Spatial and Temporal Variation in Primary and Secondary Productivity in the Eastern Great Australian Bight

Paul D. van Ruth

April 2009

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy,

School of Earth and Environmental Sciences,

The University of Adelaide.
Table of contents

List of tables.. iii
List of Figures... iv
Summary.. vi
Declaration... xii
Acknowledgements.. xiii

1. Introduction.. 1
1.1. References... 13

2. Hot-Spots of Primary Productivity: An Alternative Interpretation to Conventional Upwelling Models..20
2.1. Abstract... 20
2.2. Introduction... 21
2.3. Methods... 26
2.3.1. Measurements of physical parameters ... 26
2.3.2. Measurements of nutrient concentrations ... 27
2.3.3. Measurements of phytoplankton biomass and primary productivity................................. 27
2.3.4. Modelling primary production ... 29
2.4. Results.. 32
2.4.1. Spatial variation in physical parameters .. 32
2.4.2. Spatial variations in the light regime .. 32
2.4.3. Spatial variation in nutrient concentrations .. 33
2.4.4. Spatial variation in phytoplankton biomass and primary productivity.............................. 33
2.5. Discussion.. 36
2.6. References... 45
2.7. Tables.. 50
2.8. Figures.. 55

3. The Influence of Mixing on Primary Productivity: A Unique Application of Classical Critical Depth Theory..68
3.1. Abstract... 68
3.2. Introduction... 69
3.3. Methods... 75
3.3.1. Measurements of upwelling intensity ... 75
3.3.2. Measurements of hydrological parameters .. 76
3.3.3. Measurements of biomass and primary productivity.. 77
3.3.4. Modelling primary production ... 78
3.3.5. Calculating the critical depth ... 81
3.4. Results.. 82
3.4.1. Temporal variation in upwelling intensity .. 82
3.4.2. Temporal variation in hydrological parameters ... 83
3.4.3. Temporal variation in biomass and primary productivity... 84
3.4.4. Temporal variation in the critical depth .. 86
3.5. Discussion.. 87
3.6. References... 95
3.7. Tables.. 100
3.8. Figures.. 106
4. Spatial and Temporal Variation in Phytoplankton Biodiversity: The Influence of Upwelling and Mixing .. 118
 4.1. Abstract .. 118
 4.2. Introduction .. 119
 4.3. Methods ... 122
 4.4. Results ... 125
 4.4.1. Phytoplankton abundance and composition 125
 4.4.2. Species diversity and cell size ... 126
 4.4.3. Spatial and temporal variation ... 127
 4.5. Discussion .. 129
 4.6. References ... 135
 4.7. Tables .. 138
 4.8. Figures .. 142

5. Can Meso-Zooplankton Community Composition be used to Distinguish Between Water Masses in a Coastal Upwelling System? ... 150
 5.1. Abstract ... 150
 5.2. Introduction .. 151
 5.3. Methods ... 153
 5.4. Results ... 156
 5.4.1. Meso-zooplankton abundance, composition and species diversity 156
 5.4.2. Biomass and grazing ... 158
 5.4.3. Spatial and temporal variation ... 158
 5.5. Discussion .. 160
 5.6. References ... 164
 5.7. Tables .. 168
 5.8. Figures .. 172

6. General discussion .. 182
 6.1. References ... 190
List of tables

Table 2.1. Spatial variation in euphotic depth and mixed layer depth in the EGAB .50
Table 2.2. Spatial variation in nutrient concentrations in the EGAB51
Table 2.3. Spatial variation in VGPM modelled primary productivity in different sections of the water column in the EGAB ...52
Table 2.4. Photosynthetic parameters measured in nearshore regions using Phyto-PAM, February/March 2006 ...53
Table 2.5. Spatial variation in primary productivity modelled according to Platt et al. (1991) in different sections of the water column in the EGAB54

Table 3.1. Temporal variation in bio-oceanographic parameters off south western Eyre Peninsula ..100
Table 3.2. Photosynthetic parameters measured using Phyto-PAM, February/March 2006...101
Table 3.3. Temporal variations in VGPM parameters ..102
Table 3.4. Temporal variation in daily integral productivity calculated according to Platt et al. (1991) ...103
Table 3.5. Temporal variation in loss factors used in Platt et al.’s (1991) calculation of daily integrated losses in the surface mixed layer104
Table 3.6. Temporal variation in critical depth (Zcr, m) in the coastal waters off SWEP, calculated using the model of Platt et al. (1991)105

Table 4.1. Results of PerMANOVA based upon the abundances of phytoplankton in the EGAB during February/March 2004 and February/March 2005138
Table 4.2. Results of indicator species analysis based upon the abundances of phytoplankton in different regions of the EGAB during February/March 2004 and February/March 2005 ..139
Table 4.3. Results of PerMANOVA based upon the abundances of phytoplankton in nearshore central and western regions of the EGAB during February/March 2004, September 2004 and February/March 2005140
Table 4.4. Results of indicator species analysis based upon the abundances of phytoplankton in nearshore central and western regions of the EGAB during February/March 2004, September 2004 and February/March 2005 ..141

Table 5.1. Temporal variation in settling volume (ml m⁻³) meso-zooplankton biomass (mg C m⁻³) and grazing rate (mg C m⁻³ d⁻¹)168
Table 5.2. Results of PerMANOVA based upon the abundances of meso-zooplankton in the EGAB during February/March 2004 and February/March 2005 ...169
Table 5.3. Results of indicator species analysis based upon the abundances of meso-zooplankton in the EGAB during February/March 2004170
Table 5.4. Results of indicator species analysis based upon the abundances of meso-zooplankton in different regions of the EGAB during February/March 2004 and February/March 2005 ..171
List of figures

Figure 2.1. Conceptual model of water mass formation and nutrient enrichment in the upwelling region of the EGAB ...55
Figure 2.2. Sampling station locations ...56
Figure 2.3. Spatial variation in CTD measured SST in the EGAB in February/March 2005 (top) and 2006 (bottom) ...57
Figure 2.4. CTD temperature depth profiles for cross-shelf transects in the EGAB in February/March 2005 (left) and 2006 (right) ..58
Figure 2.5. CTD density depth profiles for cross-shelf transects in the EGAB in February/March 2005 (left) and 2006 (right) ..59
Figure 2.6. Relationship between mixed layer depth and euphotic depth at selected stations in the EGAB ...60
Figure 2.7. Spatial variation in surface extracted chlorophyll a concentrations in the EGAB in February/March 2005 (top) and 2006 (bottom).61
Figure 2.8. CTD fluorescence depth profiles for cross-shelf transects in the EGAB in February/March 2005 (left) and 2006 (right) ..62
Figure 2.9. Spatial variation in VGPM modelled primary productivity in the EGAB in February/March 2005 (top) and 2006 (bottom)63
Figure 2.10. Relationship between VGPM modelled primary productivity in the surface mixed layer and total primary productivity in the euphotic zone, calculated using CTD fluorescence ..64
Figure 2.11. Electron transport rates (ETR) measured in the EGAB in February/March 2006 using Phyto-PAM ...65
Figure 2.12. Relationship between primary productivity, in the surface mixed layer and total primary productivity in the euphotic zone, modelled according to Platt et al. (1991) using CTD fluorescence66

Figure 3.1. Conceptual model of mixing and productivity in the shelf waters off SWEP ...106
Figure 3.2. Sampling stations used for measurements of bio-oceanographic parameters and levels of primary production in the eastern Great Australian Bight ...107
Figure 3.3. Neptune Island mean wind stress (\pm standard error) calculated over three month periods (Summer, Jan-Mar; Winter, Jul-Sept) ..108
Figure 3.4. Three day averaged wind stress from Neptune Island, for the period September 2003 to May 2006 ...109
Figure 3.5. Seasonal variation in sea surface temperature in waters off south western Eyre Peninsula ...110
Figure 3.6. Seasonal variation in depth profiles of bio-oceanographic parameters in waters off south western Eyre Peninsula ...111
Figure 3.7. Seasonal variation in nutrient depth profiles in waters off south west Eyre Peninsula ...112
Figure 3.8. Seasonal variation in stoichiometric ratios in waters off south west Eyre Peninsula ...113
Figure 3.9. Seasonal variation in surface chlorophyll a concentrations in waters off south western Eyre Peninsula ...114
Figure 3.10. Seasonal variation in chlorophyll depth profiles and extracted surface concentrations in waters off south west Eyre Peninsula ...115
Figure 3.11. Rapid light curves measured with Phyto-PAM in surface waters off south western Eyre Peninsula, February/March 2006

Figure 4.1. Phytoplankton sampling stations

Figure 4.2. Temporal variation in phytoplankton abundance in the EGAB from samples collected at three depths

Figure 4.3. Annual variation in phytoplankton biomass, average cell size and diversity in the EGAB

Figure 4.4. Seasonal variation in phytoplankton biomass, average cell size and diversity in the EGAB

Figure 4.5. NMS ordination of variation in phytoplankton community composition in the EGAB during Feb/Mar 2004 and Feb/Mar 2005

Figure 4.6. NMS ordination of spatial variation in phytoplankton community composition in the EGAB during Feb/Mar 2004 and Feb/Mar 2005

Figure 4.7. NMS ordination of seasonal variation in phytoplankton community composition in the EGAB

Figure 5.1. Zooplankton sampling stations

Figure 5.2. Spatial variations in meso-zooplankton abundance between years

Figure 5.3. Spatial and temporal variation in abundances of dominant meso-zooplankton in the EGAB

Figure 5.4. Meso-zooplankton community composition (proportions of total community) in the EGAB, February/March 2004 and 2005

Figure 5.5. Variation in phytoplankton and meso-zooplankton biomass in the EGAB

Figure 5.6. Variation in phytoplankton and meso-zooplankton diversity in the EGAB

Figure 5.7. Spatial variations in meso-zooplankton potential grazing rate between years

Figure 5.8. NMS ordination of temporal variation in meso-zooplankton community composition in the EGAB during February/March 2004 and February/March 2005

Figure 5.9. NMS ordination of spatial variation in meso-zooplankton community composition in the EGAB during February/March 2004 and February/March 2005
Summary

The Great Australian Bight (GAB) was for many years thought to be an area of limited biological productivity due to a perceived lack of nutrient enrichment processes. These conclusions, however, were based on data from few studies in the western GAB which were assumed to reflect conditions throughout the entire GAB. More recent studies have reported the occurrence of coastal upwelling in the eastern GAB (EGAB) during summer/autumn (November-April), characterized by low sea surface temperatures and elevated concentrations of chlorophyll a, which suggests that certain areas of the GAB may be highly productive during certain times of the year.

The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports the largest fishery in Australia (the South Australian Sardine fishery, annual catches since 2004 ~ 25,000 to 42,500 t), quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from < 100 mg C m$^{-2}$ day$^{-1}$ to > 500 mg C m$^{-2}$ day$^{-1}$. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. Shelf waters encompass an area of ~115,000 km2, and the diverse coastal topography forms part of one of the longest stretches of southward facing coastline in the world. In summer-autumn, winds are upwelling favourable, and the Flinders current running along the continental slope causes the upwelling of the deep permanent thermocline from around 600 m depth.
(dynamic uplift), allowing nutrient rich cold water to entrain onto the shelf. In winter-spring, the EGAB is dominated by westerly downwelling-favourable winds, and upwelling via the Flinders current is suppressed. Thus, the area is highly dynamic, with significant spatial and temporal variations in meteorology and oceanography which may drive variations in nutrient enrichment and productivity. This study represents the first intensive investigation of the primary and secondary productivity of the EGAB, and was designed to evaluate the general hypothesis that spatial and temporal variations in meteorology and oceanography in the EGAB will drive spatial and temporal variations in phytoplankton size structure, and primary and secondary productivity. It examines variations in primary and secondary productivity in the EGAB during the upwelling and downwelling seasons of 2004, and the upwelling seasons of 2005 and 2006.

Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (<800 mg C m\(^{-2}\) day\(^{-1}\)) in offshore central and western regions of the EGAB. High productivities (1600-3900 mg C m\(^{-2}\) day\(^{-1}\)) were restricted to hotspots in the east that were influenced by the upwelled water mass. There was a strong correlation between the depth of the euphotic zone and the depth of the mixed layer that suggested that ~50% of the euphotic zone lay below the mixed layer depth. As a result, high rates of primary productivity did not require upwelled water to reach the surface. A significant proportion of total productivity in the euphotic zone (57% in 2005 and 65% in 2006) occurred in the upwelled water mass below the surface mixed layer. This result has implications for daily integral productivities modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro nutrient concentrations could not be used to explain the difference in the low
and high productivities (silica >1 μmol L⁻¹, nitrate/nitrite >0.4 μmol L⁻¹, phosphate >0.1 μmol L⁻¹). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humbolt currents.

Temporal variation in mixing and primary productivity was examined in upwelling influenced nearshore waters off south western Eyre Peninsula (SWEP) in the EGAB. Mixing/stratification in the region was highly temporally variable due to the unique upwelling circulation in summer/autumn, and downwelling through winter/spring. Highest productivity was associated with upwelled/stratified water (up to 2958 mg C m⁻² d⁻¹), with low productivity during periods of downwelling and mixing (~300-550 mg C m⁻² d⁻¹), yet no major variations in macro-nutrient concentrations were detected between upwelling and downwelling events (silica >1 μmol L⁻¹, nitrate/nitrite >0.4 μmol L⁻¹, phosphate >0.1 μmol L⁻¹). We hypothesise that upwelling enriches the region with micro-nutrients. High productivity off SWEP appears to be driven by a shallowing of mixed layer depth due to the injection of upwelled waters above Zср. Low productivity follows the suppression of enrichment during downwelling/mixing events, and is exacerbated in winter/spring by low irradiances and short daylengths.

Phytoplankton abundance and community composition was also examined in the shelf waters of the EGAB. Phytoplankton abundances were generally higher in near shore waters compared with offshore waters, and during the summer/autumn
upwelling season compared with the winter/spring downwelling season. Three distinctly different phytoplankton communities were present in the region during the upwelling and downwelling seasons of 2004, and the upwelling season of 2005, with distinctions manifest in variations in the abundance of dominant types of phytoplankton, and differences in average cell sizes. In summer/autumn, waters influenced by upwelling were characterised by high phytoplankton abundances (particularly diatoms) and larger average cell sizes, while the warmer high-nutrient-low-chlorophyll (HNLC) waters in the region had lower phytoplankton abundances and smaller average cell sizes. The winter/spring community was made up of low abundances of relatively large cells. Diatoms always dominated, but evidence of Si limitation of further diatom growth suggests there may be an upper limit to diatom productivity in the region. The maximum observed diatom concentration of \(~164,000\) cells \(L^{-1}\) occurred in February/March 2004, in an area influenced by the upwelled water mass. Variations in phytoplankton biodiversity in the shelf waters of southern Australia appear to be related to variations in the influence of upwelling in the region.

Meso-zooplankton abundance and community composition was examined in the coastal upwelling system of the EGAB. Spatial and temporal variations were influenced by variations in primary productivity and phytoplankton abundance and community composition, which were driven by variations in the influence of upwelling in the region. Peak meso-zooplankton abundances and biomass occurred in the highly productive upwelling influenced nearshore waters of the EGAB. However, abundances were highly variable between regions and years, reflecting the high spatial and temporal variations in primary productivity and phytoplankton abundance that characterise the shelf waters of the region. Spatial and temporal variations in community composition were driven by changes in the abundance of classes of meso-
zooplankton common to all regions in both years of this study. Meroplanktonic larvae and opportunist colonizers dominated the community through the upwelling season, in response to increased primary productivity and phytoplankton blooms. Differences in community composition between upwelling influenced waters and the more HNLC regions appear to be reflected in the relative abundances of cladocera and appendicularia, with cladocera more abundant in productive upwelling influenced areas, and appendicularia thriving in the more HNLC regions of the EGAB. Highest potential grazing rates in the EGAB occurred in nearshore regions with highest meso-zooplankton biomass, most likely in response to the high phytoplankton biomass that occurs in the same regions. Peak meso-zooplankton grazing rates in the EGAB were ~80% less than those measured in south west Spencer Gulf in March 2007, and ~35% greater than grazing rates in the Huon Estuary in February 2005.

Productivity in the EGAB shows significant spatial and temporal variation, with changes reflecting regional and seasonal variation in meteorology and oceanography, and the water masses present in the region. The overall productivity of a summer/autumn upwelling season was highly dependent on within-season variations in wind strength and direction, which dictate the number, intensity, and duration of upwelling events. Rates of primary productivity measured in the EGAB at a given time depended on the meteorological and oceanographic conditions in the region in the lead up to, and during, the sampling event. We hypothesise that during upwelling events, high productivity in the EGAB is driven by the enrichment of waters above Z_{cr}, but below the surface mixed layer, with micro-nutrients. Low productivity within summer/autumn upwelling seasons follows the suppression of this enrichment during downwelling/mixing events, and the overall productivity of the upwelling season will depend on the number, duration and intensity of these downwelling/mixing events.
Low productivity during winter/spring is driven by the absence of upwelling, low irradiances and short daylengths.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

22nd April, 2009.
Acknowledgements

This PhD study was undertaken at the University of Adelaide, and was jointly funded by the School of Earth and Environmental Sciences and the South Australian Research and Development Institute (SARDI) Aquatic Sciences division. In addition to these supporting institutions, I am sincerely grateful to the following individuals:

- My supervisors, A/Prof George Ganf and A/Prof Tim Ward, for their continual guidance, encouragement and support
- A/Prof John Middleton and Dr John A. T. Bye for invaluable discussions on a myriad of oceanographic topics
- The master and crew of the RV Ngerin, Neil Chigwidden, Dave Kerr, Chris Small, and Ralf Putz, for their expertise and assistance in ensuring that sampling trips were completed safely and successfully
- Members of the SARDI Aquatic Sciences Wild Fisheries Pelagic fish group, Lachie McLeay, Paul Rogers, Alex Ivey, Wetjens Dimmllich, and Richard Saunders, for their assistance before, during, and after sampling trips
- Ralf Putz for skippering the Tucana, and Richard Saunders for his assistance, during the February 2006 sampling trip off south western Kangaroo Island
- Steve Brett from Microalgal Services (Victoria, Australia) for discussions regarding phytoplankton identification
- Peter Hobson for assistance with data management
- My office mates over the years have been fantastic in their support and encouragement. Special thanks to Danny Brock, Annelise Wiebkin, Michelle Roberts, Rudi Regel, Kane Aldridge and Brian Deegan
- Finally, my parents, for everything, especially the gift of self-belief