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Measurements of optical constants at terahertz—or T-ray—frequencies have been performed extensively using
terahertz time-domain spectroscopy (THz-TDS). Spectrometers, together with physical models explaining the
interaction between a sample and T-ray radiation, are progressively being developed. Nevertheless, measure-
ment errors in the optical constants, so far, have not been systematically analyzed. This situation calls for a
comprehensive analysis of measurement uncertainty in THz-TDS systems. The sources of error existing in a
terahertz spectrometer and throughout the parameter estimation process are identified. The analysis herein
quantifies the impact of each source on the output optical constants. The resulting analytical model is evalu-
ated against experimental THz-TDS data. © 2008 Optical Society of America

OCIS codes: 000.2170, 120.4530, 300.6495.
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. INTRODUCTION
erahertz time-domain spectroscopy (THz-TDS) is a
romising tool in the inspection of materials for their op-
ical properties in the terahertz—or T-ray—frequency
ange, loosely defined as between 0.1 and 10 THz [1]. The
omponents and techniques have been developed such
hat the spectrometer can considerably overcome intrinsic
roblems from thermal background radiation and atmo-
pheric absorption. A THz-TDS waveform transmitted
hrough a material sample is typically rich in informa-
ion, since its shape is altered by the material’s character-
stic frequency response. Sample and reference wave-
orms, once converted by Fourier transform into the
requency domain, can be processed to extract the
requency-dependent optical constants of a material by
eans of a reliable parameter extraction method [2].
Nevertheless, although the parameter extraction pro-

ess is nearly perfect the operation of the hardware is far
rom ideal. Namely, measurements for signals and associ-
ted parameters still contain errors, which affect the
uality of the extracted optical constants. Several sources
f random and systematic errors exist throughout the
easurement process. These sources are, for instance,

ignal noise, sample misalignment, thickness measure-
ent variation, etc. Thus, for a reliable measurement the

valuation of uncertainty is critical in the optimization of
easurement accuracy. The proposed uncertainty model

s a combination of the analytical models for significant
rror sources and is applicable to transmission-mode
Hz-TDS.
Some merits of the uncertainty model proposed in this

ork are that (i) the model reduces the time spent to de-
ermine the uncertainty in measurement, previously cal-
ulated in the same way as a Monte Carlo simulation; (ii)
0740-3224/08/061059-14/$15.00 © 2
he model allows the evaluation and comparison of more
han one source of error, rather than the noise in the sig-
al alone; (iii) the model offers a standard in the evalua-
ion of uncertainty in the optical constants obtained from
Hz-TDS, and thus permits assessment of and compari-
on among results from different measurements; (iv) an
verall uncertainty determined from the model can be
sed in the discrimination of an intrinsic absorption peak
rom artifacts, as any peak that has a magnitude, relative
o the baseline, lower than the uncertainty level, can be
abeled as an artifact; and (v) through the model a me-
hodical optimization of the measurement parameters is
ossible.
The work is organized as follows. Section 3 gives the

ackground on THz-TDS measurement and parameter
xtraction, and identifies an open question regarding the
nalysis of error in the process. In Section 4 the sources of
rror in the THz-TDS measurement and parameter ex-
raction process are identified and characterized by ana-
ytical models, based on the evaluation of uncertainty. A
ractical implementation of the developed uncertainty
odel is given in Section 5.

. FRAMEWORK
he assumptions of a THz-TDS measurement considered
ere are that (i) a sample under measurement is a homo-
eneous dielectric slab with parallel and flat surfaces
here the scattering of T-rays is negligible; (ii) the inci-
ent angle of the T-ray beam is normal to the sample sur-
aces; (iii) the transverse dimension of the sample is
arger than the incident beam waist, so there is no diffrac-
ion; (iv) the reference signal is measured under the same
onditions as the sample signal, except for the absence of
008 Optical Society of America
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he sample; (v) a random error is assumed to follow a nor-
al probability distribution, unless stated otherwise; (vi)

he resolution of the measuring apparatus is sufficiently
igh so that a quantization error is negligible, unless
tated otherwise; (vii) the measuring instruments are
ell-calibrated; and (viii) there is no human error in the
easurements.
The evaluation of uncertainty is on the basis of the

uide to the Expression of Uncertainty in Measurement—
UM, recommended by the International Organization

or Standardization (ISO) and its partners [3]. Some as-
ects of the guideline are tailored, where appropriate. The
echnical terms, where applicable, follow the definitions
rovided in International Vocabulary of Basic and Gen-
ral Terms in Metrology—VIM, published by the ISO in
he name of its partners [4].

. TERAHERTZ TIME-DOMAIN
PECTROSCOPY FOR MEASUREMENT OF
PTICAL CONSTANTS

he process of utilizing THz-TDS in determining the op-
ical constants of a sample is composed of many steps, as
llustrated in Fig. 1. At the heart of the process is the

easuring device, a terahertz spectrometer, which has
een progressively developed to achieve a higher signal-
o-noise ratio (SNR) and wider bandwidth. The quantity
rovided by a THz-TDS measurement is a time-domain
ignal. Thus, a physical model that can relate the mea-
ured signal to the optical properties of a measured
ample is required. This model is then used to estimate or
xtract the optical constants of a sample from a recorded
ignal. The measurement is not ideal, and therefore incor-
orates errors, which need characterization to quantify
he overall measurement uncertainty. Further details for
ach part of the measuring process are described below.

Physical model

TH

Measu

electr

wave propagation

Measu

Eva

Estimator

optical constants

approxi-
mations hypotheses

paramet

ig. 1. (Color online) Parameter estimation process using a TH
pectrometer, a physical T-ray propagation model, and a random
easurement process, whereas the dotted boxes have not been f
. Measuring Device—Terahertz Time-Domain
pectroscopy
THz-TDS system comprises an ultrafast optical laser, a

-ray emitter–receiver, an optical delay line, a set of guid-
ng and collimating optics, and a material sample under
est. The ultrafast optical pulse is divided into two paths,
probe beam and a pump beam, by a beam splitter. At the

mitter the optical pump beam stimulates T-ray pulsed
adiation, usually via either charge transport [6] or an op-
ical rectification effect [7] depending on the emitter type.

typical THz system based on photoconductive antennas
or emission and detection is shown in Fig. 2. The diverg-
ng T-ray beam is collimated and focused onto the sample
y guiding and collimating optics. After passing through
he sample, the T-ray beam is recollimated and focused
nto the receiver by an identical set of guiding and colli-
ating optics. At the receiver, the initially divided probe

eam optically gates the T-ray receiver with a short time
uration compared to the arriving T-ray pulse duration.
imilar to the T-ray generation, the detection or gating
an be performed via either charge transport or electro-
ptic sampling [8]. Synchronization between the optical
ating pulse and the T-ray pulse allows the coherent de-
ection of the T-ray signal at each time instant. A com-
lete temporal scan of the T-ray signal is enabled by the
iscrete micromotion of a mechanical stage controlling
he optical delay line. The system delivers a time-resolved
-ray pulse, which is readily convertible to a wideband
-ray spectrum via Fourier transform.

. Physical Model and Parameter Extraction
key aim of a THz-TDS measurement is to determine the

requency-dependent optical constants of a sample under
est. However, a signal available from a THz-TDS system
s in the time domain and has geometric implications, i.e.,
eflection and refraction, influenced by the sample. This
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ecessitates a physical model to describe the implications
nd a measurement function to extract the constants
rom the signal.

Typically, a T-ray signal that passes through a parallel-
urfaced dielectric sample at the normal angle of inci-
ence can be expressed as a function of the frequency,
ssuming no reflection, by

Esam��� = �
4n̂���n0

�n̂��� + n0�2
exp�− jn̂���

�l�

c �E���, �1�

here E��� is the complex emitted wave; � is the trans-
ission factor of free air surrounding the sample; n0 is

he refractive index of free air; n̂ is the complex refractive
ndex of the sample; and l� is the propagation length in-
ide the sample, which equals the sample thickness l for
he normal angle of incidence. The complex refractive in-
ex, n̂���=n���− j����, comprises the index of refraction,
���, and the extinction coefficient, ����, which, together,
re called the optical constants. In the above equation,
n̂���n0 / �n̂���+n0�2 is a consequence of the transmission
t the sample–air interfaces, and the exponential term
epresents the complex response of bulk material. In
ddition to the sample response,

Eref��� = � exp�− jn0

�l

c �E���, �2�

s the complex frequency response of a reference signal,
.e., a signal measured with the same settings but with
he absence of the sample.

The material parameter extraction process requires
oth Esam��� and Eref���, which are determined from
ime-domain measurements. The sample response nor-
alized by the reference, or Esam��� /Eref���, yields the

omplex transfer function of a material in the frequency
omain:
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ig. 2. (Color online) THz-TDS system configured in transmissio
eceiver, an optical delay line, a set of mirrors, and a material s
he optical beam path is indicated by small arrowheads and the
H0��� =
4n̂���n0

�n̂��� + n0�2
exp�− ����

�l

c �exp�− j�n���

− n0�
�l

c � . �3�

ften, the complex refractive index, n̂���, which is a com-
onent of the transmission at the air–sample interfaces,
s approximated to a real index, n���, giving

H��� =
4n���n0

�n��� + n0�2 exp�− ����
�l

c �exp�− j�n���

− n0�
�l

c � . �4�

his simplified transfer function facilitates the parameter
xtraction process, but also introduces an error due to the
pproximation. Later, this type of error will be taken into
ccount and a proper treatment will be provided in
ubsection 4.D. Taking the argument and logarithm of
he simplified transfer function gives, respectively,

�H��� = − �n��� − n0�
�l

c
, �5a�

ln�H���� = ln� 4n���n0

�n��� + n0�2	 − ����
�l

c
. �5b�

he optical constants can be deduced from Eqs. (5a) and
5b) as

n��� = n0 −
c

�l
� H���, �6a�

be beam
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T-ray receiverror
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. The system consists of an ultrafast optical laser, T-ray emitter–
The emitter and receiver shown are photoconductive antennas.
beam path by large arrowheads.
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���� =
c

�l�ln� 4n���n0

�n��� + n0�2	 − ln�H����� . �6b�

he extracted optical constants are an ultimate outcome
f a THz-TDS measurement process and from now on
qs. (6a) and (6b) will be referred to as the measurement

unctions. Quantities obtained from these measurement
unctions, to some extent, contain a measurement error
rom the input quantities, and this error motivates the
evelopment of a proper procedure for the evaluation of
he uncertainty in the results.

. Evaluation of Uncertainty in the Terahertz
ime-Domain Spectroscopy Measurement
any sources of randomness affecting a THz-TDS signal

ave been reported so far. These sources include laser in-
ensity fluctuation [9–11], optical and electronic noise
12,13], delay line stage jitter [14], registration noise [15],
nd so on. Mathematical treatments for these noise
ources are available in general. Contributions to the er-
or in the estimated optical constants are not only from
he randomness in the signal, but also from imperfections
n the physical setup and parameter extraction process.
hese imperfections relate to, for example, the sample
hickness measurement, the sample alignment, and so on.

An example situation, where the evaluation of the un-
ertainty is critical, is considered by Fischer et al. [16].
he dynamic range of the experiment can be increased by
veraging a series of measured signals in the time do-
ain. Averaging their corresponding spectra does not af-

ect the dynamic range, as discussed by Fischer et al. [16].
y averaging signals in the time domain the standard de-
iation, therefore, appears in the time domain with the
ean corresponding value. Accordingly, it requires a
odel of uncertainty propagation, which can propagate

he standard deviation of a time-domain signal to the
tandard deviation of the optical constants.

A few limited models for the propagation of uncertainty
n a THz-TDS measurement can be found in the litera-
ure, but they are specific cases with loss of generality
nd thus only indirectly relevant to our discussion. For
oise analysis, the model of Duvillaret et al. [13] is used

n the calculation of the uncertainty in the optical con-
tants impacted solely by noise in the reference and
ample spectra. In double-modulated differential time-
omain spectroscopy (DTDS) the evaluation of uncer-
ainty is employed for numerical determination of the op-
imum thickness difference of a liquid sample [17]. The
valuation focuses on a dual-thickness geometry where
he Fresnel transmission coefficient is absent from the
ransfer function. Confidence intervals are established for
he real and imaginary parts of the transfer function,
hich is influenced by noisy spectra [18]. These confi-
ence intervals assist the process of smoothing the esti-
ated optical constants.
It would appear that the previous literature addresses

evelopment of the uncertainty models of the optical con-
tants in a superficial manner. In those cases the work
nly considers the influence of signal noise and/or does
ot extend the model into the time domain. Furthermore,
he developed linear models are rarely verified by a non-
inear numerical simulation. Based upon the motivation
rom the requirements discussed earlier, an evaluation of
ncertainty for a THz-TDS measurement is established in
his work with the aim of an exhaustive list of error
ources in the system.

. SOURCES OF ERROR IN TERAHERTZ
IME-DOMAIN SPECTROSCOPY
EASUREMENT
any sources of error appear in a THz-TDS measurement

nd parameter extraction process. Significant sources of
rror are shown in Fig. 3, where they are listed along with
he parameter extraction process and accompanied by
heir class (random or systematic). In addition to noise,
he sample signal also contains reflections, which, if not
ealt appropriately, cause a systematic error. The error in
he amplitude from several measurements manifests it-
elf as a variance (or deviation). It propagates down the
arameter extraction process, through to the Fourier
ransform and deconvolution stages, producing the vari-
nce in the magnitude and phase of the estimated trans-
er function. The parameter extraction process requires
nowledge of the sample thickness, sample alignment,
nd air refractive index, each of which have a degree of
ncertainty. This step introduces the variances to the es-
imation. Furthermore, an approximation to the model
ransfer function gives rise to a systematic error. At the
utput all these variances accumulate and contribute to
he uncertainty in the extracted optical constants.

Subsections 4.A–4.F provide an analysis for each
ource of error in detail, including a connection between
hese errors and the variance in the optical constants.
he combination of all variances to produce the uncer-

ainty in the optical constants is given in Subsection 4.G.

. Random and Systematic Errors in T-Ray
mplitude
he T-ray amplitude is prone to variation induced by
any sources of random and systematic errors. As men-

ioned earlier, the sources of random error include laser
ntensity fluctuation, optical and electronic noise, jitter in
he delay stage, etc., whereas the sources of systematic er-
or include registration noise, mechanical drift, etc. The
ariation in the amplitude may embrace the effects from
nhomogeneity in a sample or among samples, if the
ample is displaced or replaced with nominally identical
amples during several measurements. What is consid-
red here is the amplitude variance model, which unites
ll these errors and assumes a normal probability distri-
ution. This treatment is valid although the systematic
rror is involved, since the systematic error drifts over
ime and thus cannot be tackled by the method proposed
y [19], which requires a constant systematic error. The
mplitude variance is regularly obtained statistically
rom a number of repeated measurements, and thus is
egarded as a type A evaluation of uncertainty.

Regarding the natural difference between two types of
rror in the T-ray amplitude, a random error occurs in a
elatively short time scale; in contrast to a systematic
rror that can be observed only when the measurement
ime span is long enough. In addition, the amplitude drift
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ue to the systematic error changes in one direction over
ime. Due to these facts, recording and averaging signals
ver a long time span increase the amplitude variation.
his scenario is demonstrated in Fig. 4, in which the drift

s larger for a succeeding measurement. Therefore, mea-
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Given the amplitude variances of the time-domain ref-
rence and sample signals, denoted by sEref

2 �k� and

Esam

2 �k�, respectively, the amplitude-related variances in
he optical constants read as

sn,E
2 ��� = 
 c

�l�
2� Asam���

�Esam����4
+

Aref���

�Eref����4� , �7a�

s�,E
2 ��� = 
 c

�l�
2� Bsam���

�Esam����4
+

Bref���

�Eref����4

+ 
n��� − n0

n��� + n0
�2sn,E

2 ���

n���2 � , �7b�

here

Asam��� = �
k

I2�Esam���exp�j�k���sEsam

2 �k�, �8a�

Aref��� = �
k

I2�Eref���exp�j�k���sEref

2 �k�, �8b�

Bsam��� = �
k

R2�Esam���exp�j�k���sEsam

2 �k�, �8c�

Bref��� = �
k

R2�Eref���exp�j�k���sEref

2 �k�. �8d�

ere, k is the temporal index and � is the sampling inter-
al, and thus k� is the time. The summation is carried out
ver the time duration of a recorded T-ray signal. In the
quations all the parameters are calculated at their mean
alue. For additive noise, 
sEref

2 �k��= 
sEsam

2 �k��. The deriva-
ion for Eq. (7) can be found in Appendix A.

In Eq. (7), the square of the thickness, l2, is a major fac-
or. Increasing the thickness will seemingly decrease the
ariance in the optical constants. A physical reason be-
ind this is that for a very thin sample the system might
ot be sensitive enough to detect a small change in the
mplitude and phase, which is masked by noise. A thicker
ample allows T-rays to interact more with the material,
ausing a larger change in signal. But this competes with
he fact that �Esam��� ��exp�−l� and thus increasing l will
ower the amplitude of a sample signal and lift the overall
ariance. A treatment of the thickness-amplitude trade-
ff can be found in [20].

Equation (7) combines the effects from both the refer-
nce and sample signals. For flexibility in some applica-
ions the effects from the two can be separated. Thereby,
he variances in the optical constants due to the variance
n the sample signal are
n,Esam

2 ��� = 
 c

�l�
2 Asam���

�Esam����4
, �9a�

s�,Esam

2 ��� = 
 c

�l�
2� Bsam���

�Esam����4
+ 
n��� − n0

n��� + n0
�2sn,Esam

2 ���

n���2 � .

�9b�

ikewise, the variances in the optical constants due to the
ariance in a reference signal are

sn,Eref

2 ��� = 
 c

�l�
2 Aref���

�Eref����4
, �10a�

s�,Eref

2 ��� = 
 c

�l�
2� Bref���

�Eref����4
+ 
n��� − n0

n��� + n0
�2sn,Eref

2 ���

n���2 � .

�10b�

he separation of the effects from the reference and
ample allows the evaluation of the uncertainty, where
he numbers of measurements for the sample and refer-
nce signals are not equal. This separation scheme will be
sed later in Subsection 4.G, when variances from all
ources are combined to yield the overall uncertainty.

. Random and Systematic Errors in Sample
hickness
ne parameter that has an influence on the extracted
ptical constants is the propagation distance of a T-ray
eam inside a sample. The propagation distance equals
he sample thickness, when the angle of incidence of the
eam is normal to the sample surfaces. The variance as-
ociated with this thickness is partially due to a random
rror in thickness measurement, which may be subject to,
or example, the mechanical pressure exerted during
hickness measurement, the rigidity of a sample, etc.
rrors in thickness can also occur due to a change in
roperties of the sample, for example, a sample of biologi-
al tissue can shrink during the experiment due to dehy-
ration or a cryogenically frozen sample can have a dif-
erent thickness to that measured at room temperature.
n addition to the random error, another critical factor
ontributing to the variance in the thickness is the reso-
ution of a measuring device, deemed systematic error.
hese two types of error and their impact on the optical
onstants are evaluated separately in the following
iscussion.

. Random Error in Sample Thickness
enerally, a random error occurring in sample thickness
easurements has a normal distribution around a mean

alue. Given the sample thickness variance sl
2 caused by

his error, by referring to the measurement functions in
qs. (6a) and (6b), the thickness-related variances of the
ptical constants are
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sn,l
2 ��� = �n��� − n0

l 	2

sl
2, �11a�

s�,l
2 ��� = �����

l 	2

sl
2 + � c

n����l
n��� − n0

n��� + n0
�	2

sn,l
2 ���,

�11b�

here sl
2 is typically determined from the statistical dis-

ribution of several observations and thus the evaluation
s denoted as type A.

Equations (11a) and (11b) indicate that, with no limit,
ncreasing the sample thickness results in a decrease of
he variance of the optical constants. However, a thicker
ample also results in a weaker sample signal, which
ventually gives rise to sn,E

2 ��� and s�,E
2 ��� in Eq. (7).

. Systematic Error in Sample Thickness (Resolution
imit)
he resolution of a common thickness measuring device,
uch as a micrometer or caliper, is relatively limited. This
ntroduces a systematic error to the thickness measure-

ent. As a result, readout values are influenced from the
ombination of both random and systematic errors. Ac-
ording to the analysis of the resolution limit in [21], the
ariance in the thickness induced by the resolution limit
s �l

2 /12, where �l is the resolution of a measuring device.
The propagation functions, which link this variance to

he variances in the optical constants, are consistent with
hose in Eq. (11). Thus,

sn,�
2 ��� = �n��� − n0

l 	2 �l
2

12
, �12a�

s�,�
2 ��� = �����

l 	2 �l
2

12
+ � c

n����l
n��� − n0

n��� + n0
�	2

sn,�
2 ���.

�12b�

ecause �l is obtained from a published value, the evalu-
tion in the above equation is regarded as type B. Similar
o the thickness-related variances, the variances here de-
rease as the thickness increases unless the noise in the
ignal is considered.

. Random or Systematic Error in Sample Alignment
hen the angle of incidence of T-rays on a sample slab is

ot normal to the surfaces the transfer function becomes
omplicated. Specifically, overly tilting the sample will re-
ult in a complex propagation geometry, a deviated beam
irection, and a lower T-ray energy focused onto a detec-
or. To avoid these complications, the angle of incidence is
ypically assumed to be normal to the sample’s surface, so
hat a simple transfer function can be adopted.

However, with manual placement and adjustment of
he sample, it is likely that a small misalignment can oc-
ur. The small misalignment of a sample causes a longer
-ray propagation path inside the sample, as illustrated
n Fig. 5. A change in the propagation distance eventually
ffects the estimated optical constants of the sample. The
lignment error, therefore, needs to be taken into account
n the evaluation of uncertainty in optical constants.
The type of this error is dependent on the experimental
ractice. If the sample is moved in between several mea-
urements, the error is random. On the other hand, if the
ample is fixed throughout measurements, the error from
he sample alignment is systematic. Despite the possible
ifference in practice, in this work the error in the sample
lignment is considered systematic. The worst-case
cenario can bound the error arising from either case.

According to Fig. 5, the propagation distance inside a
ample, l�, is a function of the sample thickness, l, and the
efraction angle, �t, or

l� =
l

cos �t
. �13�

y assuming that the angle of refraction deviates in a
mall interval �−f� , f�� and has its arithmetic mean at the
rigin, the deviation in the propagation distance is thus

fl = l
 1

cos f�

− 1� . �14�

ote that the numerical evaluation of an error propaga-
ion, as in the above equation, is allowed by GUM. Given
he deviation in the propagation distance, fl, the
lignment-related deviations of the optical constants,
erived from Eqs. (6a) and (6b), are

fn,���� =
n��� − n0

l
fl, �15a�

f�,���� =
����

l
fl +

c

n����l

n��� − n0

n��� + n0
fn,����. �15b�

ubstituting f from Eq. (14) gives

l

lθ

incident beam path

sample: n-jκ

air: n0

θi

θt
θi

ig. 5. (Color online) Tilted sample in a T-ray beam path. This
xaggerated figure illustrates a small tilt angle from the normal,
hich might occur due to manual misalignment of the sample.
he T-ray path inside the sample, l�, is longer than the sample

hickness, l, by the factor of 1/cos �t. The refraction angle, �t, is
elated to the incident angle (and the tilting angle), �i, through
nell’s law, n sin �t=n0 sin �i, but for a small tilting angle, �t��i.
l



F
i
s
c

D
F
p
c
t
t
r
a
n
r
t
g
p
m
e
a
s
i

i
i
b

I
t

I
f

e
d

L
m
c

O
f
a
s
c
a
b
a
e

b
a
(
f
a
d
a

E
I
o
s
p
F
t
t
b
f

w

I
p
s
s
F
t
s
p
t
t
t
t
f
u
l
s

1066 J. Opt. Soc. Am. B/Vol. 25, No. 6 /June 2008 Withayachumnankul et al.
fn,���� = �n��� − n0�
 1

cos f�

− 1� , �16a�

f�,���� = ����
 1

cos f�

− 1� +
c

n����l

n��� − n0

n��� + n0
fn,����.

�16b�

rom the above equations the deviation in the refractive
ndex due to the sample alignment is independent of the
ample thickness, whereas the deviation in the extinction
oefficient partly reduces for a thicker sample.

. Systematic Error in Approximated Transfer Function
rom Subsection 3.B, regarding the parameter extraction
rocess, it can be seen that the determination of optical
onstants is based upon an approximated transfer func-
ion. This approximation certainly gives rise to an error in
he estimated optical constants. But, unlike any other er-
or in the measurement process, the systematic error
rising from an approximated transfer function is recog-
ized and quantifiable. Furthermore, it can be completely
emoved from the optical constants if a nonapproximation
echnique for material parameter extraction, such as that
iven in [2,22,23], is employed. However, a precise ap-
roach involves a complicated iterative calculation and
ost researchers trade off this complexity with a small

rror from the approximation. Here, a treatment of the
pproximation is offered to evaluate the error and to as-
ist the selection of an appropriate approach in determin-
ng the optical constants.

In this section, for lucidity, the exact transfer function
n Eq. (3) is referred to as Hexact��� and its approximation
n Eq. (4) is referred to as Happx���. The phase difference
etween the approximated and exact transfer functions is

f�H��� = � Happx��� − � Hexact���,

= − arg� 4n̂���n0

�n̂��� + n0�2� . �17�

n a similar way, the magnitude difference between the
wo functions is

fln�H���� = ln�Happx���� − ln�Hexact����,

= ln� 4n���n0

�n��� + n0�2� − ln� 4n̂���n0

�n̂��� + n0�2�,

= ln�n���

n̂���� n̂��� + n0

n��� + n0
	2� . �18�

t is now clear that if ��0, which makes n̂����n���, then
�H and fln�H� become zero.

Derived from the measurement function in Eq. (6a), the
ffect of the phase difference on the refractive index
eviation is
fn,H��� =
c

�l
�f�H���� . �19�

ikewise, derived from Eq. (6b), the effect of the approxi-
ated transfer function on the deviation of the extinction

oefficient is

f�,H��� =
c

�l��fln�H�� +
1

n���

n��� − n0

n��� + n0
�fn,H����	 . �20�

bviously, the thickness, l, of a sample is an important
actor in both fn,H��� and f�,H���. A thicker sample implies

lower contribution to the deviation of the optical con-
tants from the transfer function approximation. A physi-
al explanation is that a thick sample enhances the inter-
ction between T-rays and the bulk material, as indicated
y the exponential terms in Eq. (3). This enhanced inter-
ction dominates the transfer function and dominates the
ffect of the approximation in Happx���.

Here, the values of n��� and ���� are estimated on the
asis of a simplified transfer function. Substitution of the
pproximated values of n��� and ���� into Eqs. (19) and
20) can determine the approximated deviations, fn,H and
�,H. These deviations are not correction factors for the
pproximated optical constants, but are rather used to
emonstrate the magnitude of the difference between the
pproximated and the exact values.

. Systematic Error from Reflections
n the measurement of a sample, particularly in the case
f parallel and shiny surfaces, the reflections at air–
ample interfaces always occur, resulting in reflected
ulses in a recorded signal. These reflections, or so-called
abry–Pérot effect, can be removed to some extent from

he signal by some means prior to the parameter estima-
ion [24]. Otherwise, the transfer function in Eq. (4) must
e amended to incorporate the Fabry–Pérot effect as
ollows:

HFP��� = FP���H���, �21�

here

FP��� =�1 − � n̂��� − n0

n̂��� + n0
	2

exp�− 2jn̂���
�l

c 	�−1

.

�22�

n this case, the effect must be dealt with during the
arameter estimation process by an iterative method
uch as that of [2]. But researchers often prefer using a
imple extraction method, in Eqs. (6a) and (6b), where the
abry–Pérot effect is ignored. The effect then propagates

o the extracted optical constants, where it manifests it-
elf as a systematic error. In response to that this section
roposes an analytical model that can trace the propaga-
ion of a Fabry–Pérot effect, now a systematic error, from
he spectrum to the optical constants. Quantification of
his error can show how large its contribution is toward
he optical constants. In addition, the estimated error
rom the Fabry–Pérot effect has merit in that it can be
sed to discriminate real absorption features from oscil-

atory artifacts. If the peak amplitude, i.e., the absorption
pectrum subtracted by its baseline, is lower than the es-
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imated Fabry–Pérot oscillation then the peak is not of
mportance and can be regarded as an artifact.

Recall that now there are two expressions of the trans-
er function: one is with the Fabry–Pérot term, HFP���,
nd the other is an approximation, H���. The phase
ifference between the two transfer functions is

f�FP��� = � H��� − � HFP���,

= − arg�FP����. �23�

n a similar way the magnitude difference between the
wo functions is

fln�FP���� = ln�H���� − ln�HFP����,

= − ln�FP����. �24�

Derived from the measurement function in Eq. (6a), the
ffect of reflections on the refractive index deviation is

fn,FP��� =
c

�l
�f�FP����. �25�

ikewise, derived from Eq. (6b), the effect of reflections on
he deviation of the extinction coefficient is

f�,FP��� =
c

�l��fln�FP�� +
1

n���

n��� − n0

n��� + n0
�fn,FP����	 . �26�

gain, the sample thickness plays an important role in
caling the deviation caused by the Fabry–Pérot effect. A
onger propagation path within a sample results in a
ower deviation of the estimated optical constants. An ex-
lanation of this is that a longer T-ray path length in a
ample leads to a reduction in the amplitude of reflected
ulses in an exponential manner. The reduced amplitude
f reflections makes the approximation more reasonable.

In our analysis the values of n��� and ���� are esti-
ated without considering the Fabry–Pérot effect. Sub-

titution of the approximated values, n��� and ����, into
qs. (25) and (26) can determine the approximated devia-

ions fn,FP and f�,FP, but not the actual deviations. Thus,
n,FP and f�,FP are not correction factors for the optical
onstants.

. Systematic Error in Physical Constants
he refractive index of air is slightly larger than unity,
nd is dependent on the temperature and pressure. The
alue at 0.89 THz can be estimated from [25]

n0,exact = 1 +
86.26�5748 + T�p

T2 · 10−6, �27�

here p is the partial pressure of water vapor in millime-
ers of mercury (mmHg) and T is the temperature in
elvin. At the temperature of 298.15 K (25°C) the satu-

ated vapor pressure is 23.76 mmHg—this yields an index
ffset of 1.4�10−4.

Nevertheless, the value of unity for air is always
dopted instead of this exact calculation in the estimation
f the optical constants for the sake of simplicity. Thus,
his approximation causes a systematic error, where the
ign and magnitude of the variation is known a priori.
he worst-case analysis is adopted in tracing the propa-
ation of this error to the output optical constants.
From the measurement function in Eq. (6a), the refrac-

ive index deviation due to the air–index deviation is

fn,n0
��� = �fn0

�, �28�

here fn0
=n0−n0,exact. And, from Eq. (6b), the deviation in

he extinction coefficient is

f�,n0
��� =

c

�l

n��� − n0

n���n0
fn0

. �29�

he relation is straightforward and requires no validation
y Monte Carlo simulation.

. Uncertainty in Optical Constants: A Combination of
ariances
s shown in the earlier subsections 4.A–4.F, many
ources of error contribute to the variance of the mea-
ured optical constants. The combined uncertainties for
he refractive index and extinction coefficient are esti-
ated by addition of the variances and deviations derived

o far, or

un̄��� = kP�sn,Esam

2

NEsam

+
sn,Eref

2

NEref

+
sn,l

2

Nl
+ sn,�

2 + fn,� + fn,H + fn,FP

+ fn0
, �30a�

u�̄��� = kP�s�,Esam

2

NEsam

+
s�,Eref

2

NEref

+
s�,l

2

Nl
+ s�,�

2 + f�,� + f�,H + f�,FP

+ f�,n0
, �30b�

here the coverage factor kP=1 is for the standard uncer-
ainty and kP	1 for an expanded uncertainty; NEsam

and
Eref

are the numbers of measurements for the sample
nd reference signals, respectively; and Nl is the number
f measurements for the sample thickness. Because the
ources of error are uncorrelated, no covariance appears
n the formulas.

It is advised that when the measurement uncertainty
s reported the coverage factor, kP, and all the components
sed to reckon the uncertainty be listed out, along with
heir evaluating method, i.e., type A or B evaluation [3].
ypically, but not always, s�n,��,Esam

2 , s�n,��,Eref

2 , and s�n,��,l
2

re type A, or statistical observations, whereas the rest of
he components are type B.

The calculation of uncertainty presented in this section
ollows a recommendation of GUM in that the uncertainty
s directly derivable from the contributing sources of error,
nd it is directly transferable to other measurands, to
hich the optical constants are relevant. For example,

ransferring from the uncertainty in the extinction
oefficient to that in the absorption coefficient is via

̄= �2� /c�u�̄.
The uncertainty model enables further investigation

or dominant sources of error in the system and also en-
bles optimization of the measurement. A parametric sen-
itivity analysis can also be performed with these equa-
ions. It should, however, be remembered that the
ncertainty model is based on a linear approximation.
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his low-order approximation is valid in the case where
he sources of error have their variation limited to a small
icinity. For a general case, the approximation is justified
y Monte Carlo simulation (MCS), and the results will be
ublished elsewhere.

. PRACTICAL IMPLEMENTATION
he analytical models for the propagation of variance, de-
eloped and validated in the earlier sections, are imple-
ented with a set of T-ray measurements to demonstrate

he functionality. The measurements are carried out with
lactose sample by a free-space transmission T-ray

pectrometer.
The THz-TDS system in use employs photoconductive

ntennas (PCA) at the transmitter and receiver. The
ump laser is a mode-locked Ti:sapphire laser with a
ulse duration of 15 fs and a repetition rate of 80 MHz.
his generates the T-ray pulse with a FWHM of 0.4 ps
nd its bandwidth spans from 0.1 to 3 THz. The time con-
tant for the lock-in amplifier is set to 30 ms. The sur-
ounding atmosphere is purged with nitrogen to eliminate
he effects of water vapor.

The lactose sample is prepared by mixing 25 mg of
-lactose monohydrate with high-density polyethylene

HDPE) powder and pressing the mixture using a hydrau-
ic press into a solid disk with a diameter of 13 mm and a
hickness of 1.85 mm. The sample is placed at the focal
lane between two off-axis parabolic mirrors. These mir-
ors have a focal length of 100 mm and the collimated
eam incident on the first mirror has a diameter of
5 mm. According to the theory of Gaussian beam optics
26] the depth of focus, i.e., twice the Rayleigh length, is
mm for the 3 THz wavelength. Thus, the sample thick-
ess of 1.85 mm is thinner than the depth of focus of the

ighest-frequency component. In addition, the largest f
aist diameter of the beam is 11 mm for the 0.1 THz com-
onent, smaller than sample’s diameter, and thus does
ot lead to edge diffraction.
The reference and sample signals are measured alter-

ately to assure that the drift in the signal amplitude
oes not influence the result. The reference and sample
ignals are both measured ten times. The time between
wo consecutive measurements is 6 min on average.
igure 6 shows the mean values of the reference and
ample signals along with their standard deviations. No
eflections are observed in the sample signal.

Measured by a micrometer with a resolution �=1 �m
he lactose pellet has an average thickness of 1.85 mm in
he propagation direction and the standard deviation of
he thickness from ten measurements is sl=5 �m. Let us
uppose as a worst-case that the tilting angle of the lac-
ose sample during the measurements has a rectangular
istribution around the origin, bounded by f�= ±2°.
hroughout the measurement the ambient temperature

s approximately 25°C and the humidity is 60%—this cor-
esponds to the saturated vapor pressure of 23.76 mmHg
nd the partial pressure of 14.26 mmHg. According to
q. (27), the refractive index of air is �1.0001.
Shown in Fig. 7 are the optical constants of the lactose–

DPE pellet, n and �; their standard deviations, sn and
�; their deviations, fn and f�; and the combined uncer-
ainties, un and u�, plotted on a logarithmic scale. The op-
ical constants are determined from a pair of the averaged
eference and sample signals, using the measurement
unctions in Eqs. (6a) and (6b). The standard deviations,
he deviations, and the uncertainties are evaluated by us-
ng the proposed analytical models. For comparison, the
tandard deviations of n and � due to the amplitude
ariation, or sn,E and s�,E, are also evaluated numerically
rom the ten profiles of their respective values; available

rom ten pairs of the reference and sample signals. The
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ig. 6. (Color online) Average signals and standard deviations for reference and lactose. The reference and lactose signals are each
veraged over 10 measurements. The signals have a temporal resolution of 0.0167 ps, and a total duration of 34.16 ps. The inset shows
he spectra of the reference and sample.
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nalytical and numerical evaluations appear to provide
omparable values of s�,E or sn,E. The slight mismatch is
ikely caused by the first-order approximation in the
nalytical model.
The refractive index appears constant at n�1.46, but

ctually varies slightly with the frequency. The extinction
oefficient, on the other hand, is strongly dependent on
he frequency, and varies in between 0.001 and 0.01; two
bsorption resonances at 0.53 and 1.37 THz reproduce
hose reported in [27]. The variation in the T-ray ampli-
ude gives rise to sn,E and s�,E equally. Because the extinc-
ion coefficient is lower than the index of refraction by 2
rders of magnitude or more, the extinction coefficient is
hus significantly affected by s�,E. Interestingly, the stan-
ard deviation in n caused by the thickness variance, or
n,l, is higher than the standard deviation caused by the
mplitude variance sn,E. The deviations from the limited
hickness resolution, sn,� and s�,�; from the tilting angle,
n,� and fk,�; and from the offset in refractive index, fn0

and
�,n0

, are less than the optical constants’ levels by 4 orders
f magnitude, and are deemed insignificant. The transfer
unction approximation causes a significant impact in the
ase of the extinction coefficient, since at low frequencies
he value of f�,H is close to the value of s�,E. Note that no
eviation from the reflections is evaluated here, as the
eflections are not present in the signal.

The uncertainties un and u� are evaluated with the cov-
rage factor kP of 1. It can be seen that the uncertainties
re dominated by the effects from the amplitude varia-
ion, sn,E or s�,E. The values of un and u� become larger at
igher frequencies, where the magnitude of the sample
nd reference spectra is low. The tendency of the uncer-
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ig. 7. (Color online) Uncertainty for the lactose measurement.
arison to the mean values of the optical constants and the stan
ncertainty is calculated with the coverage factor kP=1. Both sub

actose–HDPE pellet is approximately 1.46, compared to its com
ined uncertainty are signal noise and thickness uncertainty. I
ombined uncertainty of the order of 10−4. The major source con
ndicate the low-frequency resonances of 
 lactose at 0.53 and 1.
ainties with respect to the spectral position is similar to
hat of the results reported in [28], in which a similar
Hz-TDS system is used in characterization of some
ielectric materials.

. CONCLUSION AND POTENTIAL
XTENSIONS
reviously, the analysis of the sources of error in a THz-
DS measurement emphasized the noise in a signal
aused by electronic, optical, and mechanical components.
et, other sources of random and systematic errors, intro-
uced during the signal measurement and throughout the
arameter extraction process, were overlooked. It is thus
f great importance to have an analysis that can quantify
nd relate the error from many sources to the final
arameters, i.e., the optical constants.
This work presents the evaluation of uncertainty in a

Hz-TDS measurement, with a particular focus on a
ransmission mode measurement. Several sources, which
ontribute to the measurement error, are identified. The
elation between the variance or deviation from each of
hese sources and that in the optical constants is derived.
ll the contributing variances and deviations, affecting

he optical constants, are combined to give the total un-
ertainty in the measurement. The derived analytical
odels are successfully validated with the Monte Carlo
ethod or other numerical means. A test of the models
ith experimental T-ray data obtained from lactose
easurements also provides validation, which enables a

urther comparative study of error from each part of a

0.5 1 1.5 2 2.5 3

(b) standard deviation of κ or sκ

κ
sκ,E

sκ,l

sκ,δ
fκ,θ

sκ,E (numerical)

fκ,H

fκ,n0

combined uncertainty, uκ

κ
an

d
st

an
d
ar

d
d
ev

ia
ti
on

of
κ

frequency (THz)

mbined uncertainties in the optical constants are plotted in com-
eviations introduced by various sources of error. The combined

s share the same vertical scale. In (a) the refractive index of the
uncertainty of 10−3. The major sources contributing to the com-
he extinction coefficient is of the order of 10−3, compared to its
ng to the combined uncertainty is signal noise. The arrowheads
.

3

n,θ

n0

n

The co
dard d
figure
bined
n (b) t
tributi



T
w
G

c
t
f
c
m
t
b
d
b
o
m
m
t
a

s
a
c
t
n
s
a
o
f
b
l
s
f

t
w
r
t
u
b
a
[

A
V
I
t
t
m
m
F
v
d
T
F
c

s

w
i

r

A
t
s
t

w
E
s
[

T
t

C
p

S
i
E

S
o

1070 J. Opt. Soc. Am. B/Vol. 25, No. 6 /June 2008 Withayachumnankul et al.
Hz-TDS system. The evaluation of uncertainty in this
ork, where applicable, follows the guidelines proposed in
UM [3].
These promising results suggest that the proposed un-

ertainty model offers a standard for evaluation of uncer-
ainty in transmission THz-TDS measurements. There-
ore, measurements from different laboratories can be
ompared on the same basis. The number of repeated
easurements depends on the nature of the error, i.e., if

he error does not drift over a given time span, the num-
er of measurements should be maximized; otherwise, if
rift is observed a different methodology is required. A
enefit of the proposed model is that it enables analytical
ptimization and sensitivity analysis for some measure-
ent parameters, which often results in reduction of the
easurement uncertainty. As an example, the optimiza-

ion of a sample’s thickness is determined based on this
nalysis and will be published elsewhere [20].
It should be noted that our assumption of a perfect

ample results in the absence of some sources of system-
tic and random errors, which could contribute to the un-
ertainty in the optical constants. These sources are, e.g.,
he parallelism of the sample surfaces and the inhomoge-
eity and scattering by the sample [29]. Apart from those
ample-related imperfections, a number of optical effects
re omitted from the widely used transfer function model,
r Eq. (3). These effects, particularly arising from a beam-
ocusing configuration, include frequency-dependent
eam shape (beam waist at the focal point, Rayleigh
ength, beam divergence) [30] and beam defocusing by the
ample. Treatment of these effects is appropriate for
uture work.

The proposed model is applicable to any THz-TDS sys-
em, which produces sample’s response in compliance
ith Eq. (3). An alteration to the model to deal with the

eflection mode THz-TDS or other tailored THz-TDS sys-
ems is foreseeable. Further accuracy in the evaluation of
ncertainty, at an additional computational expense, can
e obtained by considering a higher-order analysis [31] or
numerical approach, such as a Monte Carlo method

32], which is accepted as a supplementary to GUM.

PPENDIX A: PROPAGATION OF
ARIANCE FROM THE AMPLITUDE

n this Appendix we show a derivation of the variance in
he optical constants that propagates from the variance in
he T-ray amplitude. From the amplitude in the time do-
ain, the variance is transferred to the variance of the
agnitude and phase spectra in the frequency domain via
ourier transform. Then the combination between the
ariances of sample and reference measurements pro-
uces the variance in the transfer function of a sample.
he variance eventually appears at the optical constants.
or general details about the propagation of variance and
ovariance, please consult, e.g., [3].

The discrete Fourier transform of a time-resolved
ignal, E�k�, is [33]

E��� = �
k

E�k�exp�− j�k��, �A1�

here k is the temporal index and � is the sampling
nterval. If E���=E ���+ jE ���, where E ��� and E ��� are
r i r i
eal, then

Er��� = �
k

E�k�cos��k��, �A2a�

Ei��� = − �
k

E�k�sin��k��. �A2b�

ssuming that the amplitude at each time sample is sta-
istically independent from the amplitude at other time
amples, the variances of the real and imaginary parts of
he spectrum are, respectively [34],

sEr

2 ��� = �
k

cos2��k��sE
2 �k�, �A3a�

sEi

2 ��� = �
k

sin2��k��sE
2 �k�, �A3b�

here sE
2 �k� is the variance of the time-domain signal

�k�. Since the real and imaginary parts of the spectrum
hare the same set of inputs, their covariance is then
34,35]

sErEi
��� = − �

k
sin��k��cos��k��sE

2 �k�

= −
1

2�
k

sin�2�k��sE
2 �k�. �A4�

he magnitude and phase of the signal, determined from
he real and imaginary parts of the complex spectrum, are

�E���� = �Er���2 + Ei���2, �A5a�

�E��� = arctan�Ei���/Er����. �A5b�

orrespondingly, the variances of the magnitude and
hase are

s�E�
2 ��� =

1

�E����2
�Er���2sEr

2 ��� + Ei
2���sEi

2 ���

+ 2Er���Ei���sErEi
����, �A6a�

s�E
2 ��� =

1

�E����4
�Ei���2sEr

2 ��� + Er���2sEi

2 ���

− 2Er���Ei���sErEi
����. �A6b�

ubstituting the variances and covariance of the real and
maginary parts from Eqs. (A3) and (A4) simplifies
qs. (A6a) and (A6b) to, respectively,

s�E�
2 ��� =

1

�E����2�k
�Er���cos��k�� − Ei���sin��k���2sE

2 �k�,

�A7a�

s�E
2 ��� =

1

�E����4�k
�Ei���cos��k�� + Er���sin��k���2sE

2 �k�.

�A7b�

ome mathematical manipulations reduce the above pair
f equations to
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s�E�
2 ��� =

1

�E����2�k
R2�E���exp�j�k���sE

2 �k�, �A8a�

s�E
2 ��� =

1

�E����4�k
I2�E���exp�j�k���sE

2 �k�, �A8b�

here R2 and I2 denote the square of the real and imagi-
ary parts, respectively. According to Eq. (A8a) the ampli-
ude variances of the sample and reference spectra are
iven by, respectively,

s�Esam�
2 ��� =

1

�Esam����2�k
R2�Esam���exp�j�k���sEsam

2 �k�,

�A9a�

s�Eref�
2 ��� =

1

�Eref����2�k
R2�Eref���exp�j�k���sEref

2 �k�,

�A9b�

nd according to Eq. (A8b) the phase variances of the
ample and reference spectra are given by, respectively,

s�Esam

2 ��� =
1

�Esam����4�k
I2�Esam���exp�j�k���sEsam

2 �k�,

�A10a�

s�Eref

2 ��� =
1

�Eref����4�k
I2�Eref���exp�j�k���sEref

2 �k�.

�A10b�

he sample and reference fields are independent from
ach other, resulting in the absence of a covariance term.
he transfer function of a sample is calculated by dividing
he sample spectrum by the reference. In terms of the
agnitude and phase, this operation is given by

�H���� = �Esam����/�Eref����, �A11a�

�H��� = � Esam��� − � Eref���. �A11b�

he variances of Eqs. (A11a) and (A11b) are, respectively,

s�H�
2 ��� =

1

�Eref����2
s�Esam�

2 ��� +
�Esam����2

�Eref����4
s�Eref�

2 ���,

�A12a�

s�H
2 ��� = s�Esam

2 ��� + s�Eref

2 ���. �A12b�

he magnitude and phase of the signals are presumably
reated as independent input parameters and conse-
uently there is no covariance between the magnitude
nd phase. Substituting Eqs. (A9) and (A10) into
qs. (A12a) and (A12b) gives
s�H�
2 ��� =

1

�Eref���Esam����2�k
R2�Esam���exp�j�k���sEsam

2 �k�

+
�Esam����2

�Eref����6 �
k

R2�Eref���exp�j�k���sEref

2 �k�,

�A13a�

�H
2 ��� =

1

�Esam����4�k
I2�Esam���exp�j�k���sEsam

2 �k�

+
1

�Eref����4�k
I2�Eref���exp�j�k���sEref

2 �k�. �A13b�

rom the measurement function, the refractive index and
he extinction coefficient are evaluated from the magni-
ude and phase of the transfer function via

n��� = n0 −
c

�l
� H���, �A14a�

���� =
c

�l�ln� 4n���n0

�n��� + n0�2	 − ln�H����� . �A14b�

hus, the variances of the refractive index and the extinc-
ion coefficient due to the magnitude and phase variances
re

sn
2��� = 
 c

�l�
2

s�H
2 ���, �A15a�

s�
2��� = � c

�l�H����	2

s�H�
2 ��� + � c

�l
n��� − n0

n��� + n0
�	2 sn

2���

n���2 .

�A15b�

quations (A13a) and (A13b) are then combined with
qs. (A15a) or (A15b) to produce

sn
2��� = 
 c

�l�
2� 1

�Esam����4�k
I2�Esam���exp�j�k���sEsam

2 �k�

+
1

�Eref����4�k
I2�Eref���exp�j�k���sEref

2 �k�� ,

�A16a�

s�
2��� = 
 c

�l�
2� 1

�Esam����4�k
R2�Esam���exp�j�k���sEsam

2 �k�

+
1

�Eref����4�k
R2�Eref���exp�j�k���sEref

2 �k�

+ 
n��� − n0

n��� + n0
�2sn,E

2 ���

n���2 � .

he models above explicitly express the variances of the
ptical constants in terms of the variance in the signals’
mplitude.
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