IDENTIFICATION AND CHARACTERISATION OF ENDOGLYCOSIDASE ACTIVITIES TOWARDS DERMATAN SULPHATE BY TANDEM MASS SPECTROMETRY

A thesis presented for the degree of

DOCTOR OF PHILOSOPHY

by

Timothy C. Nielsen BSc(Hons)

Discipline of Paediatrics
The University of Adelaide
Adelaide, South Australia

Lysosomal Diseases Research Unit
Department of Genetic Medicine
Children, Youth and Women’s Health Service
Adelaide, South Australia

July, 2009
CONTENTS

Summary i
Declaration iii
Acknowledgements iv
Abbreviations v
List of Figures vii
List of Tables viii
Publications ix
Dedication x

CHAPTER ONE: INTRODUCTION

1.1 GLYCOSAMINOGLYCANS 2
1.2 DERMATAN SULFATE 2
1.3 BIOSYNTHESIS OF DERMATAN SULPHATE 3
1.4 BIOLOGICAL FUNCTIONS OF DERMATAN SULPHATE 7
1.5 DEGRADATION OF DERMATAN SULPHATE 9
 1.5.1 Endodegradation of dermatan sulphate 10
 1.5.2 Exodegradation of dermatan sulphate 14
1.6 THE MUCOPOLYSACCHARIDOSES 15
1.7 MASS SPECTROMETRY OF DERMATAN SULPHATE OLIGOSACCHARIDES 21
1.8 RESEARCH AIMS, HYPOTHESES AND SIGNIFICANCE 23

CHAPTER TWO: MATERIALS AND METHODS

2.1 MATERIALS 25
 2.1.1 General chemicals 26
 2.1.2 Cell culture materials 29
 2.1.3 Chromatography materials 29
 2.1.4 Mouse tissues 29
 2.1.5 Reagents and solutions 30
 2.1.6 Equipment and software 32
2.2 METHODS 33
 2.2.1 Preparation of internal standard #3 for mass spectrometry 33
 2.2.2 Cell culture 34
 2.2.3 Sub-cellular fractionation 35
 2.2.4 Preparation of oligosaccharide substrates 35
 2.2.4.1 Glycosaminoglycan digestion 35
 2.2.4.2 Size fractionation of oligosaccharides 36
 2.2.4.2.1 Preparation of Bio-Gel P6 column 36
 2.2.4.2.2 Calibration of Bio-Gel P6 column 36
 2.2.4.2.3 Size-exclusion chromatography on Bio-Gel P6 column 36
 2.2.4.3 β-glucuronidase digestion of oligosaccharides 37
 2.2.5 Preparation of samples for endoglycosidase product assay 37
 2.2.6 Endoglycosidase product assay 38
 2.2.7 Protein determination 38
 2.2.8 UA determination 39
 2.2.9 β-hexosaminidase and acid phosphatase activity determination 39
 2.2.10 Chloride determination 40
 2.2.11 Sample preparation for mass spectrometry 40
 2.2.11.1 Preparation of samples from Bio-Gel P6 column 40
 2.2.11.2 Preparation of samples from endoglycosidase product assay 41
2.2.11.3 Preparation of samples from β-glucuronidase digests 41
2.2.11.4 Preparation of density gradient fractions and skin fibroblasts 42
2.2.12 Mass spectrometry of oligosaccharides 43
 2.2.12.1 Identification of oligosaccharides 43
 2.2.12.2 Quantification of oligosaccharides 43

CHAPTER THREE: PREPARATION AND CHARACTERISATION OF OLIGOSACCHARIDE SUBSTRATES 49
3.1 INTRODUCTION 50
3.2 RESULTS 52
 3.2.1 Preparation and purification of oligosaccharides 52
 3.2.2 MS of oligosaccharides 52
3.3 DISCUSSION 72

CHAPTER FOUR: DEVELOPMENT OF ENDOGLYCOSIDASE PRODUCT ASSAY 80
4.1 INTRODUCTION 81
4.2 RESULTS 82
 4.2.1 Selection of oligosaccharides for use as assay substrates 82
 4.2.2 Endo-β-N-acetylatedhexosaminidase activity towards oligosaccharide substrates 84
 4.2.3 Endohexuronidase activity towards oligosaccharide substrates 87
 4.2.4 Optimisation of assay conditions 88
 4.2.5 Attempted inhibition of endo-β-N-acetylatedhexosaminidase activity 97
4.3 DISCUSSION 97
 4.3.1 Substrate specificity of endo-β-N-acetylatedhexosaminidase activity 99
 4.3.2 Substrate specificity of endohexuronidase activity 101
 4.3.3 Properties of endoglycosidase activities 102

CHAPTER FIVE: ENDOGLYCOSIDASE ACTIVITIES IN THE MUCOPOLYSACCHARIDOSES 105
5.1 INTRODUCTION 106
5.2 RESULTS 107
 5.2.1 Endoglycosidase activity in skin fibroblasts 107
 5.2.2 Endoglycosidase product oligosaccharides in skin fibroblasts 108
 5.2.3 Sub-cellular localisation of oligosaccharides in skin fibroblasts 110
 5.2.4 Endoglycosidase activity in fibroblast lysosomes 117
 5.2.5 Endoglycosidase activity in mouse tissues 119
5.3 DISCUSSION 119

SUMMARY AND CONCLUSIONS 126

REFERENCES 137
SUMMARY

Dermatan sulphate (DS) is a sulphated glycosaminoglycan (GAG) that is widely distributed as proteoglycan throughout the extracellular matrix and at cell surfaces where it plays an important role in many key biological processes. The intra-cellular catabolism of DS commences with endohydrolysis of the polysaccharide chains to oligosaccharides, which are then sequentially degraded from the non-reducing terminus by lysosomal exoenzymes to monosaccharides and inorganic sulphate for transport out of the lysosome and re-utilisation by the cell. Both endo-β-N-acetylhexosaminidase (Hyal-1 hyaluronidase) and endo-β-glucuronidase activities towards DS have been proposed. The present study was undertaken to: 1) determine the substrate specificities and sub-cellular locations of these endoglycosidase activities; and 2) compare endoglycosidase activities and substrate specificities in the mucopolysaccharidoses, where a defect in one of the lysosomal exoenzymes required to degrade DS results in the lysosomal accumulation of partially degraded DS oligosaccharide fragments. To this end, a series of oligosaccharide substrates designed to represent aspects of the physiological substrate was prepared, and an assay was developed to measure endoglycosidase activities and determine their substrate specificities by quantifying specific oligosaccharide products.

Assay substrates rich in glucuronic acid (GlcA) or iduronic acid (IdoA) were prepared by limited chondroitinase ABC digestion of chondroitin sulphate A and DS, respectively. The resulting tetra- to hexadecasaccharides were separated by size-exclusion chromatography and characterised by electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). These substrates, which were not susceptible to degradation by lysosomal exoenzymes, were then incubated with Chinese hamster ovary (CHO)-K1 cell homogenate (source of endoglycosidase activity), and the oligosaccharide products generated from the non-reducing end of the substrate were measured by ESI-MS/MS. Endo-β-N-acetylhexosaminidase and endohexuronidase activities were detected towards the oligosaccharide substrates, with both activities preferentially degrading the GlcA-rich substrates and only minor activity observed towards IdoA-rich substrate. The endo-β-N-acetylhexosaminidase activity had a minimum-sized substrate requirement of a hexasaccharide and was observed to sequentially remove tetrasaccharides from the non-reducing end of oligosaccharides, whereas the
endohexuronidase activity had a minimum substrate of an octasaccharide, acted randomly and was comparatively low. The activities displayed the same acidic pH optimum and responded in the same manner to changes in buffer composition and substrate concentration, and to the presence of divalent cations, NaCl, detergent and protease inhibitors. Both activities were modestly affected by the hyaluronidase inhibitor, apigenin. Percoll density gradient subcellular fractionation confirmed that the activities were primarily in the lysosomes and late endosomes. The endo-β-N-acetylhexosaminidase and endohexuronidase activities detected here in CHO-K1 cells are consistent with the Hyal-1 and endo-β-glucuronidase enzymes described previously. These data suggest that Hyal-1 and endo-β-glucuronidase are predominantly lysosomal enzymes that act in concert to degrade the low-sulphate, GlcA-rich domains of DS, but are less active towards the highly sulphated regions containing IdoA.

To test the hypothesis that endoglycosidase activities are altered in the mucopolysaccharidoses, an attempt was made to compare Hyal-1- and endo-β-glucuronidase-like activities and their substrate specificities in mucopolysaccharidosis (MPS)-affected and unaffected control skin fibroblasts. However, no activity was detected towards octa- to hexadecasaccharide substrates in control fibroblast homogenates, and in homogenates of MPS fibroblasts deficient in the lysosomal exoenzymes α-L-iduronidase and N-acetylgalactosamine-4-sulphatase, despite the fact that: 1) what appear to be the products of Hyal-1 and endo-β-glucuronidase activities towards endogenous DS could be detected in the lysosomes of the MPS cells by sub-cellular fractionation; and 2) the ESI-MS/MS assay was demonstrated sensitive enough to detect endoglycosidase activities in homogenates of a number of different mouse tissues (including whole skin). We hypothesise that this absence of detectable endoglycosidase activity in skin fibroblasts results from enzyme non-recognition of the exogenous assay substrates tested, and hence that these cells contain heretofore undescribed Hyal-1 and endo-β-glucuronidase isoforms with unique substrate specificities.

In conclusion, the development of an ESI-MS/MS assay to measure the products of endoglycosidase activities has enabled the characterisation of these activities towards DS. This strategy may be useful for the future study of endoglycosidase activities towards a variety of other GAGs such as heparan sulphate, where particular oligosaccharide structures have been shown to possess unique biological activities.
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

……………………………………..

TC NIELSEN

July, 2009
ACKNOWLEDGEMENTS

I would like to sincerely thank the following people for their support over the last few years:

- Dr Maria Fuller, my principal supervisor, for her absolute dedication to the research undertaken, her continued concern for my professional development, and in particular for her rapid feedback and encouragement during the writing phase.

- Prof. John Hopwood, co-supervisor, whose vast experience in the field of glycosaminoglycan biochemistry was a priceless resource in guiding the overall direction of the project and providing a “bigger picture” perspective.

- Assoc. Prof. Peter Meikle, co-supervisor, whose influence is apparent in chapters three and four of this thesis.

- All the members of the LDRU, 2005-2009, who provided not only professional but also emotional support throughout, often while completely unaware that they were doing so. A big thank you to the “Blue Lab” in particular, who could always be relied upon to provide a welcome distraction when required. I’m sure I’m in danger of missing someone out, but here goes: Philippa Davey, Karissa Phillis, Dr Mark Prodoehl, Dr Emma Parkinson-Lawrence, Glenn Borlace, Chris Turner and Dr Anthony Fedele. Thanks also to the guys upstairs, Stephen Duplock and Troy Stomski, and to Prof. Doug Brooks.

- Special thanks to Dr Tomas Rozek, who spent much of his own time showing me the ropes on the mass spec, developing methods and trying to figure out where all those product ions came from!

- Sophie Lazenkas, for her thorough proof-reading of this manuscript.

- My family, whose support in the form of babysitting and other sundries made life a bit easier.

…and finally, my wife, Mara, who deserves an award of some kind for sitting this out with me. Perhaps one day I will be able to repay you. Until then, I can only say: thankyou.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔUA</td>
<td>unsaturated uronic acid</td>
</tr>
<tr>
<td>amu</td>
<td>atomic mass units</td>
</tr>
<tr>
<td>AUX</td>
<td>auxiliary gas</td>
</tr>
<tr>
<td>BME</td>
<td>basal modified eagle’s medium</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BTH</td>
<td>bovine testicular hyaluronidase</td>
</tr>
<tr>
<td>CAD</td>
<td>collision gas</td>
</tr>
<tr>
<td>CE</td>
<td>collision energy</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CS</td>
<td>chondroitin sulphate</td>
</tr>
<tr>
<td>CUR</td>
<td>curtain gas</td>
</tr>
<tr>
<td>CXP</td>
<td>collision cell exit potential</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DMG</td>
<td>3,3-dimethylglutaric acid</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DP</td>
<td>declustering potential</td>
</tr>
<tr>
<td>DS</td>
<td>dermatan sulphate</td>
</tr>
<tr>
<td>DSPG</td>
<td>dermatan sulphate proteoglycan</td>
</tr>
<tr>
<td>ECM</td>
<td>extra-cellular matrix</td>
</tr>
<tr>
<td>EP</td>
<td>entrance potential</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FGF</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>FP</td>
<td>focussing potential</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>Gal</td>
<td>galactose</td>
</tr>
<tr>
<td>GalNAc</td>
<td>N-acetylgalactosamine</td>
</tr>
<tr>
<td>GlcA</td>
<td>glucuronic acid</td>
</tr>
<tr>
<td>GlcN</td>
<td>glucosamine</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetylglucosamine</td>
</tr>
<tr>
<td>GPI</td>
<td>glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HC II</td>
<td>heparin cofactor II</td>
</tr>
<tr>
<td>HNAc</td>
<td>N-acetylhexosamine</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IdoA</td>
<td>iduronic acid</td>
</tr>
<tr>
<td>IS</td>
<td>ion spray voltage</td>
</tr>
<tr>
<td>ISTD</td>
<td>internal standard</td>
</tr>
<tr>
<td>MPS</td>
<td>mucopolysaccharidosis</td>
</tr>
<tr>
<td>MPSs</td>
<td>mucopolysaccharidoses</td>
</tr>
<tr>
<td>MRM</td>
<td>multiple reaction monitoring</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MS/MS</td>
<td>tandem mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>NEB</td>
<td>nebuliser gas</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PG</td>
<td>proteoglycan</td>
</tr>
<tr>
<td>PMP</td>
<td>1-phenyl-3-methyl-5-pyrazolone</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethanesulphonylfluoride</td>
</tr>
<tr>
<td>RHhyal-1</td>
<td>recombinant human Hyal-1</td>
</tr>
<tr>
<td>S</td>
<td>sulphate</td>
</tr>
<tr>
<td>SPAM-1</td>
<td>sperm adhesion molecule-1</td>
</tr>
<tr>
<td>TEM</td>
<td>temperature</td>
</tr>
<tr>
<td>UA</td>
<td>uronic acid</td>
</tr>
<tr>
<td>UDP</td>
<td>uridine diphosphate</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V₀</td>
<td>void volume</td>
</tr>
<tr>
<td>Vₜ</td>
<td>total volume</td>
</tr>
<tr>
<td>Xyl</td>
<td>xylose</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER ONE
Figure 1.1 Composition of DS 4
Figure 1.2 Structure of the DS-core protein linkage region in DSPG 5
Figure 1.3 Exodegradation of DS 16

CHAPTER THREE
Figure 3.1 Degradation of DS by chondroitinase ABC 51
Figure 3.2 Purification of oligosaccharides from BTH and chondroitinase ABC digests of CS-A and DS 53
Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 58
Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 60
Figure 3.5 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62
Figure 3.6 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68
Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70
Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75
Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77
Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79

CHAPTER FOUR
Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83
Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86
Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates 89
Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92
Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93
Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94
Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96
Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98
Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103

CHAPTER FIVE
Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109
Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111
Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114
Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116
Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118
Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120
LIST OF TABLES

CHAPTER ONE
Table 1.1 Binding interactions of DS 9
Table 1.2 Classification of MPSs resulting from deficiencies in DS-degrading exoenzymes 17

CHAPTER TWO
Table 2.1 ESI-MS/MS parameters for oligosaccharide scan #1 45
Table 2.2 ESI-MS/MS parameters for oligosaccharide scan #2 46
Table 2.3 ESI-MS/MS parameters for oligosaccharide scan #3 47
Table 2.4 ESI-MS/MS parameters for oligosaccharide scan #4 48

CHAPTER THREE
Table 3.1 Proposed structures of oligosaccharides from BTH digestion of CS-A 64
Table 3.2 Proposed structures of oligosaccharides from chondroitinase ABC digestion of CS-A 65
Table 3.3 Proposed structures of oligosaccharides from chondroitinase ABC digestion of DS 66

CHAPTER FOUR
Table 4.1 Structures of CS-A/DS oligosaccharide substrates/products 85
Table 4.2 Sensitivities of oligosaccharides to endo-β-N-acetylhexosaminidase and endohexuronidase activities 90
Table 4.3 Comparison of relative product levels following endohydrolysis of CS-A Adeca(+5S) substrate in sodium formate, sodium acetate and DMG buffers 95
Table 4.4 Comparison of relative product levels following endohydrolysis of CS-A Δdodeca(+6S) substrate in the presence of NaCl, Triton X-100 and protease inhibitors 95
PUBLICATIONS

The following publications resulted from the work described in this thesis:

Peer-reviewed journals

Conference abstracts

Nielsen, T.C., Meikle, P.J., Hopwood, J.J. and Fuller, M. A method to measure endohydrolase products by mass spectrometry *Proceedings of the Australian Health and Medical Research Congress 2006* (abstract #1525)
“I cannot express strongly enough my unbounded admiration for the greatness of mind of these men who conceived [the heliocentric system] and held it to be true….in violent opposition to the evidence of their own senses…..”

- Galileo, Dialogue concerning Two Principal Systems of the World (Third Day)