footing founded on a single-layered spatially random clay deposit. 139

Table 5.4 Upper and lower bound solutions for a two-layered homogeneous (COV_c equal zero) clay deposit. 143

CHAPTER 6

ANN-BASED MODEL FOR PREDICTING BEARING CAPACITY ON A MULTI-LAYERED COHESIVE SOIL PROFILE

Table 6.1 Performance results of multiple regression models. 184
CHAPTER 7

ANN-BASED MODELS FOR PREDICTING BEARING CAPACITY ON A MULTI-LAYERED COHESIVE-FRICTIONAL SOIL PROFILE

Table 7.1 Performance results of ANN models for $q_u(c-\phi)$. 220
Table 7.2 Performance results of ANN models for \tilde{N}_c. 221
Table 7.3 Performance results of ANN models for $\tilde{N}_{c-\phi}$. 222
Table 7.4 Value of $w_{i=1,..,30}$ and C versus $T_{i=1,..,9}$ for $q_u(c-\phi)$. 228
Table 7.5 Values of $w_{i=1,..,20}$ and C versus $T_{i=1,..,9}$ for \tilde{N}_c. 230
Table 7.6 Values of $w_{i=1,..,30}$ and C versus $T_{i=1,..,9}$ for $\tilde{N}_{c-\phi}$. 231
Table 7.7 A set of hypothetical data employed to analyse the sensitivity of c_i. 233

Table 7.8 A set of hypothetical data employed to analyse the sensitivity of ϕ_i. 236

Table 7.9 A set of hypothetical data employed to analyse the sensitivity of h_i. 239

Table 7.10 Comparison of MLP models and weighted-average methods (Bowles, 1988) for bearing capacity prediction for purely-cohesive soil. 246

Table 7.11 Comparison between the MLP models and weighted-average method (Bowles, 1988) for bearing capacity prediction for c-ϕ soil. 249

CHAPTER 8

SUMMARY AND CONCLUSIONS

APPENDIX A

Table A.1 Lower bound estimation for $c_{u1} / c_{u2} \leq 1.0$. 288

Table A.2 Upper bound estimation for $c_{u1} / c_{u2} < 1.0$. 289

Table A.3 Lower bound estimation for $10.0 \geq c_{u1} / c_{u2} \geq 1.0$. 290

Table A.4 Upper bound estimation for $10.0 \geq c_{u1} / c_{u2} \geq 1.0$. 291

APPENDIX B
APPENDIX C

Table C.1 The results of the ANN input and output statistics. 342

Table C.2 The results of null hypothesis tests inputs and outputs. 345
NOTATION

All variables used in this thesis are defined as they are introduced into the text. For convenience, frequently used variables and their units are described as below. The general convention adopted is that vector and matrix variables are shown in bold print, while scalar variables are shown in italic.

\(A \) surface area/cross sectional area;
\(A \) total matrix of equality constraint gradients (finite element limit analyses);
\(a_i \) vector of constraint variable;
\(B \) width of the footing (m);
\(B' \) effective width of the footing (m);
\(b \) right hand side for linear equalities;
\(C \) rescaled hidden layer threshold;
\(C_{y,d_j} \) the covariance between the model output and measured actual output;
\(c \) cohesion of soil (kPa);
\(c_i \) cohesion of individual soil layer (kPa);
\(c^T \) objective function;
\(COV \) coefficient of variation;
\(D_f \) embedment depth (m);
\(d \) the mean of measured actual output; and
\(d_j \) the historical or measured actual output;
\(E \) elastic modulus (MPa) (finite element analysis);
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>global error function (artificial neural networks);</td>
</tr>
<tr>
<td>$E[...]$</td>
<td>expected value operator (random field theory);</td>
</tr>
<tr>
<td>f</td>
<td>yield function (finite element limit analyses);</td>
</tr>
<tr>
<td>F</td>
<td>bearing capacity factor (foundations);</td>
</tr>
<tr>
<td>F_i</td>
<td>body force (finite element limit analyses);</td>
</tr>
<tr>
<td>F_k</td>
<td>yield function (finite element limit analyses);</td>
</tr>
<tr>
<td>$G_c(\ldots)$</td>
<td>normally distributed random field, having zero mean, unit variance, and a scale of fluctuation (random field theory);</td>
</tr>
<tr>
<td>$G_{ln,c}(\ldots)$</td>
<td>lognormally distributed random field (random field theory);</td>
</tr>
<tr>
<td>g, g_i</td>
<td>vector/component of prescribed body force;</td>
</tr>
<tr>
<td>H</td>
<td>depth of the soil layer (m);</td>
</tr>
<tr>
<td>h_i</td>
<td>thickness of individual soil layer (m);</td>
</tr>
<tr>
<td>I</td>
<td>number of model inputs;</td>
</tr>
<tr>
<td>J_1, J_2, J_3</td>
<td>stress invariants;</td>
</tr>
<tr>
<td>K_p</td>
<td>Rankine’ passive earth pressure coefficient;</td>
</tr>
<tr>
<td>K_s</td>
<td>punching shear coefficient;</td>
</tr>
<tr>
<td>L</td>
<td>length of the strip footing (m);</td>
</tr>
<tr>
<td>n</td>
<td>number of data.</td>
</tr>
<tr>
<td>N^*_c</td>
<td>modified non-dimensional bearing capacity factor for multi-layered soil;</td>
</tr>
<tr>
<td>\tilde{N}_c</td>
<td>non-dimensional bearing capacity factor for footings on multi-layered purely-cohesive soil profiles;</td>
</tr>
<tr>
<td>$\tilde{N}_{c-\phi}$</td>
<td>non-dimensional bearing capacity factor for footings on multi-layered cohesive-frictional soil profiles</td>
</tr>
<tr>
<td>N_c</td>
<td>non-dimensional bearing capacity factor;</td>
</tr>
<tr>
<td>N_g</td>
<td>non-dimensional bearing capacity factor;</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>N_q</td>
<td>non-dimensional bearing capacity factor;</td>
</tr>
<tr>
<td>$\dot{\varepsilon}$</td>
<td>strain rate vector;</td>
</tr>
<tr>
<td>p'</td>
<td>surcharge (kN/m2);</td>
</tr>
<tr>
<td>P_p</td>
<td>passive force (kN);</td>
</tr>
<tr>
<td>q</td>
<td>load per unit area (kN/m2);</td>
</tr>
<tr>
<td>\mathbf{q}, q_i</td>
<td>vector/components of optimisable surface traction;</td>
</tr>
<tr>
<td>q_b</td>
<td>bearing capacity of bottom soil layer (kN/m2);</td>
</tr>
<tr>
<td>Q_u</td>
<td>ultimate bearing capacity (kN);</td>
</tr>
<tr>
<td>q_u</td>
<td>ultimate load per unit area (kN/m2);</td>
</tr>
<tr>
<td>$q_{u(1)}$</td>
<td>first failure load per unit area (kN/m2);</td>
</tr>
<tr>
<td>$q_{u(c)}$</td>
<td>ultimate load per unit area of footing on purely-cohesive soil (kN/m2);</td>
</tr>
<tr>
<td>$q_{u(c-\phi)}$</td>
<td>ultimate load per unit area of footing on cohesive-frictional soil (kN/m2);</td>
</tr>
<tr>
<td>r</td>
<td>correlation coefficient;</td>
</tr>
<tr>
<td>s</td>
<td>vector/components of optimisable surface traction;</td>
</tr>
<tr>
<td>Δu</td>
<td>tangential velocity jump;</td>
</tr>
<tr>
<td>\dot{u}</td>
<td>displacement rate;</td>
</tr>
<tr>
<td>T_i</td>
<td>connection weight of hidden nodes (artificial neural networks);</td>
</tr>
<tr>
<td>T_i</td>
<td>external surface tractions (finite element limit analyses);</td>
</tr>
<tr>
<td>V</td>
<td>volume (m3);</td>
</tr>
<tr>
<td>v</td>
<td>Poisson’s ratio of soil;</td>
</tr>
<tr>
<td>Δv</td>
<td>normal velocity jump;</td>
</tr>
<tr>
<td>w_i</td>
<td>connection weight of node i;</td>
</tr>
<tr>
<td>\mathbf{X}</td>
<td>global vector of unknown stresses;</td>
</tr>
<tr>
<td>\mathbf{x}</td>
<td>problem variables, vector of stress variables;</td>
</tr>
<tr>
<td>x_n</td>
<td>scaled value;</td>
</tr>
</tbody>
</table>
\(x_{\text{min}} \) minimum values;
\(x_{\text{max}} \) maximum values;
\(y_j \) the predicted output by the network;
\(\bar{y} \) the mean of model output;
\(z \) depth below the soil surface (m);
\(\alpha \) load-spread angle (\(^\circ\));
\(\beta \) load-spread angle (\(^\circ\));
\(\delta \) scale of fluctuation (random field theory);
\(\phi \) friction angle of the soil (\(^\circ\));
\(\phi_i \) friction angle of individual soil layer (\(^\circ\));
\(\gamma \) bulk unit weight of the soil (kN/m\(^3\));
\(\eta \) learning rate (artificial neural networks);
\(\lambda_c \) normalised overburden pressure;
\(\lambda_q \) normalised bearing capacity;
\(\dot{\lambda} \) plastic multiplier rate;
\(\lambda_F^s \) scalar loading multiplier for body force;
\(\lambda_T^s \) scalar loading multiplier for external surface tractions;
\(\mu \) momentum term (artificial neural networks);
\(\mu \) mean (random field theory);
\(\mu_{\text{ln}} \) mean of lognormal variables (random field theory);
\(\Theta_c \) correlation length of soil cohesion (Local average subdivision);
\(\rho \) strength gradient;
\(\sigma \) normal stress vector (finite element limit analyses);
\(\sigma \)
standard deviation (random field theory);

\(\sigma_{d_j} \)
the standard deviation of measured actual output (artificial neural networks);

\(\sigma_{ln c} \)
standard deviation of lognormal variables (random field theory);

\(\sigma_{s_j} \)
the standard deviation of model output (artificial neural networks);

\(\sigma_z \)
vertical stress at the base of the foundation (kN/m\(^2\)) (foundations);

\(\tau \)
distance vector (random field theory);

\(\tau \)
shear stress vector (finite element limit analyses);