ETHANOL-RELATED TERATOGENICITY AND NEUROBEHAVIOURAL IMPAIRMENTS: INFLUENCE OF DIETARY ZINC SUPPLEMENTATION DURING PREGNANCY

A thesis submitted for the degree of Doctor of Philosophy

by

BROOKE LEE SUMMERS
B.Sc. (Biomedical Science) (Honours)

Division of Clinical Biochemistry,
Institute of Medical and Veterinary Science/ Hanson Institute, Adelaide, South Australia

and

The Department of Physiology,
The University of Adelaide, Adelaide, South Australia

October 2008
TABLE OF CONTENTS

ABBREVIATIONS .. VII
ABSTRACT ... X
DECLARATION .. XIII
ACKNOWLEDGMENTS .. XIV
PUBLICATIONS ARISING FROM THIS THESIS .. XVI
PUBLICATIONS FROM ASSOCIATED RESEARCH XVII

Chapter 1 - Background ... 1

1.1 ETHANOL TERATOGENICITY ... 1

1.1.1 Fetal Alcohol Syndrome (FAS) .. 3

1.1.2 Manifestations of fetal alcohol exposure .. 3

1.1.3 Factors that influence the type and severity of symptoms 7

1.1.3.1 Dosage and duration of ethanol exposure ... 8

1.1.3.2 Timing of ethanol exposure ... 9

1.1.3.3 Genetics ... 10

1.1.3.4 Nutrition .. 11

1.1.3.5 Smoking and drug abuse ... 11

1.1.4 Incidence of FAS and other alcohol-related disorders 11

1.1.5 Cost to the community .. 13

1.1.6 Animal Studies .. 14

1.1.7 Aetiology of ethanol teratogenicity ... 15

1.1.7.1 Direct effects of ethanol on the fetus ... 16

1.1.7.2 Effects of Acetaldehyde .. 17
1.1.7.3 Excess formation of prostaglandins .. 18
1.1.7.4 Oxidative stress (excess reactive oxygen species) 19
1.1.7.5 Altered blood supply/placental transport .. 20

1.2 ZINC ... 22

1.2.1 Zinc biochemistry ... 22
1.2.2 Zinc enzymes ... 23
1.2.3 Zinc proteins ... 24
1.2.4 Zinc absorption and transport ... 26
1.2.5 Zinc Homeostasis .. 27
1.2.6 Zinc deficiency in adults ... 29
1.2.7 Zinc deficiency during pregnancy ... 30
1.2.8 Teratogenicity: zinc deficiency vs ethanol exposure 34

1.3 METALLOTHIONEIN (MT) .. 34

1.3.1 Isoforms ... 35
1.3.2 MT Induction .. 36
1.3.3 MT function ... 39
1.3.4 MT induction during pregnancy and teratology 40
1.3.5 Ethanol-induced Zn deficiency: A possible cause of teratology 41

1.4 SUMMARY ... 43

1.5 AIMS ... 45
Chapter 2 ... 47

The effect of ethanol exposure in early pregnancy on birth abnormalities, pre- and post-natal growth, and on survival in offspring: The influence of dietary Zn supplementation and its effect on maternal MT-Zn response.

2.1 INTRODUCTION .. 47

2.2 METHODS ... 52

2.2.1 AIN-93G diet (for growth, pregnancy and lactation in rodents) 52

2.2.2 Animals and mating procedure ... 53

2.2.3 GD 8 Ethanol and dietary Zn supplementation .. 57

2.2.4 Fetal dysmorphology ... 58

2.2.5 Congenital heart defects (preliminary study) ... 58

2.2.6 Maternal Plasma Zn analysis .. 59

2.2.7 Postnatal growth and survival .. 60

2.2.8 Zn supplementation and ethanol response: GD 8 time-course 60

2.2.9 Zinc analysis .. 61

2.2.10 Metallothionein analysis ... 61

2.2.11 Statistical analyses ... 63

2.3 RESULTS ... 64

2.3.1 GD 18 Fetal dysmorphology ... 64

2.3.2 GD 18 Congenital heart defects .. 65
Chapter 3

The effect of ethanol exposure in early pregnancy on the phenotype, cognition and behaviour, and hippocampus of adult offspring; The influence of dietary Zn supplementation on neurobehavioural impairments.

3.1 INTRODUCTION .. 89

3.2 METHODS .. 94

 3.2.1 Animals and mating procedure .. 94

 3.2.2 Treatment ... 94

 3.2.3 Litter size and neonatal growth .. 95

 3.2.4 Physical and behavioural screening .. 95

 3.2.5 Selection for spatial learning/ memory and object recognition tests 99

 3.2.6 Cross-maze escape task: Spatial learning and memory 99

 3.2.7 Object recognition task ... 102

 3.2.8 Preliminary brain examination ... 106

 3.2.9 Statistical analysis .. 107
Chapter 4

The effect of chronic ethanol exposure (via liquid diet) and dietary Zn supplementation throughout pregnancy on postnatal growth, survival and spatial learning and memory in mice offspring.

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Animals and mating procedure

4.2.2 Weinberg/Keiver liquid diet

4.2.3 Dietary Zn concentrations, tissue Zn distribution and fetal outcomes

4.2.4 Ethanol dosage and pregnancy outcomes

4.2.5 Blood alcohol concentration (BAC) and plasma Zn timeline

4.2.6 Chronic ethanol behaviour study: Diets, postnatal growth and survival

4.2.7 Chronic ethanol behaviour study: Selection for spatial maze task
4.2.8 Chronic ethanol behaviour study: Spatial learning and memory 139

4.2.9 Statistical Analyses ... 139

4.3 RESULTS ... 140

4.3.1 Dietary Zn concentrations, tissue Zn distribution and fetal outcome 140

4.3.2 Ethanol dosage and pregnancy outcome ... 144

4.3.3 BAC and plasma Zn timeline: 27 % EDC liquid diet ... 145

4.3.4 Chronic ethanol behaviour study: diets, postnatal growth and survival 148

4.3.5 Chronic ethanol behaviour study: Spatial learning and memory 153

4.4 DISCUSSION .. 156

4.5 SUMMARY .. 164

Chapter 5 – GENERAL DISCUSSION ... 166

5.1 SUMMARY .. 166

5.2 CLINICAL APPLICATIONS ... 171

5.3 FUTURE DIRECTIONS .. 174

5.4 CONCLUDING STATEMENT .. 177

REFERENCES ... 179
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µmol</td>
<td>micromole</td>
</tr>
<tr>
<td>AE</td>
<td>Acrodermatitis Enteropathica</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>ARBD</td>
<td>Alcohol Related Birth Defects</td>
</tr>
<tr>
<td>ARND</td>
<td>Alcohol Related Neurdevelopmental Disorder</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>BAC</td>
<td>Blood Alcohol Concentration</td>
</tr>
<tr>
<td>Bi</td>
<td>Bismuth</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CRL</td>
<td>Crown Rump Length</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>dL</td>
<td>decilitre</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EDC</td>
<td>Ethanol Derived Calories</td>
</tr>
<tr>
<td>EP</td>
<td>Escape Platform</td>
</tr>
<tr>
<td>FAS</td>
<td>Fetal Alcohol Syndrome</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>FASD</td>
<td>Fetal Alcohol Spectrum Disorder</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GD</td>
<td>Gestational Day</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>GRE</td>
<td>Glucocorticoid Response Element</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>hZTL1</td>
<td>human ZnT-like transporter 1</td>
</tr>
<tr>
<td>IMVS</td>
<td>Institute of Medical and Veterinary Science</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MRE</td>
<td>Metal Response Element</td>
</tr>
<tr>
<td>MT</td>
<td>Metallothionein</td>
</tr>
<tr>
<td>MTF</td>
<td>Metal Transcription Factor</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
</tbody>
</table>
NaCl Sodium Chloride
NAD Nicotinamide Adenine Dinucleotide
NTD Neural Tube Defect
ORT Object Recognition Task
PD Postnatal Day
ppm parts per million
REML Restricted Maximal Likelihood
RNA Ribonucleic Acid
ROS Reactive Oxygen Species
s seconds
SEM Standard Error of Mean
TF IIIA Transcription Factor III A
TNF-α Tumor Necrosis Factor alpha
v volume
VSD Ventricular Septal Defect
w weight
Zn Zinc
ZnSO₄ Zinc Sulphate
Ethanol consumption during pregnancy can result in a wide range of negative outcomes, including pre-and post-natal mortality, growth retardation, physical abnormalities and brain deficits, manifested as behavioral impairments. These outcomes can result from “binge-drinking” (generally defined as >5 standard drinks on a single occasion) or chronic ethanol consumption. Ethanol-induced zinc (Zn) deficiency is one of the mechanisms proposed as a cause of ethanol teratogenicity. We have previously demonstrated in mice that ethanol exposure on gestational day (GD)8 (during organogenesis) can alter Zn homeostasis by inducing the Zn-binding protein metallothionein (MT) in the maternal liver. This causes plasma Zn concentrations to decrease as Zn redistributes into the liver, and consequently decreases the fetal Zn supply and increases the risk of teratogenicity. Subcutaneous Zn treatment with ethanol on GD8 can prevent the deleterious effects of ethanol on the fetus (i.e. physical abnormalities and spatial memory impairments). The main objective of this thesis was to investigate whether a less invasive approach of giving dietary Zn supplementation throughout pregnancy could provide similar protective benefits against a range of adverse outcomes caused by prenatal binge or chronic ethanol exposure.

Binge ethanol exposure in early pregnancy (i.e. where mice are injected with 25% ethanol (0.015 ml/g) intraperitoneally at 0 and 4 hours on GD8) significantly increased the incidence of birth abnormalities measured on GD18. These included craniofacial abnormalities (microphthalmia, anophthalmia) and limb defects. Ethanol
also increased postnatal mortality between birth and postnatal day (PD)60. In a separate study, offspring from dams given ethanol on GD8 were subjected to a physical and behavioural screening protocol (including tests for vision, olfactory, exploratory, anxiety and motor impairments) and subsequently a cohort of phenotypically-normal offspring were randomly selected for testing in a cross-maze escape task (for spatial learning and memory) and an object recognition test (for short-term non-spatial memory). While ethanol did not affect behaviour measured during screening, it resulted in spatial memory and object recognition memory impairments in adult offspring. The most important finding was that dietary Zn supplementation throughout pregnancy significantly increased plasma Zn concentrations at the time of ethanol exposure (avoiding the “typical” ethanol-induced decrease in plasma Zn) and prevented all negative outcomes resulting from early ethanol exposure (birth abnormalities, mortality, spatial and object recognition memory impairments). In the chronic ethanol mouse model (i.e. where mice were fed a liquid diet containing 27% v/v ethanol-derived calories from GD6-18), ethanol did not affect offspring growth between birth and PD21 or spatial memory in adult offspring, thus, the influence of Zn supplementation could not be examined for these parameters. While ethanol decreased offspring weight at PD50 and increased mortality between birth and PD40, they were not prevented by Zn supplementation throughout pregnancy.

The findings from this thesis emphasise that organogenesis is a particularly vulnerable period to ethanol exposure and even a binge of ethanol during this time
can result in dysmorphology, mortality and spatial and object memory impairments in adulthood. In addition, dietary Zn supplementation is protective against the deleterious effects of binge ethanol exposure in early pregnancy.
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis being made available in the University Library.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

Brooke Lee Summers

Signature……………………………… Date……………..
ACKNOWLEDGMENTS

I would like to thank my supervisors Dr Peter Coyle and Dr Allan Rofe, for their guidance and support over the duration of my PhD. In particular Peter who always made himself available for when I needed assistance (which was quite often at certain times of our study!!) and I certainly could not have asked for better supervisors.

Thanks also to a number of people I have had associations with in the Department of Clinical Biochemistry and the Institute of Medical and Veterinary Science. In particular, members of our metals research group, Joanne Chua, Jenny Fung, Nancy Tran, Matthew Rees, as well as Lisa LaVence and Catherine Henry (for their technical assistance with our behavioural studies), Michael Haywood (for passing on his expertise on atomic absorptions spectroscopy for tissue and diet Zn analysis) and Paul Anderson (for his general guidance during my PhD). A special mention must also go to Kate Dowling (Biometrics SA), Thomas Sullivan and Sue Lester, who helped with analysing our results at various stages during the study.

Thankyou to the foundations that financially supported the research undertaken in this thesis; The Channel 7 Children’s Research Foundation (Binge drinking studies) and The Australian Brewers Association (Chronic alcohol study).

I would like to thank my parents, grandma and sister for their support throughout my study (in particular grandma who prayed so hard for me to hurry up and complete my
thesis that her rosary beads wore down and broke!). It took a little longer than expected to complete my PhD but I appreciated all the support throughout my student life to help me get through all the difficult times.

I would also like to thank my husband, Paul, for his love and support over the past 4 years and for providing me with a well deserved break from thesis-writing (our wedding day and honeymoon). Being married to a PhD student is not always fun when there is research and writing to be done, but you always helped and supported me during the stressful times and made things as easy as possible for me to get my work done. FINALLY!!!

PUBLICATIONS FROM ASSOCIATED RESEARCH

