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importance measurement and a method to embed the importance mea-
surement into computation datapath in order to realize unequal error
tolerance. Under this unequal error tolerance framework, we further
developed approaches to use voltage overscaling in memory systems
of trellis decoders. Effectiveness of such an unequal error tolerance
framework and the developed techniques have been successfully
demonstrated using computer simulations.
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Fast Scaling in the Residue Number System

Yinan Kong and Braden Phillips

Abstract—A new scheme for precisely scaling numbers in the residue
number system (RNS) is presented. The scale factor can be any number
coprime to the RNS moduli. Lookup table implementations are used as a
basis for comparisons between the new scheme and scaling schemes from
the literature. It is shown that new scheme decreases hardware complexity
compared to previous schemes without affecting time complexity.

Index Terms—Computational complexity, digital arithmetic, table
lookup, residue arithmetic.

I. INTRODUCTION

A. Residue Number System and Scaling

The residue number system (RNS) provides a means for efficient
multiplication and addition of integers; however, scaling within RNS
is less efficient and this problem has long prevented wider adoption of
RNS. In this context, scaling an integer � means reducing its word
length by dividing by a constant �

� �
�

�
� (1)

In binary arithmetic, � is usually chosen to be a power of 2 such that
word length reduction is achieved by simply truncating a number’s bi-
nary representation. There is no equivalent operation in RNS with the
consequence that a result accumulated through a sequence of multi-
plications [as is often the case in digital filters or multiple-point fast
Fourier transfers (FFTs)] can grow in word length until it overflows
the dynamic range of the RNS.

An RNS [1] is characterized by a set of � coprime moduli
������� � � � ����. In the RNS, a number � is represented in �
channels: � � ���� ��� � � � � ���, where �� is the residue of �
with respect to ��, i.e., �� � ���� � ������. Within the
RNS there is a unique representation of all integers in the range
� � � 	 
 , where 
 � ����� � � � ��� . 
 is therefore known as
the dynamic range of the RNS. Two other values, 
� and 
��

� �

are commonly used in RNS computations and are worth defining
here. 
� � �
���� and 
��

� �
is its multiplicative inverse with

respect to �� such that 
� �
��

� �
� 	.

If � , � , and � have RNS representations given by
� � ���� ��� � � � � ���, � � �
�� 
�� � � � � 
��, and
� � ���� ��� � � � � ���, then denoting * to represent the operations +,
-, or �, the RNS version of � � � � � satisfies

� � �����
��� � ����
��� � � � � � ����
��� ��

Thus addition, subtraction, and multiplication can be concurrently per-
formed on the� residues within� parallel channels, and it is this high

Manuscript received June 21, 2007; revised January 15, 2008. First published
January 13, 2009; current version published February 19, 2009.. This work
was supported by the Australian Research Council’s Discovery Project Scheme
(DP0559582).

The authors are with the Centre for High Performance Integrated Tech-
nologies and Systems (CHiPTec), the School of Electrical and Electronic
Engineering, the University of Adelaide, Adelaide, SA 5005, Australia (e-mail:
ykong@eleceng.adelaide.edu.au; phillips@eleceng.adelaide.edu.au).

Digital Object Identifier 10.1109/TVLSI.2008.2004550

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore.  Restrictions apply. 



444 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 1. Scaling using LUTs.

speed parallel operation that makes the RNS attractive. There is, how-
ever, no such parallel form of scaling or division.

B. Scale Factor �

From (1), we have

� �
�

�
�

� � ����
�

such that in an RNS

�� � �� �� �
� � ����

�
�

� (2)

Many scaling algorithms [2]–[4] take the scale factor� to be a product

of a subset of the moduli, � �
�

���

��, because this permits the rapid

evaluation of ���� from

���� �

�

���

�� ���� �� �

�

�

If � is relatively prime to ��, the multiplicative inverse of � modulo
�� exists. If we denote this as ������ , then (2) becomes

�� � �� � ������ � ������
�

(3)

which is an equation to quickly generate scaled residues ��. However,
the evaluation of �� for � � 	 � 
 is much more difficult. In these

channels ������ does not exist as � �
�

���

�� is not relatively

prime to ��. This step always consumes more time and hardware than
the evaluation of �� for 
�� � 	 � � [5]. In [6], � is fixed to 2. The
current paper extends this idea, allowing � to be any number coprime
with the RNS moduli.

II. SPACE AND TIME COMPLEXITY

A. Lookup Table Implementation

It has been common for RNS scaling schemes to operate using
lookup tables (LUTs) [2], [3], [5], [7]–[10]. Scaled results are precom-
puted and stored in a network of LUTs as shown in Fig. 1. In practice
these LUTs may be implemented using devices such as ROMs, RAMs,
PLAs, or combinatorial logic according to whichever is most appro-
priate for the target hardware platform. The various scaling schemes
lead to different structures in the LUT network and, in general, trade
reduced latency (achieved through exploiting parallelism within the
network) against hardware cost.

In this paper, we will use LUT implementations to provide a fair
basis for comparisons between scaling schemes. We assume that all
LUTs in an implementation have the same size and then compare time
complexity counted in lookup cycles (LUCs) and space complexity
measured in the total number of LUTs.

Note that both the time and space complexity are heavily dependent
on the width of each modulus and the size of the LUTs selected. We
use � to denote the number of residue inputs addressing each LUT and
assume that � remains the same for all of the LUTs within an imple-
mentation. For example, if we use the 5-bit moduli ���
 ��
 ��
 ���

and use ROMs with an address space of 32 K � 4 K � 8 bits, then
� � ���	


�
����
	 � � because each memory can accommodate two

residue inputs at most.
LUT implementations are appropriate for field-programmable gate

array (FPGA) implementations which are typically rich in memory re-
sources. For other platforms, alternatives to LUT implementations do
exist. Instead of precomputing values and storing them in tables, they
can be evaluated dynamically as the operation proceeds. This is the case
for the RNS systems of [11]–[13].

B. Scaling Complexity

Early attempts at scaling were performed by converting from RNS
to a positional (binary) representation where scaling can be trivially
performed before the result is converted back to the RNS [1]. Such
schemes incurred a time complexity of ���
 LUCs. An improved
form used in [2] and [4] decreased the number of LUCs to ���	
��

by expressing the scaled integer � as a sum of terms that can be eval-
uated in parallel

� �
�

�



�

���

����
� (4)

The exact time complexity of residue arithmetic structures following
this form is derived in the Appendix to be ��	
� ��. The exact space
complexity is also shown to be ��� � ��� � �
�. Subsequent scaling
schemes (e.g., [3], [8], [9], [14]) have not reduced time complexity
below ���	
��
. The space complexity of scaling has remained at
����
LUTs [7] with little improvement over the development of RNS
scaling algorithms [2], [3], [8], [9], [14].

The scaling scheme in this paper decreases the space complexity to
���
 while maintaining ���	
��
 time complexity.

III. NEW SCALING SCHEME

A. Base Extension Step

The new scaling scheme assumes the scaling factor � is a positive
integer coprime to any of the moduli ��. For comparison with other
scaling schemes using a LUT implementation, we require that � is a
constant with word length at most ��� �
 times the word length of the
channel moduli. The first step in the new scaling scheme is to evaluate
���� from the RNS representation of � , i.e., ���
 ��
 � � � 
 ���. This
is a typical base extension problem.

Efficient algorithms for base extension are presented in [1], [8], [15]
and [16]. The scheme in [1] uses mixed radix conversion (MRC) which
is relatively slow and costly; [15] employs an extra RNS channel with
modulus greater than � ; [16] performs an approximate extension; and
[8] achieves exact scaling without an extra RNS channel. Any exact
base extension is appropriate for our purposes. The algorithms [15]
and [8] are the most time and space efficient, generating ���� in
���	
��
 LUCs using ���
 LUTs. This efficiency does come at a
cost: [15] requires extra hardware to maintain the extra channel; and
[8] can be as slow as the MRC in some rare cases.

B. New Scaling Step

From (3), we can write

�� � ��� � ������ � ������
�

� (5)

Because� is coprime with all ��, ������ always exists and (5) can
be used to evaluate �� in every channel. For a constant � , ������
can be precomputed and stored in a LUT.

Given ���� (5) can be implemented directly in each channel using
subtraction and multiplication modulo ��; however, to compare this
scheme with those surveyed in the previous section, we will consider
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Fig. 2. Architecture to perform RNS scaling by� .

an implementation using LUTs. As there are only two inputs to (5), ��
and ���� , (5) can be implemented using a single LUT for each output
residue �� provided the word length of � is at most �� � �� times the
word length of the moduli. In this case the scaling step only uses one
LUC and � LUTs.

For example, if � � � and the channel width is 5 bits, the addressing
capacity of each LUT is ���� � � � 32 K � 5 bits. In this case �
can be as large as �� � �� � � � 10 bits. � can be made larger if
we use a larger LUT or concatenate LUTs to allow more addressing
capacity. In the example above, if the largest available LUT is 512 K
� 64 K��, i.e., ���� � 64 K, then the scale factor� can be as large
as 	
�� �
 � �� � � � 11 bits.

C. Whole Scaling Process

The scaling scheme is illustrated in Fig. 2. The base extension block
in Fig. 2 costs��	
�� �� LUCs and���� LUTs, and the scaling step
consumes one LUC and � LUTs. Thus, the time complexity of this
new scaling process is ��	
���� � � � ��	
���� and the space
complexity is ���� � � � ����. The latter is an improvement for
the scaling problem in RNS since all other methods known to the au-
thors incur����� hardware cost. The main reason is they need����
LUTs to scale in one channel. When scaling over � channels, their
space complexities become �����.

More specifically, suppose the base extension block in [8] is
used, which has an exact time complexity of ����� � � and an
exact space complexity of �	���� � 
, where ����� � �	
�� ��
and 	���� � ��� � �
� � ���. The exact time complexity of
this new scaling process is ����� � � and the exact space com-
plexity is �	���� � � � 
, where ����� � �	
�� �� and
	���� � ��� � �
� � ���.

D. Example

As an example, consider the RNS moduli �� � ��, �� � ��,
�� � ��, �� � ��, and �� � ��, and suppose the integer � �
������ � ��� ��� �� �� ��	 is to be scaled by � � ����. ������
has been precomputed as ��� �� ��� ��� �	 for � � 
 � �. We base
extend � to � to compute ���� � ���. Then, according to (5),
the scaled residues are computed as �� � ���� ������ � ���� � 
,
�� � ����� ������ � ���� � �, �� � ���� ������ � ����� � ��,
�� � ���� ������ � ����� � �, and �� � ����� ������ � ���� �
��. Thus, � � �
� �� ��� �� ��	 � ��� � 
�������
������. Note
that in this example all operations can be performed using 64 K � 8 bit
LUTs.

E. Evaluation

Though base extension has long been used in RNS scaling, the way
that it has been applied has remained the same since it was proposed

Fig. 3. Conventional scaling using BE blocks [8].

in [5] in 1978. Since this time, scaling algorithms using base extension
have always chosen � to be a product of a subset of the moduli: � �
�

�	�

��. As the scaled integer

� �
� � ����

�

�
� � ����

� 
����

� ����
���� � ������
�������
���
����


����

can be represented in the range ��� ��
�� � ��, a base extension of
���� � ���� ��� � � � � ��	 to the moduli ����� ����� � � � ��� is
first performed. Then, the resulting residues ������ ����� � � � � ��	
are involved in a simple table lookup step to compute the representation
of � in the range ��� ��
�����, i.e., ������ ����� � � � � ��	. Finally,
these residues are base extended back to moduli ������ � � � ���

to obtain the representation of � over the whole RNS range, i.e.,
���� ��� � � � � ��	 [5], [8], [9]. The schemes [8] and [9] are similar but
the latter replaces the base extension blocks with large LUTs with up
to 	 � � inputs. For an RNS with more than about 3 5-bit channels,
such large LUTs are not available and hence the scheme is only viable
in some specific cases as stated in [9].

As shown in Fig. 3, this process involves exactly � base exten-
sion (BE) blocks no matter what kind of base extension algorithms
are used. Since the space complexity of each base extension is already
no less than ����, the whole scaling space complexity amounts to
���� � � � �� � 	� � �����. This can be compared with the
new scaling architecture in Fig. 2 which has only 1 base extension
block and space complexity ����. In Fig. 3, the time complexity is
��	
�� 	� 	
���� �	�� � ��	
����. This is the same as the new
scheme.

Table I provides results comparing the new scaling process with
those described in [2], [8], [9], and [14]. Assume the new scaling uses
the base extension technique given in [8] and EPROMs of 256 K �
32 K � � are used as LUTs. Therefore, the number of residue inputs
addressing each memory is � � 
�	
�� �� � ��
Channel Width���

���
������	 �������. The scale factor � should be no larger than
	
�� �� � �� � ������	 ����� � ��� Channel Width bits long.
Because the scaling schemes in [8] and [9] only support even values
of � , � is always chosen to be even here, although there is no such
restriction in the new scaling algorithm.

As can be seen from the Table I, the larger the dynamic range, the
more obvious the advantage of the new scaling algorithm in terms of
hardware.

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore.  Restrictions apply. 
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TABLE I
COMPARISON BETWEEN NEW SCALING AND CONVENTIONAL SCALING SCHEMES USING 32 K � 8 LUTS

Fig. 4. Parallel architecture to perform (4).

Fig. 5. One channel of parallel residue arithmetic process using memories with addressing capacity � �.

IV. CONCLUSION

A low latency scaling scheme is illustrated in Fig. 2 that reduces
hardware cost to ���� down from ����� required for previous solu-
tions. The scheme imposes no restrictions on the scale factor � other
than it must not be too large and be coprime with the RNS moduli. Base
extension algorithms are applied in a simple way to achieve scaling
with only 1 base extension step. Most of the time and hardware re-
sources consumed in the scaling are required by the base extension
step. This means that there is a tight connection between base exten-
sion and scaling in that any improvement in base extension algorithms
will immediately lead to more efficient scaling.

APPENDIX

In this appendix, the time and space complexities of residue arith-
metic structures following (4) are derived. This equation is typical of

residue arithmetic processes that achieve �����
�
�� time complexity.

A ROM network to perform (4) was shown in Fig. 1. A more detailed
diagram appears in Fig. 4. The two base extension structures ([8] and
[15]) used in this paper can be implemented with this structure.

Suppose each available LUT can accept only � inputs at most while
generating only one output as discussed in Section II above. Then, each
channel of the parallel scaling structure in Fig. 4 can be drawn as a tree
as in Fig. 5, where it is assumed that there are � input residues and �
LUCs are consumed to accomplish the scaling in channel �.

In the first cycle, the number of LUTs is �����. Thus, there are
����� input residues to the LUTs in the second cycle, where the
number of LUTs will be ���������. This proceeds recursively
until only one LUT is needed, i.e., �� � � ��������� � � � ��� � �
as illustrated in Fig. 5. Using the result from Number Theory,
������ � ���������, gives the number of LUTs as �����
in the first cycle, ������ in the second and so on, until the last

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore.  Restrictions apply. 
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cycle, where �� � � ��������� � � � ��� � ������ � �. Then from
���� � ������ � �, we have ���� � �� � � ���

�
� .

If � � ������ � �, then �������� � �. This means only � � �
cycles are needed and this contradicts our original assumption that �
cycles are required. Therefore, ������ � �� � � ���

�
� � � and

���
�
� � � � ���

�
� � �, so that

� � ����
�
��� (6)

This represents the exact time complexity of the �th channel of the
residue arithmetic process shown in Fig. 5. Because all the � chan-
nels run in parallel, ����

�
�� is also the exact time complexity of the

scaling scheme constructed on �-input LUTs.
It can also be proven that the exact space complexity of each channel

is �	� � ��� � �
� such that the exact space complexity of the whole
arithmetic process is � �	� � ��� � �
�, which is at the level of
		��
.
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Fully Monolithic Cellular Buck Converter Design
for 3-D Power Delivery

Jian Sun, David Giuliano, Siddharth Devarajan, Jian-Qiang Lu,
T. Paul Chow, and Ronald J. Gutmann

Abstract—A fully monolithic interleaved buck dc-dc point-of-load (PoL)
converter has been designed and fabricated in a 0.18-mm SiGe BiCMOS
process. Target application of the design is 3-D power delivery for future
microprocessors, in which the PoL converter will be vertically integrated
with the processor using wafer-level 3-D interconnect technologies. Advan-
tages of 3-D power delivery over conventional discrete voltage regulator
modules (VRMs) are discussed. The prototype design, using two interleaved
buck converter cells each operating at 200 MHz switching frequency and
delivering 500 mA output current, is discussed with a focus on the con-
verter power stage and control loop to highlight the tradeoffs unique to
such high-frequency, monolithic designs. Measured steady-state and dy-
namic responses of the fabricated prototype are presented to demonstrate
the ability of such monolithic converters to meet the power delivery require-
ments of future processors.

Index Terms—3-D integration, dc-to-dc converters, monolithic power
conversion, power delivery, power management, voltage regulator.

I. INTRODUCTION

Future microprocessors and high-performance integrated circuits
(ICs) will require multiple, dynamically scalable, sub-1-V supply
voltages with total current exceeding 100 A/chip [1]. Conventional
power delivery methods employing a voltage regulator module (VRM)
mounted on the motherboard have several limitations in meeting
future IC technology needs. One critical problem of this 2-D power
delivery architecture is the long interconnect between the VRM and
the processor, which creates an impedance bottleneck for dynamic
power delivery and forces the use of decoupling capacitors at various
locations along the power delivery path. Another problem of 2-D
power delivery is the large number of power and ground pins required
by the processor, which consumes expensive board area around the
processor and/or increases packaging complexity. Meeting the power
delivery requirements of future microprocessors and high-performance
ICs requires a paradigm shift in power delivery system design and
integration.

3-D power delivery [2]–[5], in which the power supply is vertically
integrated with the processor in a 3-D stack, offers a possible solution to
the problems of 2-D power delivery by dramatically reducing the inter-
connect parasitics. In addition, this ultimate point-of-load (PoL) con-
verter configuration reduces the number of power pins and facilitates
the delivery of multiple supply voltages. Of the different 3-D architec-
tures discussed in the literature, the wafer-level 3-D approach proposed
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