Genetic characterization and QTL mapping for grain fructan in wheat (*Triticum aestivum* L.)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide

By

Bao Lam Huynh, M. Plant Science (University of Adelaide)

Discipline of Plant and Food Science
School of Agriculture, Food and Wine
Faculty of Sciences
The University of Adelaide

September 2008
Abbreviations

CIMMYT : International Maize and Wheat Improvement Center
DArT : Diversity Array Technology™
DH : Doubled Haploid
HPLC : High-Performance Liquid Chromatography
MAS : Marker-Assisted Selection
MPBCRC : Molecular Plant Breeding Cooperative Research Centre
QTL : Quantitative Trait Loci
RIL : Recombinant-Inbred Lines
SARDI : South Australian Research and Development Institute
SSR : Simple Sequence Repeats
Table of Contents

Abbreviations .. ii
Table of Contents ... iii
List of Tables .. viii
List of Figures ... ix
Abstract ... xii
Declaration ... xiv
Acknowledgements .. xv

CHAPTER 1: GENERAL INTRODUCTION ... 1
CHAPTER 2: LITERATURE REVIEW ... 6

2.1 INTRODUCTION .. 6
2.2 FRUCTAN BIOCHEMISTRY .. 6
 Terminology and chemical structure .. 6
 Fructan biosynthesis ... 8
 Fructan degradation ... 9
2.3 FRUCTAN MEASUREMENT ... 10
2.3 ROLES OF FRUCTANS .. 12
 Physiological functions in plants .. 12
 Health benefits of fructans for humans ... 13
2.4 FRUCTAN CONSUMPTION IN HUMANS ... 14
Sources of fructan intake ... 14
Effective and safe dosages ... 15

2.5 GENETIC IMPROVEMENT OF FRUCTAN IN FOOD CROPS 16
Genetic engineering ... 16
Plant breeding ... 17

2.6 QTL MAPPING: METHODOLOGY AND APPLICATION .. 18
Genetic markers ... 18
QTL mapping methods ... 19
Applications of QTL information .. 20

2.7 CONCLUSIONS AND IMPLICATIONS FOR THE THESIS 22

CHAPTER 3: MEASUREMENT OF FRUCTAN CONCENTRATION IN WHEAT GRAIN ... 23

ABSTRACT .. 23

3.1 INTRODUCTION ... 24

3.2 MATERIALS AND METHODS .. 27

3.2.1 Fructan analysis ... 27
The principle .. 27
Apparatus .. 27
Preparation of reagents ... 28
Extracting fructans ... 28
Enzymatic hydrolysis ... 29
HPLC analysis .. 29
ABSTRACT ... 54

5.1 INTRODUCTION ... 55

5.2 MATERIALS AND METHODS... 55

5.2.1 Genetic material ... 55

5.2.2 Field screening ... 56

5.2.3 Genetic mapping ... 57

5.3.4 QTL validation ... 59

5.3.5 Investigation of the effect of grain-fructan loci on other traits 60

5.3.6 Candidate-gene mapping .. 60

5.3 RESULTS AND DISCUSSION ... 62

5.3.1 Variation in grain fructan ... 62

5.3.2 Inheritance of grain fructan concentration.. 63

QTLs and epistatic interactions .. 63

QTL validation ... 67

Relationship between grain-fructan loci and important traits 69

Candidate gene controlling grain fructan accumulation ... 71

5.4 CONCLUSION .. 72

CHAPTER 6: GENERAL DISCUSSION ... 74

6.1 FRUCTAN MEASUREMENT.. 74

6.2 BREEDING POTENTIAL.. 75

6.3 NUTRITIONAL CONTRIBUTION ... 78
6.4 CANDIDATE GENES .. 80

6.5 FRUCTAN RETENTION .. 82

CHAPTER 7: CONCLUSIONS ... 83

CHAPTER 8: CONTRIBUTIONS TO KNOWLEDGE .. 85

CHAPTER 9: LITERATURE CITED ... 87

CHAPTER 10: APPENDIX .. 114

APPENDIX 1: GRAIN FRUCTAN CONCENTRATION (% OF DRY WEIGHT) AND 100-GRAIN WEIGHT OF 98 HEXAPLOID WHEAT LINES GROWN AT NARRABRI (NEW SOUTH WALES, AUSTRALIA) IN 2006. ... 114

APPENDIX 2: A PRELIMINARY LINKAGE MAP OF 206 SSR MARKERS FOR THE BERKUT/KRICHaufF MAPPING POPULATION OBTAINED FROM SARDI, WITH NOT ALL LINKAGE GROUPS ALIGNED WITH PREVIOUSLY CONSTRUCTED WHEAT LINKAGE MAPS... 117

APPENDIX 3: INITIAL QTL ANALYSIS BASED ON THE PRELIMINARY LINKAGE MAP, WITH GRAIN FRUCTAN MEASURED ON THE BERKUT/KRICHaufF POPULATION GROWN IN THREE FIELD ENVIRONMENTS (ROSEDALE IN 2005 AND 2006, KOSHY IN 2006). COMPOSITE INTERVAL MAPPING WAS PERFORMED WITH QTL CARTOGRAPHER V2.5............................... 120

APPENDIX 4: THE IMPROVED LINKAGE MAP OF THE BERKUT/KRICHaufF MAPPING POPULATION, WITH THE ADDITION OF 12 NEW SSR (IN BOLD AND UNDERLINED FONT) AND 312 DArT MARKERS AND LINKAGE GROUPS ALIGNED WITH PREVIOUSLY CONSTRUCTED WHEAT LINKAGE MAPS... 122
List of Tables

Table 1 Thesis structure. ... 3

Table 2 Eluent profile for separating carbohydrates using an eluent generator............ 30

Table 3 Waveform for carbohydrate analysis using an electrochemical detector........... 30

Table 4 Recovery of spiked fructans using the proposed method................................. 35

Table 5 Results of the determination of fructans in reference flours. 36

Table 6 Galacto-oligosaccharide concentrations in wheat (straight flour and galacto-
oligosaccharide-spiked flour) and in other plant species and estimated
concentrations of fructan in these samples with and without the removal of
interference from galacto-oligosaccharides... 38

Table 7 Wheat materials for grain fructan survey. ... 45

Table 8 Mean grain size and/or yield of parental wheat lines grown in the glasshouse and
the field (south australia, 2006). ... 52

Table 9 Primers used for amplifying portions of the \textit{AB029888} sequence in wheat 61

Table 10 QTLs and epistasis for grain fructan concentration (% of dry weight) measured

Table 11 Effects on grain yield (kg/ha) of \textit{barc54-6d} and \textit{gwm681-7a} at the four field sites (balaklava, roseworthy, booleroo and minnipa), south australia in 2007. Effects
were calculated individually for each marker in rml with the markers fixed and
doubled-haploids random... 70
List of Figures

Figure 1 Comparison of four analytical procedures for fructan measurement: AOAC Method 997.08, AOAC Method 999.03 as implemented in a Megazyme fructan-assay kit, a method presented by Quemener et al. (1994) and the method proposed in this chapter... 26

Figure 2 HPLC profiles of a wheat sample (cv. Gandum Zaapharoni) from different analyses: (A) Direct analysis (no enzyme treatment); (B) Analysis A (digested by amyloglucosidase and α-galactosidase) and (C) Analysis B (digested by amyloglucosidase, α-galactosidase and inulinase) ... 31

Figure 3 Recovery of fructans using the proposed method. Pure fructan samples (Sigma I2255) were prepared in triplicate at 1, 2.5, 5, 10, 50, 100 and 150mg 35

Figure 4 (A) Recovery of pure levan (Sigma L8647) and (B) fructan concentrations of wheat grain (cv. Berkut and cv. Krichauff) measured by the proposed method applying different digesting conditions.. 36

Figure 5 Glasshouse screening of 19 wheat parental lines. ... 43

Figure 6 Mean grain fructan concentrations (% of dry weight) of parental wheat lines grown in the glasshouse (above) and in the field (below) of South Australia in 2006; two parental lines of each DH mapping population are grouped together and compared using linear contrasts... 48

Figure 7 Variation in grain fructan concentration among 98 bread wheat lines grown at Narrabri (New South Wales, Australia) in 2006. ... 49

Figure 8 Grain fructan concentrations of wheat grain grown at Biloela and Toowoomba QLD in 2006 for 16 wheat lines selected for multiple-site fructan evaluation based on the fructan concentration (high or low) of grain grown at Narrabri NSW in 2006.. 50

Figure 9 Association between grain fructan concentration and grain yield measured in the 19 parental lines grown in a glasshouse experiment... 53
Figure 10 The Berkut/Krichauff population grown at Rosedale in 2006. 57

Figure 11 Variation in grain fructan concentration within the Berkut/Krichauff population grown at Rosedale, Australia in 2005 (A) and 2006 (B) and at Koshy, Kazakhstan in 2006 (C); and the phenotypic correlations among the three field environments (D). ... 62

Figure 12 Chromosome locations of regions associated with grain fructan concentration in the Berkut/Krichauff double-haploid population. Dashed lines show epistatic interactions between QTLs.. 66

Figure 13 Mean grain fructan concentrations for Berkut, Krichauff and four genotypic classes of Berkut/Krichauff doubled haploid lines: BB (with Berkut alleles at markers barc54-6D and gwm681-7A), BK (Berkut at barc54-6D; Krichauff at gwm681-7A), KB (Krichauff at barc54-6D; Berkut at gwm681-7A) and KK (Krichauff at both marker loci). Values shown for Rosedale and Koshy are mean values from individual lines. Values shown for Booleroo, Minnipa and Roseworthy are based on assessment of grain samples bulked within genotypic classes.. 68

Figure 14 Mean grain fructan concentrations for Sokoll, Krichauff and bulk grain samples representing four classes of Sokoll /Krichauff doubled haploid lines: SS (with Sokoll alleles at markers barc54-6D and gwm681-7A), SK (Sokoll at barc54-6D; Krichauff at gwm681-7A), KS (Krichauff at barc54-6D; Sokoll at gwm681-7A) and KK (Krichauff at both marker loci), all grown at Rosedale, SA, Australia in 2006 and 2007. ... 69

Figure 15 Significant (P < 0.05) association between the marker barc54-6D and the 1000-grain weight measured in the Berkut/Krichauff population grown at Minnipa, Booleroo, Roseworthy and Balaklava, South Australia in 2007 ... 71

Figure 16 DNA fragments of Krichauff, Berkut, Sokoll and DH lines amplified by primers AB029888-15F and AB029888-19R. The polymorphism (approximately 1.7 kb and 1.8 kb) was mapped to grain-fructan QTL QGfc.aww-7A.1 on chromosome 7A.. 72
Figure 17 Size polymorphism of fluorescent-labelled SSR markers flanking the QTL \(QGfc.aww-6D.2 \) which distinguished between Berkut, Krichauff and Sokoll. \(77 \)

Figure 18 Size polymorphism of fluorescent-labelled SSR markers flanking the QTL \(QGfc.aww-7A.1 \) which distinguished between Berkut, Krichauff and Sokoll. \(78 \)
Abstract

Fructans are polysaccharides that are made up mainly of fructose. They are non-digestible carbohydrates and act as prebiotics to selectively promote the growth of colonic bifidobacteria, thereby improving human gut health. Fructans are present in the grain of wheat (*Triticum aestivum* L.), a staple food crop. Until now, there has been no research on genetic improvement of the concentration of fructans in wheat grain, partly because it has been difficult to accurately measure. One aim of this research project was to develop a simple and effective method to measure the fructan concentration in wheat grain. This was achieved by modifying a method that involves extraction of fructans from wheat grain followed by enzymatic hydrolysis to break down fructans into monosaccharides and quantification by anion-exchange liquid chromatography coupled with pulsed amperometric detection. The modified procedure is reliable and allows the handling of large numbers of flour samples at a relatively low cost, and can therefore be useful for assessing large numbers of wheat breeding lines. Using this method, grain samples taken from a diverse set of 117 wheat cultivars and breeding lines, including parents of mapping populations, were analysed for grain fructan concentration. There was significant genotypic variation among these materials, with grain fructan concentration ranging from 0.3 to 2.3% of grain dry weight. There was no evidence of strong genotype-by-environment interaction; the fructan concentrations of the same genotypes were positively correlated over different environments in Australia. Genetic mapping was carried out to detect and map loci affecting grain fructan concentration in wheat using a doubled haploid population derived from a cross between Berkut (high fructan) and Krichauff (low fructan). Grain samples were obtained from two field sites in South Australia and one in Kazakhstan. Fructan concentration varied widely within the population (0.6-2.6% of grain dry weight), with heritability estimated as $h^2 = 0.71$. A linkage map of 528 molecular markers covering 21 wheat chromosomes was used for locating quantitative trait loci (QTL). Genetic mapping identified two major QTLs on chromosomes 6D and 7A, with the (high fructan concentration) alleles contributed from Berkut, contributing to a 30-40% increase in wheat grain fructan compared to the Krichauff alleles. Effects of these chromosome regions were validated in additional environments and in another mapping population, Sokoll/Krichauff, with the favourable alleles contributed from Sokoll.
major QTL on chromosome 7A was in the same region with a reported fructosyltransferase orthologue \((AB029888)\), while the major QTL on chromosome 6D seemed to be co-located with a reported gene encoding for a fructan-degrading enzyme 1-exohydrolase \((1-FEHw2)\). It is concluded that grain fructan concentration of wheat can be improved by breeding and that molecular markers could be used to select effectively for favourable alleles in two regions of the wheat genome.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Bao Lam Huynh

September, 2008
Acknowledgements

I would like to sincerely thank my supervisors, Professor Diane Mather, Dr Hugh Wallwork, Associate Professor James Stangoulis and Professor Robin Graham, who have guided, supported and encouraged me throughout the course of my research project. Associate Professor James Stangoulis was my initial supervisor who inspired me and helped me return to Adelaide to do PhD studies. Dr Hugh Wallwork helped me with full access to the genetic materials. Professor Robin Graham was always considerate and gave me good advice. I am particularly indebted to my main supervisor Professor Diane Mather for, firstly, taking care of me during my difficult time when James left the University of Adelaide, and secondly, for constructively giving me critical comments and advice, and providing me with opportunities to develop skills in molecular biotechnology and various scientific aspects.

I would like to gratefully acknowledge the University of Adelaide and the Molecular Plant Breeding Cooperative Research Centre for scholarship funding, the Rubber Research Institute of Vietnam for study permission, and the HarvestPlus Challenge Program and Waite Analytical Services for access to laboratory equipment and facilities.

In addition, I would like to express my gratitude to the following people:

- Ross Welch and Laurence Heller (Cornell University) for technical advice on fructan analysis.
- Jim Lewis (SARDI) for assistance with the conduct of field experiments, Robert Henry (Southern Cross University) and Bakhyt Nurzhanuly for kindly providing grain samples.
- Lachlan Palmer, Eun-Young Choi (Flinders University) for assistance with HPLC and other technical aspects.
- Kerrie Willsmore and Steven Olson (SARDI) for providing the preliminary Berkut/Krichauff map.
- Genet Mekuria and Elise Tucker for assistance with candidate-gene assays, Greg Lott for assistance with marker linkage-group alignments.
- Howard Eagles for assistance with some statistical analyses, Colin Jenkins (CSIRO), Kevin Williams, Klaus Oldach (SARDI), Glenn McDonald for advice and Yusuf Genc for kindly providing yield and grain weight data of mapping experiments.
• Michael Francki (Department of Agriculture and Food, Western Australia) and Jingjuan Zhang (Murdoch University) for fructan-candidate gene information.
• Heather Bray and members of the MPBCRC Education Team for training and support.
• Post-graduate coordinators Otto Schmidt, Christopher Preston and Amanda Able for advice and support.
• Margaret Cargill and other staff of the Integrated Bridging Program (Adelaide Graduate Centre) for helping me to develop academic skills during the first year of my PhD.
• Van Lam Lai and colleagues at the Rubber Research Institute of Vietnam for encouragement and support.
• All members of the Waite Plant Nutrition Group and the University of Adelaide Molecular Marker Lab for laboratory guidance and friendships.

I am deeply indebted to my parents Kieu and Thuong, my brothers Lam, Long, Linh, Luan, my sisters Huong, Thu, Thoa and respective families for their love, long-term support and encouragement in all aspects of my career and life, my uncle who has passed away and other relatives for persistent encouragement, my friends, my parents-in-law for support.

Ultimately, I would like to thank my wife Tra and children Titi and Tony for their love, patience and support. Tra is doing a Masters study but has helped on the home front, while Titi and Tony are too young but have been understanding of daddy frequently staying late at school to write his thesis.