Gender, mobility and population history: exploring material culture distributions in the Upper Sepik and Central New Guinea

by

Andrew Fyfe, BA (Hons)

Thesis submitted for the Degree of Doctor of Philosophy

in

The Discipline of Geographical and Environmental Studies

The University of Adelaide

November 2008
These practices, then, and others which I will speak of later, were borrowed by the Greeks from Egypt. This is not the case, however, with the Greek custom of making images of Hermes with the phallus erect; it was the Athenians who took this from the Pelasgians, and from the Athenians the custom spread to the rest of Greece. For just at the time when the Athenians were assuming Hellenic nationality, the Pelasgians joined them, and thus first came to be regarded as Greeks. Anyone will know what I mean if he is familiar with the mysteries of the Cabiri-rites which the men of Samothrace learned from the Pelasgians, who lived in that island before they moved to Attica, and communicated the mysteries to the Athenians. This will show that the Athenians were the first Greeks to make statues of Hermes with the erect phallus, and that they learned the practice from the Pelasgians......

Herodotus c.430 BC
Table of contents

Acknowledgements vii
List of figures viii
List of tables xi
List of Appendices xii
Abstract xiv
Declaration xvi

Section One

1. Introduction 2
 1.1 The Upper Sepik-Central New Guinea Project 2
 1.2 Lapita and the exploration of relationships between language and culture in Melanesia 3
 1.3 The quantification of relationships between material culture and language on New Guinea’s north coast 6
 1.4 Thesis objectives 9

2. Population histories and cultural units 11
 2.1 Introduction 11
 2.2 Cultural units and classification 12
 2.3 Cultural patterning and transmission 14
 2.4 Cultural biases and cultural selection 16
 2.5 Discussion 20

Section Two

3. The geography and environment of the study region 23
 3.1 Introduction 23
 3.2 Central New Guinea 23
 3.3 Border Mountains 25
 3.4 Upper Sepik Basin 25

4. Regional subsistence patterns 27
 4.1 Introduction 27
 4.2 Agricultural classes 30
 4.2.1 The USB and Border Mountains 30
 4.2.2 CNG 34
 4.2.2.1 Taro dominant 34
 4.2.2.2 Sweet potato dominant 36

5. Settlement patterns 39
 5.1 Introduction 39
 5.2 Settlement and social group formation 39
 5.3 Settlement types 40
Section Three
6. A history of ethnography and collecting in the Upper Sepik
 6.1 The early twentieth century
 6.2 The 1920s and 1930s: the early period of Australian exploration
 6.3 The 1930s: mineral exploration and the start of pacification
 6.4 Post World War II: The revival of ethnographic and anthropological interest in the region
 6.5 The 1960s onwards: systematic ethnographic collecting and focussed anthropological fieldwork

7. The data collection process
 7.1 Introduction
 7.2 The discovery of additional material during the project
 7.3 Problems with provenance
 7.4 Museum registration and documentation problems
 7.5 Discussion

8. Material Culture
 8.1 Introduction
 8.2 Two classes of objects selected for analysis:
 string bags and arrows
 8.2.1 String bags
 8.2.2 Arrows

Section Four
9. The Languages of the study area
 9.1 Introduction
 9.2 Estimation of language population figures
 9.3 Language and history in New Guinea
 9.4 Language and history in the study area
 9.5 Discussion

10. Social structure and descent
 10.1 Introduction
 10.2 The USB and Border Mountains
 10.3 CNG
 10.4 Discussion

11. Marriage
 11.1 Introduction
 11.2 The Border Mountains
 11.3 The USB
 11.4 CNG
 11.5 Discussion

12. Trade and exchange
 12.1 Introduction
 12.2 Economic structures and exchange
 12.3 CNG
19.6 Arrows: structure of systemization 205
 19.6.1 Arrow classes and dimensions 205
 19.6.2 Arrowhead form and modification 205
 19.6.3 Binds 209
 19.6.4 Bind positions 210
 19.6.5 Arrow decoration 212

20. Analysis 215
 20.1 Distance factors 215
 20.2 Analysing the material culture attribute traits 215
 20.2.1 Correspondence Analysis (CA) 216
 20.2.2 Analysis of variance (ANOVA) 218
 20.3 String bags: analysis 219
 20.3.1 CA for string bag attribute levels 220
 20.3.2 String bags: metric data and ANOVA 227
 20.4 Arrows: analysis 236
 20.4.1 CA for arrow attribute levels 237
 20.4.1.1 Bamboo bladed arrows (BBA) 238
 20.4.1.2 Palmwood head arrows (PWHA) 242
 20.4.1.3 Bone tipped arrows (BTA) 246
 20.4.1.4 Bindings (BIND) 250
 20.4.2 Arrows: metric data and ANOVA 256
 20.5 Conclusion for analyses 268

21. Conclusion and further directions in research 271

20. Bibliography 275
Acknowledgements

This thesis is based on the data gathered by the Upper Sepik-Central New Guinea Project (USCNG). The Project was funded by an ARC-Linkage Grant LP0455756, which provided the APAI scholarship for my doctoral research. The USCNGP has been extended by a second ARC-Linkage grant LP0883050 that will fund further research using the database created during my doctoral research. The Linkage Partners for both grants are the South Australian Museum and Ok Tedi Mining Ltd.

The project was administered by the University of Adelaide through the Department of Environmental and Geographical Studies; Professor Graeme Hugo is the Principal Investigator for the Project and thesis supervisor. Partner Investigators are Professor Andrew Pawley of the Department of Linguistics and Dr Bryant Allen of the Department of Human Geography, both at the Research School of Pacific and Asian Studies at the Australian National University. Andrew Pawley and Martin Steer of the Department of Linguistics were responsible for the linguistics data and Bryant Allen provided subsistence data.

I wish to acknowledge the significant support and supervision given by Dr Barry Craig, Senior Curator of Foreign Ethnology at the South Australian Museum, who is the originator of the USCNG Project, and for his input, advice and encouragement.

I wish to acknowledge the support and help of my family, Izzy Fyfe, Heidi Strachan, Malcolm Fyfe and Karin Fyfe and special thanks to Jill Bolton and Maureen MacKenzie whose studies of Upper Sepik fibre crafts have been essential to this research; to Jack Bolton for providing production support; to Dandong Zheng for producing spatial data that will be especially crucial for the next round of analyses; and to Stephen Shennan for research advice.

Many thanks must be given to the numerous museum staff and anthropologists whose advice, intervention and assistance made this work possible. In this regard I would specifically like to thank Sabati Eva, Adrian Wisler, Christian Kaufmann, George Morren, Arnold Perey, Kees van den Meiracker, Gabriele Weiss, Charles Penney, Markus Schindlbeck, Graeme Scott, Gundolf Krüger, David van Duuren, David Coleman, May Abernethy, Jude Philp, Jill Hassel, and Maria and Tony Friend.

Finally I would also like to thank the Walter and Dorothy Duncan Trust for providing additional funds that assisted me during the research.
List of figures

18.1 Diagram of consideration path for an artefact’s components and mechanical properties 180

18.2 Diagram of consideration path for an artefact’s components and mechanical properties factoring in cultural processes 181

19.1 Diagram of decorative attribute levels for pattern designs 196

19.2 Hierarchy of artefact scrutiny and consideration for systemisation 197

19.3 Attribute level sequence for string bags 204

19.4 Attribute level sequence for arrows 214

20.1 Correspondence analysis plot showing relationship between language groups in terms of SB-C-STRCT attribute state frequencies 221

20.2 Correspondence analysis plot showing relationship between language groups in terms of SB-D-BDLPG attribute state frequencies 222

20.3 Correspondence analysis plot showing relationship between language groups in terms of SB-E-MTHFN attribute state frequencies 223

20.4 Correspondence analysis plot showing relationship between language groups in terms of SB-F-MTHBDATT attribute state frequencies 224

20.5 Correspondence analysis plot showing relationship between language groups in terms of SB-G-STRPLPG attribute state frequencies 226

20.6 Correspondence analysis plot showing relationship between language groups in terms of SB-H-STRPATT attribute state frequencies 227

20.7 Boxplot for string bag size according to language (n=393) 228

20.8 Boxplot for string bag size according to SB-C-STRCT (n=393) 229

20.9 Boxplot for SB-A-HTMXW ratio variance according to SB-C-STRCT attribute states (n=393) 230

20.10 Boxplot for SB-B-MNTMXW ratio variance according to SB-C-STRCT (n=393) 231

20.11 Boxplot for SB-A-HTMXW ratio variance according to language (n=284) 232
20.12 Boxplot for SB-B-MNTMXW ratio variance
according to language (n=305) 233

20.13 Correspondence analysis plot showing relationship between language
groups in terms of arrow class frequencies 237

20.14 Correspondence analysis plot showing relationship between language
groups in terms of BBA-C-BCS attribute state frequencies 239

20.15 Correspondence analysis plot showing relationship between language
groups in terms of BBA-D-BMOD attribute state frequencies 240

20.16 Correspondence analysis plot showing relationship between language
groups in terms of BBA-E-STRCT attribute state frequencies. 241

20.17 Correspondence analysis plot showing relationship between language
groups in terms of PWHA-C-HCS attribute state frequencies 243

20.18 Correspondence analysis plot showing relationship between language
groups in terms of PWHA-D-HMOD attribute state frequencies 244

20.19 Correspondence analysis plot showing relationship between language
groups in terms of PWHA/BTA-E-STMCRCS attribute state frequencies 246

20.20 Correspondence analysis plot showing relationship between language
groups in terms of BTA-C-HCS attribute state frequencies 248

20.21 Correspondence analysis plot showing relationship between language
groups in terms of BTA-D-HMOD attribute state frequencies 249

20.22 Correspondence analysis plot showing relationship between language
groups in terms of BIND-A attribute state frequencies 250

20.23 Correspondence analysis plot showing relationship between language
groups in terms of BIND-B attribute state frequencies 252

20.24 Correspondence analysis plot showing relationship between language
groups in terms of BIND-C attribute state frequencies 253

20.25 Correspondence analysis plot showing relationship between language
groups in terms of BIND-D attribute state frequencies 254

20.26 Correspondence analysis plot showing relationship between language
groups in terms of BIND-E attribute state frequencies 255

20.27 Scattergram for BBA-B-WHLGTH to BBA-A-BLDLGTH (n=523) 257

20.28 Boxplot for BBA-A-BLDLGTH variance according
to BBA-C-STRCT (n=523) 258
20.29 Boxplot for BBA-B-WHLGTH variance according to BBA-C-STRCT (N=523)
20.30 Scattergram for BTA-B-WHLGTH to BTA-A- HDLGTH (n=256)
20.31 Boxplot for BTA-A-HDLGTH variance according to language (n=256)
20.32 Boxplot for BTA-B-WHLGTH variance according to language (n=256)
20.33 Scattergram for PWHA-B-WHLGTH to PWHA-A-HDLGTH (n=574)
20.34 Boxplot for PWHA-B-HDLGTH variance according to language (n=584)
20.35 Boxplot for PWHA-B-WHLGTH variance according to language (n=574).
List of tables

8.1 Table for Settlements/location points at which the sample was collected 76
8.2 Collections from the USB/Border Mountains and the museums in which they are held 77
8.3 Collections from CNG and the museums in which they are held 78
9.1 Scale of linguistic relatedness for study area languages 93
9.2 Matrix of linguistic relatedness for study area languages 94
9.3 Populations of language groups according to four data sources 96
20.1 Number of string bags according to language 219
20.2 Homogeneous subsets of languages with related means for SB-B-MNTMXW ratios, α = 0.1 235
20.3 Homogeneous subsets of languages with related means for SB-B-MNTMXW ratios, α = 0.5 235
20.4 Number of arrows according to class and language 236
20.5 Homogeneous subsets of languages with related means for BBA-A-BLDLGTH, α = 0.1 260
20.6 Homogeneous subsets of languages with related means for BBA-B-WHLGTH, α = 0.1 260
20.7 Homogeneous subsets of languages with related means for BTA-A-HDLGTH, α = 0.1 263
20.8 Homogeneous subsets of languages with related means for BTA-B-WHLGTH, α = 0.1 264
20.9 Homogeneous subsets of languages with related means for PWHA-A-HDLGTH and language, α = 0.1 267
20.10 Homogeneous subsets of languages with related means for PWHA-B-WHLGTH, α = 0.1 267
List of Appendices

Appendix 1. Commonly used acronyms.
Appendix 7. Geography.
Appendix 8. Subsistence.
Appendix 10. Adzes.
Appendix 11. Women’s skirts.
Appendix 12. Phallocrypts.
Appendix 15. Shields.
Appendix 17. Houseboards.
Appendix 18. Masks and other ritual paraphernalia.
Appendix 19. Designs on small portable objects.
Appendix 20. String bags.
Appendix 22. Trade.
Appendix 23. Functional/operational classes determined for the sample.
Appendix 24. Decision and production step sequences for string bags and arrows.

Appendix 25. String bag attribute levels and attribute states.

Appendix 26. Arrow attribute levels and attribute states.

Appendix 27. Binding attribute levels and attribute states.

Appendix 28. String bag correspondence analysis tables.

Appendix 29. String bag ANOVA tables and figures.

Appendix 30. Arrow correspondence analysis tables.

Appendix 31. Arrow ANOVA tables and figures.
Abstract

New Guinea is the most linguistically diverse region in the world. There are over 1000 languages found there, reflecting a complex history of migration and interaction. The Upper Sepik is one of New Guinea’s most linguistically heterogeneous areas but because the area has not been marked by the significant population movement and intense and far-reaching exchange systems apparent for some parts of New Guinea, this diversity may be more indicative of processes that maintain rather than lead to linguistic diversity. Accordingly, the region may offer great potential for those investigating population histories.

With this potential in mind ethnographers went into the Upper Sepik during the 1960s and 1970s with the intention of making representative material culture collections for the language groups found there. These collections combine to be, arguably, one of the most fine-grained material culture datasets that exist for New Guinea.

This thesis describes the manner in which these collections were documented and used to create a dataset to test for relationships between material culture and language. It begins with an overview of the study area including descriptions of the geography, environments, subsistence systems, settlement structures and social patterns, including an appraisal of marriage exchange, ritual, trade and warfare and how these may have facilitated or inhibited the spread of culture. This appraisal leads to an assertion that the sociality and mobility of men and women are affected differentially by such mechanisms, and that material culture belonging to men and women may differentially reflect population histories and the social processes that underpin the evolution of linguistic diversity.

The thesis then describes a round of analytical procedures used to test for relationships between language and attributes belonging to string bags and arrows which are respectively and exclusively produced by women and men. Associations between languages, measured in terms of their material culture similarity, are then compared to those determined according to their linguistic family relationship and their relative positions in geographical space. The analysis also tests whether differences in the way that women and men socialise and move through space influence the way in which material culture patterns through space.
The thesis concludes that attributes of classes of material culture are distributed differently for objects made by men compared to those made by women, that distance seems to be a stronger factor than language, and that environmental factors are also relevant. This study foreshadows ongoing research involving the dataset.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

SIGNATURE: DATE