Efficient Data Transport in Wireless Sensor Networks

Haibo Zhang

The School of Computer Science The University of Adelaide

July 31, 2008

Contents

	Abst	tract			
	Decl	eclaration			
	Acknowledgments				
	Abst	ract	13		
1 Introduction			15		
	1.1	Characteristics of WSNs	16		
	1.2	Challenges for Data Transport in WSNs	17		
	1.3	Issues Addressed in This Thesis	19		
	1.4	Main Contributions	21		
	1.5	Thesis Outline	22		
2 Literature Review		rature Review	25		
	2.1	Energy-aware Routing	25		
	2.2	Geographic Routing	27		
	2.3	Energy-balancing Strategies	30		
	2.4	4 Time-efficient Data Transport			
	2.5	Random Access Techniques	34		
3	Energy-efficient Beaconless Geographic Routing				
	3.1	Introduction	37		
	3.2	Related Work	40		
	3.3	Preliminaries			
		3.3.1 Network Model	41		
		3.3.2 Energy Model	42		

		3.3.3	Characteristics of Power-adjusted Transmission	42
	3.4	Energy	v-efficient Beaconless Geographic Routing (EBGR)	43
		3.4.1	Relay Search Region	44
		3.4.2	Greedy Forwarding	45
		3.4.3	Discrete Delay Function	46
		3.4.4	Beaconless Recovery	47
	3.5	Theore	etical Analysis	49
		3.5.1	Notations and Definitions	49
		3.5.2	Guaranteed Delivery	50
		3.5.3	Bounds on Hop Count	51
		3.5.4	Upper Bound on Energy Consumption	52
		3.5.5	Expected Energy Consumption	58
		3.5.6	Summary of Analysis on Energy Consumption	60
	3.6	Extens	ion to Lossy Wireless Sensor Networks	61
		3.6.1	Routing Metric	61
		3.6.2	Blacklisting and Discrete Delay Function	62
	3.7	Simula	tion Results and Analysis	63
		3.7.1	Simulation Settings	63
		3.7.2	Performance of EBGR in Mobility Scenarios	65
		3.7.3	Performance of EBGR in Random Sleeping Scenarios	69
		3.7.4	Performance of EBGR-2 in High-variant Link Quality Scenarios	71
	3.8	Summ	ary and Future Work	73
4	Fno	rav_Rol	anced Data Cathering	75
•	<i>L</i> 1	Introdu		75
	4.2	Related	d Work	78
	4.3	System	n Models and Problems Statement	70
	1.5	431	Network Model	79
		432	Aggregation Model	, , 80
		433	Fnerøv Model	80
		431	Problems Statement	81
		т.J. Т		01

	4.4	Intra-C	Corona Energy Consumption Balancing	83
		4.4.1	Sufficient and Necessary Condition for Intra-CECB	83
		4.4.2	Zone-based Routing Scheme	85
		4.4.3	Hop-by-hop Transmission Range	88
	4.5	Inter-C	Corona Energy Consumption Balancing	89
		4.5.1	Optimal Data Distribution Ratio Allocation	90
		4.5.2	Numerical Results and Analysis	93
	4.6	Netwo	rk Lifetime Maximization	94
		4.6.1	Optimal Number of Sub-Coronas	95
		4.6.2	Optimal Number of Coronas	97
	4.7	The El	BDG Protocol	97
		4.7.1	Network Set-up Phase	97
		4.7.2	Data Gathering Stage	99
	4.8	Extens	sion to Large-Scale Data Gathering Sensor Networks	102
4.9 Simulation Results and Analysis			ation Results and Analysis	103
		4.9.1	Simulation Setup	103
		4.9.2	Comparison with multi-hop routing and direct transmission schemes	105
		4.9.3	Comparison with cluster-head rotation scheme	107
		4.9.4	Comparison with maximum lifetime data gathering scheme	108
	4.10	Summ	ary and Future Work	110
5	Tim	e-efficie	ent Random Access Data Gathering	112
	5.1	Introdu	uction	112
	5.2	An Illu	ustrating Example	114
	5.3	Relate	d Work	117
5.4 System Models and Problem Formulation		n Models and Problem Formulation	119	
		5.4.1	System Models	119
		5.4.2	Problem Statement	120
	5.5	Solutio	on for Linear Wireless Sensor Networks	121
		5.5.1	Localized Algorithm for Attempt Probability Computation	122
		5.5.2	Numerical Results and Analysis	125

	5.6	Solutio	on for Networks with Random Network Topology	. 126
		5.6.1	Localized Algorithm for Attempt Probability Computation	. 127
		5.6.2	Numerical Results and Analysis	. 131
	5.7	Protoc	ol RADG	. 133
		5.7.1	Transmission Stopping Rules	. 133
		5.7.2	Duplicate Packet Elimination	. 134
		5.7.3	Periodical Sleeping	. 135
	5.8	Perfor	mance Evaluation	. 135
		5.8.1	Simulation Setup	. 136
		5.8.2	Data Gathering Duration vs. Packet Size	. 136
		5.8.3	Amount of Data Transmitted vs. Data Packet size	. 138
		5.8.4	Impact of Channel Bit Rate	. 139
	5.9	Summ	ary and Future Work	. 140
6	Con	clusion	and Future Work	142
	6.1	Conclu	usion	. 142
	6.2	Future	Work	. 143
A	Ana	lysis of	Characteristic Distance on Energy Consumption	145
B	Dese	cription	of Parameters Used in Chapter 3	146
С	Dese	cription	of Parameters Used in Chapter 4	148
D	Dese	cription	of Parameters Used in Chapter 5	150

List of Figures

3.1	Greedy forwarding in EBGR in which u is the forwarder, and s is the sink.	
	Only a and b are eligible candidates since they are in the relay search region.	44
3.2	The relay search region \mathbf{R}_u is divided into 4 coronas S_1, S_2, S_3, S_4 where	
	S_i has width $(\sqrt{i}-\sqrt{i-1})r_1$ since all coronas have the same area size	46
3.3	Illustration of loop-free packet forwarding in greedy forwarding mode	50
3.4	${\cal C}(u)$ is the minimum relay search region that covers only one node, and r	
	is the radius of $C(u)$.	51
3.5	C(u) is the minimum relay search region, and v is a node located on the	
	border of $C(u)$ where $ vs = ns , vd = md , ud = ub .$	53
3.6	Approximation of advance where v is the only node in $C(u)$ and $ vs =$	
	bs . The dashed square is the approximation of $C(u)$, and it has the same	
	area size with $C(u)$	58
3.7	Comparison of r_{ul} and r_{el} with the variation of the radius of the minimum	
	relay search region	61
3.8	The total energy consumption under EBGR, BLR and GPER with different	
	mobility levels	66
3.9	The Packet drop ratio under EBGR, BLR and GPER with different mobility	
	levels	66
3.10	The number of control messages under EBGR, BLR and GPER with dif-	
	ferent mobility levels	67
3.11	The sum of energy along routing path under EBGR, BLR and GPER with	
	different mobility levels	67

3.12	The total energy consumption under EBGR, BLR and GPER in random	
	sleeping scenarios with different sleeping probability	. 70
3.13	The total energy consumption under EBGR, BLR and GPER in random	
	sleeping scenarios with different time interval	. 71
3.14	The total energy consumption under EBGR-2 and $PRR \times DIST$ with	
	different link quality estimation interval	. 72
3.15	The energy consumption on data transmission under EBGR-2 and $PRR \times$	
	DIST with different link quality estimation interval	. 73
4.1	Illustration of network division (n=4)	. 81
4.2	The partition of coronas C_i and C_{i+1}	. 85
4.3	Illustration of the range of r'_w	. 88
4.4	Mapping the network onto linear model	. 90
4.5	Illustration of the iterative process for computing p_i	. 92
4.6	The data distribution ratios for different coronas with different aggregation	
	parameters	. 94
4.7	Approximated hop-by-hop transmission range	. 96
4.8	Network division and zones creation $(n = 2, w = 2 \text{ and } \lambda = 3) \dots$. 104
4.9	Network lifetime with different data compression ratio when $R = 340m$	
	and $\lambda = 5$. 105
4.10	Network lifetime extension with different data compression ratio and dif-	
	ferent network size	. 106
4.11	A snapshot of distribution of residual energy	. 107
4.12	Network lifetime extension compared with LEACH	. 108
4.13	Network lifetime: Optimal schedule, MLDA/MLDR and EBDG	. 109
4.14	Network Graph and data gathering trees in MLDR	. 109
5.1	one-hop network	. 115
5.2	RTS/CTS example	. 115
5.2		112
5.3	Number of message and number of time slots vs. α	. 116
5.3 5.4	Number of message and number of time slots $vs. \alpha$. 116 . 116

5.6	Convergence speed of algorithm APT-LN on a linear sensor network com-
	posed of 8 nodes
5.7	Critical path of node v_i
5.8	Illustration for Lemma 18
5.9	A tree data gathering network composed of 60 nodes
5.10	Convergence speed of self-stabilization phase
5.11	Convergence speed of latency balance phase
5.12	Effect of data packet size on the performance of RADG and CSMA 137
5.13	The amount of data transmitted under different data packet size
5.14	T_{round} under different channel bit rate $\ldots \ldots \ldots$
5.15	The amount of data transmitted under different channel bit rate

List of Tables

4.1	Simulation Parameters for Evaluating EBDG	4
5.1	Attempt probability for each node	5
5.2	$E[S_{i,j}]$ and T_{round} with different link reliability $\ldots \ldots \ldots$	6
5.3	Simulation Parameters for Evaluating RADG	5

Abstract

Providing efficient data transport is one of the uppermost objectives in the design of wireless sensor networks (WSNs) since the primary role for each sensor is to report the sensed data to the data sink(s). This thesis focuses on designing efficient data transport schemes for WSNs in the dimensions of energy consumption and time respectively. The developed schemes can be directly applied in a number of applications such as intrusion detection, target tracking, environment monitoring, etc., and can be further extended to underwater acoustic sensor networks and unmanned aerial vehicles (UAVs) networks. With the development of WSN technologies, new challenging research problems such as real-time streaming data gathering and intelligent data communication are emerging. This thesis provides useful foundation for designing next-generation data transport schemes for WSNs.

Energy is the most important resource in WSNs because sensor nodes are commonly powered by small batteries, and energy is directly related to the lifetime of nodes and the network. In this thesis, energy-efficient data transport schemes are designed for two major types of WSNs: event-driven sensor networks and time-driven sensor networks. A novel on-line routing scheme called EBGR (Energy-efficient Beaconless Geographic Routing) is designed for event-driven sensor networks characterized by dynamic network topology. The main advantage of EBGR is that it can provide energy-efficient sensor-to-sink routing without any prior neighborhood knowledge. Moreover, the total energy consumption for sensor-to-sink data delivery under EBGR has an upper bound. Time-driven sensor networks, in which all sensors periodically report the sensed data to the sink(s), have been widely used for environment monitoring applications. Unbalanced energy consumption is an inherent problem in time-driven sensor networks. An efficient data gathering scheme, called EBDG (Energy-Balanced Data Gathering), is designed to balance energy consumption for the goal of maximizing network lifetime. Combing all advantages of corona-based network division, mixed-routing and data aggregation, EBDG can prolong network lifetime by an order of magnitude compared with conventional schemes.

Time-efficient data transport is another critical issue in WSNs since the data generated by the sensor nodes may become outdated after a certain time interval. This thesis focuses on the problem of providing real-time data gathering in time-driven sensor networks. A novel data gathering scheme based on random access is proposed with the objective to minimize the average duration for completing one round of data gathering. Fully localized solutions have been designed for both linear networks and tree networks. A simple data gathering protocol called RADG (Random Access Data Gathering) is designed. Simulation results show that RADG outperforms CSMA based schemes when the size of the data packets is small.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying.

Singed:

Haibo Zhang

Acknowledgments

I first thank my principal supervisor Prof. Hong Shen for guiding my research. He has been part of my research in all the stages, starting from problem definition to publication of our solutions. His breadth of knowledge and his enthusiasm for research amaze and inspire me.

I am grateful to Dr. Cheryl Pope, my Ph.D co-supervisor. Cheryl and I have been working during the final days before the thesis submission deadline. Her advice and feedback about my research have greatly enhanced and strengthened the work. I thank her for the countless hours she has spent with me, discussing everything from research to career choices.

I also would like to give thanks to Prof. Yasuo Tan in JAIST for acting as my temporary supervisor before I transferred to the University of Adelaide.

I am deeply indebted to school of computer science at the University of Adelaide, and the 21th COE program in Japan Advanced Institute of Science and Technology (JAIST) for granting me scholarships, which enable me to pursue Ph.D study. Thanks them also for supporting me to present our work at some international conferences.

I would like to thank my friends and colleagues, especially Zonghua Zhang, Yingpeng Sang, Hui Tian, Shihong Xu and Yidong Li, for their insightful discussions and warm friendship.

I owe a special debt of gratitude to my parents and family. They have, more than anyone else, been the reason I have been able to get this far. Words cannot express my gratitude to my parents, who give me their support and love from across the seas. My wife, Yawen Chen, gives me her selfless support and love that make me want to excel.

Finally, I would like to thank all the people who either directly or indirectly provide me knowledge, experience, and support.

Published Papers

- Haibo Zhang and Hong Shen, Balancing Energy Consumption to Maximize Network Lifetime in Data Gathering Sensor Networks, accepted for publication at IEEE Transactions on Parallel and Distributed Systems.
- Haibo Zhang and Hong Shen, Brief Announcement: Balancing Energy Consumption for Data Gathering in Sensor Networks, the 27th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2008.
- Haibo Zhang and Hong Shen, EEGR: Energy Efficient Geographic Routing for Wireless Sensor Networks, the 36th International Conference on Parallel Processing (ICPP), 2007, China, #67.
- Haibo Zhang, Hong Shen and Yasuo Tan, Optimal Energy Balanced Data Gathering in Wireless Sensor Networks, the 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2007, USA, pp. 1-10.
- Haibo Zhang, Hong Shen and Hui Tian, Reliable and Real-time Data Gathering for Multi-hop Linear Wireless Sensor Networks, the 1st International Conference on Wireless Algorithms, Systems and Applications (WASA), 2006, pp. 151-162.
- Haibo Zhang and Hong Shen, Distributed Tuning Attempt Probability for Data Gathering in Random Access Wireless Sensor Networks, IEEE 20th International Conference on Advanced Information Networking and Applications (AINA), 2006, Vienna, Austria, pp. 643-648.
- Haibo Zhang and Hong Shen, Haibin Kan, Reliability-Latency Tradeoffs for Data Gathering in Random-Access Wireless Sensor Networks, the 4th International Conference on Grid and Cooperative Computing (GCC), 2005, pp. 701-712.

Papers Under Review

1. Haibo Zhang and Hong Shen, Energy-efficient Beaconless Geographic Routing in Wireless Sensor Networks, *under second-round review*, IEEE Transactions on Paral-

lel and Distributed Systems.

 Haibo Zhang and Hong Shen, Exploring Random Access Techniques for Data Gathering in Wireless Sensor Networks, Submitted to Wireless Communications and Mobile Computing in April 2008.