Contents

Abstract .. vii
 Declaration ... ix
 Acknowledgements .. x
 1 General introduction .. 1
 1.1 Scope .. 1
 1.2 Thesis structure .. 2
 1.2.1 Ecology of rare and fragmented freshwater fish populations (Chapter 2) 2
 1.2.2 Habitat separation of Craterocephalus (Chapter 3) ... 2
 1.2.3 Osmoregulatory comparison of hardyheads (Chapter 4) 3
 1.2.4 Osmoregulatory comparison of C. fluviatilis populations (Chapter 5) 3
 1.2.5 Population genetic structure of C. fluviatilis (Chapter 6) 3
 1.2.6 General Discussion (Chapter 7) .. 4
 2 Ecology of rare and fragmented freshwater fish populations 5
 2.1 Introduction .. 5
 2.2 Causes and consequences of habitat fragmentation ... 5
 2.3 Rare and common species ... 5
 2.4 Studying closely-related species .. 6
 2.5 Freshwater fishes and population fragmentation ... 7
 2.5.1 Global perspective .. 7
 2.5.2 Factors structuring assemblages ... 7
 2.5.3 Vulnerability to population fragmentation ... 9
 2.5.4 Conservation genetics ... 9
 2.6 The River Murray .. 10
 2.6.1 General .. 10
 2.6.2 Conservation status of native fishes ... 11
 2.7 Atherinidae (hardyheads) ... 11
 2.7.1 Family: Atherinidae ... 11
 2.7.2 Murray hardyhead .. 12
 2.7.3 Unspecked hardyhead .. 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.4 Small-mouth hardyhead</td>
<td>13</td>
</tr>
<tr>
<td>2.7.5 Congeneric comparisons</td>
<td>14</td>
</tr>
<tr>
<td>2.8 Research objectives</td>
<td>14</td>
</tr>
<tr>
<td>3 Habitat separation of Craterocephalus (Atherinidae)</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Materials and methods</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Fish sampling</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2 Habitat</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3 Analysis</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>19</td>
</tr>
<tr>
<td>3.3.1 Fish</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2 Habitat</td>
<td>19</td>
</tr>
<tr>
<td>3.3.3 Ordination analysis</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4 Indicator Species Analysis</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5 Predicted salinity responses</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>26</td>
</tr>
<tr>
<td>3.4.1 Habitat characterisation</td>
<td>26</td>
</tr>
<tr>
<td>3.4.2 Habitat complexity</td>
<td>27</td>
</tr>
<tr>
<td>3.4.3 Salinity</td>
<td>27</td>
</tr>
<tr>
<td>3.4.4 Comparative studies</td>
<td>28</td>
</tr>
<tr>
<td>4 Salinity may cause fragmentation of hardyhead populations</td>
<td>30</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Materials and methods</td>
<td>31</td>
</tr>
<tr>
<td>4.2.1 Collection and maintenance</td>
<td>31</td>
</tr>
<tr>
<td>4.2.2 High salinity trial</td>
<td>32</td>
</tr>
<tr>
<td>4.2.3 Low salinity trial</td>
<td>32</td>
</tr>
<tr>
<td>4.2.4 Statistical analyses</td>
<td>33</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>33</td>
</tr>
<tr>
<td>4.3.1 High salinity trial</td>
<td>33</td>
</tr>
<tr>
<td>4.3.2 Low salinity trial</td>
<td>33</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>36</td>
</tr>
</tbody>
</table>
5 Osmoregulation in \textit{C. fluviatilis} from different salinity regimes39

5.1 Introduction ..39

5.2 Materials and methods ..40

5.2.1 Collection sites ..40

5.2.2 Collection and maintenance ...41

5.2.3 High salinity trial ...42

5.2.4 Low salinity trial ...42

5.2.5 Statistical analyses ..43

5.3 Results ..43

5.3.1 High salinity trial ...43

5.3.2 Low salinity trial ...43

5.4 Discussion ...45

6 Genetic population structure of \textit{C. fluviatilis} ...48

6.1 Introduction ...48

6.2 Materials and methods ..49

6.2.1 Specimen collection ...49

6.2.2 Allozyme electrophoresis ...50

6.2.3 Analysis of allozyme data ...50

6.2.4 DNA isolation, amplification and sequencing ...52

6.2.5 Analysis of DNA sequence data ...52

6.3 Results ..54

6.3.1 Allozyme analyses ...54

6.3.1.1 Validity of species boundaries between \textit{C. fluviatilis} and \textit{C. amniculus}54

6.3.1.2 Introgression ...55

6.3.1.3 Population structure within \textit{C. fluviatilis} ..56

6.3.1.4 Population structure within \textit{C. amniculus} ..57

6.3.2 mtDNA analyses ...64

6.3.2.1 Relationship between \textit{C. fluviatilis} and \textit{C. amniculus}64

6.3.2.2 Population structure within \textit{C. fluviatilis} ..65

6.3.2.3 Population structure within \textit{C. amniculus} ..65
6.4 Discussion..69

7 General discussion..73

7.1 Introduction..73

7.2 Population fragmentation of *C. fluviatilis* ..74

 7.2.1 Population decline ..74
 7.2.2 General distribution pattern and habitats ...74
 7.2.3 Comparison with its congener ...76
 7.2.4 Phenotypic variation ..76
 7.2.5 Population genetics ...77

7.3 Conservation management of *C. fluviatilis* ..77

 7.3.1 Habitat management ...77
 7.3.2 Phenotypic considerations ..78
 7.3.3 Genetic management units ...78

7.4 Research contributions and future priorities ..79

8 Bibliography ..82

9 Appendices...108

 Appendix 1: Habitat details (Chapter 3) ...109
 Appendix 2: Numbers of each fish species captured (Chapter 3) ...110
 Appendix 3: Other habitat responses modeled by HyperNiche (Chapter 3)111
 Appendix 4: Photographs and natural history of *C. fluviatilis* ..115
Abstract

Population fragmentation is a common symptom of the decline of species, including freshwater fishes. It occurs naturally, but has also proliferated in response to human interventions that increase the prevalence and intensity of isolating barriers and events. In regulated rivers, for example, fish are affected by the loss of connectivity between habitats that is associated with hydrological changes. The process has evolutionary consequences by limiting gene flow, reducing genetic diversity and rendering the isolates vulnerable to local environmental changes.

Comparative studies of related species may help to elucidate the causes and consequences of fragmentation. For example, they may identify habitat features that influence the spatial separation of congeneric species. An opportunity for such a study arises with small fishes (Atherinidae) in the intensively-regulated River Murray, southeastern Australia. Whereas the unspecked hardyhead *Craterocephalus stercusmuscarum* *fulvus* is widespread and abundant, the Murray hardyhead *C. fluviatilis* has a patchy distribution and is listed as ‘endangered’ by the International Union for Conservation of Nature and ‘vulnerable’ under the Australian Environment Protection and Biodiversity Conservation Act 1999. These two species rarely cohabit, implying that they could be separated by particular habitat characteristics.

In the past, several species of *Craterocephalus*, including *C. fluviatilis* and the Darling River hardyhead *C. amniculus*, have been regarded as *C. eyresii sensu lato*. The taxonomic separation of *C. s. fulvus* has been confirmed, but some doubt remains about the relationship of *C. fluviatilis* and *C. amniculus*. This issue needs resolution to ensure that appropriate targets are set for conservation.

This study is a comparative investigation of the aforementioned species. It was designed (1) to identify the habitat characteristics that influence the distribution and abundance of *C. fluviatilis* and, given that salinity emerged as a key factor, (2) to explore the biological implications of salinity through a comparative study of osmoregulation in *C. fluviatilis* and *C. s. fulvus*, (3) to determine whether the osmoregulatory responses of population isolates of *C. fluviatilis* differ at varying salinities, and (4) to evaluate the genetic population structure of *C. fluviatilis*, confirm its taxonomic separation from *C. amniculus* and identify genetic ‘management units’ for conservation.
Field sampling showed that *C. fluviatilis* is confined mainly to saline waters (0.4-20‰), whereas *C. s. fulvus* is absent from salinities >7‰. Comparisons were made of osmoregulation in these two taxa over a salinity range of 0.03-85‰, with additional reference to the small-mouth hardyhead *Atherinosoma microstoma*, a related estuarine species that tolerates salinities >94‰. The three species all are euryhaline, although the osmoregulatory ability of *C. s. fulvus* falters above about 35‰ salinity. *C. fluviatilis* is a better osmoregulator than *A. microstoma* at salinities <1‰, but both species tolerate hypersaline conditions (85‰).

Osmoregulation was compared in *C. fluviatilis* from two isolated populations in different salinity regimes (Wyngate: 0.4-1.5‰, Disher Creek: c. 1.0-45‰) to determine whether they show related phenotypic differences. Fish from both populations remained healthy at salinities from 5-65‰. The Disher Creek population maintained a significantly lower blood osmotic concentration than the Wyngate population at salinities ≤1‰, suggesting that there is a physiological difference between them.

The genetic population structure of *C. fluviatilis* and its taxonomic distinction from *C. amniculus* were investigated using complementary allozyme and mtDNA markers. This confirmed that *C. fluviatilis* is genetically distinct from its sister taxon, *C. amniculus*. It also identified several genetically-defined ‘management units’ as a framework for future conservation. Further, it revealed that *C. fluviatilis* in habitats downstream of Lock 1 on the Murray (274 km from the river mouth) displays a genetic signature indicating introgression with *C. amniculus*. Clearly, these findings have implications for the conservation of *C. fluviatilis*. For example, isolates can be prioritised for protection, and re-introduction programs can be modified accordingly.

The findings may be applied to other freshwater fish, especially populations of closely-related species subject to salinisation or other stressors, and they may also contribute toward understanding of the factors and processes underlying rarity and fragmentation. It is clear that salinity can be a significant factor in population fragmentation, and that closely-related species with similar ranges may be segregated by differences in osmoregulatory ability.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available for photocopying and loan, subject to the provisions of the Copyright Act 1968.

..
Scotte Douglas Wedderburn
March 2009
Acknowledgements

This PhD research was funded by the SA Murray-Darling Basin Natural Resources Management Board and The University of Adelaide’s Faculty of Science, with further support from the Goolwa to Wellington Local Action Planning Board, the Coorong District Local Action Planning Board, and Nature Foundation SA. My presentation in 2006 at the ‘Riverine Hydroecology: Advances in Research and Applications‘ conference in Stirling, Scotland, was supported by a Russell Baudinette Travel Scholarship.

My thanks to Karl Hillyard, Adrienne Frears, Eric Nicholson, Wai Sum Chan, Rupert Mathwin, Melanie Prodoehl, Spenser Burgstad, Chris Bice, Ron Bellchambers, Claire Treilibs, and Robert Reid for field and laboratory assistance. I am grateful to Wayne Robinson and Lorenzo Vilizzi for statistical advice. Thank you to Iain Ellis for the many discussions, and to staff at the Arthur Rylan Institute for pointing me towards other Victorian hardyhead populations. Thanks also to Peter Unmack (Brigham Young University, USA) for assistance with the mtDNA analysis. Thanks to Coby Mathews, Matt Ward, Brian Deegan, Kane Aldridge, Dan Rogers, Colin Bailey, Joel Allan, Greg Hay, Suse Gehrig, Vanessa Glennon and George Ganf for their friendships, and to Russ Shiel, Mike Geddes, Julie Francis and Anne Jensen for sharing many a morning tea with me on the steps of the Benham building.

I give special thanks to several people. Thanks to my parents, Janet and Joe Wedderburn, for their support throughout my studies. I would like to sincerely thank Keith Walker for his generosity of time, sharing his valuable experiences and for believing in my ability to become a good ecologist. My gratitude to Brenton Zampatti (SARDI Aquatic Sciences) for co-supervision, and his generosity of time and constructive advice on the thesis. Thanks to David Paton and Mike Geddes for their co-supervision and support. Many thanks to Mark Adams (SA Museum) for his assistance with allozyme analyses and genetic interpretations. Thanks to my good friend Michael Hammer, for his encouragement and advice. Thank you to Nadine Kilsby for her friendship and assistance during the last few years, and for eating a great deal of my chocolate.

Lastly, and most importantly, a very special, loving thankyou to my partner Julie Mrotek, for without her support and encouragement this thesis may never have existed.