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Chapter 1

Introduction

1.1 Introduction to corner flows

The first half of this thesis, comprising Chapters 2–5, examines the laminar and

transitional flow parallel to a streamwise corner. Corner flows find numerous engi-

neering applications in the form of wind tunnels, ships, aeroplanes (especially fighter

aircraft), tunnels, sluices, and turbomachines. Corner flows are also of considerable

theoretical interest, inasmuch as they feature interacting boundary layers. Given the

ubiquity of corner flows, it is not surprising that they have been studied for several

decades. However, few experimental studies have focussed on laminar and transi-

tional corner-flows. These flows have been the subject of a number of analytical

and computational studies; however, this literature is by no means comprehensive

or readily accessible to engineers. In particular, only limited data is available for

external, oblique or pressure-driven corner flows.

The most important characteristic of a corner flow is its nature. For a prescribed

geometry and Reynolds number, will the corresponding corner flow be laminar,

transitional or turbulent? Is it possible to exhibit a critical Reynolds number Rec

(or range of Reynolds numbers) below which the laminar flow is stable, and above

which the flow is liable to be turbulent or transitional in nature? On this key issue,

theoretical analysis is likely to yield valuable data at a fraction of the cost of wind-

tunnel experiments. Several such analyses have already been attempted, but much

remains to be done. To date, progress on this front has been limited by the high

computational cost of solving the eigenvalue equations governing the stability of

non-planar laminar flows.

The present work on corner flows will be primarily of a theoretical and compu-

tational nature, although we will refer to experimental data wherever appropriate.

Our literature review in §1.3 necessarily introduces a significant degree of technical
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Figure 1.1: Schematic representation of the laminar flow internal to a square corner.

detail and mathematical notation. It is expedient to commence in §1.3.1 with a

review of the well-known analytic solution of Blasius (1908) for a flat-plate lami-

nar boundary layer (essentially a trivial corner flow with corner angle Φ = π). This

leads naturally in §1.3.2 to discussion of the simplest laminar corner flow, illustrated

schematically in Figure 1.1; it corresponds to a square corner (Φ = π/2) oriented

parallel to a incident streamwise flow with zero streamwise pressure gradient (ZPG).

Extensions to oblique corners (0 < Φ < π) and external corners (π < Φ < 2π) are

briefly outlined in §1.3.4 and §1.3.5 respectively. In §1.3.3 we revisit ZPG square-

corner flow with a view to determining its hydrodynamic stability. In §1.3.6 and

§1.3.7 we consider the challenging case of laminar corner flows subject to a non-zero

streamwise pressure gradient (NZPG). The literature in this field is inconclusive,

and provides little numerical data for the important case of a favourable pressure

gradient (FPG), believed to be the most stable laminar-flow configuration. Our

review of NZPG corner flow begins in §1.3.6 with the (tractable but flawed) power-

law model, essentially the three-dimensional analogue of the Falkner–Skan flat-plate

boundary layer. We then proceed in §1.3.7 to consider corner-flow models of a more

general (and realistic) nature. Finally, we outline our research plan in §1.3.8.
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Briefly, the first part of this thesis is structured as follows. Chapter 2 reviews

the published data for the simple case of ZPG laminar corner flow, before presenting

and discussing our own data set. Chapter 3 analyses the hydrodynamic stability of

the corner flow of Chapter 2. Chapter 4 analyses the laminar flow external to a

square corner (Φ = 3π/2). Finally, Chapter 5 summarizes our findings and offers

some recommendations for further research on laminar and transitional corner flows.

1.2 Introduction to unsteady pipe flow

The second part of this thesis, comprising Chapters 6–10, examines the response of

laminar pipe flow to a rapid blockage at a downstream location. The key concept is

that the fluid comes to rest via a non-trivial process, which may or may not involve

a partial transition to a turbulent state.

This study is motivated principally by the well-known water-hammer phenome-

non encountered in civil engineering. Traditionally, engineers have been interested

primarily in predicting the maximum transient pressures likely to be generated dur-

ing pipe closure. In most instances this quantity is not difficult to estimate. More

recently, engineers have realised the possibility of generating water-hammer events

artificially in order to probe pipeline networks (for example, for the presence of

leaks). This technique of Inverse Transient Analysis (ITA) relies on the standard

water-hammer equations but emphasizes the envelope and phase of the transient

pressure wave rather than its maximum amplitude. Unfortunately, these character-

istics are not well predicted by standard water-hammer models, owing mainly to

reliance on quasi-steady models to estimate the unsteady viscous shear stresses (ie

damping friction) induced on the walls of the pipe. This ad hoc approach neglects

unsteady phenomena and falsely equates zero flow with zero mean flow (ie no net

flow across a given cross-section of the pipe). The net effect is to underestimate

both the damping effect and the phase response in the pressure wave.

Additionally, the study of pipe blockage is motivated by physiology and medicine;

more precisely, by unsteady flows in blood vessels and catheters. At first glance, a

blocked pipe may appear to represent a poor model of oscillatory blood flow. Yet

such a model does provide a valuable first approximation to unsteady flow effects

in a blood vessel. The assumption of rapid blockage or impulsive acceleration is a

good approximation to the systole (ie acceleration phase of the blood flow), which

is at least an order of magnitude shorter than the period of the heartbeat cycle.

Furthermore, blood flow is known to encompass laminar, turbulent and transitional

regimes (in contrast to engineering applications, where turbulent flows predominate).
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The unsteady shear stresses generated within each flow regime, and the onset of

turbulence, are both matters of considerable interest to researchers in the field of

medicine and physiology, and are discussed further in §1.4.2.

Finally, we are motivated by theoretical considerations. In particular, the study

of pipe blockages may advance our collective understanding of unsteady phenomena

in fluid flow. As discussed in §1.4.3, we are particularly interested in elucidating the

structure and hydrodynamic stability of unsteady boundary layers and corner flows.

In this respect, we are well placed to exploit recent advances in fluid mechanics

regarding transient behavior of instabilities and efficient computational techniques

and algorithms.

At first glance, unsteady pipe flow may appear to have very little in common

with the steady streamwise corner flows discussed in the first part of this thesis. The

former represents an enclosed flow with cylindrical geometry; the latter occupies a

semi-infinite domain bounded on two sides by a planar geometry. Yet these two

classes of flows share several commonalities. Each may be variously laminar, tran-

sitional, or turbulent. Each occupies a well-defined geometry which is semi-infinite

in at least one direction. Each is characterised by two wall boundary layers which

intersect to form a corner boundary layer. In the case of corner flow (Figure 1.1),

these boundary layers are associated with the horizontal wall (y = 0, z ≥ 0), the

vertical wall (z = 0, z ≥ 0), and the corner line (y = z = 0, x ≥ 0). The correspond-

ing pipe-flow boundary layers, illustrated schematically in Figure 9.1, are associated

with the pipe wall (r = 1), the blockage point within the pipe (x = 0, 0 ≤ r ≤ 1),

and the intersection line (r, x) = (1, 0). This circular intersection region appears

quasi-square at small spatial scales (|x| � 1 and 1 − r � 1) and accordingly in-

duces a corner-like boundary layer throughout the early phase of the laminar-decay

process.

Our research plan is detailed in §1.4.4. Briefly, the second part of this thesis is

structured as follows. Chapter 6 considers (a) the post-blockage initial conditions

and (b) the laminar-decay process well upstream of the blockage (|x| � 1). Chap-

ter 7 analyses the hydrodynamic stability of the upstream laminar flow using linear

eigenmode theory. Chapter 8 broadens the stability analysis of Chapter 7 to encom-

pass linear pseudomodes, while paying especial attention to the transient nature of

the laminar flow itself. Chapter 9 analyses the three boundary layers simultaneously

and presents a 2D numerical simulation of the decay process, encompassing both

the laminar and early-transitional regimes. Chapter 10 summarizes our findings and

recommendations regarding unsteady pipe flows.
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1.3 Literature survey: Corner flows

1.3.1 Review of 2D Blasius flow

We begin our discussion of corner flows with the trivial case of uniform flow across

a straight-edged corner. This is the well-known Blasius boundary layer discussed in

numerous texts; see, for example, Schlichting (1968, pp. 125–133) and Munson et al.

(2002, pp. 548–559). A detailed review of this flow is nevertheless worthwhile, since

it will streamline the ensuing discussion of non-trivial corner flows.

The flat plate is semi-infinite, with a well-defined leading edge located at x = 0.

Incident to the leading edge is a uniform stream of the form

u∞ ≡ (u, v, w)∞ = (U∗, 0, 0) (1.1)

where U∗ is a constant with the dimension of velocity. In 1908, Blasius deduced that

the width of this boundary layer is of O(x/
√

Rex) where Rex is the local Reynolds

number defined by

Rex =
U∗x∗

ν
, (1.2)

where ν denotes the kinematic viscosity of the fluid and x∗ denotes the (dimensional)

distance from the leading edge. It is customary to non-dimensionalize the velocity

with respect to U∗ and the coordinate system with respect to an arbitrary length

scale L∗ such that x∗/L∗ = O(1). We will adopt this convention throughout our

study of corner flows; hereafter, we will let u = (u, v, w) denote non-dimensional

velocity and (x, y, z) denote non-dimensional spatial variables. We also define a

global Reynolds number Re by

Re =
U∗L∗

ν
(1.3)

such that

Rex = xRe where x = O(1). (1.4)

Thus, the flat-plate boundary layer is of non-dimensional width O(Re−1
2 ), and ex-

pands in width downstream as O(
√

x). In the above notation, Blasius derived the

following expression for the flow:

(u, v) =

(
U(η),

V (η)√
Rex

)
(1.5)

where η is a similarity variable defined by

η =
√

Rex

(y

x

)
≡ Re

1
2y√
x

[original definition]. (1.6)
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The shape functions U and V are related to each other by

U = f ′, V = 1
2
(ηf ′ − f), (1.7)

where f is the solution to the third-order nonlinear ordinary differential equation

f ′′′ + 1
2
ff ′′ = 0, (1.8)

subject to the boundary conditions

f(0) = 0, f ′(0) = 0, and lim
η→∞

f ′(η) = 1, (1.9)

corresponding respectively to

V (0) = 0, U(0) = 0 and lim
η→∞

U(η) = 1. (1.10)

Nowadays, in the interests of analytic convenience, it is customary to rescale η by a

factor of
√

2, ie

η =
Re

1
2y√
2x

≡ (
1
2
Rex

)1
2

(y

x

)
[standard definition], (1.11)

and to rescale the Blasius solution accordingly:

(u, v) =

(
U(η), Re−1

2
V (η)√

2x

)
, (1.12a)

(U, V ) = (f ′, ηf ′−f) , (1.12b)

f ′′′ + ff ′′ = 0. (1.12c)

The Blasius boundary layer possesses a well-defined structure and width. Its non-

dimensional displacement width δ1 ≡ δ1(x) is given by

δ1(x) = lim
y→∞

∫ y

0

(1 − U(x, y′)) dy′ (1.13a)

=
√

2x/Re

∫ ∞

0

(1 − U(η)) dη (1.13b)

= (1.72
√

x) Re−1
2 . (1.13c)

The full width δ2 of the boundary layer, defined by

u(x, δ2(x)) = 0.99 U∗, (1.14)

is given by

δ2(x) =
(
5.0

√
x
)
Re−1

2 ≡ 5.0 x√
Rex

(1.15a)

= 2.9 δ1(x). (1.15b)
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The integral in (1.13b) defines the Blasius constant:

β ≡
∫ ∞

0

[1 − (ηf ′(y) − f(η))] dη = 1.21678. (1.16)

The (dimensional) wall shear stress τ scales as

τ = O

(
x−1

2 (U∗)
3

2

)
≡ O

(
Re

3
2

)
. (1.17)

In engineering parlance, the friction factor for steady laminar pipe flow scales as

Cf = O(Re−1
2 ). (1.18)

1.3.2 The simplest corner flow

The simplest non-trivial corner flow is illustrated schematically in Figure 1.1. The

fluid flow is steady, laminar and Newtonian in character. The corner itself comprises

two quarter-infinite planes oriented at right angles to each other. In accordance with

convention, we identify these planes as a horizontal wall and vertical wall located

respectively at y = 0 and z = 0. Similarly, we identify the leading edge with x = 0

and the corner line with (y, z) = (0, 0), so that the corner region consists precisely

of the positive octant of the (x, y, z) coordinate system. Incident to the leading edge

is a unidirectional steady laminar flow of the form u = (U∗, 0, 0) for x ≤ 0. To

first order, this flow extends unchanged into the corner region (x > 0), except for a

boundary layer in the immediate vicinity of the walls.

This ZPG corner-flow configuration is well documented in the literature. Yet

it is highly non-trivial, owing to the nonlinear interaction between the boundary

layers associated with the two walls. This flow is also quite difficult to reproduce

accurately in a laboratory.

The first theoretical model of laminar corner flow was that of Carrier (1947).

Inspired by the work of Blasius (1908) for 2D flat-plate flow, Carrier modelled the

flow as a superposition of two Blasius boundary layers characterized by the similarity

variables η and ζ respectively. His solution thus assumed the analytic form

(η, ζ) =

(
Re

2x

)1
2

(y, z), (1.19a)

F = f(η)f(ζ) + F̃ (η, ζ), (1.19b)

u = U(η, ζ), (1.19c)

(v, w) =

(
1

2Rex

)1
2

(V (η, ζ), W (η, ζ)) , (1.19d)

(U, V, W ) = (Fηζ , ηU−Fζ , ζU−Fη) , (1.19e)
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where F̃ is a localised function representing the interaction between the boundary

layers associated with the two walls. After substituting (1.19) into the Navier–

Stokes equations, Carrier solved F̃ numerically over a coarse grid (without the aid

of a computer!). He believed that his numerical values for U were accurate to three

figures. At best, Carrier’s solution is only an approximation, since it attempts to

represent a three-dimensional flow via a single streamfunction. This weakness was

noted by other researchers, but no serious alternative was proposed during the 1950s

(a period which coincided with the infancy of electronic computing).

Stewartson (1961) presented a rigorous analysis of the steady laminar flow over

a quarter -infinite plate. His analysis highlighted the phenomenon of boundary-layer

interaction, and permitted the numerical evaluation of some of the leading-order

terms in the asymptotic expansion.

Rubin (1966) attempted a rigorous analysis of corner flow using the method of

matched asymptotic expansions. Although Rubin did not attempt a full numerical

solution, he was able to identify a non-trivial crossflow within the wall boundary

layer adjacent to the corner region proper. He showed that this crossflow does not

decay to zero with increasing distance from the corner line (as assumed by Carrier);

rather, the corner-flow profile asymptotes to the 2D Blasius profile of §1.3.1 plus

a superimposed crossflow. The latter takes the following algebraic form within the

horizontal boundary layer:

w =
Re−1

2√
2x

(
W0(η) + W̃ (η, ζ)

)
for η = O(1), ζ � 1, (1.20)

where, by definition,

W̃ (η, ζ) → 0 as ζ → ∞.

This crossflow is induced by the secondary outflow velocity emanating from the

vertical boundary layer (η � 1, ζ = O(1)).

A few years later, Rubin attempted a full numerical solution to the corner-flow

problem. When his first attempt failed (numerical convergence proving elusive),

he reworked the theoretical analysis and discovered another major flaw in Carrier’s

analysis. It turns out that the flow varies algebraically (rather than exponentially)

as a function of distance from the corner line. In particular, the streamwise flow

within the horizontal boundary layer takes the asymptotic form

u ≡ U(η, ζ) = U0(η) + U2(η) ζ−2 for η = O(1), ζ � 1, (1.21)

where U0 is precisely the Blasius profile f ′(η). On substitution of this result into

the continuity equation, one finds that the crossflow component W̃ in (1.20) decays

at the very slow rate of O(ζ−1). A rigorous treatment of asymptotic properties
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appears in Pal and Rubin (1971); the leading-order results of this analysis, and a

full numerical solution resulting therefrom, are detailed in Rubin and Grossman

(1971). The authors demonstrate that the laminar corner boundary layer is highly

non-trivial; it comprises an inner corner layer characterised by strongly nonlinear

boundary-layer interaction, coupled with an outer layer described by the asymptotic

properties (1.20) and (1.21). Thus, the full corner boundary layer is several-fold

wider than the corresponding 2D Blasius boundary layer. The inner corner layer,

meanwhile, is approximately 25% broader than that predicted by Carrier (see, for

example, Figures 4 and 5 of the Rubin and Grossman (1971) paper), and is notable

for the strongly inflectional profile of the streamwise velocity as viewed along the

corner bisector. This latter feature has led numerous authors to speculate that the

laminar corner boundary layer is less stable than its 2D Blasius counterpart. We

will revisit the stability issue shortly.

Despite the seminal nature of Rubin and Grossman (1971), it does suffer from

several drawbacks. Firstly, the spatial resolution of their numerical scheme is quite

low, owing to the dual restrictions of numerical stability and available computing

power; consequently, it is unclear from their results whether the inner corner region

contains a vortex. Secondly, numerical implementation of the authors’ asymptotic

analysis is somewhat cumbersome. Finally, the asymptotic analysis throws up a cru-

cial numerical constant for which there is no known closed-form formula or governing

equation; instead, it must be estimated by an ad hoc iterative procedure.

Since 1971, the laminar corner flow has been re-computed using various numerical

methods by Ghia (1975), Balachandar and Malik (1995), Dhanak and Duck (1997),

Parker and Balachandar (1999), and Galionis and Hall (2005). To varying degrees,

each of the above authors attempted to simplify the analysis of Rubin and Grossman

(1971). In Chapter 2 we will conduct a detailed review of their respective numerical

schemes, prior to generating our own data set for this laminar corner flow.

The seminal work of Rubin and Grossman (1971) stimulated several attempts to

generate a laminar corner flow within a wind tunnel. A review of these experiments

appears in Zamir (1981), together with some previously unpublished experimental

data from Zamir and Young (1979). Zamir (1981) concluded that agreement between

theory and experiment was poor in general. However, he argued that this failure

was not attributable to experimental imperfection (e.g. misalignment of the incident

flow with the leading edge), nor to poor instrumental resolution of the boundary

layer (whose thickness was typically of the order of one centimetre). Rather, Zamir

argued that the laminar corner flow is stable only at low Reynolds numbers and/or

under favourable pressure gradients. Indeed, he noted that stable laminar flows

had been observed only in instances where experimental error induced a weakly-
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favourable streamwise pressure gradient; conversely, a negligible pressure gradient

was invariably associated with transitional or turbulent flow. Furthermore, Zamir

showed that the observed laminar boundary-layer profiles provided a better match

with the predictions of Rubin and Grossman (1971) and Ghia (1975) than those

of Carrier (1947). Finally, by extrapolating the experimental data on the basis

of streamwise pressure gradient, Zamir hypothesized a critical Reynolds number

of Rec = O(104) for a genuinely pressure-free (ZPG) laminar corner flow. This

conclusion, however tentative, is quite striking; it is an order of magnitude lower

than the theoretical stability limit Rec ≈ 9 × 104 for 2D Blasius flow. Indeed,

the latter figure is itself a very conservative estimate1. The experimental onset of

instability in Blasius flow usually occurs at a streamwise location x corresponding

to a Reynolds number in the range 2 × 105 � Rex � 3 × 106; a critical value of

Rec = 5 × 105 is typically used as a rule of thumb in the engineering community

(Munson et al. 2002, p. 559).

1.3.3 The stability of laminar ZPG corner flows

The review of experimental data by Zamir (1981) suggests that ZPG laminar cor-

ner flow is substantially less stable than its 2D counterpart. It also suggests that

corner flows are sensitive to environmental conditions, and in particular, that the

laminar flow is rapidly stabilized by a favourable pressure gradient. Zamir’s work

has inspired several attempts to cross-check the above empirical findings against

theoretical and computational data. This section, therefore, reviews the theoretical

literature regarding the stability of ZPG laminar corner flow. Some of this literature

also considers the case of a pressure-driven corner flow; however, we defer discussion

of this case to §§1.3.6 and 1.3.7.

Lakin and Hussaini (1984) presented the first rigorous theoretical analysis of the

stability of laminar corner flow. Their analysis is based on the classical stability

theory of linear eigenmode analysis. The essential idea is to ‘seed’ the laminar flow

with an infinitesimal wavelike perturbation of the form

εũ ≡ εU eiαR(x−ct) (1.22)

where R = O(Re
1
2 ) is a boundary-layer scaling, 0 < ε � 1 is an infinitesimally small

constant, α is a real-valued streamwise wavenumber, and c ≡ cr + ici is a complex-

1Good qualitative agreement with experiment is observed if the instability is induced artificially

within the frequency range predicted by eigenmode stability theory; see, for example, Schlichting

(1968) and Smith (1979). Smith (1979) achieved a further reduction in the discrepancy by account-

ing for non-parallel effects, ie the slow streamwise development of the Blasius boundary layer.
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valued wave-speed. The complex amplitude Ũ is approximated by the streamwise-

similar form Ũ(η, ζ) under the parallel-flow approximation that the local boundary-

layer scaling Rex is essentially constant over the streamwise scale Δx = 2π/(αR) of

the instability (compare with the Blasius-layer formulae (1.13) and (1.15)). On sub-

stituting into the governing equations and retaining only the O(ε) terms, one obtains

a set of linear partial differential equations in U. For each parameter value (Re, α),

these governing equations yield a spectrum of eigenmodes { (Uj, cj) }. The leading

eigenmode thus defines the critical Reynolds number Rec and critical wavenumber

αc of the laminar flow:

�[c1] ≤ 0 for all Re ≤ Rec with equality iff (Re , α) = (Rec, αc). (1.23)

Despite the rigour of their analysis, Lakin and Hussaini (1984) make no attempt

at numerical solution of the eigenmode equations, and thus are unable to present

any useful conclusions. Some numerical progress was subsequently made by Dhanak

(1993) and Dhanak and Duck (1997), who parametrized the spanwise coordinate

ζ = O(10) and proceeded to derive a system of parabolised stability equations

(PSE) in the vertical coordinate η. This ad hoc analysis is inherently biased towards

viscous-type instabilities (analogous to those encountered in 2D Blasius flow at Re �

105), and is ill-suited to probing the inner corner region. Dhanak and Duck (1997)

reported a stability limit of Rec = 31K or Rec = 56K, depending on whether ζ was

set to 10 or 20 respectively.

Balachandar and Malik (1995) presented a two-part stability analysis. In the

first part of their paper, the stability equations are discretized exclusively along

the corner bisector η = ζ to produce a quasi-1D system of equations (in effect,

the inverse of the Dhanak and Duck (1997) analysis). This ad hoc analysis yielded

Rec = 435, ie two orders of magnitude (!) lower than for 2D Blasius flow. The

second half of their paper presents a genuinely 2D model of corner stability, albeit

restricted to instabilities of inviscid type in the asymptotic limit Re → ∞. Under

the inviscid approximation the governing equations reduce to a single eigenvalue

equation, the 2D Rayleigh equation. The authors reported two modes of instability

(one much more vigorous than the other), both centred on the corner bisector and

most active in the inner corner region. These findings lend qualitative support to

the conjecture that ZPG laminar flow is inviscidly unstable, even though they do

not provide any estimate of Rec.

Parker and Balachandar (1999) relaxed the inviscid approximation of Balachan-

dar and Malik (1995), thereby presenting the first fully-2D stability analysis of

laminar corner flow. They found a wide spectrum of viscous-type eigenmodes active

within the outer corner region at Re � 105, and showed that the least-stable modes
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are those which propagate obliquely towards the corner line (rather than parallel

to it, as suggested by (1.22)). The authors also reported that the inviscid mode

is unique up to wavenumber α, finding no evidence of the secondary inviscid mode

reported by Balachandar and Malik (1995). Even more surprisingly, they find the

inviscid mode to be active only from Rec ≈ 500K, ie nearly one order of magnitude

above that of the viscous modes.

Recently, Galionis and Hall (2005) questioned the results of Parker and Balachan-

dar (1999) on the grounds that their numerical method (a) relies on a questionable

vectorized eigensolver and (b) does not impose any wall-boundary conditions on the

perturbation pressure. Instead, Galionis and Hall (2005) attempt the first quasi-

3D stability analysis of laminar corner flow. They relax the parallel-flow approxi-

mation by combining pseudospectral discretization in the transverse (η, ζ) domain

with a finite-difference marching scheme in the streamwise x coordinate. Somewhat

strangely, however, the authors follow Parker and Balachandar (1999) in omitting

wall-boundary conditions on the pressure, instead relying on a staggered collocation

grid for accurate representation of the perturbation pressure. They concur with

Parker and Balachandar (1999) in reporting that the leading instabilities are viscous

in nature (Rec = 73K). They also report that the (unique) inviscid mode becomes

active at an unspecified Reynolds number in the range 100K < Rec < 150K.

1.3.4 Oblique corner flows

The published literature contains only a limited body of results for non-square cor-

ner configurations. Wilkinson and Zamir (1984) derive a convenient set of governing

equations valid for an arbitrary internal corner (0 < Φ < π); however, their treat-

ment of the crucial asymptotic boundary conditions is non-rigorous. They present

schematic results for the cases of corner angles of 30, 60, 90, 120 and 150 degrees,

but do not present any systematic numerical data.

Duck, Stow and Dhanak (1999) improved upon the boundary conditions of

Wilkinson and Zamir (1984) and presented some accurate numerical results for the

case of a 45-degree corner (Φ = π
4
). Their analysis is applicable in principle to any

internal corner (0 < Φ < π); however, the authors do not attempt a systematic

numerical survey of oblique corners, preferring instead to focus on questions of a

more fundamental nature. We will revisit their work in §1.3.7.

Ridha (2003) analysed the laminar flow within a streamwise corner with wedge-

shaped walls. This complex and fascinating flow is of considerable relevance to

engineering. We will not discuss it in any depth, however, since it differs qualitatively

from the streamwise corner flows considered in the present work.
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1.3.5 External corner flows

External corners, characterised by an opening angle Φ in the range π < Φ < 2π,

occur as chines in the hulls of water craft and in the bodies of military aircraft. The

viscous drag associated with chine flow contributes significantly to the overall drag

on the craft, especially in the case of turbulent flows. On the other hand, chines can

improve the seagoing characteristics of small ships (see, for example, Shi–Min and

Yun–Cai (1981), Zborowski and Chu (1992) and Breslin (2001)). The performance

of aircraft is enhanced by transition to turbulence in mid-wing: the resultant delay

in flow separation from the wing increases the stall angle. Recently, chine flow has

been suggested as a stabilizer for fighter aircraft at high angles of attack. Although

this remains speculative, several small-scale experiments have been performed in

wind tunnels, e.g. Arena et al. (1995), Gangulee and Ng (1995), and Ravi and

Mason (1994).

Perhaps surprisingly, there is only a limited body of literature on external corner

flows. We are not aware of any theoretical studies of laminar flow external to a

corner, except that of Ridha (2003) for the case of a streamwise corner with wedge-

shaped walls. Our own interest in external corner flows was originally stimulated

by the wind-tunnel experiments of Moinuddin et al. (2001), who obtained accurate

measurements of steady turbulent ZPG flow parallel to an external square corner.

They reported a pronounced ‘bulging’ of the boundary layer in the immediate vicin-

ity of the corner line. The flow also exhibited a noticeable degree of asymmetry; it

was unclear whether this feature was genuine or merely the result of experimental

misalignment.

Recently, this conundrum was partially resolved by Moinuddin, Joubert and

Chong (2004), who reported a higher degree of spatial symmetry in the flow. They

also confirmed earlier results on the qualitative structure of the boundary layer and

revealed the existence of a pair of counter-rotating vortices near the corner line. In

this study, the authors were able to measure all components of the mean flow (ū, v̄, w̄)

and most components of the time-averaged Reynolds stresses, such as (u′)2 and u′v′.

This data strongly suggested that the observed boundary-layer ‘bulge’ results from

the Reynolds stresses, and thus represents a strictly turbulent phenomenon. This

hypothesis is consistent with the observation that the corner-line vortices are large

enough to dominate the corner region, whereas the viscosity-dominated ‘friction’

boundary layer on the wall itself is of sub-millimetre thickness.
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1.3.6 Falkner–Skan corner flows

We now consider the case of laminar flow in a square corner under the influence of a

non-zero streamwise pressure gradient (NZPG). Our modus operandi is to prescribe

the external streamwise velocity profile U∞(x) and the corresponding leading-order

pressure term P∞(x), non-dimensionalised with respect to a characteristic veloc-

ity U∗ and characteristic pressure P ∗ = ρ(U∗)2. Note that U∞ and P∞ are not

independent, being related via

P ′
∞ = −U∞U ′

∞ (1.24)

where the primes denote differentiation with respect to x. It follows that a favourable

or adverse pressure gradient corresponds to Px < 0 or Px > 0 respectively. The intro-

duction of a streamwise pressure gradient also produces a qualitative change in the

secondary flow (v, w). Recall that in the ZPG case, v and w are of order O(Re−1
2 ),

which typically equates to two orders of magnitude smaller than the primary flow.

In the NZPG case, however, the secondary flow must grow in magnitude with in-

creasing distance from the corner line. This is an immediate consequence of the

continuity equation in the external region:

U ′
∞ + vy + wz = 0. (1.25)

It will nevertheless prove convenient to retain (with minor modifications) the original

definitions of the similarity variables (η, ζ) and scaled shape functions (V, W ), on

the understanding that V and W are no longer restricted to O(1) values.

Ridha (1992) and Dhanak and Duck (1997) independently considered a Falkner–

Skan type corner-flow model of the form

U∞ = xn, P∞ = −1
2
x2n, n constant. (1.26)

In this model, favourable, adverse and neutral pressure gradients correspond respec-

tively to positive, negative and zero values of the parameter n. The authors con-

jecture that the boundary layer develops in a streamwise similar fashion, its local

width being of order O(
√

x1−n). The advantages of the Falkner–Skan model are its

tractability and its inclusion of ZPG flow as a special case. Its obvious disadvantage

is its failure to be smooth and continuous across the leading edge x = 0. Indeed,

in the case n < 0 the streamwise flow becomes unbounded in the limit x → 0+;

conversely, for n > 1 the conjectured boundary-layer width approaches infinity in

the vicinity of the leading edge. Ridha (1992) is rigorous but narrow in scope, be-

ing largely confined to the leading-order streamwise flow U0(x, η) in the asymptotic

far-field limit (ζ → ∞). Dhanak and Duck (1997) presents an explicit model for
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the full NZPG corner boundary layer, re-defining the boundary-layer variables (η, ζ)

and shape functions (U, V, W ) as follows:

(η, ζ) =

(
xnRe

2x

)1
2

(y, z), (1.27a)

u = xnU(η, ζ), (1.27b)

(v, w) =

(
xn

2Rex

) 1
2

(V (η, ζ), W (η, ζ)) . (1.27c)

Within the horizontal boundary layer (ie for η = O(1), ζ � 1), the flow takes the

asymptotic far-field form

U = U0(η) + O(ζ−2), (1.28a)

V = V0(η) + O(ζ−2), (1.28b)

W = ζW−1(η) + W0(η) + O(ζ−1). (1.28c)

Dhanak and Duck (1997) plotted the flow pattern in the transverse (η, ζ) plane for

the cases n = 0 and n = 0.5 (Figures 6 and 9 of their paper respectively). Figure 2

of their paper plots the asymptotic shear stresses

τ0(n) = U ′
0(0; n) and σ0(n) = W ′

−1(0; n)

(where the primes denote differentiation with respect to η), while Figure 3 plots the

crossflow function W−1(η) for the cases of n = 0.5 and n = 1.

Both Ridha (1992) and Dhanak and Duck (1997) discovered that the leading-

order boundary layer equations describing the flow far from the corner line admit two

qualitatively different solutions2 for all n satisfying −0.018 � n � 1.276. The differ-

ences are most evident in the ZPG case (n = 0), for which one solution corresponds

to the Blasius-type corner flow of §1.3.2 with W−1 identically zero; the alternative

solution corresponds to an unbounded jet-like crossflow W−1 �= 0 within the bound-

ary layer (see Figures 3 and 7 of Dhanak and Duck (1997)). Significant qualitative

differences are also evident for n �= 0 (Figures 2, 3 and 8 of their paper). It would be

tempting to dismiss the non-Blasius alternative solution3 as physically unrealistic,

2In addition, Dhanak and Duck (1997) reported some minor solution branches, some of them

corresponding to strongly negative values of n. Whether these are of practical significance remains

unclear.
3Unfortunately, the literature is inconsistent in its terminology regarding the Blasius and non-

Blasius solutions. Ridha (1992) refers to them as lower-branch and upper-branch solutions respec-

tively, on the basis that the non-Blasius solution exhibits uniformly higher values of asymptotic wall

shear stress τ0. In contrast, Dhanak and Duck (1997) examine the properties of a vorticity func-

tion θ (Figure 2c of their paper), and accordingly describe the non-Blasius flows as lower-branch

solutions.
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a numerical artefact of the boundary-layer approximations. On the other hand, the

non-Blasius laminar boundary layer is somewhat thinner, and may therefore be the

more stable one (since it has a lower boundary-layer Reynolds number Reδ than the

corresponding Blasius-type layer with the same streamwise Reynolds number Re).

Indeed, Ridha (1992) argues that the non-Blasius configuration is more likely to be

observed experimentally:

We recall that in experimental works ‘venturing’ to obtain a stable laminar

[ZPG corner flow], the wall shear stress in [the blending boundary layer] over-

shoots markedly the Blasius value (before tending asymptotically to it further

away from the corner line).

This key question is at present still unresolved, although further evidence on this

issue will be presented in §1.3.7.

Dhanak and Duck (1997) also present a stability analysis of the Falkner–Skan cor-

ner flow, using the parabolised stability equations (PSE) discussed in §1.3.3. Since

this analysis is approximate at best, its results must be treated with caution. These

results do, however, support the conjectures that (a) the laminar flow is stabilized

by a favourable pressure gradient, and conversely, destabilized by an unfavourable

gradient; and (b) the non-Blasius configuration is the more stable one. The criti-

cal Reynolds number Rec(n) is found to vary only marginally between n = 0 and

n = 0.15, yet it differs by up to three orders of magnitude between n = 0.15 and

n = 0.25.

Parker and Balachandar (1999) studied the power-law model of Ridha (1992) and

Dhanak and Duck (1997) for a neutral or unfavourable pressure gradient (−0.018 �

n ≤ 0). The authors considered both Blasius and non-Blasius configurations, but

chose to limit their stability analysis to Blasius-type flows. Their stability results for

the case of ZPG Blasius-type flow (n = 0) were discussed at some length in §1.3.3.

For the NZPG case (n < 0), the authors found the inviscid mode to be dominant;

the corresponding critical Reynolds number attained a minimum of Rec = 6.0× 104

at the minimum value n ≈ −0.018 for which the power-law model yields reliable

solutions.

The work of Galionis and Hall (2005) was discussed in §1.3.3 for the ZPG case.

Their NZPG results, like those of Parker and Balachandar (1999), are limited to

the case of a power-law flow with unfavourable pressure gradient (−0.018 � n < 0).

They confirmed the finding of Parker and Balachandar (1999) that, relative to the

viscous modes, the inviscid mode is much more sensitive to the streamwise pressure

gradient. They also confirmed the conjecture that the non-Blasius laminar-flow

configuration is more stable than its Blasius-type counterpart. The authors present a
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suite of numerical data on instability growth rates, but do not offer explicit estimates

of Rec for n �= 0.

1.3.7 General pressure-driven corner flows

Most flows encountered in practice are turbulent rather than laminar. The most

stable laminar corner flows are those driven by a favourable pressure gradient (FPG),

in contrast to the n < 0 Falkner–Skan flows considered in §1.3.6. Unfortunately,

only limited amount of data is available on FPG corner flows. Most of this data is

based on the Falkner–Skan model (n > 0), which is problematic in the sense that

the external flow U∞(x) fails to be uniformly smooth and continuous. To the best of

our knowledge, the only globally-smooth FPG model is that of Duck et al. (1999):

U∞(x) = 2 − e−
√

x, x ≥ 0. (1.29)

The authors treat this as a special case of the following more general (non-smooth)

model:

U∞(x) = xn(2 − e−ξ) where ξ = x(1−n)/2, n constant. (1.30)

The introduction of an arbitrary pressure gradient weakens the property of stream-

wise similarity. The governing equations are fully three-dimensional (even when

expressed in terms of the similarity variables (1.27)) and exceptionally difficult to

solve, but would appear to be amenable to a streamwise marching algorithm. To this

end, Duck et al. (1999) began by formulating the governing equations for the asymp-

totic far-field solution; these equations were discretized using a second-order finite-

difference scheme in (ξ, η) space and solved using a marching algorithm commencing

from the leading edge ξ = 0. The resulting numerical data then furnishes bound-

ary conditions for a full numerical solution in (ξ, η, ζ) space. This algorithm was

repeated twice for each value of n, corresponding respectively to Blasius-type and

non-Blasius solutions. Satisfactory results were obtained for a non-Blasius pressure-

driven flow with n = 0.35. However, the marching algorithm was less successful for

n = 0, and failed altogether for a Blasius-type flow with n = 0.35 (see Figures 3a

and 6 of their paper respectively). This disappointing experience alerted Duck et al.

(1999) to the existence of an ‘algebraic’ streamwise eigenstate of the form

Ũ = ξλÛ(η, ζ) where λ is a complex constant. (1.31)

Although this eigenstate is unstable only Blasius-type flows, it actually occurs in

both Blasius and non-Blasius flows for all n � −0.018 (see Figure 4 of their paper,

which shows both λr branches approaching zero as n → −0.018; the labels Upper
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branch and Lower branch herein denote Blasius and non-Blasius flows respectively).

In consequence, the marching algorithm is infeasible for weakly FPG flows (0 < n �

0.1) in both the Blasius and non-Blasius regimes.

The question then arises of whether it is possible to compute realistic FPG corner

flows. It may be possible in principle to stabilize the marching algorithm, albeit

at a high computational price. In the case of the asymptotic far-field component

U(ξ, η; ζ) (which furnishes the vital boundary conditions), the authors found it

necessary to discard the marching algorithm and treat the problem as fully elliptic

in (ξ, η) space, discretizing and solving for all flow variables simultaneously; the

numerical results are plotted for n = 0.35 in Figure 7 of their paper. A key question

then arises regarding the full 3D flow: Must it be treated as fully elliptic in (ξ, η, ζ)

space, or will the accurate asymptotic solution suffice to suppress the instability at

a global level? If the former holds, it follows that the full problem is extremely

challenging even for a supercomputer; if the latter, then the original 3D marching

algorithm should be viable. Duck et al. (1999) believed the former was true.

Duck and Owen (2004) shed further light on these streamwise eigenstates. In-

stead of attempting to suppress these instabilities, the authors derived governing

equations for them. Their analysis encompassed several classes of laminar corner

flows; in the interests of brevity, however, we will consider only the power-law model

of Dhanak and Duck (1997). (Since this flow is by definition streamwise-similar, it

is a relatively simple matter to isolate the instabilities.) The authors consider three

categories of streamwise instabilities: infinitesimal (ie linear), finite (weakly non-

linear), and unsteady infinitesimal (linear time-periodic). We now discuss each of

these in turn.

Unsteady instabilities were found to exhibit some growth over a streamwise scale

of Δx = O(1). Further downstream, however, they invariably decayed in magnitude.

We will not discuss these results in greater depth.

Infinitesimal instabilities, of the form (1.31) with λr > 0, were found to occur in

all power-law basic flows of Blasius type (n > −0.018). Crucially, they were absent

from the corresponding non-Blasius basic flows. These instabilities were invariably

of a strongly-3D character, such that Ũ0 �= 0 and W̃−1 �= 0 even in the ZPG case

n = 0. Figures 2 and 3 of Duck and Owen (2004) show the wall-stress pattern

(τ̃0, σ̃0) induced by the instability in Blasius ZPG flow (n = 0). Though novel,

these findings are in full qualitative agreement with those of Duck et al. (1999) for

non-similar basic flows.

Finally, we consider a weakly nonlinear model of streamwise instabilities (once

again, for the case of a Blasius-type power-law flow). To model these, Duck and

Owen introduced perturbations of arbitrary finite amplitude ε at the leading edge
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ξ = 0. To facilitate the streamwise development of these instabilities, the authors

relaxed the assumption of a fixed O(ξλ) growth-rate and reformulated the governing

equations to second-order accuracy (retaining nonlinear terms up to order O(ε2)).

The numerical results were somewhat startling: Depending on the sign of ε, the

instabilities either attained a well-defined maximum amplitude or produced a total

breakdown in the flow. The plateau phenomenon occurred whenever ε was chosen

to yield a positive perturbation shear stress, ie τ̃0 > 0 and σ̃0 > 0; this is illustrated

in Figure 7 of their paper for the case of ZPG Blasius-type flow. Conversely, nega-

tive shear stress resulted in a finite-time breakdown (see their Figure 8). According

to the authors, this is not a numerical artefact; rather, it is physically meaningful

and describes a collision process between an incoming wave-like disturbance and

the vertical wall ζ = 0. The authors round off their analysis with a physical inter-

pretation of the plateau phenomenon: it corresponds precisely to a transition from

a Blasius-type configuration to the corresponding non-Blasius state. This in turn

lends support to the conjecture of Ridha (1992) that non-Blasius flows are more

likely to be observed in practice.

We sound a word of caution, however, on interpreting the findings of Duck and

Owen (2004). Certainly, their paper suggests that Blasius-type flows are unstable

to streamwise instabilities, and consequently, liable to undergo a transition towards

a stable, non-Blasius state. Given the large length scales involved, however, a com-

plete transition of this type is unlikely to be observed in the laboratory. This is

best appreciated by re-examining Figure 7 of their paper, illustrating the nonlin-

ear development of streamwise instability for Blasius-type flow at n = 0 (ie in the

absence of a pressure gradient). Arising at the leading edge ξ = 0, the transition

is still only approximately 80% complete at the downstream location ξ = 10 (ie

x = 100). Such a large value of x would be somewhat peculiar in an engineering

context: Since x is defined relative to an (admittedly arbitrary) characteristic length

L, it follows that x = O(1) in general. Be that as it may, we may safely state that

the laminar boundary layer would be at least ten times thicker4 at x = 100 than at

x = 1, and hence, much more susceptible to classical eigenmode instabilities. Sup-

pose, for example, that the reference Reynolds numbers are of order Re = O(104)

and Reδ = O(102); then the equivalent downstream values at x = 100 would be

Rex = O(106) and Reδ = O(103) respectively. The latter values lie well within the

domain of exponential eigenmode instability, and lead us to hypothesize that the

4Actually, the growth-factor would be slightly less than ten under the assumption of fully lami-

nar flow (since a Blasius-type boundary-layer is somewhat thicker than its non-Blasius equivalent).

The magnification factor would exceed ten, however, in the event that an eigenmode instability

arises at 1 < x < 100 and overwhelms the transition to a laminar non-Blasius state.
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transition from Blasius to non-Blasius form would in practice be overwhelmed by

viscous instabilities.

We close our literature review by revisiting the Duck et al. (1999) paper, which

examines several classes of similar and non-similar laminar corner flows. An inter-

esting section of their paper models the effect of blowing or suction, ie of non-zero

normal velocity at the walls. Although somewhat speculative, this work may have

practical applications. By controlling the boundary-layer thickness, it has been

suggested, one may influence the stability characteristics of the flow, including the

streamwise location of transition from laminar to turbulent flow. Although this

technique is not exploited in current commercial aircraft, it has been trialled exper-

imentally by means of aircraft wings with laser-drilled perforations.

1.3.8 Research plan

The published literature on laminar corner flows evinces a wide degree of variation

in both methods and findings. This is true even for the simplest corner-flow config-

uration, namely ZPG laminar flow internal to a square corner (§1.3.2 and §1.3.3).

Crucially, the theoretical literature is inconclusive regarding the well-founded con-

jecture of Zamir (1981) that ZPG laminar flow is significantly less stable its 2D

counterpart, the well-known Blasius boundary layer.

Our first objective, therefore, is to conduct a thorough study of ZPG laminar

square-corner flow. We begin in Chapter 2 with an in-depth literature review of the

laminar flow itself, noting the various numerical methods and asymptotic formulae

which have been used to compute it. We conclude in §2.4 by presenting our own

data set and discussing its salient features. An eigenmode stability analysis of this

flow follows in Chapter 3.

Our second objective is to pioneer the study of laminar flows external to a corner.

We anticipate that the analytical and numerical tools developed for internal-corner

flows can be readily adapted to the case of an external square corner (opening

angle Φ = 3π/2). Chapter 4 analyses this laminar flow and attempts an eigenmode

stability analysis. We compare our results with those of Moinuddin et al. (2001,

2004) for a turbulent corner boundary layer.

Our third objective is to conduct a systematic analysis of oblique corner flows

(§1.3.4) and/or pressure-driven corner flows (§§1.3.6 and 1.3.7). To the best of

our knowledge, no 2D eigenmode stability analysis has yet been conducted for an

oblique corner, or for a square corner with favourable pressure gradient (FPG). This

deficiency is slightly puzzling, given the evidence of Zamir (1981) laminar corner

flow is readily stabilized by even a mildly favourable pressure gradient.
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Our fourth and final objective is of a slightly more general nature. We wish

to review and compare the accuracy and efficiency of a variety of numerical meth-

ods applicable to 3D laminar flows and eigenmode instabilities. Candidates for this

review include: spectral and pseudospectral methods for spatial domains; the GM-

RES algorithm for solution of nonlinear equations; the Arnoldi eigensolver for large

asymmetric matrices; and the eigensolver of Otto and Denier (1999) for large sparse

matrices. More recently, Theofilis (2003) has presented a comprehensive review of

computational techniques for instability problems in fluid mechanics. This final ob-

jective is partially realized in our study of ZPG square-corner flows (Chapters 2–4).

A detailed survey of more general corner flows has been precluded by technical and

time constraints.

1.4 Literature survey: Unsteady pipe flow

1.4.1 Blocked pipes

Our study of unsteady fluid flow is motivated primarily by the transient behaviour in

suddenly-blocked pipe flows. We begin with a simple model of a pipe-closure event.

Consider a straight, horizontal pipe of length L, diameter D and radius R = D/2

located on the domain 0 ≤ x ≤ L. Assume that the pipe is initially (t < 0)

filled with water (or some other Newtonian fluid) flowing steadily downstream with

cross-sectional mean velocity U∗ > 0 and Reynolds number

Re =
U∗D

ν
(laminar or turbulent flow) (1.32)

where ν is the kinematic viscosity of the fluid. In the event that the flow is laminar,

the cross-sectional flow profile is parabolic, namely

u(r) = Uc

(
1 −

( r

R

)2
)

(laminar flow only) (1.33)

where the centreline velocity Uc is given by the simple formula

Uc = 2U∗ (laminar) (1.34)

and yields the equivalent definition

Re =
UcR

ν
(laminar). (1.35)

At time t = 0, a blockage is induced at the downstream end x = L. However, owing

to the slight compressibility of water, a finite time elapses before the blockage is ‘felt’

at any given upstream location x = x∗. This time lag is given by Δt = (L − x∗)/c
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where c is the acoustic wavespeed5. Thus, the pressure wave reaches the upstream

end x = 0 after a finite time t = tw = L/c, and the blockage is not complete until

t = tc + tw, where tc is the duration of the closure event at the upstream end (which

may vary from as little as few milliseconds for a high-speed solenoid valve, to seconds

or even minutes in the case of a graduated closure of a major pipeline). However, this

does not generally correspond to the conclusion of the transient event. While the

exact nature of the event depends on the upstream and downstream conditions (see

§3.3 of Wylie and Streeter, 1982), the flow will in general oscillate in the following

fashion. On reaching the downstream end x = 0 the pressure wave is immediately

reflected upstream, thereby changing the mean flow U(t, x) from U = 0 to U ≈ −U∗

throughout the pipe. On returning to the downstream end x = L at t = 2tw,

the pressure wave is again reflected downstream and returns the net flow to zero

(U = 0). The pressure wave is then reflected at x = 0 and restores the original pre-

blockage flow (U ≈ +U∗). Due to viscous shear stress on the pipe walls, however, the

magnitude |U | of the flow is now somewhat less than its original value of U∗. This

cycle repeats indefinitely with a time period of 4tw until halted by the cumulative

effects of viscous damping. This process is illustrated schematically in Fig. 1.4 of

Wylie and Streeter (1982).

In the case of a rapid and complete blockage (tc < tw), the induced pressure

wave has a maximum amplitude of

ΔP ≈ ρcU∗ (1.36)

where ρ denotes the fluid density. For water at room temperature with U∗ = 1 ms−1,

this would equate to a pressure of 1.3 MPa, or equivalently, to a head of approx-

imately 130 metres. Such large transient pressures can prove extremely costly in

terms of ruptured pipelines and capital requirements (high-pressure pipelines and

surge towers). Furthermore, the water-hammer phenomenon produces transiently

low and/or negative pressures, which in turn may result in cavitation and tempo-

rary water-column separation. (Further destructive pressures may be caused by the

subsequent reconnection of the water column.) To avoid such destructive effects, it

is common practice to operate a pipeline at much higher steady-state pressures than

would otherwise be necessary.

Oscillatory behaviour is not the sole reason for the lengthy duration of the water-

hammer event. Even when the mean flow U(t, x) is zero at some given streamwise

location x, the local fluid velocity u(t, x, r) at any given point is in general non-

5The velocity of sound c in fresh water at 20OC is 1482 ms−1. In laboratory and field work,

however, it is advisable to determine c experimentally, since the empirical and standard values may

differ by as much as 10%.
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zero. It is shown in §2 of Weinbaum and Parker (1975) that the immediate effect

of the initial pressure wave is to reduce u everywhere by an amount equivalent to

the original mean velocity U∗. This momentarily violates the no-slip condition at

the pipe wall and results in a locally reversed flow, such that u(t, x, r) < 0 near the

wall and u(t, x, r) > 0 in the core of the pipe. An unsteady boundary layer thus

develops on the wall as the flow adjusts to the new conditions. As this boundary

layer diffuses toward the centre of the pipe under the constraint that U = 0, it

generates a secondary pressure wave.

For more complex closure regimes, or when more accurate data is required, it

is necessary to solve the one-dimensional water-hammer equations. In dimensional

form, these are given by

g

(
∂H

∂t
+ U

∂H

∂x

)
+ c2 ∂U

∂x
= 0 (continuity), (1.37a)

ρ

(
∂U

∂t
+ U

∂U

∂x

)
+ ρg

∂H

∂x
+

(2πR)σ

πR2
= 0 (momentum), (1.37b)

where

g = acceleration due to gravity, (1.38a)

R = pipe radius, (1.38b)

μ = fluid viscosity, (1.38c)

c = acoustic wavespeed, (1.38d)

U(t, x) = cross-sectional mean velocity, (1.38e)

P (t, x) = dynamic pressure, (1.38f)

H(t, x) = dynamic head defined by ρgH = P + 1
2
ρU2, (1.38g)

σ(t, x) = viscous shear stress on the pipe wall, given by μ[∂u/∂r]r=R. (1.38h)

The nonlinear terms in (1.37) are negligible whenever U � c (as is usually the case).

The water-hammer equations thus reduce to

∂H

∂t
+

c2

g

∂U

∂x
= 0 (continuity), (1.39a)

∂H

∂x
+

1

g

∂U

∂t
+ J = 0 (momentum), (1.39b)

where the dimensionless quantity

J(t, x) =
2σ

ρgR
(1.40)

expresses frictional losses in terms of head-loss per unit length. These equations are

usually solved using the Method of Characteristics by first transforming them into
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the frames of reference of the upstream and downstream pressure waves as follows:

±1

c

dH

dt
+

1

g

dU

dt
+ J = 0 along

dx

dt
= ±c. (1.41)

In the case of a single pipe of length L, this pair of simultaneous equations may

be conveniently solved using a finite-difference scheme with uniform step-sizes of

Δx = L/N and Δt = Δx/c ≡ tw/N . The discretization is performed in a staggered

fashion in accordance with the characteristic equations. Since we will not use the

Method of Characteristics in our work, we omit its details, instead referring the

reader to Chapter 3 of Wylie and Streeter (1982).

The principal difficulty with the Method of Characteristics is the need for a reli-

able model of the unsteady shear stress σ, which, in conjunction with the boundary

conditions at the ends of the pipe, determines the damping rate of the pressure

transients. The traditional approach is to invoke the following standard formulae

for shear stress in steady pipe flows, replacing the notional steady mean velocity

U = U∗ with an unsteady mean velocity of the form U(t, x):

σ =
4μU

R
(laminar), (1.42a)

σ = 1
8
ερU2 sgn(U) (turbulent), (1.42b)

J =
εU |U |
4gR

(turbulent), (1.42c)

where ε � 1 is the Darcy–Weisbach friction factor (usually denoted by f); it varies

weakly as a function of Reynolds number and strongly as a function of the roughness

of the pipe wall (see, for example, §8.4 of Munson et al., 2002). The friction formulae

(1.42) are indeed accurate for steady pipe flows, but significantly underestimate

the frictional damping effects in unsteady flows. That this quasi-steady model is

inaccurate is hardly surprising, given that it assigns a value of σ = 0 or J = 0

whenever U = 0. In particular, the quasi-steady model completely neglects the

phenomenon of reverse flow, which is capable of producing a non-zero shear stress

even when U = 0.

So long as engineers were principally interested in the maximum amplitude of the

water-hammer pressure wave, they were not unduly concerned with inaccuracies in

their friction models. In recent years, however, interest in this issue has been revived

by the development of Inverse Transient Analysis (ITA) as a cost-effective tool for

routine monitoring of pipeline systems. This technique employs artificial pressure

transients as a remote-sensing tool to detect or locate leaks and ruptures in pipe

networks. Crucially, its implementation requires accurate data on the full transient

event (especially regarding the damping rate of the pressure envelope) rather than
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just the first cycle of the pressure wave, in order to distinguish between normal and

abnormal responses to a water-hammer event of arbitrary magnitude. This in turn

requires accurate theoretical models of unsteady shear stress in pipe flows. Thus,

ITA is the principal motivation for our own work on unsteady pipe flows. Since,

however, we will not need to implement this technique, we merely refer the reader

to two recent papers for a detailed discussion of inverse transients. Wang et al.

(2002) provides an algorithm for identifying the magnitude and location of a leak in

a single pipeline. Their technique entails a Fourier analysis of the observed pressure

transients, and is amenable to friction models of a fully-unsteady nature. Liggett

and Chen (1994) implement ITA for the case of a complex multi-node pipe network,

using the Method of Characteristics in conjunction with a block-matrix optimisation

algorithm. Unfortunately the accuracy of this method is somewhat compromised

by the authors’ reliance on the traditional quasi-steady friction model (1.42). In

addition, equation (4) of their paper specifies an incorrect sign for the friction term.

We close this section by reviewing the literature on the topic of unsteady friction

models, beginning with that of Zielke (1968) for the case of laminar flow. Zielke’s

model expresses the shear stress as a sum of quasi-steady and unsteady components:

σ(t, x) =
4μ

R

[
U(t, x) + 1

2

∫ t

0

∂U

∂t
(t′, x) W (t − t′) dt′

]
(laminar). (1.43)

The fully-unsteady component in (1.43) takes the form of a convolution of the recent

flow history, with weighting function W given by

W (t) =

⎧⎨⎩0.282 τ−1/2 − 5
4

+ O(τ 1/2) for τ � 0.02,

e−26.4τ + e−70.8τ + h.o.t. for τ � 0.02,
(1.44)

where

t∗ = R/Uc (1.45)

is the advective time-scale;

td = R2/ν ≡ Re t∗ (1.46)

is the (slow) diffusion-based time-scale; and

τ = t/td ≡ Re−1(t/t∗) (1.47)

is the corresponding dimensionless time variable. The diffusion time-scale is typi-

cally quite large; for example, a water-filled pipe of diameter 1 cm yields td = 25 s.

Zielke’s formula (1.43) reveals a pronounced time-lag effect between the local ac-

celeration ∂U/∂t and the local friction σ, vividly explaining why the quasi-steady

model significantly underestimates the damping effect of wall shear stress. In par-

ticular, a rapid and complete blockage produces reversed flow with U(t, x) = 0 but
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u(t, x, r) �= 0. Under these circumstances, the first portion of (1.44) arises from a

diffusion-type wall boundary layer of width δ(t) where

δ/R = O(τ 1/2) for 0 < τ � 0.05, (1.48)

while the second portion of the formula indicates exponential decay u → 0 of the

fluid motion as a function of time. Zielke’s analysis is rigorous, and could in principle

predict the instantaneous laminar flow profiles for any prescribed transient event.

Zielke, however, chooses to devote the remainder of his paper to validation of his

unsteady friction model using the Method of Characteristics.

Since most engineering flows are turbulent rather than laminar, there is a clear

need for a good model of shear stress in unsteady turbulent flows. A fairly crude

model was presented by Wood and Funk (1970). A quarter-century later, Vardy

and Brown (1995) proposed a semi-theoretical model of unsteady turbulent friction.

Their model is qualitatively similar to Zielke’s laminar-flow model, while simul-

taneously incorporating some standard empirical data on the properties of steady

turbulent pipe flows; consequently, it purports to be accurate over a wide range of

Reynolds numbers and unsteady flow regimes. Though somewhat complex in its

most general form, it is computationally tractable (when used in conjunction with

the Method of Characteristics) and even yields some semi-analytic results for the

special cases of instantaneous blockage or uniformly accelerated mean flow. In par-

ticular, laminar and turbulent flows are found to be qualitatively similar regarding

their initial response to a rapid blockage (even though the effective viscosity is much

higher in the turbulent case). The fully-2D unsteady model of Pezzinga (1999) is

likewise valid over a wide range of Reynolds numbers; unlike the Vardy and Brown

model, however, it is applicable to both smooth- and rough-walled pipes.

The fully-unsteady friction models of Vardy and Brown (1995) and Pezzinga

(1999) are accurate but computationally intensive. Much time and effort has there-

fore been expended on a quest for a satisfactory quasi-steady 1D model of unsteady

friction. For example, Ghidaoui and Mansour (2002) approximate the Zielke and

Vardy and Brown models without retaining the complete history of the flow at

all computational nodes; their model is validated against a combination of pub-

lished experimental data on low-speed unsteady turbulent flows and theoretical data

drawn from the Pezzinga and Vardy and Brown papers. The literature review of

Bergant et al. (2001) lists and classifies no fewer than thirty extant friction mod-

els and five distinct categories of quasi-steady models. The authors then report

on their own water-hammer experiments in laminar and low-speed turbulent flows

(generated in hydraulically smooth copper pipes for Reynolds numbers in the range

103 < Re < 104). Not surprisingly, they find that the fully-unsteady models provide
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a much better match with measured pressure data than the traditional quasi-steady

model (which entirely neglects unsteady effects). They also report good performance

from the Zielke laminar-flow model (1.43) for (low-speed) turbulent flows, suggest-

ing that the flow is not in a fully developed turbulent state throughout the transient

event. Finally, the authors recommend a quasi-steady friction model of the form

J(t, x) =
εU |U |
4gR

+
κ

g

(
∂U

∂t
+ s c

∂U

∂x

)
(1.49)

where κ is a dimensionless constant and s is a sign function indicating whether the

flow is accelerating or decelerating:

s = sgn

(
U

∂U

∂x

)
. (1.50)

It was the work of Lambert et al. (2001) which stimulated our own interest in

the subject of unsteady pipe flows. In this paper, the authors propose a novel quasi-

steady friction model which reproduces the crucial time-lag effect without requiring

computer storage of the complete history of the flow at all computational nodes.

As a boundary-layer growth model, it estimates the instantaneous local boundary-

layer width δ(t, x) and corresponding shear stress σ(t, x) on the basis of elapsed

time since the (most recent) passage of the primary pressure wave. In this model,

the fundamental formulae for δ and σ are drawn from those describing the spatial

development of a (steady) boundary layer in the entrance region of a pipe. In the

case of laminar flow, these formulae are qualitatively equivalent to equation (1.17)

for steady laminar flow over a flat plate. The authors implemented their model

using the Method of Characteristics and validated it using the same experimental

apparatus employed by Bergant et al. (2001); it clearly outperformed the traditional

quasi-steady model, especially in predicting the phase pattern of the pressure wave.

The authors believed their model showed good potential for refinement (including

extension to high-speed turbulent flows), but expressed some unease on the grounds

that their model ultimately relies on steady-flow data. Thus, the authors’ work

highlights the continuing need for an improved understanding of the structure and

evolution of unsteady boundary layers in the laminar, transitional and turbulent

regimes.

Recently, Vitkovský et al. (2006) gave another review of unsteady friction mod-

els. Whereas Bergant et al. (2001) classified the extant unsteady-friction models,

Vitkovský et al. (2006) commence by classifying the transient events themselves.

The authors then adduce theoretical and experimental evidence to the effect that

the Zielke and Vardy and Brown models perform satisfactorily for all flow types,

whereas the modified quasi-steady model (1.49) is qualitatively incorrect for some
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types of transient events (typically those involving a valve opening). Furthermore,

this model is shown to perform poorly in predicting the phase response of the pres-

sure waveform, even in those instances where it (accurately and usefully) predicts

the damping rate of the pressure envelope. The authors conclude by suggesting that

“some previous [apparent] good fits with experimental data are due to numerical er-

ror rather than [the intrinsic accuracy of] the unsteady friction model.” Once again,

therefore, it seems that there is no substitute for theoretical modelling. Certainly,

empirical models can be useful, efficient and reliable; but they should always be

tested rigorously against both theoretical and experimental evidence.

1.4.2 Physiological applications

In the field of physiology and medicine, one encounters unsteady laminar, transi-

tional and turbulent flows in blood vessels and catheters. In fact, it was blood flow

which motivated Poiseuille in 1840 to study the laminar flows which bear his name.

A century later, Womersley (1955) was motivated to present an analytical model of

periodic laminar flow in a pipe. His solution highlights the competing role of the

viscosity- and frequency-based time scales, and provides a quantitative explanation

of the phase-lag effect between velocity and pressure. Prior to the 1970s, however,

little was known (either experimentally or theoretically) about the structure of un-

steady flows in the transitional and turbulent regimes.

The development of hot-film and hot-wire anemometry enabled Seed and Wood

(1971) and Nerem and Seed (1972) to measure instantaneous blood velocities in the

aortas of dogs. These experiments were prompted partly by fundamental scientific

enquiry into human physiology, and partly by the quest to develop reliable, non-

invasive methods of cardiac diagnosis:

[It has been] postulated that low wall shear rates are important in dictating

sites of atherogenesis. Similarly, flow regimes are of interest in terms of their

influence on pressure-flow relations, mixing and mass-transfer processes, and

the generation of audible sounds.

The authors found that aortic blood flow is generally transitional in nature, but

varies in character from laminar through to fully turbulent. The measured range of

Reynolds number was 1200 ≤ Remax ≤ 5500 (based on aortic diameter and maxi-

mum centre-line velocity), suggesting that aortic flows are slightly less stable than

steady Newtonian flows6. A spectral analysis of the observed turbulence revealed

6The typical range of instability for Hagen–Poiseuille flow is 2000 � Rec � 4000 (based on

diameter and mean/bulk velocity). Blood behaves as a Newtonian fluid in all but the smallest
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that velocity fluctuations lay predominantly in the frequency range of 50–500 Hz,

corresponding to low-frequency audible sounds (and potentially providing opportu-

nities for non-invasive cardiac diagnosis).

Two further features of the observed aortic flow are noteworthy. Firstly, the

authors were unable to detect a boundary layer in vivo, even in cases where the flow

was apparently laminar. While this negative observation is partially attributable

to the low resolution of their instrumentation (the probe being restricted to dis-

tances of at least 2 mm from the aortic walls), it does suggest that Poiseuille flow

is a poor approximation to aortic blood flow in dogs and humans. We hypothesize

that the heart-beat time-scale is simply too short to produce well-developed lam-

inar boundary layers7. Secondly, the authors found the turbulent fluctuations to

be significantly more prominent under diastole (ie deceleration) than systole (pos-

itive acceleration). According to the authors, this indicates that decelerating flows

are inherently more unstable than accelerating flows. This hypothesis is distinctly

plausible, since it is well known that eddy viscosity is much higher under decelera-

tion than equivalent acceleration (see, for example, §8.4.2 of Munson et al., 2002).

Nevertheless, after closely examining the authors’ published data, we suggest the

following alternative hypothesis. Noting that the duration of the systole phase may

be as short as O(10−2) seconds, we suggest that the instability actually arises un-

der systole but generally does not become visible until the onset of diastole. In

any event, the flow subsequently relaminarizes during either mid- or late-diastole,

depending on the end-systole Reynolds number Remax of the flow.

The findings of Seed and Wood (1971) and Nerem and Seed (1972) prompted

Weinbaum and Parker (1975) to model the sudden blockage of steady laminar flow

in a pipe or channel. Discussion of the experimental portion of their study is limited

capillaries, where the capillary radius is comparable to that of blood cells. The kinematic viscosity

ν of warm blood is 4 × 10−6 m2 s−1, which is approximately four times that of water at room

temperature. Seed and Wood (1971) and Nerem and Seed (1972) conducted their experiments

in vivo on large- and medium-sized dogs respectively in both resting and drug-stimulated states.

The apparatus was pre-validated against artificial flows generated within a life-sized model of a

canine aorta. The aortic diameters of the canine subjects ranged from 7.5mm to 16mm, depending

principally on where the measurements were taken (ie at an ascending, descending or arched

location). Streamwise velocity measurements were made at multiple radial locations; the authors

do not report bulk velocities.
7Steady pipe-Poiseuille flow develops over a time scale of κtd, where td is defined by (1.45) and

κ = O(10−1) is a fundamental constant. Consequently, the entrance length Le for laminar flow

(ie the development length of the laminar boundary layer) is very large: Le ≈ (Re/15)D (Munson

et al., 2002). For the given aortic data, these values would translate to Δt = O(1) seconds and

Le = O(102) cm respectively. The latter figure represents a conservative estimate, and is consistent

with the in vitro data presented in Figure 2 of Seed and Wood (1971).
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to a single paragraph in the introduction of the paper; it was found that Poiseuille

pipe flow decays in laminar fashion if and only if the pre-blockage Reynolds number

is below 2000. The remainder of the paper presents a detailed theoretical analysis

of the laminar decay process following the sudden blockage of Poiseuille and pipe-

Poiseuille flows. Unfortunately their analysis is marred by one or two errors. The

authors were apparently unaware of Zielke (1968), whose rigorous analysis could

readily have been extended to yield the required data. Instead, Weinbaum and

Parker (1975) relied on a less accurate technique, namely the Pohlhausen method

of boundary-layer matching.

Hall and Parker (1976) built on the work of Weinbaum and Parker (1975) by

analysing the hydrodynamic stability of the decaying laminar flow in a channel.

They employed a traditional eigenmode analysis, based on the quasi-steady assump-

tion that the eigenmode instabilities develop on a time scale much faster than that

of the underlying laminar flow. The authors find inviscid-type instabilities above

Re ≈ 150, which they attribute to the inflectional nature of the instantaneous flow

profiles. This critical Reynolds number is surprisingly low, being approximately

one order of magnitude lower than that observed experimentally for either steady

channel flow or blocked pipe flow (Weinbaum and Parker, 1975).

A quarter-century later, Ghidaoui and Kolyshkin (2001) performed an analogous

eigenmode stability analysis for unsteady pipe flow. This engineering-oriented study

assumes instantaneous blockage (as in Hall and Parker, 1976) but encompasses a

variety of flow configurations: partial blockage; finite-length pipes (with reflection of

the pressure wave from the upstream end of the pipe); and even low-speed turbulent

flows, with pre-blockage Reynolds number 104 < Re < 105. For the simplest case, ie

rapid and complete blockage of Poiseuille flow, the authors report a critical Reynolds

number of Rec ≈ 550. This result must be treated with caution, however, for the

following reasons. Firstly, as with Hall and Parker (1976), the authors’ findings hinge

on the validity of the quasi-steady approximation. Secondly, as will be discussed

in §6.5, the accuracy of the authors’ laminar-flow data is poor. Thirdly, the stability

minimum Rec ≈ 550 is attained only after the elapse of an appreciable time τ from

the blockage event. In general, Rec is found to be an exceptionally sensitive function

of τ ; indeed, it apparently approaches infinity in the limit τ → 0. This asymptotic

property appears to mirror the well-known failure of linear eigenmode theory for

Poiseuille and Hagen–Poiseuille flows.
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1.4.3 Theoretical considerations

Aside from any immediate practical considerations, pipe blockage constitutes a use-

ful field of study on theoretical grounds alone. The response of a moving fluid

to a downstream blockage provides a relatively tractable case study in the field of

unsteady fluid flows. Depending on whether the blockage is total or partial, and

whether the pressure wave is multiply reflected, the flow may be variously treated

as transient, transiently unsteady, or quasi-periodic.

Unsteady fluid flows, though ubiquitous in real life, remain poorly understood

and difficult to analyse via standard theoretical or computational tools. The limita-

tions of our understanding of unsteady flows are concisely documented in §1 of Das

and Arakeri (1998):

Unsteady boundary layer separation is not yet fully understood, and there

is no specific criterion for its occurrence. ... There is no satisfactory linear

stability analysis for velocity profiles whose mean value is changing with time.

... For example, in oscillating pipe flow, theory predicts a critical Reynolds

number (based on Stokes layer thickness) of 82, whereas the experimentally

observed value is in the range 300 to 500; and turbulent bursts are observed

during the deceleration phase, whereas stability theory predicts the most un-

stable velocity profile to occur during the start of the acceleration phase.

Thus, the theoretical predictions regarding the stability of unsteady laminar pipe

flow fail in both quantitative and qualitative senses.

In fact, classical stability theory throws up qualitatively incorrect predictions

even for some steady laminar flows in simple geometries. There is now considerable

evidence to support the conjecture of Trefethen et al. (1993) that classical stability

theory is reliable only for flows subject to specific destabilizing forces, as in the case of

thermal gradients (Rayleigh–Bénard convection) and centrifugal forces (Taylor and

Görtler vortices). Conversely, agreement between theory and experiment is often

poor when the instability mechanism is essentially viscous. Well-known examples

of the latter class include Couette flow, plane-Poiseuille flow and pipe-Poiseuille

flow. Experimentally, all of these become unstable at Rec = O(103). Yet classical

linear theory predicts that Couette and pipe-Poiseuille flows are unconditionally

stable, and that plane-Poiseuille flow is stable for Re < 5772. Furthermore, the

predicted instability in plane-Poiseuille flow for Re > 5772 disagrees qualitatively

with experiment (see, for example, Figure 3 of Trefethen et al., 1993): in keeping

with Squire’s theorem, it represents a slowly-growing two-dimensional perturbation,

quite unlike the vigorous three-dimensional streamwise vortices actually observed.
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A possible explanation for these discrepancies is the well-known fact that eigen-

modes predict only the long-term behaviour of a given linear system. Whether this

is a reliable guide to short-term behaviour depends on whether the eigenmodes are

near-orthogonal and non-degenerate: where this is not the case, transient growth

may be possible even if all individual eigenmodes decay. What has not been re-

alised until relatively recently is that the eigenmodes of some flows are far from

orthogonal. This is indeed the case for Couette and plane-Poiseuille flows. For each

of these flows, Butler and Farrell (1992), Trefethen et al. (1993) and Reddy and

Henningson (1993) were able to exhibit linear combinations of eigenmodes which in-

terfere destructively in the early stages, before separating out to produce significant

transient growth in the intermediate stage. Describing these transient instabilities

as pseudomodes, the authors proceeded to develop a theory of Transient Stability

Analysis (TSA). In a purely linear TSA model, the pseudomode eventually decays in

the exponential manner predicted by classical eigenmode theory. In practice, how-

ever, it is hypothesized that the pseudomode may attain a critical amplitude beyond

which nonlinear effects destabilize the flow. This conjecture has some support in

the small-scale numerical experiments reported in Trefethen et al. (1993), Gehbart

and Grossmann (1994), Baggett et al. (1995) and Meseguer and Trefethen (2003).

Nonlinear studies, such as those in Boberg and Brosa (1988), provide theoretical

confirmation of the nonlinear and three-dimensional nature of transition in steady

pipe flows. Shan et al. (1999) presented a more ambitious study, based on 3D di-

rect numerical simulation from an initial state of steady pipe-Poiseuille flow; they

succeeded in simulating a puff and a slug at Reynolds numbers of 2200 and 5000

respectively.

Pseudomode theory furnishes two convenient computational tools for the anal-

ysis of linear transient growth within a steady underlying laminar flow. The first

technique treats the classical eigenmodes as basis functions and yields an infinitesi-

mal ‘optimal’ pseudomode which typically attains a maximum amplification factor

of gmax = Re/Re0 for some constant Re0 � Rec (where Rec is the stability limit

from classical theory). Its transient characteristics are readily computed under the

assumption of linear growth within a steady underlying laminar flow. The second

technique returns the pseudo-spectrum of the governing equations (essentially a clas-

sification of the parameter space on the basis of ‘closeness’ to a classical eigenmode),

and has the physical interpretation of measuring the transient response of the flow to

an arbitrary continuous-time perturbation. A linear transient of this type typically

accumulates energy over an O(Re) time period, eventually reaching a quasi-steady

state with amplification factor gmax = O(Re2).

Since pseudomode stability theory was originally developed for steady flows, its
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relevance to unsteady flows is not entirely clear. Recently, however, Scandura (2003)

attempted a transient analysis of the (highly unsteady) laminar flow in a suddenly

blocked channel. In particular, he relaxed the quasi-steady approximation inher-

ent in the stability analysis of Hall and Parker (1976) and widened the class of

instabilities to include transient pseudomodes. His transient analysis was limited to

randomly generated pseudomodes, together with the leading eigenmode of instabil-

ity; no attempt was made to optimize transient growth in a rigorous or systematic

manner. Nevertheless, Scandura’s results are valuable and suggest that the laminar

flow is stable well above the critical Reynolds number Rec = 199.6 predicted by

quasi-steady eigenmode theory. Incidentally, the Hall and Parker paper yields an

even lower stability estimate Rec = 148 for this flow. The cause of this discrepancy

is not entirely clear, although it may be due to inaccuracies in the laminar-flow data

of Weinbaum and Parker (1975).

On the experimental side, Das and Arakeri (1998) and Allen and Chong (2000)

studied unsteady pipe flows in the laminar and transitional regimes. Das and Arakeri

used a stepper motor to produce a variety of flows (impulsive, oscillatory, or linearly

accelerated) with maximum flow velocities of the order of Re = O(103). With

the aid of flow visualisation techniques, they vividly demonstrated the processes of

unsteady boundary-layer development and transition to turbulence. The leading

instability, described by the authors as asymmetric, appears to correspond to the

period-one azimuthal instability predicted by Ghidaoui and Kolyshkin (2001) for the

case of a rapidly blocked pipe. Das and Arakeri (1998) also attempted a theoretical

analysis, estimating the instantaneous laminar flow profiles and their respective

stability characteristics. Their stability data must be treated with some caution,

since it relies on the quasi-steady approximation; nevertheless, it is valuable in

identifying transitional phenomena in unsteady flows and quantifying the temporal

and spatial scales of induced vortices. Furthermore, it highlights the significance of

flow reversal, a phenomenon also encountered in water-hammer events.

Allen and Chong (2000) used a piston and stepper motor to produce unsteady

pipe flows of the power-law form u ∝ tm for m constant. (For practical reasons the

piston was kept fixed within a moving pipe.) Whereas Das and Arakeri studied the

behaviour of the flow at an arbitrary streamwise location, Allen & Chong (2000)

focussed on the vortex formed directly in front of the piston. This represents a

useful model of unsteady flow within a locally-square corner, notwithstanding the

cylindrical geometry. The authors were able to confirm that the vortex is produced

by the phenomenon of boundary-layer roll-up and fluid entrainment. Sensitive mea-

surements showed that the vortex is stable at quite large Reynolds numbers, and

that it contains both viscous and inviscid zones (ie dominated by viscous and iner-
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tial forces respectively). The vortex structure was found to be considerably weaker

in intensity than predicted by theory. At the same time, however, its spatial scale

δ expanded over time at a considerably faster rate than expected (δ ∝ t0.85+0.7m).

Finally, the authors were able to identify a secondary vortex wrapped around the

outside of the primary vortex, and having the same growth rate.

1.4.4 Research plan

The goal of our research program is to elucidate the process whereby fluid comes to

rest following the rapid blockage of a steady laminar pipe flow. The core component

of our program builds directly on the work of Zielke (1968), Weinbaum and Parker

(1975), Hall and Parker (1976), and Ghidaoui and Kolyshkin (2001). Comprising

Chapters 6–8, this section examines the laminar decay process from an arbitrary

distance upstream of the blockage, so that the streamwise flow is effectively of the

one-dimensional form u(t, r). We may assume without loss of generality that t =

0 corresponds to the arrival of the primary pressure wave which establishes the

blockage. To simplify the analysis, we assume that the closure time tc is negligible;

that the blockage is total; and that the pipe is arbitrarily long (implying the absence

of any reflected pressure wave). It is clear from §1.4.1 that any of these assumptions

may be relaxed without great difficulty. These constraints allow us to focus on

fundamental questions regarding the behaviour of unsteady fluid flows.

Our core research is structured as follows. In Chapter 6 we compute this unsteady

laminar flow to a high degree of precision, together with its associated secondary

pressure wave. In Chapter 7 we perform an eigenmode stability analysis of this flow;

the resulting critical Reynolds number Rec is in general a function of the elapsed time

τ since the blockage event, where τ is defined by (1.46). This stability analysis is

only approximate at best: like that of Ghidaoui and Kolyshkin (2001), it relies on the

quasi-steady approximation that any eigenmode instabilities must develop on a time

scale much faster than that of the underlying laminar flow. Relaxing this assumption

is the primary goal of Chapter 8, which quantifies the competing effects of growing

eigenmodes within a decaying laminar flow. Chapter 8 also generalises the results

of Chapter 7 by adapting the transient stability analysis (TSA) outlined in §1.4.3 to

the present case of an unsteady laminar flow. In this manner we are able to identify

transient pseudomodes of the flow, and to quantify their cumulative growth factors.

Since the underlying laminar flow is itself a transient phenomenon, the analysis is

‘smooth’ in the sense that we drop the usual rigid distinction between eigenmodes

and pseudomodes. In particular, there is no reason to restrict the transient analysis

to nominally sub-critical Reynolds numbers (as is usually the case in TSA).
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Our core research is summarized by Jewell and Denier (2006). It was during the

course of this work that Zhao, Ghidaoui and Kolyshkin (2004) published their own

pseudomode analysis for the laminar flow in a blocked pipe. Their analysis, however,

is somewhat limited in scope, and in any case is signficantly compromised by reliance

on the quasi-steady approximation. More recently, the quasi-steady approximation

was relaxed by Zhao, Ghidaoui and Kolyshkin (2007). This latter study is, however,

very narrow in scope; and even this limited data set appears to be inconsistent. We

defer a more thorough discussion of these two papers to §8.3.2.

Chapter 9 comprises the final component of our research. Whereas Chapters

6–8 focus on an arbitrary upstream location of the pipe, Chapter 9 focusses on the

immediate physical vicinity of the blockage. The corresponding flow is fully two-

dimensional, being of the form u(t, x, r) where x = 0 corresponds to the blockage

location, and exhibits a prominent corner-like boundary layer at the intersection

between the side- and end-walls of the pipe. We undertake a direct numerical

simulation of this flow, from the formation of a corner boundary layer through

to mid-phase vortex development and ultimate exponential decay to a rest state.



Chapter 2

The laminar flow in an internal

corner

2.1 Introduction

In this chapter we compute the laminar non-pressure-driven (ZPG) flow in an in-

ternal square corner. As discussed in §§1.1 and 1.3, this problem has been tackled

by a number of authors. Nevertheless, there are several compelling reasons for us

to contribute our own study. Firstly, we consider it worthwhile to conduct a sys-

tematic literature review of the analytic and computational tools applied to this

problem, and of the respective numerical results. Secondly, we will require accurate

laminar-flow data for this flow prior to assessing its hydrodynamic stability in Chap-

ter 3. Thirdly, we view this ZPG laminar flow as a valuable benchmark problem for

external, oblique and pressure-driven corner flows.

We begin in §2.2 by deriving the canonical form of the quasi-steady Navier–Stokes

equations which govern this flow; these comprise four coupled nonlinear partial

differential equations in the similarity variables (η, ζ). The corresponding boundary

conditions comprise physical conditions at the walls, symmetry conditions across the

corner bisector, and asymptotic conditions at the far-field computational boundary.

Since the asymptotic conditions are highly non-trivial, it is expedient to discuss them

in §2.3 in conjunction with numerical solution schemes. Our own numerical method

is presented in §2.3.6 following discussion in §§2.3.1 to 2.3.5 of the methods used by

Rubin and Grossman (1971), Ghia (1975), Balachandar and Malik (1995), Dhanak

and Duck (1997), and Parker and Balachandar (1999). Finally, in §2.4 we present

our numerical results and compare our findings with those of previous researchers.

36
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2.2 Governing equations

We formulate the governing equations in the conventional manner. As outlined

in §1.3, we non-dimensionalise the flow with respect to the constant free-stream

velocity u∞ = (U∗, 0, 0) and an arbitrary reference length L∗, thereby defining non-

dimensional coordinates (x, y, z) and velocities (u, v, w). We align the streamwise

flow with the positive x-axis, and place the quarter-infinite corner walls at y = 0

and z = 0. Next, to facilitate resolution of the corner and wall boundary layers, we

define similarity-type field variables η and ζ by

η =
Re

1
2 y√
2x

and ζ =
Re

1
2 z√
2x

, (2.1)

and seek solutions of the form

u = U(η, ζ) + O(Re−1
2 ), (2.2a)

v =
Re−1

2√
2x

V (η, ζ) + O(Re−1), (2.2b)

w =
Re−1

2√
2x

W (η, ζ) + O(Re−1), (2.2c)

p = Re−1
2 P1(x) + Re−1P2(x, η, ζ) + O(Re− 3

2 ). (2.2d)

The first pressure term corresponds to a weak streamwise pressure gradient arising

from viscous wall shear, while the second term corresponds to an O(Re−1
2 ) pressure

gradient arising within the boundary layers.

The steady Navier–Stokes equations are

uux + vuy + wuz = −px + Re−1∇2u, (2.3a)

uvx + vvy + wvz = −py + Re−1∇2v, (2.3b)

uwx + vwy + wwz = −pz + Re−1∇2w, (2.3c)

ux + vy + wz = 0, (2.3d)

where ∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.3e)

Substituting (2.2) into (2.3), and noting that

d

dx
≡ ∂

∂x
− 1

2x

(
η

∂

∂η
+ ζ

∂

∂ζ

)
,
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we obtain

∇2U + (ηU − V )Uη + (ζU − W )Uζ = 0, (2.4a)

∇2V + (V + ηVη + ζVζ)U − (V Vη + WVζ) = 2x(P2)η, (2.4b)

∇2W + (W + ηWη + ζWζ)U − (V Wη + WWζ) = 2x(P2)ζ, (2.4c)

Vη + Wζ = ηUη + ζUζ (2.4d)

where ∇2 ≡ ∂2

∂η2
+

∂2

∂ζ2
. (2.4e)

The canonical forms of the secondary or transverse velocities are

V = ηU − φ, (2.5a)

W = ζU − ψ, (2.5b)

and the corresponding governing equations are

∇2U + φUη + ψUζ = 0, (2.6a)

∇2φ + φφη + ψφζ = ηU2 − 2xReP2η, (2.6b)

∇2ψ + φψη + ψψζ = ζU2 − 2xReP2ζ , (2.6c)

φη + ψζ = 2U. (2.6d)

To eliminate the unknown pressure P2, we differentiate (2.6b) and (2.6c) by ζ and

η respectively and subtract the resulting equations to yield the vorticity equation:

∇2θ + (φθ)η + (ψθ)ζ = 2U(ζUη − ηUζ), (2.7)

where

θ = ψη − φζ . (2.8)

An equivalent system of governing equations is

∇2U + φUη + ψUζ = 0, (2.9a)

∇2θ + φθη + ψθζ = 2ΩU, (2.9b)

φη + ψζ = 2U, (2.9c)

θ = ψη − φζ (2.9d)

where

Ω = Wη − Vζ = ζUη − ηUζ − θ. (2.10)

Next, as recommended by Rubin and Grossman (1971), we replace the continuity

equation (2.6d) by two equivalent elliptic equations, yielding a four-equation system
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suited to iterative solution techniques:

∇2U + φUη + ψUζ = 0, (2.11a)

∇2θ + φθη + ψθζ = 2ΩU, (2.11b)

∇2φ − 2Uη + θζ = 0, (2.11c)

∇2ψ − 2Uζ − θη = 0. (2.11d)

Finally, we ensure that all working flow variables are everywhere bounded. This

property clearly does not hold for the variables φ and ψ defined by (2.5). Noting

that the streamwise flow must satisfy the asymptotic properties

U(η, ζ) → f ′(ζ) as η → ∞, (2.12a)

U(η, ζ) → f ′(η) as ζ → ∞, (2.12b)

where f is the Blasius function of §1.3.1, we define bounded flow variables φ̃, ψ̃ and

θ̃ as follows:

φ ≡ ηf ′(ζ) + φ̃, (2.13a)

ψ ≡ ζf ′(η) + ψ̃, (2.13b)

θ ≡ ζf ′′(η) − ηf ′′(ζ) + θ̃. (2.13c)

The corresponding governing equations are

∇2U + (φ̃ + ηf ′(ζ))Uη + (ψ̃ + ζf ′(η))Uζ = 0, (2.14a)

∇2φ̃ − 2Uη + θ̃ζ + f ′′(η) = 0, (2.14b)

∇2ψ̃ − 2Uζ − θ̃η + f ′′(ζ) = 0, (2.14c)

∇2θ̃ + (φ̃ + ηf ′(ζ))θ̃η + (ψ̃ + ζf ′(η))θ̃ζ + 2Uθ̃ = Θ (2.14d)

where

Θ ≡ 2U [ζ(Uη − f ′′(η)) − η(Uζ − f ′′(ζ))]

+ (f ′′(ζ) − ζf ′′′(η))φ̃ − (f ′′(η) − ηf ′′′(ζ))ψ̃

+ (ζf(η)f ′′′(η) − ηf(ζ)f ′′′(ζ)) + ηζ(f ′(η)f ′′′(ζ) − f ′(ζ)f ′′′(η)).

(2.15)

We note that the vorticity equation equation has been slightly simplified using the

Blasius identity f (4) + ff ′′′ + f ′f ′′ = 0.

These governing equations are to be solved subject to no-slip conditions on the

walls:

U = V = W = 0 if η = 0 or ζ = 0. (2.16)
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Figure 2.1: Schematic representation of the computational domain in the (η, ζ) plane,

truncated to a finite size ζmax = 25. If the laminar flow is assumed symmetric with

respect to the corner bisector, the working computational domain reduces to the triangle

bounded by η = 0, η = ζ and ζ = ζmax.

We assume that the flow is fully symmetric with respect to the corner bisector, ie

U(ζ, η) = U(η, ζ) for all η, ζ ≥ 0, (2.17a)

V (ζ, η) = W (η, ζ), (2.17b)

φ(ζ, η) = ψ(η, ζ), (2.17c)

Ω(ζ, η) = −Ω(η, ζ), (2.17d)

θ(ζ, η) = −θ(η, ζ), (2.17e)

implying that

V = W, φ = ψ, Ω = θ = 0 on the bisector ζ = η. (2.18)

Henceforth, we follow convention in focusing on the sub-diagonal half-domain defined

by 0 ≤ η ≤ ζ . Thus, the full wall-boundary conditions are as follows:

U = V = W = 0 and θ = Wη whenever η = 0. (2.19)

For computational purposes, furthermore, we will truncate the domain to a spanwise

distance of ζmax from the corner line η = ζ = 0. Thus, as illustrated by Figure 2.1,
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the computational domain D is defined by

D = {(η, ζ) : 0 ≤ η ≤ ζ ≤ ζmax} (2.20)

where ζmax � 1 is an arbitrary constant.

Unfortunately, it is not clear at this stage how large ζmax should be, or what

boundary conditions should be applied at the artificial far-field boundary ζ = ζmax.

These questions are the subject of the next section.

2.3 Numerical method

In this section we compare the numerical methods of five authors (Rubin and

Grossman, 1971; Ghia, 1975; Balachandar and Malik, 1995; Dhanak and Duck,

1997; Parker and Balachandar, 1999), before presenting our own numerical method

in §2.3.6. We pay especial attention to the asymptotic properties of the flow at a

large distance ρ � 1 from the corner line, ie

ρ2 = η2 + ζ2, (2.21)

and proceed to translate these properties into a set of workable boundary conditions

to be applied at the artificial far-field boundary ζ = ζmax of the computational do-

main D defined by (2.20). We commence in §2.3.1 with an in-depth review of the

formal asymptotic solution of Pal and Rubin (1971) and its numerical implementa-

tion by Rubin and Grossman (1971).

2.3.1 Rubin and Grossman (1971)

2.3.1.1 Asymptotic analysis: Outline

Rubin and Grossman (1971) are credited with producing the first reliable numeri-

cal results for the laminar corner boundary layer. In reviewing their solution, we

commence with the blending boundary layer adjacent to the inner corner bound-

ary layer. In the case of the horizontal boundary layer, this region may be defined

loosely in mathematical terms by

η = O(1), ζ = O(10). (2.22)

Three asymptotic limits will be of especial interest: ζ → O(1) (ie transition to the

inner corner region), ζ → ∞ (ie transition to a 2D boundary layer at large distances

from the corner line), and ζ → η (ie transition to the inviscid outer region). The

blending-layer flow comprises a Blasius-style boundary layer with a superimposed
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crossflow W (η, ζ). This is easily verified by substituting the following leading-order

solution into the system (2.11) of governing equations:

U = f ′(η) + o(1), (2.23a)

V = ηf ′(η) − f(η) + o(1), (2.23b)

W = O(1), (2.23c)

φ = f(η) + o(1), (2.23d)

ψ = ζf ′(η) + O(1), (2.23e)

θ = ζf ′′(η) + O(1), (2.23f)

where f is the Blasius function. The structure of the crossflow is unknown at this

stage.

Carrier (1947) hypothesized that the blending-layer flow varies rapidly (ie expo-

nentially) as a function of spanwise distance ζ from the corner line. This was also

assumed by Rubin and Grossman when they first attempted work on the corner-

flow problem. Computational work, however, quickly convinced them that this

hypothesis was incorrect. They demonstrated that the blending-layer flow varies

algebraically in ζ , and may be represented by the following inverse power series in ζ

for η = O(1):

UBL =
∞∑

n=0

Un(η) ζ−n, (2.24a)

φBL =
∞∑

n=0

φn(η) ζ−n, (2.24b)

ψBL = ζf ′(η) +

∞∑
n=0

ψn(η) ζ−n, (2.24c)

θBL = ζf ′′(η) +

∞∑
n=0

θn(η) ζ−n. (2.24d)

Comparison with (2.23) shows that the leading coefficients are given by

U0(η) = f ′(η), (2.25a)

V0(η) = ηf ′(η) − f(η), (2.25b)

φ0(η) = f(η). (2.25c)

Since the Blasius function f(η) has the property of exponential decay out of the

boundary layer1, ie

f(η) = O
(
exp

[−1
2
(η − β)2

])
for η � 1, (2.27)

1This is derived by expressing U0(η) ≡ f ′(η) in the form

U0(η) = 1 − ε(s) where s = η − β, (2.26)
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it follows that

(U0, V0, φ0) = (1, β, η−β) + (exp. small terms) for η � 1, (2.28)

where the Blasius constant β is given by

β = lim
η→∞

(ηf ′(η) − f(η)) = 1.21678. (2.29)

Pal and Rubin (1971) showed that the property of exponential decay holds in general

for the streamwise velocity and vorticity, but does not hold for the secondary flow.

Thus, on applying the symmetry condition (2.18), we obtain the following expansion

for the outer-region flow:

(U, Ω, θ)outer = (1, 0, 0) + e.s.t., η � 1, (2.30a)

(V, W, φ, ψ)outer = (β, β, η−β, ζ−β) + a.s.t., η � 1, (2.30b)

where a.s.t. denotes algebraically small terms. Since the outer-region flow is irrota-

tional, we may represent it by a velocity potential Φ satisfying Laplace’s equation,

ie

(V, W )outer = (Φη, Φζ) (2.31)

where

∇2Φ ≡ Φηη + Φζζ = 0, (2.32)

or equivalently, by the power series

(W − iV )outer =

∞∑
n=0

cn(ζ + iη)−n (2.33)

where the complex-valued coefficients {cn} are independent of the spatial coordi-

nates2. The solution is therefore of the form

Φ = β(η + ζ) + Θ0 log ρ +

∞∑
n=1

Θn(α) ρ−n , (2.34a)

Vouter = β +

∞∑
n=1

an sin nα − bn cos nα

ρn
, (2.34b)

Wouter = β +

∞∑
n=1

an cos nα + bn sin nα

ρn
, (2.34c)

and substituting (2.26) into the Blasius differential equation (1.8) to obtain

ε′′ ≈ −sε′, ε → 0 for s � 1.

Now integrate with respect to s to obtain the desired result.
2For the case n ≥ 5, these coefficients are actually logarithmic functions of η and ζ. Conse-

quently, the high-order blending-layer coefficients in (2.24) also become functions of ζ. We neglect

this detail, however, as it is of no practical significance.
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where

cn ≡ an + ibn (an, bn real), (2.35)

and the polar coordinates (ρ, α) are defined by

ζ = ρ cos α, η = ρ sin α, ρ2 = η2 + ζ2. (2.36)

In these coordinates the symmetry condition (2.18) transforms to

Wouter

(
ρ,

π

4
+ α

)
= Vouter

(
ρ,

π

4
− α

)
, (2.37)

implying that

cn = |cn| eiπ(n−1)/4 for n = 0, 1, 2, ... . (2.38)

In particular,

b1 = 0 and b2 = a2. (2.39)

Thus, by applying the identities

cos α = ζ/ρ,

sin α = η/ρ,

cos 2α = (η2 − ζ2)/ρ2,

sin 2α = (2ηζ)/ρ2,

we obtain

Vouter = β + a1

[
η

η2 + ζ2

]
+ a2

[
ζ2 + 2ηζ − η2

(η2 + ζ2)2

]
+ O

(
ρ−3

)
, (2.40a)

Wouter = β + a1

[
ζ

η2 + ζ2

]
+ a2

[
η2 + 2ηζ − ζ2

(η2 + ζ2)2

]
+ O

(
ρ−3

)
. (2.40b)

To determine the unknown coefficients a1 and a2, we first examine the behaviour

of the outer-region expansion (2.40) on exiting the outer region and entering the

blending layer. For the case η � ζ , this expansion has the asymptotic form

Vouter = V ∗ ≡ β + (a1η + a2)ζ
−2 + O

(
ζ−3

)
for η � ζ, (2.41a)

Wouter = W ∗ ≡ β + a1ζ
−1 − a2ζ

−2 + O
(
ζ−3

)
for η � ζ. (2.41b)

We will see in §2.3.1.2 that this asymptotic form is consistent with the blending-

layer expansion (2.24). Thus, the process of asymptotic matching permits easy

identification of a1 and a2.

Finally, for computational purposes, Rubin and Grossman (1971) offered the

following composite expansion for the secondary flow, valid for all η ≤ ζ :

(V, W )comp = (V, W )BL + (V, W )outer − (V ∗, W ∗). (2.42)
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This single expansion clearly reduces to (V, W )BL in the blending layer, and to

(V, W )outer in the outer region. Indeed, Rubin and Grossman (1971) explicitly eval-

uated this formula at ζ = ζmax = 15, the far-field boundary of their computational

domain.

2.3.1.2 Asymptotic analysis: Details

In this section we complete the asymptotic analysis of §2.3.1.1 for the laminar flow

far from the corner line (ζ � 1). First, we compute the leading coefficients {Un(η)}
in the asymptotic expansion (2.24) for the blending-layer flow. This completes the

analysis of the streamwise velocity and vorticity. We then complete the analysis

of the secondary flow by determining the (scalar) coefficients in the outer-region

expansion (2.40) and the composite expansion (2.42).

On substituting (2.24) and (2.25) into the governing equations (2.11), we obtain

φ′
1 = 2U1, (2.43a)

U ′′
1 + f ′′φ1 + fU ′

1 − f ′U1 = 0, (2.43b)

θ′′0 + fθ′0 + f ′′′φ1 + f ′′ψ0 + 2f ′(θ0 − U ′
1) = 0, (2.43c)

θ0 = ψ′
0, (2.43d)

where the primes denote differentiation with respect to η. Thus, the leading com-

ponent W0 of the crossflow is algebraically coupled with the second-order terms U1

and V1. More generally, we find that Wn is coupled with (U, V )n+1 for all n ≥ 0.

The first two equations in (2.43) decouple to yield

φ′′′
1 + fφ′′

1 − f ′φ′
1 + 2f ′′φ1 = 0,

U1 = 1
2
φ′

1,

which must be solved subject to the following three boundary conditions:

φ1(0) = 0 (no-slip condition on V ),

φ′
1(0) = 0 (no-slip condition on U),

φ′
1 → 0 as η → ∞ (from (2.30a)).

The solution is clearly given by

U1 = 0, φ1 = 0. (2.44)

Thus,

(U, V )BL = (U0, V0) + O(ζ−2) for ζ � 1. (2.45)
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The remaining two equations in (2.43) now decouple to yield

(ψ′
0 + fψ0)

′′ = 0 and θ0 = ψ′
0 , (2.46)

which must be solved subject to

ψ0(0) = 0, (no-slip condition on W ),

ψ0 ≈ −β for η � 1 (from (2.30b)).

This yields the following first-order differential equation:

ψ′
0 + fψ0 = −β(η − β), subject to ψ0(0) = 0. (2.47)

The solution is

ψ0(η) = −βg(η), (2.48a)

θ0(η) = −βg′(η), (2.48b)

W0(η) = βg(η), (2.48c)

where g satisfies the differential equation

g′ + fg = η − β, subject to g(0) = 0. (2.49)

This auxiliary function has the analytic form

g(η) =

∫ η

0

(s − β)f ′′(η)

f ′′(s)
ds. (2.50)

However, we prefer to solve (2.49) numerically.

The second-order correction terms {U2, V2, W1} are governed by the following

equations:

U ′′
2 + fU ′

2 − 2f ′U2 = −f ′′φ2 , (2.51a)

φ′
2 = 2U2 + ψ1 , (2.51b)

θ1 = ψ′
1 , (2.51c)

ψ′′′
1 + fψ′′

1 + f ′ψ′
1 + f ′′ψ1 = 2f ′U ′

2 + ηf ′′φ2. (2.51d)

The solution is

U2(η) = −κ(ηf ′′), (2.52a)

φ2(η) = −κ(3ηf ′ + f), (2.52b)

ψ1(η) = −κ(4f ′ + ηf ′′), (2.52c)

θ1(η) = −κ(5 − ηf)f ′′, (2.52d)

V2(η) = κ(f + 3ηf ′ − η2f ′′), (2.52e)

W1(η) = κ(4f ′), (2.52f)
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Figure 2.2: The leading-order structure (U0, V0,W0) of the flow within the blending

boundary layer for η = O(1), ζ � 1. Upper left: Streamwise velocity U0 (equivalent

to Blasius flow). Upper right: Secondary velocity (V0,W0, Q0), where Q2 = V 2 + W 2.

Lower left: Streamwise velocity U0 (solid curve) and secondary velocity Q0 (dashed curve)

rescaled by Q∞ =
√

2β = 1.721 . Lower right: Secondary velocity (V0,W0) rescaled by

β = 1.217.
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where κ is an unknown constant3. Likewise, the third-order correction terms are of

the form

ψ2(η) = −βκ h(η), (2.53a)

θ2(η) = −βκ h′(η), (2.53b)

W2(η) = βκ g2(η), (2.53c)

U3(η) = βκ(g2(η) − h(η)), (2.53d)

where

g2(0) = h(0) = 0, (2.54a)

g2(η) → 1, h(η) → 1 as η → ∞. (2.54b)

For details, we the reader to Appendix I of Rubin and Grossman (1971)4.

In accordance with (2.30a), the coefficients θ1, U2 and θ2 all exhibit exponential

decay out of the blending layer. For the secondary velocity, however, we find that

VBL = β + κ(4η − β)ζ−2 + O(ζ−3) for ζ � η � 1, (2.55a)

WBL = β + 4κζ−1 + (βκ)ζ−2 + O(ζ−3) for ζ � η � 1. (2.55b)

By equating (2.55) with (2.41), we obtain the first two coefficients of the outer-region

expansion (2.40):

a1 = 4κ, a2 = −κ. (2.56)

The full composite asymptotic expression is therefore as follows. The far-field

streamwise velocity is given by

Ucomp = f ′(η) − κ(ηf ′′) ζ−2 + O
(
ζ−3

)
, (2.57)

the secondary (outflow) velocity V = ηU − φ is given by

φcomp = f(η) + κ [4η − (f + 3ηf ′ + β)] ζ−2

− 4κη

η2 + ζ2
+

κβ(ζ2 + 2ηζ − η2)

(η2 + ζ2)2
+ O

(
ζ−3, ρ−3

)
,

(2.58)

the secondary (crossflow) velocity W = ζU − ψ is given by

ψcomp = ζf ′(η) − βg(η) + κ[ 4(1 − f ′) − ηf ′′] ζ−1 + κβ(1 − h) ζ−2

− 4κζ

η2 + ζ2
+

κβ(η2 + 2ηζ − ζ2)

(η2 + ζ2)2
+ O

(
ζ−3, ρ−3

)
,

(2.59)

3This constant corresponds to −χ in the notation of Rubin and Grossman (1971).
4The notation of Rubin and Grossman (1971) here is slightly different to ours. In particular, our

function g2 corresponds in their notation to (2h− l′), where the functions h, l and l′ are tabulated

in Table I.1 of their paper.
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and the vorticity Ω = ζUη − ηUζ − θ is given by

θcomp = ζf ′′(η) − βg′(η) − κ(5f ′′ + ηf ′′′) ζ−1 + βκh′(η) ζ−2 + O
(
ζ−3

)
. (2.60)

The unknown constant κ appears in all of the decaying terms, and thus can be

interpreted physically as the degree of interaction between the boundary layers of

the two walls. In particular, we can interpret the crossflow W in the vicinity of the

horizontal wall at η = 0 as a Blasius-type outflow from the vertical wall at ζ = 0.

Unfortunately, to the best of our knowledge κ is not specified by any closed-form

expression or any single differential equation. Instead, Rubin and Grossman (1971)

estimated it using an iterative procedure (discussed in their paper at some length),

obtaining

κ = 2.5 (to 2 s.f.). (2.61)

This (surprisingly large) value implies a bisector flow profile of

Vbis ≡ Wbis = 1.217 + 5.0 ζ−1 − 1.52 ζ−2 for ζ � 1. (2.62)

2.3.1.3 Solution method

For a full numerical solution, Rubin and Grossman (1971) discretized the governing

equations (2.11) using a standard second-order finite-difference (FD2) scheme with

a uniform step-size of

Δη = Δζ ≡ h = 0.2 (2.63)

over a computational domain of size ζmax = 15. Far-field boundary conditions were

furnished by explicit evaluation of (2.57) to (2.60) for the case ζ = ζmax. The

discretised system has approximately 2N2 unknowns, where

ζmax = Nh. (2.64)

The working flow variables were initialized to the values specified in (3.4) of their

paper, and the system solved using following iterative algorithm:

. For each estimate of κ,

. For each iteration m,

. For each ηi ≡ ih, i = 1, ..., N − 1,

. For each ζj ≡ jh, j = i, ..., N − 1,

. – Update Uij , and record the relative change Um−1
ij → Um

ij .

. – Repeat for φij, ψij and θij .

The authors employed the (somewhat generous) convergence criterion that no flow

variable should change by more than 1% in the final round of iteration. This was

generally attained after a few thousand iterations for each κ estimate.
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2.3.2 Ghia (1975)

Ghia (1975) cross-checked the work of Rubin and Grossman (1971) by circumventing

the asymptotic analysis of §2.3.1. To do this, he first mapped the entire quarter-

infinite domain to the unit square as follows:

{(η, ζ) : 0 ≤ η, ζ ≤ ∞} ⇒ {(η̃, ζ̃) : 0 ≤ η̃, ζ̃ ≤ 1} (2.65a)

or {(η, ζ) : 0 ≤ η ≤ ζ ≤ ∞} ⇒ {(η̃, ζ̃) : 0 ≤ η̃ ≤ ζ̃ ≤ 1}. (2.65b)

In the transformed coordinates (η̃, ζ̃), the far-field boundary conditions reduce to

(U, φ, ψ, θ) = (U0(η), φ0(η), ψ0(η), θ0(η)) at ζ̃ = 1. (2.66)

In order to capture the slow algebraic development of the flow in the spanwise

direction, Ghia selected the coordinate mapping

η̃ = σ(η) ≡ η/(μ + η) where μ = 5.0, (2.67a)

ζ̃ = σ(ζ) ≡ ζ/(μ + ζ), (2.67b)

which has the metric
dζ

dζ̃
= μ

(
1 +

ζ

κ

)2

(2.68)

and the asymptotic property

ζ = O
(
ε−1

)
whenever ε ≡ 1 − ζ̃ � 1. (2.69)

Ghia discretised the governing equations over the computational domain (2.65b)

using a FD2 scheme with a uniform step-size of

Δη = Δζ ≡ h̃ = 0.02, (2.70)

which corresponds to a variable physical step-size of Δη ≈ 0.1 at the wall, Δy ≈ 0.2

in mid-layer (ie η ≈ 2), Δζ ≈ 0.4 for ζ ≈ 5, and Δζ ≈ 0.9 at ζ ≈ 10. Thus, the

discretised system had approximately 2N2 unknowns where N = 50.

The discretised equations were solved iteratively using the Alternating Direction

Implicit (ADI) scheme. To accelerate numerical convergence, Ghia varied the size

of the artificial time-step over the course of the iterative algorithm. His convergence

criterion was similar to that of Rubin and Grossman (1971), namely that no flow

variable should vary by more than 1% between successive sweeps of the ADI routine.

This criterion was attained after a few hundred iterations, compared with a few

thousand iterations for the solution algorithm of Rubin and Grossman (1971).
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2.3.3 Balachandar and Malik (1995)

Balachandar and Malik (1995) discretised the governing equations using a Cheby-

shev pseudospectral scheme over the (η, ζ) plane with far-field domain boundary

ζmax = 25. The spectral scheme was of order N ×N where N = 84. In other words,

at each ζ station the η coordinate was discretised using N+1 = 85 Chebyshev-spaced

collocation points (including the two boundary points η = 0 and η = ζmax), and all

derivatives with respect to η were computed using order-N polynomial interpolation

of function values. (The ζ coordinate was discretised in similar fashion.) One conse-

quence of the Chebyshev spectral scheme is that the collocation points are clustered

near the domain boundaries. This feature is clearly welcome near the wall, ie within

the blending layer and the corner region proper (η = O(1) or ζ = O(1)). The

clustering near the far-field boundary ζ = ζmax is less welcome, but is essential for

numerical stability.

Like Rubin and Grossman (1971) and Ghia (1975), Balachandar and Malik

(1995) assumed flow symmetry with respect to the corner bisector, thereby obtain-

ing a discretised system with approximately 2N2 unknowns. However, they differed

from earlier authors in their treatment of the far-field boundary ζ = ζmax. In par-

ticular, they dispensed with the outer-region expansion (2.40) and the composite

expansion (2.57)–(2.60) of Rubin and Grossman (1971), but chose to retain the full

blending-layer expansion derived by Rubin and Grossman (1971)5, ie

U(η, ζmax) =
3∑

n=0

Un(η) ζ−n
max (where U1 = 0), (2.71a)

φ(η, ζmax) =
3∑

n=0

φn(η) ζ−n
max (where φ1 = 0), (2.71b)

ψ(η, ζmax) = ζmaxf
′(η) +

2∑
n=0

ψn(η) ζ−n
max, (2.71c)

θ(η, ζmax) = ζmaxf
′′(η) +

2∑
n=0

θn(η) ζ−n
max. (2.71d)

These boundary conditions were implemented along the full length of the domain

boundary, ie for all η satisfying 0 < η < ζmax.

The authors provide few details of their solution algorithm, merely reporting that

5Balachandar and Malik (1995) also retained the third-order correction terms U3 and φ3 (which

Rubin and Grossman (1971) computed but did not use). Incidentally, their paper does not mention

the unknown constant κ from §2.3.1.2 (which scales all of the decaying terms in the asymptotic

expansions). It would appear, therefore, that the authors simply adopted the estimate κ ≈ 2.5

originally derived by Rubin and Grossman (1971) using a trial-and-error process.
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“[r]esults obtained from this technique compare favourably with those of Rubin and

Grossman (1971) and Ghia (1975).”

2.3.4 Dhanak and Duck (1997)

Like Ghia (1975), Dhanak and Duck (1997) discarded the non-decaying terms in

the asymptotic analysis of Rubin and Grossman (1971). Whereas Ghia placed his

far-field boundary at ‘true infinity’ (ζmax = ∞), Dhanak and Duck used a large

but finite computational domain (ζmax = 60) and applied the following far-field

boundary conditions:

U = U0(η) = f ′(η) at ζ = ζmax, (2.72a)

φ = φ0(η) = f(η) at ζ = ζmax, (2.72b)

∂

∂ζ

[
ζ ψ̃

]
= ψ0(η) at ζ = ζmax, (2.72c)

∂

∂ζ

[
ζ θ̃

]
= θ0(η) at ζ = ζmax. (2.72d)

As previously noted, the blending-layer flow takes the asymptotic form

UBL = U0(η) + O
(
ζ−2

)
, (2.73a)

φBL = φ0(η) + O
(
ζ−2

)
, (2.73b)

ψ̃BL = ψ0(η) + O
(
ζ−1

)
, (2.73c)

θ̃BL = θ0(η) + O
(
ζ−1

)
. (2.73d)

Thus, the boundary conditions (2.72a) and (2.72b) for U and V respectively intro-

duce truncation errors of magnitude O(ζ−2
max). Dhanak and Duck hoped to achieve

similar truncation errors for W and Ω by applying the derivative-based boundary

conditions (2.72c) and (2.72d) rather than the leading-order conditions

ψ̃ = ψ0(η), θ = θ0(η).

The boundary conditions (2.72) were implemented along the full length of the do-

main boundary, ie for all η satisfying 0 < η < ζmax; no attempt was made to

distinguish between the blending layer and the outer region. The governing equa-

tions were discretised using a FD2 scheme with step-size h = 0.1, yielding a system

of order N = 600 (compared with N = 75 for Rubin and Grossman (1971) and

N = 50 for Ghia (1975)). The discretized equations were solved iteratively using a

‘line relaxation’ scheme (not discussed in any detail, but most likely similar to the

ADI method of Ghia). Dhanak and Duck (1997) used a much stricter convergence

criterion than that of Rubin and Grossman (1971) or Ghia (1975):



2.3. NUMERICAL METHOD 53

It is worth mentioning that the convergence of the iterative scheme was often

very slow, and although the difference between computed quantities between

successive iterations may have been small, the change in the differences was

very small; consequently our computations routinely took tens of thousands

of iterations with stringent convergence criteria imposed (typically when the

maximum change of any of the computed values was less than 10−7). It may

well be that very slow convergence of iteration schemes was partly responsible

for the diverse ‘scatter’ of previously published results. A second possible

cause is that we found the treatment of boundary conditions as ζ → ∞ re-

quired some care; in particular the neglect of the O(ζ−1) terms in [the bound-

ary conditions] led to significant numerical errors at reasonable values of ζmax.

However, the conditions (4.16), (4.17) [(2.72) in our notation] were found to

give good domain convergence.

Interestingly, the authors describe the present ZPG corner flow as “more challeng-

ing” than any pressure-driven flow of Falkner–Skan type (§1.3.6).

2.3.5 Parker and Balachandar (1999)

Parker and Balachandar (1999) followed Balachandar and Malik (1995) in their use

of pseudospectral discretization, but differed radically in their treatment of asymp-

totic boundary conditions. Their far-field domain boundary was accurate only to

leading order, ie

(U, φ, ψ, θ) = (U0(η), φ0(η), ψ0(η), θ0(η)) at ζ = ζmax. (2.74)

Following extensive testing for domain convergence (documented in §2.3 of their

paper), they settled on parameter values of ζmax = 40 and spectral order N = 104 for

the case of non-pressure-driven laminar flow. For solution of the nonlinear governing

equations, Parker and Balachandar devised a highly efficient iteration based on

the Generalized Minimum Residual (GMRES) algorithm (see, for example, §1.4 of

Deuflhard (2004)). For further efficiency gains, the solution algorithm is first applied

using a low-order spectral discretization (ie N = N1 � 104). The converged solution

at N1 is then interpolated to a finer grid of order N2 > N1, thereby furnishing ‘initial

conditions’ to a second round of iteration. This process is repeated using successively

larger values of N , and the authors report that “[a]t each grid resolution, five to

ten iterations of Newton’s method reduces the integrated residual to well below

10−7.” To avoid any loss of accuracy, all interpolation was conducted using the

spectrally-accurate barycentric method.
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2.3.6 Our method

Most, perhaps all, of the above-mentioned numerical schemes are either difficult to

program or of questionable accuracy. Yet the results of the respective schemes are

actually in good qualitative agreement. We therefore decided to adopt the method

of Dhanak and Duck (1997) as outlined in §2.3.4. Relatively easy to implement, this

method shifts some of the burden from the analyst to the computer. In particular,

explicit calculation of high-order asymptotic terms is avoided with the aid of a large

computational domain (ζmax ≥ 50) coupled with the far-field boundary conditions

(2.72). The governing equations (2.14) are discretised using a second-order finite-

difference scheme with step-size h = 0.1, following implementation of the symmetry

conditions (2.18), the wall conditions (2.19), and the far-field boundary conditions

(2.72). The resulting nonlinear system is to be solved iteratively using line relaxation

in the η and ζ coordinates. We wrote our own Fortran 90 code to implement this

scheme.

Unfortunately, the numerical scheme proved to be violently unstable. This in-

stability arises from the large-valued coefficients ψ and φ of the nonlinear advective

terms of the governing equations, and imposes an upper limit of

hζmax � 3. (2.75)

This instability was found by Rubin and Grossman (1971); somewhat surprisingly, it

was not reported by Dhanak and Duck (1997). Faced with this stability restriction,

and reluctant to sacrifice accuracy by reducing ζmax, we opted to reduce h to 0.05;

this yielded N ≥ 1000 in (2.64), implying a total of two to three million flow

variables.

Unfortunately, numerical convergence for this scheme proved extremely slow. We

needed at least half a million iterations, or about two weeks of computer time, to

attain the convergence criterion of Dhanak and Duck (1997), namely that no flow

variable should change by more than ε ≈ 10−7 between successive iterations. Even

then, it was difficult to ascertain whether true convergence had been attained (to

three-figure accuracy, say), since the per-iteration changes in any given flow variable

were found to be monotonic and cumulative. It was also difficult to assess the

effectiveness of the indirect boundary conditions (2.72c,d).

We therefore set out to accelerate the iterative algorithm. A small efficiency

gain (around 25%) was obtained by adopting the leading-order boundary condi-

tions (2.74) of Parker and Balachandar (1999). We achieved a further threefold

gain in efficiency by dropping the line-relaxation method in favour of a pointwise

iterative algorithm similar to that of Rubin and Grossman (1971). (For our code,
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the line-relaxation algorithm increased the computational overhead threefold over

the pointwise algorithm, but did not affect the number of iterations required for

convergence.) A further five- to ten-fold efficiency gain was obtained by adopting

the two-part domain composition illustrated in Figure 2.3. In this decomposition,

Domain I corresponds to the inner corner region plus the blending layer, ie

{ (η, ζ) : 0 ≤ ζ ≤ ζmax , 0 ≤ η ≤ min{η∗, ζ} }, (2.76)

where η∗ ≥ 5 represents a generous estimate of the width of the blending layer; the

governing equations herein are discretised with step-size h1 = h = 0.05. Domain II

corresponds to the inviscid outer region, ie

{(η, ζ) : η∗ ≤ η ≤ ζ ≤ ζmax}, (2.77)

where the governing equations reduce to

U = 1, θ = 0, ∇2φ = 0, ∇2ψ = 0, (2.78)

and are discretized with step-size h2 = nh for some constant integer n ≈ 5. Using

this numerical scheme we achieved the strict convergence criterion of Dhanak and

Duck (1997) that no flow variable should change by more than ε ≈ 10−7 between

successive iterations. Even so, domain convergence with respect to h and ζmax was

somewhat weak, and we estimate that our results are accurate to no more than three

figures. We will revisit the issue of domain convergence in §2.4.

2.4 Results

Here we present and discuss our numerical results for the laminar flow internal to a

square corner. Except where stated otherwise, these results were obtained using the

method of §2.3.6, with leading-order boundary conditions imposed at the artificial

domain boundary ζ = ζmax = 60.

Figure 2.4 plots the velocity magnitude (U, Q), where

Q2 = V 2 + W 2, (2.79)

out to a distance of η = 20 and ζ = 20 from the corner line. Clearly visible in this

figure are the four sub-domains of the full corner region, namely

Corner-line vicinity: 0 < η, ζ � 1, (2.80a)

Inner region: 0 < η, ζ � 5, (2.80b)

Inviscid outer region: η, ζ � 5, (2.80c)

Blending boundary layer: 0 < η � 5 � ζ � ζmax. (2.80d)
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Figure 2.3: Schematic representation of our finite-difference grid before (top) and after

(bottom) imposition of the bisector symmetry conditions (2.18). The inner region and

blending boundary layer are discretised with step-size h = 0.05, while the inviscid outer

region uses a coarse discretisation with h ≈ 0.25.
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Figure 2.4: Upper figure: Contour plot of streamwise velocity U(η, ζ), with contour

spacing ΔU = 0.1; contours are also shown for U = 0.95, 0.99 and 0.999. Lower figure:

Contour plot of the magnitude Q =
√

V 2 + W 2 of the secondary velocity, with contour

spacing ΔQ = 0.2; the contours for Q = 1, Q = 2 and Q = 3 are highlighted.
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Figure 2.5: Magnitude Q(η, ζ) ≡ √
V 2 + W 2 of the secondary velocity, computed using

four different numerical schemes and plotted out to a distance of η = 50 and ζ = 50.

Throughout, the contour spacing is ΔQ = 0.2, with maximum secondary velocity Qmax

indicated by an arrow. Upper left: Computed using the leading-order far-field bound-

ary conditions (2.74) applied at ζmax = 60, as in Figure 2.4. Lower left: Computed

using leading-order boundary conditions at ζmax = 50. Upper right: Computed using the

boundary conditions (2.72) of Dhanak and Duck (1997) applied at ζmax = 60. Lower right:

Computed using boundary conditions of DD at ζmax = 55.
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The corner-line vicinity may be described as a ‘dead zone’ wherein

U � 0.2 and Q/Q∞ � 0.05 for η, ζ � 1, (2.81)

where

Q∞ ≡ lim
η→∞

Q(η, η) =
√

2β ≈ 1.721 (2.82)

denotes the asymptotic magnitude of the secondary flow in the outer region. The

inner region is characterised by strongly nonlinear interaction between the boundary

layers adjacent to the walls at η = 0 and ζ = 0. The outer region is a domain of

constant streamwise velocity U = 1, zero streamwise vorticity Ω, and algebraically

varying secondary velocity Q > Q∞. The blending boundary layer contains the most

subtle features of the laminar flow. According to the asymptotic theory of Pal and

Rubin (1971) and Rubin and Grossman (1971), the flow herein varies algebraically

with spanwise distance ζ from the corner line:

(U, V ) = (U0(η), V0(η)) + O
(
ζ−2

)
for η = O(1), ζ � 5, (2.83a)

(W, Q) = (W0(η), Q0(η)) + O
(
ζ−1

)
for η = O(1), ζ � 5. (2.83b)

This prediction is in qualitative agreement with Figure 2.4, which clearly shows U

rapidly approaching its Blasius limit U0 (it is virtually indistinguishable for ζ � 10),

whereas Q approaches its limit Q0 very slowly indeed.

Figure 2.5 plots the secondary velocity Q out to a distance of η = 50 and ζ = 50.

Here we assess domain convergence by plotting Q from four separate data sets.

For the upper-left and lower-left plots in this figure, the flow was computed using

leading-order boundary conditions (applied at ζmax = 60 and ζmax = 50 respec-

tively), whereas the upper-right and lower-right plots were derived using the bound-

ary conditions of Dhanak and Duck (1997) (applied at ζmax = 60 and ζmax = 55

respectively). It is clear that our numerical scheme achieved only a modest degree

of domain convergence. For example, the four data sets yield values of 3.50, 3.475,

3.58 and 3.59 respectively for the global maximum Qmax of the secondary velocity.

For comparison, Qmax values of 3.65, 3.2, 3.55 and 3.68 were obtained by Rubin and

Grossman (1971), Ghia (1975)6, Dhanak and Duck (1997)7 and Balachandar and

Malik (1995) respectively. This quantitative variation is highlighted by Figure 2.6,

where we plot the bisector secondary velocity Qbis defined by

Qbis(ζ) = Q(η, ζ) for η = ζ. (2.84)

6Ghia’s results appear to be inaccurate. This probably indicates that Ghia terminated his

solution algorithm prematurely. Recall from §2.3.2 that Ghia mapped the entire quarter-infinite

domain to a unit square, and solved the equations using < 300 iterations of the ADI algorithm.
7At first glance, Figure 6 of their paper suggests that Qmax ≈ 2.5; closer examination, however,

reveals that their definitions of (V, W, Q, Ω) differ from ours by a factor of
√

2.
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Figure 2.6: Magnitude Qbis(ζ) of the secondary velocity along the corner bisector, rescaled

by the far-field limiting value Q∞ = 1.721. The dark-solid and light-solid curves corre-

spond to the upper-left and lower-left panels of Figure 2.5. The dashed and dot-dashed

lines show the results of Dhanak and Duck (1997) and Balachandar and Malik (1995)

respectively.
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Figure 2.7: Contour plot (upper figure) of the streamwise vorticity Ω ≡ Wη − Vζ , with

contour spacing ΔΩ = 0.25 and zero contours highlighted. For comparison, the contour

plot of Q from Figure 2.4 is reproduced underneath.
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Figure 2.8: Vector plot of the secondary velocity (V,W ). The lower figure is a detail of

the inner corner region and the blending boundary layer out to a spanwise distance of

ζ = 10.
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Figure 2.9: Left: The Blasius velocity profile U0(η) (imposed at the far-field boundary

ζ = ζmax) and the streamwise bisector profile Ubis(η) = U(η, η). Dots along the velocity

profiles correspond to values of U = 0.5, 0.95 and 0.99. Right: Secondary velocity profiles

Q0(η) and Qbis(η) =
√

2V (η, η) =
√

2W (η, η), corresponding respectively to ζ = ζmax and

the corner bisector.

For 10 � ζ � 20, all of the data sets are consistent with the theoretical prediction

of Rubin and Grossman (1971) that

Q = Q∞ + O
(
ρ−1

)
for ρ2 ≡ η2 + ζ2 � 1. (2.85)

For ζ � 20, however, our Qbis(ζ) profile decays faster than O(ζ−1). This accelerated

decay appears to be artificial, induced by the far-field boundary condition Qbis = Q∞
at ζ = ζmax = 60. No such acceleration is evident in the data of Balachandar and

Malik (1995), which was derived using the full blending-layer asymptotic expansion

of Rubin and Grossman (1971) (albeit without the outer-region expansion of Rubin

and Grossman). The Rubin and Grossman data set for Qbis(ζ ≤ 15) is found to be

almost indistinguishable from the Balachandar and Malik data; in the interests of

clarity, therefore, it is not shown in Figure 2.6.

We now turn our attention to the inner region. Figure 2.9 plots the primary and

secondary bisector profiles Ubis and Qbis respectively out to ζ = η = 6. It is clear

that both velocity profiles are strongly inflectional in character. This, of course, is to
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be expected on geometric grounds, especially given the very low velocities (2.81) of

the inner-core region. However, the secondary profile Qbis differs qualitatively from

Ubis in the sense that it overshoots its far-field limit Q∞. Its maximum coincides

with the global maximum of Q, namely

Qmax ≈ (2.1)Q∞, attained at ζ = η ≈ 4.0, (2.86)

ie within the transition zone between the inner and outer regions. The overshoot

phenomenon is a continuity effect, effectively balancing out the low inner-core ve-

locities; note that the bisector marks the locus of collision between the outflow

velocities from the two Blasius-type boundary layers.

It was Rubin and Grossman (1971) who first demonstrated the strongly inflec-

tional nature of the streamwise bisector profile Ubis. Some degree of inflectional

character is, of course, to be expected on purely geometric grounds. Nevertheless,

Figures 4 and 5 of their paper demonstrate that this effect is substantially more

prominent, and the inner corner region significantly larger, than that implied by

Carrier’s (1947) model of weakly-nonlinear boundary-layer interaction. Indeed, it

is this vigorous interaction which is responsible for the well-rounded streamwise

contours evident in our Figure 2.4.

We close this section with a closer examination of the blending boundary layer.

Figure 2.7 compares the streamwise vorticity Ω ≡ Wη − Vζ with the magnitude Q

of the secondary velocity. Both plots show substantial spanwise variation consistent

with the theoretical result (2.83). The vorticity extrema, marked in Figure 2.7 by

crosses, are located at (η, ζ) ≈ (2.2, 4.8) and (4.8, 2.2), ie in the transition region

between the blending boundary layer and the inner corner region. A startling feature

of the secondary velocity is the wide spacing between the contours corresponding

to Q = 0.4, 0.6 and 0.8. Equally startling is that the Q = 0.6 contour actually

doubles in on itself over the sub-domain 13 � ζ � 17. These local features coincide

closely with the zero-vorticity contour, which indicates a reversal of the crossflow

component W approximately midway through the blending layer. This is clearly

evident in the transverse vector plot of Figure 2.8 and the boundary-layer velocity

profiles of Figure 2.10. The precise location η∗ of crossflow reversal depends strongly

on the spanwise coordinate ζ ; it increases monotonically from η∗ = 0 at ζ = 2.4 to

η∗ = 1.36 at ζ = 5, η∗ = 1.90 at ζ = 20, and η∗ = 2.15 at ζ = ζmax. Figure 2.11

plots the wall shear stress (σ, μ) defined by

σ(ζ) = Uη(0, ζ), μ(ζ) = Wη(0, ζ) ≡ Qη(0, ζ). (2.87)

The dashed curves in this figure compare our results with the following asymptotic
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Figure 2.10: Left: Magnitude Q(η; ζ) of the secondary velocity in the blending layer,

plotted as a function of η at spanwise stations of ζ = 5, ζ = 10 and ζ = 20. The heavy

curves indicate the far-field limit Q0(η) of the secondary velocity (enforced at ζ = ζmax =

60). Right: Orientation of the secondary velocity, plotted as a function of η for ζ = 5,

ζ = 10 and ζ = 20. An orientation value below 90 degrees indicates an outflow from the

corner, while a value above 90 indicates an inflow.

shear values of Rubin and Grossman (1971):

σ = σ0(1 − κζ−2) + O
(
ζ−3

)
for ζ � 1, (2.88a)

μ = μ0 + 4κζ−1 + O
(
ζ−2

)
for ζ � 1, (2.88b)

where κ ≈ 2.5 is an empirical constant, and (σ0, μ0) are given by

σ0 = f ′′(0) = 0.470, (2.89a)

μ0 = −β2 = −1.481. (2.89b)

It is clear that our values for |σ − σ0| and |μ − μ0| are consistently smaller than

those of Rubin and Grossman (1971); nevertheless, qualitative agreement is very

good throughout.
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Figure 2.11: Upper left: The streamwise wall shear σ(ζ) = Uη(0, ζ). Lower left: The

crossflow wall shear μ(ζ) = Wη(0, ζ). Upper right: The relative difference between σ(ζ)

and its far-field limit σ∞, plotted on a logarithmic scale. The dot-dashed curve labelled

RG71 corresponds to the asymptotic results of Rubin and Grossman (1971). Lower right:

The relative difference between μ(ζ) and its far-field limit μ∞ (dot-dashed curve indicates

the results of Rubin and Grossman (1971)).



Chapter 3

Stability of laminar flow in an

internal corner

3.1 Introduction

In Chapter 2 we computed the laminar flow internal to a square corner in the absence

of a streamwise pressure gradient. The hydrodynamic stability of this laminar flow

is the subject of the present chapter. Ideally, we would like to exhibit a critical

Reynolds number Rec such that the laminar flow is stable for Re < Rec. Conversely,

for Re > Rec the flow would be unstable, and in practice would be expected to

transition to a turbulent state. Recall from §2.4 that its streamwise component

u ≡ U(η, ζ) has a strongly inflectional profile along the corner bisector (see, for

example, Figure 2.9). This leads us to speculate that the flow possesses one or

more inviscid-type modes of instability centred on the inner corner boundary layer.

In particular, we hypothesize that this flow is less stable than an equivalent two-

dimensional Blasius boundary layer (for which Rec ≈ 9 × 104).

The structure of this chapter is as follows. In §3.2 we derive the leading-order

linearized governing equations for eigenmode instabilities in the laminar flow internal

to a square corner. Sections 3.3 to 3.5 focus on inviscid-type modes of instability; the

eigenmode governing equations are solved in the formal (‘inviscid’) limit Re → ∞
using three different numerical schemes. Finally, §3.6 considers both viscous- and

inviscid-type modes at finite Reynolds number.

67
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3.2 Governing equations

Our stability analysis of the laminar corner flow u = (u, v, w) relies on the parallel-

flow approximation that the boundary-layer scaling

O
(
x/Re1/2

x

)
≡ O

(
x

1
2 Re−1

2

)
(3.1)

is essentially constant over the characteristic streamwise scale Δx = O

(
Re−1

2

)
of

Tollmien–Schlichting instabilities. This assumption allows us to apply a streamwise-

similar normal-mode analysis. That is, we ‘seed’ the flow with an infinitesimal

wavelike perturbation of the form

εũ ≡ εŨ(η, ζ) eiαR(x−ct) (3.2)

where ε � 1 is an arbitrary small constant, α is a real-valued streamwise wavenum-

ber, c is a complex-valued wave-speed, and R is a scale factor based on boundary-

layer width and free-stream velocity. It proves convenient to define R by

R =

(
Re

2

) 1
2

, ie Re = 2R2, (3.3)

where the Reynolds number Re (defined in §1.3.1) is based on streamwise distance

from the leading edge.

On substituting the total velocity

utotal ≡ u + εũ (3.4)

into the unsteady Navier–Stokes equations, and retaining only the O(ε) leading-order

terms in ũ, we obtain the following equations:

iαU + Vη + Wζ = 0, (3.5a)

iα(u − c)U + uηV + uζW + iαP =
1√
2Re

∇2U, (3.5b)

iα(u − c)V + Pη =
1√
2Re

∇2V, (3.5c)

iα(u − c)W + Pζ =
1√
2Re

∇2W, (3.5d)

∇2 ≡ ∂2

∂η2
+

∂2

∂ζ2
− α2, (3.5e)

where we have simplified the notation by dropping the tildes and letting u ≡ u(η, ζ)

denote the streamwise laminar flow. These governing equations are to be solved

subject to the no-slip conditions

U = V = W = 0 at η = 0 and ζ = 0, (3.6)
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together with bisector symmetry conditions and asymptotic far-field conditions (to

be discussed in more detail later in this chapter). Two classes of correction terms

are absent from the governing equations (3.5): nonlinear terms in ũ of order O(ε2)

and higher; and advective terms of order O(R−1ε) involving the laminar secondary

velocity (v, w). (The latter terms are, however, retained by Dhanak and Duck (1997)

and Parker and Balachandar (1999).) If the O(R−1ε) viscous terms are also dropped,

one obtains the ‘inviscid instability’ equations:

iαU + Vη + Wζ = 0, (3.7a)

iα(u − c)U + uηV + uζW + iαP = 0, (3.7b)

iα(u − c)V + Pη = 0, (3.7c)

iα(u − c)W + Pζ = 0. (3.7d)

Since viscosity is absent in the limit Re → ∞ (except through the underlying lam-

inar flow u(η, ζ)), the no-slip condition (3.6) on (3.5) weakens to a no-penetration

condition on (3.7), ie

V = 0 at η = 0, W = 0 at ζ = 0. (3.8)

The inviscid equations make no explicit reference to the Reynolds number, and

therefore cannot yield a critical Reynolds number. Furthermore, they are clearly

singular in the special case that c is real-valued with 0 < c < 1. Nevertheless,

they are attractive for a preliminary stability analysis, since they decouple to yield

a single equation involving only the perturbation pressure P ≡ P (η, ζ). This is

the two-dimensional Rayleigh equation, a second-order partial differential equation

involving the eigenvalue c:

(u − c)∇2P − 2(uηPη + uζPζ) = 0. (3.9)

It is to be solved subject to Neumann boundary conditions, ie

Pη = 0 at η = 0, Pζ = 0 at ζ = 0. (3.10)

Its solution is the theme of the second half of the Balachandar and Malik (1995)

paper. We devote §3.3, §3.4 and §3.5 to its solution, before tackling the viscous-

instability equations (3.5) in §3.6.

3.3 Method 1 (Inviscid)

3.3.1 Outline

We discretize the Rayleigh equation (3.9) in the (η, ζ) plane using a standard finite-

difference (FD) scheme. The discretised system reduces to a generalised eigenvalue
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problem of the form

Ap = cBp (3.11)

where the complex-valued vector p denotes mesh values of the perturbation pres-

sure P (η, ζ). In principle, the eigenvalue equation (3.11) is amenable to the QZ

algorithm. However, this approach would be feasible only for coarse discretisations

leading to fewer than O(104) unknowns. Instead, we use the iterative algorithm of

Otto and Denier (1999) to extract only the leading eigenvalues c of (3.11). This

approach, unlike the QZ algorithm, promises large efficiency gains through exploita-

tion of the sparsity structure of the A and B matrices. Our full numerical scheme

is implemented in purpose-written Fortran 90 code.

3.3.2 Details

We discretize the Rayleigh equation (3.9) and its Neumann boundary condition

(3.10) over the truncated domain D defined by

D = {(η, ζ) : 0 ≤ η, ζ ≤ ζmax} (3.12)

where ζmax is an arbitrary large constant. By assuming that the eigenfunction is

symmetric with respect to the bisector, ie

P (ζ, η) = P (η, ζ), (3.13)

we reduce the working domain D̃ to the sub-bisector region defined by

D̃ = {(η, ζ) : 0 ≤ η ≤ ζ ≤ ζmax}. (3.14)

Following Balachandar and Malik (1995), we close the above system of equations by

applying a Neumann boundary condition at the far-field boundary:

Pζ = 0 at ζ = ζmax. (3.15)

The discretized system yields a total of approximately 1
2
N2 unknowns, where N is

the number of mesh points in each of the η and ζ coordinates. For example, a uniform

grid with spacing h = 0.1 and boundary ζmax = 20 would yield approximately
1
2
(2002) = 2 × 104 working variables. In practice, however, we use a three-part

domain decomposition as illustrated in Figure 3.1. This decomposition applies a fine

mesh to the corner region proper, a coarse mesh to the outer region, and a hybrid

mesh to the blending boundary layer. The respective grid-spacing parameters are

as follows:

Inner: hη ≡ hζ = h1 for 0 < η, ζ < η∗, (3.16a)

Outer: hη ≡ hζ = h2 for η∗ < η, ζ < ζmax , (3.16b)

BL: (hη, hζ) = (h1, h2) for 0 < η < η∗ < ζ < ζmax , (3.16c)
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Figure 3.1: Upper figure: Schematic representation of the discretization (3.16) of the full

computational domain D of spanwise size ζmax = 20. The actual computational grid is

approximately two to five times denser than shown here. Lower figure: Discretization of

the reduced domain D̃ corresponding to the sub-diagonal domain 0 ≤ η ≤ ζ ≤ ζmax.
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where

h1 = O(10−1), (3.17a)

h2 = nh1 for n integer (1 < n ≤ 6), (3.17b)

η∗ ≈ 5. (3.17c)

For example, the parameter set

h1 = 0.1, n = 4, h2 = 0.4, η∗ = 6.0, ζmax = 20, N = 96,

yields approximately 4500 unknowns.

The traditional approach is to express the discretized governing equations as a

generalized eigenvalue problem of the form (3.11), which is then solved using the QZ

algorithm. Unfortunately, the storage cost of this scheme scales as O(N4), while the

computational time required by the eigensolver scales as O(N6). Furthermore, no

savings can be made by exploiting matrix sparsity, since this property is destroyed

by the QZ algorithm. This situation is regrettable, since our matrices A and B

are very large and very sparse. In fact, each matrix has a block-diagonal structure,

namely block-tridiagonal in the case of second-order differencing (FD2) and block-

pentadiagonal for a FD4 scheme (note, however, that accuracy may decrease to first-

order or second-order respectively at domain boundaries). To exploit this sparsity

structure, we discard the QZ algorithm in favour of the algorithm of Otto and Denier

(1999). Adapted to our problem, their algorithm is as follows:

1. Choose some estimate c̃0 of the true eigenvalue c.

2. Formulate the eigenvalue problem (ie Rayleigh pressure equation plus bound-

ary conditions) as the homogeneous matrix equation Ap = 0, where A is a

linear function of the eigenvalue estimate c̃. This matrix has O(N4) entries,

of which only O(N2) are non-zero. Since A has a block-diagonal structure,

it may readily be stored as a sequence of block matrices of size N × N , for a

total storage cost of O(N3).

3. To ensure a non-trivial solution, the above system must be perturbed to a non-

homogeneous one. To do this, first select a normalization point z0 = (η0, ζ0)

and locate the corresponding row of A. Then substitute this matrix row by

the normalization equation P (z0) = 1, to yield

Ãp̃ = e (3.18)

where e = (0, 0, ..., 0, 1, 0, ..., 0) is the corresponding unit vector.
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4. Solve the resulting matrix equation, using a block-matrix algorithm to exploit

the sparsity of A. The computation time of this algorithm scales as O(N4).

5. In general, p̃ will not satisfy the differential equation at the normalization

point z0. Obtain a complex-valued error statistic ε(c̃) ≡ εr + iεi by retrospec-

tively evaluating the differential equation at z0.

6. Repeat steps 2–5 for the estimates c̃1 = c̃0 + δ and c̃2 = c̃0 + iδ, where δ =

O(10−3) is an arbitrary real constant.

7. Hence, estimate the local gradient dε/dc̃ of the complex-valued error statistic.

Separate out its real and imaginary components, to generate a 2×2 derivative

matrix D for ε.

8. Apply the gradient-descent method, inverting D to obtain a new estimate c̃3

of c.

9. Return to Step 2 and the above algorithm until the estimates converge (suc-

cess) or diverge (failure).

The above algorithm is not difficult to program, provided that a suitable starting

estimate c̃0 can be found. To do this, we first perform a preliminary analysis using

a truncated version of the above algorithm. In this mode of operation we drop

the gradient descent phase; instead, we merely compute ε values corresponding to a

large number of c̃ values. Next, as shown in Figure 3.2, we produce separate contour

plots of εr and εi in the complex c̃-plane. Finally, we superimpose the two contour

plots and identify any points of intersection between their respective zero contours.

The coordinates of these points constitute starting estimates for the full algorithm.

3.3.3 Results

Our iterative finite-difference scheme yielded tantalizing but inconclusive results.

Before delving any further, it is instructive to review the results of Balachandar

and Malik (1995). Like us, they chose to solve the inviscid instability equations in

the hope of controlling computational costs (although they differed from us in using a

QZ algorithm coupled with a spectral-based discretization of the Rayleigh equation).

They reported two modes of inviscid instability active over the wavenumber range

0.1 � α � 0.3. The more vigorous mode attains its maximum growth rate of

ω = 0.003975 at a wavenumber of α = 0.225, corresponding to an eigenvalue of

c = 0.48 + 0.0177i.
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Figure 3.2: Preliminary results from Method 1 as described in §3.3.2. The analysis

yields a complex-valued error statistic ε ≡ εr + iεi as a function of the estimate c̃ of the

true eigenvalue c. The upper and lower contour figures plot εr and εi respectively in the

complex c̃ plane. (In the interests of clarity, we show only the zero contours.) Any point

c∗ of intersection between the respective zero contours suggests the presence of a genuine

eigenvalue. This figure was generated using 500 iterations of the preliminary algorithm,

corresponding to an equispaced mesh of 50×10 points in the c̃–plane.
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Figure 3.3: The leading eigenvalue c, as computed by Method 1 with fourth-order finite-

difference discretization and plotted as a function of h ≡ h1, the boundary-layer grid-

spacing. Also shown is the leading eigenvalue reported by Balachandar and Malik (1995).
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Figure 3.4: The leading eigenmode of inviscid instability, as computed by Method 1 with

grid-spacing h = 0.1 and streamwise wavenumber α = 0.225. Here we plot the amplitude

|P (η, ζ)| of the perturbation pressure (the indicated maximum |P | ≈ 1.03 is arbitrary).

The corresponding eigenvalue is c = 0.465 + 0.006i.

Our method failed to identify either of the eigenmodes reported by Balachandar

and Malik (1995). Furthermore, our preliminary results were not encouraging, in the

sense that they did not yield smooth, regular contour plots of the error statistic ε.

Nevertheless, our method appeared to identify an eigenmode with an eigenvalue of

c = 0.46 + 0.002i at α = 0.225. Indeed, Figure 3.3 illustrates numerical convergence

of this eigenvalue with respect to the parameter h1 defined by (3.16) and (3.17).

These results were generated using a FD4 discretization, and were insensitive to the

artificial computational parameters h2, η∗ and ζmax.

The eigenmode computed by our iterative algorithm is illustrated by Figure 3.4,

which plots the magnitude |P (η, ζ)| of the pressure eigenfunction. This figure is

qualitatively identical to Figure 8a of the Balachandar and Malik (1995) paper

(notwithstanding the substantial discrepancy in reported eigenvalues). As antici-

pated, the instability is located squarely within the corner region proper, attaining

its maximum magnitude on the bisector at (η, ζ) = (2.2, 2.2). It is largely unaf-

fected by the adjacent blending boundary layer; this is to be expected, since the
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laminar streamwise velocity therein asymptotes rapidly to the Blasius profile, which

is inviscidly stable. As one exits the corner region, the eigenmode apparently decays

at the asymptotic rate of

exp[−α(η + ζ)] for η + ζ � 1. (3.19)

Unfortunately, we are unable to express full confidence in the above results.

Though Figure 3.3 appears to provide compelling evidence of numerical conver-

gence, we were unable to replicate and generalize these results. In fact, our iterative

algorithm was liable to fail whenever applied to a very fine mesh (h1 ≤ 0.05). In

any case, the pursuit of rigorous numerical convergence taxed the limits of available

computing power. Eventually, we abandoned our FD-based algorithm in favour of

Method 2.

3.4 Method 2 (Inviscid)

3.4.1 Outline

Method 2 follows that of Balachandar and Malik (1995). That is, the Rayleigh

equation (3.9) for the perturbation pressure is discretized using a Chebyshev pseu-

dospectral scheme, and the resulting generalised eigenvalue equation (3.11) is solved

using the standard QZ algorithm. For validation purposes, we implement Method 2

in both Fortran 90 and Matlab, and experiment with several different far-field bound-

ary conditions.

3.4.2 Details

For Method 2, we use an order-N Chebyshev pseudospectral (PS) scheme to dis-

cretize the Rayleigh equation over the domain D defined by (3.12). This well-known

spectral scheme spans D with a non-uniform grid of N+1×N+1 collocation points

(illustrated in Figure 3.5), and uses Lagrange interpolating polynomials of degree

N to compute spatial derivatives. Consequently, the truncation error in computing

any local derivative should be of order O(e−N), compared with O(N−2) for the FD2

finite-difference scheme.

Version 1 of Method 2 was implemented in Fortran 90 code. Here, as in §3.3, we

use the assumption of eigenfunction symmetry to shrink the problem to the working

half-domain D̃ defined by (3.14), thereby reducing the number of working variables

to approximately 1
2
N2. The discretized system yields a generalised eigenvalue equa-
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Figure 3.5: The mesh of collocation points associated with the Chebyshev pseudospectral

(PS) scheme of Method 2, illustrated for the case of domain size ζmax = 20 and spectral

order N = 20.

tion of the form [
Aii Aib

Abi Abb

] [
pi

pb

]
= c

[
Bii Bib

0 0

] [
pi

pb

]
(3.20)

where the complex-valued vectors pi and pb denote interior and boundary values

respectively of the eigenvector p, and the second block row implements Neumann

boundary conditions at η = 0 and ζ = ζmax. We transform (3.20) to an equivalent

non-singular eigenvalue equation of the form

Ãp = cB̃p where p ≡ pi (3.21)

and the full matrices Ã and B̃ are given by

Ã = Aii − Aib(Abb)
−1Abi, (3.22)

B̃ = Bii − Bib(Abb)
−1Abi. (3.23)

The reduced eigenvalue equation (3.21) is then solved using the QZ algorithm, via a

function call to the LAPACK routine dggev. The computational cost of this scheme

nominally scales as O(N6), although in practice the observed computational time

(‘wall time’) scaled as O(Nk) where k ≈ 7.4.

Version 2 of Method 2 was initially intended as a cross-check on Version 1. It

was adapted from various Matlab codes published in Trefethen (2000), all of which
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emphasize conciseness and flexibility; wherever possible, calculations are performed

using whole-matrix operations, and numerical results are converted seamlessly to

graphical output. A generalized eigenvalue equation is solved via a function call to

eig, which interfaces directly with the above-mentioned Fortran routine dggev.

Version 2 yielded identical results to those of Version 1 in the case of Neumann

far-field boundary conditions. Full agreement was obtained irrespective of whether

eigenfunction symmetry was assumed, and whether the eigenvalue equation was

singular or non-singular (thereby confirming that the QZ algorithm is numerically

robust). Our results varied slightly, however, when the Neumann far-field boundary

condition was swapped for a Robin condition of the form

∂P

∂ζ
= −αP at ζ = ζmax (3.24)

or
∂P

∂ρ
= −αP at ζ = ζmax (3.25)

where ρ measures distance from the corner line, ie

ρ2 = η2 + ζ2. (3.26)

The effect of this change was typically to change the third or fourth decimal place

of the leading eigenvalue c1. An examination of the structure of this eigenfunction

confirmed that both forms of the Robin boundary equation are more natural than the

Neumann condition. This is to be expected, since the Neumann condition attempts

to confine the eigenfunction within an arbitrary finite domain.

3.4.3 Results

Figure 3.6 plots the leading eigenvalue c1 as a function of spectral order N for the

case of Neumann boundary conditions applied at ζmax = 20, 30 and 40. Likewise,

Figure 3.7 plots c1 as a function of N for the case of Robin conditions at ζmax = 10

and ζmax = 15.

Our results are inconclusive, but suggest that the corner flow is inviscidly unsta-

ble, with a leading eigenvalue of c1 ≈ 0.46 + 0.01i at α = 0.225. (This value differs

in the second decimal place from that of Balachandar and Malik (1995), namely

c1 = 0.48 + 0.018i at α = 0.225.) Unfortunately, our results for ζmax ≥ 20 show a

wide degree of scatter, suggesting that the eigenmode cannot be adequately resolved

without a prohibitively large spectral order (N � 100). Reducing the domain size

to ζmax = 10 improves the spatial resolution and reduces the scatter of numerical

results. At the same time, however, our results for ζmax = 10 apparently show cr
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Figure 3.6: Results of Method 2 for the case of ζmax ≥ 20 and Neumann boundary

conditions at ζ = ζmax. The upper and lower panels plot the real and imaginary parts

respectively of the leading eigenvalue c1 as a function of spectral order N and domain size

ζmax.
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Figure 3.7: Results of Method 2 for the case of ζmax < 20 and Robin boundary conditions

at ζ = ζmax. As in Figure 3.6, the upper and lower panels show the real and imaginary

parts respectively of the leading eigenvalue c1.
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and ci decreasing with N — a warning that the eigenmode may be spurious. In any

case, our results are at variance with those of Balachandar and Malik (1995), who

report that parameter values of N = 54 and ζmax = 25 are “adequate to provide

well converged results”.

3.5 Method 3 (Inviscid)

3.5.1 Outline

Our experience with Method 2 in §3.4.3 suggests that the key to numerical conver-

gence lies in improving spatial resolution of the corner boundary layer. To this end,

Method 3 introduces a coordinate mapping of the form

(η, ζ) ⇒ (η̃, ζ̃) (3.27)

whose effect is to increase the proportion of collocation points falling within the

boundary layer. In all other respects, however, Method 3 follows Version 2 of

Method 2. That is, the transformed domain in the (η̃, ζ̃) plane is discretized us-

ing a Chebyshev pseudospectral (PS) scheme; Robin conditions are applied at the

far-field boundary; the discretized system is solved via the QZ algorithm; and the

entire numerical scheme is implemented in Matlab code.

3.5.2 Details

Prior to applying the Chebyshev PS discretization, we ‘expand’ the boundary layers

using the following coordinate mapping:

η̃/ζmax = f(η/ζmax), (3.28a)

ζ̃/ζmax = f(ζ/ζmax), (3.28b)

where

f(s; σ) =
log[1 + (σ−1)s]

log σ
(3.29)

and σ > 1 is an arbitrary constant. The mapping function f has the property that

0 ≤ s ≤ f(s) ≤ 1 with equality iff s = 0 or s = 1. (3.30)

The metric of this mapping is

dη̃/dη = μ(η/ζmax), (3.31a)

dζ̃/dζ = μ(ζ/ζmax), (3.31b)
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Figure 3.8: Upper left: The mapping function f(s; σ) defined by (3.29) for the case

σ = 10. Left-clustered points in physical space (indicated by dot-markers on the horizon-

tal axis) are mapped by f to equispaced points in computational space (dot-markers on

vertical axis). Upper right: The metric μ(s) ≡ f ′(s) of this map. Lower left: Schematic

representation of the spatial discretization for Method 3 (§3.5.2). The dot-markers on the

vertical axis correspond to Chebyshev PS collocation points of polynomial order N = 20

for parameter values of σ = 10 and ζmax = 20. Lower right: The metric dη̃/dη and dζ̃/dζ

of the coordinate map shown at lower-left.
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Figure 3.9: Upper figure: Equispaced grid based on the mapping function shown in

Figure 3.8 for the parameters σ = 10, ζmax = 20 and N = 20. Lower figure: Chebyshev

pseudospectral grid corresponding to the same parameter set.
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where

μ(s) ≡ f ′(s) (3.32)

is a decreasing function of s with the property that

μ(0)

μ(1)
= σ, (3.33)

indicating that σ can be interpreted as the stretch ratio of the mapping. This prop-

erty is illustrated in Figures 3.8 and 3.9 for a stretch ratio of σ = 10, in conjunction

with a Chebyshev pseudospectral scheme of order N = 20 for ζmax = 20. Since

f(0.25) ≈ 0.5 in this case, it follows that approximately half of the 1D collocation

points fall within the boundary layer:

ζi < 5, ζ̃i � 10 for i � N/2, σ = 10, ζmax = 20.

Consequently, approximately one-quarter (ie 1
2
× 1

2
) of the 2D collocation points fall

within the inner corner region:

ηi < 5 and ζj < 5 for i, j � N/2, σ = 10, ζmax = 20.

3.5.3 Results

Figure 3.10 plots the leading eigenvalue c1 as computed by Method 3 with the

following parameter values:

ζmax = 10, σ = 10, 20 ≤ N ≤ 70, (3.34a)

ζmax = 15, σ = 12, 20 ≤ N ≤ 70, (3.34b)

ζmax = 20, σ = 15, 20 ≤ N ≤ 80. (3.34c)

The results for the cases ζmax = 10 and ζmax = 15 show poor convergence with respect

to spectral order N . The results for ζmax = 20 are more consistent; however, the

downward trend in ci indicates that the eigenmode may be spurious. Qualitatively

similar results were obtained when the stretch parameter σ was varied.

Once again, we are compelled to report inconclusive results and insufficient com-

puting power. It is therefore time to attempt the full viscous instability equations.

In theory this represents an even more ambitious undertaking, since it involves up

to four flow variables, as opposed to the single flow variable P of the Rayleigh equa-

tion. Unlike the Rayleigh equation, however, the viscous equations are amenable

to the Arnoldi algorithm for efficient extraction of the leading eigenvalues. Conse-

quently, the four-equation viscous system may prove more tractable than its inviscid

counterpart.
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Figure 3.10: Results of Method 3, plotting the real and imaginary parts of c1 as a function

of spectral order N and domain size ζmax.

3.6 Method 4 (Viscous)

3.6.1 Outline

Method 4 increases the numerical efficiency of Methods 2 and 3 by using the Arnoldi

algorithm to extract only the leading eigenvalues. Furthermore, the viscous stability

equations (3.5) are used in place of the inviscid (Rayleigh) equation. The reason

for this is that the Arnoldi algorithm is not directly applicable to a generalised

eigenvalue problem (GEVP) of the form

Aq = cBq (3.35)

where the matrices A and B are not symmetric (or Hermitian). In principle, one

could invert the B matrix generated by the Rayleigh equation, and proceed to apply

the Arnoldi algorithm to the resulting standard eigenvalue problem of the form

Ãp = cp. (3.36)

In practice, however, it is more efficient to work with the viscous equations, which

yield a diagonal B matrix. Each component of the full eigenfunction Q defined by

Q(η, ζ) ≡ (U, V, W, P ) (3.37)
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is discretized using either the standard pseudospectral (PS) scheme of Method 2

(§3.4) or the modified PS scheme of Method 3 (§3.5). In either case, one must

perform some pre-processing as follows. The pressure and boundary values are

eliminated to yield a non-singular standard eigenvalue problem of the form

Ãu = iαcu (3.38)

where u denotes non-boundary values of the reduced eigenfunction

U(η, ζ) ≡ (U, V, W ). (3.39)

Unfortunately, this transformation step (which also destroys matrix sparsity) is even

more expensive than the Arnoldi algorithm itself. Nevertheless, the net effect is to

reduce the computational cost by an order of magnitude relative to the equivalent

QZ algorithm.

Method 4 provides good resolution of the leading eigenvalues for a spectral order

of either N ≈ 50 or N ≈ 35 (depending on whether the spectral discretization

is standard or modified using coordinate mapping). Given that the computation

cost scales as O(N6) in both cases, a reduction in N from 50 to 35 provides an

efficiency dividend of approximately one order of magnitude. To put these figures

into perspective, resolution of a single eigenvalue is feasible on a desktop computer

at a spectral order of N � 60; at N = 50 it becomes feasible to conduct a limited

parametric study, including estimation of the stability threshold of the inviscid mode;

and at N = 40, a thorough study of the viscous modes becomes feasible.

3.6.2 Details

Our method is very similar to that of Parker and Balachandar (1999). The composite

eigenfunction Q is defined by (3.37) and governed by the viscous stability equations

(3.5). As in Methods 1 to 3, we reduce computational costs eightfold by exploiting

the symmetry of Q with respect to the corner bisector:

U(ζ, η) = ±U(η, ζ), (3.40a)

P (ζ, η) = ±P (η, ζ), (3.40b)

V (ζ, η) = ±W (η, ζ), (3.40c)

where the plus and minus signs correspond respectively to symmetry and antisym-

metry of the mode with respect to the corner bisector. Positive symmetry is almost

invariably invoked in practice, since the inviscid mode occurs only under this sym-

metry configuration; furthermore, antisymmetric viscous modes are invariably found
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to be more stable (and hence less important) than their symmetric counterparts. We

have also performed some computations without symmetry assumptions, the results

of which demonstrated to our satisfaction the non-existence of fully asymmetric

modes.

The viscous stability equations must be solved subject to the no-slip boundary

conditions

U = V = W = 0 at η = 0. (3.41)

Unfortunately there is no natural boundary condition for the perturbation pres-

sure P . This situation clearly differs from that of the inviscid Rayleigh equation,

where a Neumann condition on P ensures zero normal flow through the corner wall.

Noting, however, the role of pressure in maintaining a divergence-free flow, we use

the continuity equation to derive an implicit pressure boundary condition as follows.

Evaluated in the limit η → 0, the continuity equation specifies quadratic decay of

the normal velocity in the vicinity of the wall:

Vη = 0 at η = 0. (3.42)

The viscous stability equations must be solved subject to far-field boundary condi-

tions at the artificial domain limit ζ = ζmax. These conditions may be of Neumann,

Robin or spanwise-periodic type:

Neumann: ∂Q/∂ζ = 0 at ζ = ζmax , (3.43a)

Robin: ∂Q/∂ζ = −αQ at ζ = ζmax , (3.43b)

Periodic: ∂Q/∂ζ = iβQ at ζ = ζmax , (3.43c)

where β is a real-valued parameter. Either Neumann and Robin conditions may

be employed in the case of the inviscid mode, which is localised within the corner

region and decays to zero in the spanwise direction (albeit slowly). For the viscous

modes, which do not decay significantly in the spanwise direction, it is advisable to

apply the periodic condition (also known as the Sommerfeld radiation condition).

The parameter β in (3.43c), in conjunction with the streamwise wavenumber α,

determines the spatial orientation of the disturbance wave. Thus, β = 0 corresponds

to a standing wave propagating parallel to the corner line, whereas β < 0 and β > 0

correspond respectively to oblique waves directed towards and away from the corner.

A compelling visual illustration of this phenomenon appears in Figures 16 and 19

of the Parker and Balachandar (1999) paper.

The viscous-stability governing equations (3.5), together with the above symme-

try and boundary conditions, are discretized in the (η, ζ) domain as in Method 2
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or Method 3. In either case one obtains the GEVP (3.35); it may be conveniently

expressed in the block-matrix form[
A11 A12

A21 0

] [
u

p

]
= iαc

[
I 0

0 0

][
u

p

]
(3.44)

where the eigenvector u represents a discretization of U(η, ζ). Prior to enforcement

of bisector symmetry, the left-hand matrix in (3.44) is of approximate dimension

4N2 and contains O(N3) non-zero elements; we generate it efficiently in Matlab

using a sequence of sparse-matrix operations. In the second step of the algorithm,

we drop the zero-valued wall velocities and ‘fold in’ all Q entries corresponding to

ζ = ζmax (temporarily retaining the non-zero wall values of P ) to yield a modified

GEVP of the form [
Ã11 Ã12

Ã21 0

][
ũ

p̃

]
= iαc

[
I 0

0 0

] [
ũ

p̃

]
. (3.45)

Enforcement of symmetry constitutes the third step, while the fourth step is the

most expensive in terms of computational cost. Following the example of Parker

and Balachandar (1999), we pre-multiply the second block-matrix row in (3.45) by

the first: (
Ã21Ã11

)
ũ +

(
Ã21Ã12

)
p̃ = 0. (3.46)

It now follows that

p̃ = −
[(

Ã21Ã12

)−1

Ã21Ã11

]
ũ (3.47)

whence

Ãũ = iαc ũ (3.48)

where

Ã =
[
I − Ã12(Ã21Ã12)

−1Ã21

]
Ã11. (3.49)

The fifth and final step is to invoke the Arnoldi eigensolver via the Matlab routine

eigs (which in turn invokes the LAPACK Arnoldi eigensolver). In order to avoid

spurious eigenvalues, one must supply (via the opts.p flag in eigs) a rough estimate

of the leading eigenvalue(s); the effect of this is to activate the shift-and-invert

algorithm prior to the Arnoldi algorithm proper. One may also specify the number

of Lanczos working vectors for the Arnoldi algorithm; we find that fifty Lanczos

vectors ensures numerical convergence of the leading eigenvalues.

Since Ã is a full matrix, its storage requirements scale as O(N4); it occupies ap-

proximately 50 megabytes of memory at N = 35 and 200 MB at N = 50. Parker and

Balachandar devised a vectorization strategy whereby the complete matrix is not
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Figure 3.11: Top: Numerical convergence of the inviscid eigenvalue c0 ≡ cr + ici for

Method 4 as a function of spectral order N and domain size ζmax at σ = 1 (ie without

coordinate mapping). The upper-left and upper-right panels correspond respectively to

cr and ci for parameter values of Re = 105 and α = 0.2. Bottom: As above, but using

coordinate mapping with stretch parameter σ = 10.

stored in memory at any one time; instead, all computations are based on eigenvec-

tors and one-dimensional matrix operators, whose size scales as O(N2). No further

details are supplied, however, and it is not entirely clear how this strategy guar-

anteed a divergence-free flow in the absence of explicit values for the perturbation

pressure.

3.6.3 Results: Inviscid mode

The inviscid mode occurs only under positive spatial symmetry, and is found to be

unique up to streamwise wavenumber α. Thus, the inviscid eigenvalue

c0 ≡ cr + ici (3.50)



3.6. METHOD 4 (VISCOUS) 89

Inviscid mode  (zmax = 25)

0 5 10 15 20 25
0

5

10

15

20

25

Real part

0 5 10 15 20 25
0

5

10

15

20

25

Imaginary part

0 5 10 15 20 25
0

5

10

15

20

25

Inviscid mode  (zmax = 30)

0 5 10 15 20 25
0

5

10

15

20

25

Real part

0 5 10 15 20 25
0

5

10

15

20

25

Imaginary part

0 5 10 15 20 25
0

5

10

15

20

25

Figure 3.12: Contour plots of streamwise velocity U(η, ζ) for the inviscid mode, computed

using domain sizes of ζmax = 25 (left) and ζmax = 30 (right) for parameter values of

Re = 105 and α = 0.2. The upper, middle and lower figures correspond respectively to

the amplitude |U |, real part Ur and imaginary part Ui. The eigenmode is normalized so

that |U | ≤ 1 everywhere, and the contour spacing is 0.2 throughout. The contour levels

for |U | (top) are 0.1, 0.3, 0.5, 0.7 and 0.9. Heavy and light contours for Ur and Ui (middle

and bottom) correspond respectively to positive and negative values.
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Figure 3.13: Upper figure: Neutral-stability curve in (Re, α) space for the inviscid mode

(computed using a domain size of ζmax = 25), with data points indicated by dot markers.

The horizontal scale is logarithmic, running from Re = 30 000 to Re = 500 000. The

critical point is found to be (Re, α) = (43 500, 0.198). Lower figure: Inviscid neutral-

stability curves computed using ζmax = 25 (solid) and ζmax = 30 (dashed), with data

points omitted for clarity.
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is fully defined by the two-dimensional parameter space (α,Re).

Our numerical data for the inviscid mode exhibits very satisfactory convergence.

The effect of switching between Robin and Neumann domain boundary conditions

was typically to alter the fourth or fifth decimal of c0. The influences of domain size

ζmax, spectral order N and stretch factor σ are illustrated in Figure 3.11 for the case

of the inviscid mode with wavenumber α = 0.2 and Reynolds number Re = 105.

Three-decimal convergence of c0 is attained at N = 45 for σ = 1 (ie in the absence

of coordinate mapping), or at N = 30 for σ = 10, based on a domain size ζmax of 20–

25. Four-decimal accuracy, required for accurate evaluation of stability thresholds,

is typically attained at an approximate spectral order of

N = [10 log10(Re)] − N0 (3.51)

with N0 ≈ 10 for parameter values of σ = 10 and 20 ≤ ζmax ≤ 25. As α is decreased

below ≈ 0.15, however, the convergence rates in N and ζmax decrease. This is to be

expected, since the spanwise decay of the eigenmode is governed by α as follows:

O(e−αζ) for ζ � 1. (3.52)

The cross-sectional structure of the inviscid mode is illustrated by Figure 3.12, which

plots the magnitude |U | and phase (Ur, Ui) of the streamwise perturbation velocity in

the (η, ζ) plane. As expected, the instability is strongest within the corner boundary

layer, which is characterised by a strongly inflectional profile for the streamwise

component of the laminar flow. However, the inviscid mode also has a highly non-

trivial structure within the blending boundary layer, comprising a regular sequence

of interlaced vortices. Interestingly, these vortex structures are not visible in the

blending-layer envelope function |U |, which decays monotonically as a function of

spanwise distance from the corner line.

We are now in a position to estimate a critical Reynolds number for this laminar

flow. Figure 3.13 plots the neutral-stability curve in (Re , α) space based on domain

sizes of ζmax = 25 and ζmax = 30. The corresponding critical values are

Rec = 4.35 × 104 at αc = 0.197 (ζmax = 25), (3.53a)

Rec = 4.40 × 104 at αc = 0.198 (ζmax = 30). (3.53b)

A stability threshold of Rec = 44 000 strongly suggests that the flow is inviscidly

unstable, being approximately half that of 2D Blasius flow (which is known to be

inviscidly stable).

Our findings are strikingly different from those of Parker and Balachandar (1999),

who reported that the inviscid mode is stable “below a Reynolds number of about 5×
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105.” This anomalous result may indicate problems with the authors’ vectorization

strategy outlined above in §3.6.2, as Galionis and Hall (2005) suggest in §3.5 of their

paper:

The reason for this discrepancy might be that ... a Poisson equation for

pressure was solved for the calculation of each new vector-entry to the Arnoldi

matrix, for which boundary conditions had to be imposed on the walls. Since it

is in this region that the inviscid mode lies, it becomes evident that the related

eigenvalue can be very sensitive to the boundary conditions and inaccurate

results are obtained if improper boundary conditions are imposed.

They describe their own approach as follows:

In the present work the use of a fully staggered grid allowed us not to set any

boundary conditions for the pressure disturbance and its values were obtained

exclusively from the numerical solution.

Thus, both Parker and Balachandar (1999) and Galionis and Hall (2005) differ from

us in their treatment of pressure boundary conditions. Galionis and Hall (2005) find

that the inviscid mode becomes unstable somewhere in the range 100K < Re <

150K, but did not conduct an exhaustive study of its properties:

The inviscid modes [sic] have not been treated to a large extent, since prelim-

inary results indicated that their [sic] growth rate was not as high as one of

the most unstable of the viscous modes.

The neutral curves in Figure 3.13 feature downward-sloping upper and lower

branches for Re � 105. No significant convergence or divergence of the branches is

evident for Re ≤ 5 × 105. The results for ζmax = 25 and ζmax = 30 show excellent

agreement except in the lower-middle section of the curve, where domain convergence

becomes problematic. Somewhat surprisingly, the neutral curve for the lower ζmax

value is noticeably more regular, and hence is probably more accurate. In any case,

the two curves re-converge at Re ≈ 2.5 × 105.

3.6.4 Results: Viscous modes

The viscous modes are non-unique, and may have either positive or negative symme-

try across the corner bisector. However, our discussion will be limited to symmetric

modes, since they are invariably less stable (and hence more interesting) than their

antisymmetric counterparts.

For any given parameter value (Re, α, β), our eigensolver returns the inviscid

mode (henceforth labelled by j = 0) plus a sequence of pseudo-discrete viscous
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Figure 3.14: The inviscid mode (j = 0) and leading viscous modes (j = 1, ..., 5) plotted

in the (η, ζ) plane. (Owing to space constraints, we display only the magnitude |Uj| of

the streamwise velocity for each mode.) Parameter values throughout are ζmax = 25,

Re = 105, α = 0.2 and β = 0.
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Figure 3.15: Left: Viscous Mode 1, computed for spanwise wavenumbers of β = −0.1 (top

left), β = 0 (middle left), and β = +0.1 (bottom left). Right: Mode 2 for β = −0.2 (top

right), β = 0 (middle right), and β = +0.2 (bottom right). Parameter values throughout

are Re = 105, α = 0.2 and ζmax = 25.
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Figure 3.16: Mode 1, computed with domain sizes of ζmax = 25 (left) and ζmax = 30

(right). The upper, middle and lower figures in each case correspond to |U |, Ur and Ui

respectively. Parameter values throughout are β = −0.08, Re = 105 and α = 0.2.
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Figure 3.17: Mode 2, computed for β = 0 (left) and β = −0.18 (right); upper, middle

and lower figures correspond to |U |, Ur and Ui respectively. Parameter values throughout

are ζmax = 25, Re = 105 and α = 0.2.
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Mode ζmax Rec × 103 αc βc

25 43.5 0.197 0

0 (inviscid) 30 44.0 0.198 0

35 ≈ 500. 0.20 0

25 127.5 0.244 0

1a (streamwise) 30 115.5 0.246 0

35 115. 0.244 0

25 94.5 0.245 -0.090

1b (oblique) 30 90.5 0.248 -0.075

35 86. 0.237 -0.110

1c (oblique) 35 215. 0.230 +0.13

25 295. 0.16 0
2a (streamwise)

30 260. 0.18 0

25 65.5 0.172 -0.19

2b (oblique) 30 76.5 0.198 -0.16

35 106. 0.21 -0.20

2c (oblique) 35 Stable for all Re +0.24

Table 3.1: The critical point (Re , α, β)c for the inviscid mode and the two leading viscous

modes. Results listed for ζmax = 35 are those reported by Parker and Balachandar (1999).

modes (j = 1, 2, ... ). Figure 3.14 presents a typical set of results from a single pro-

gram run, plotting the streamwise magnitude |Uj| for j ≤ 5. Figure 3.15 plots |U1|
and |U2| for three distinct values of the propagation wavenumber β. The real and

imaginary parts of U1 and U2 are plotted in Figures 3.16 and 3.17 respectively. In

addition, Figure 3.16 shows that the viscous eigenfunctions are domain-dependent

(the left- and right-hand panels correspond to ζmax = 25 and ζmax = 30 respectively),

while Figure 3.17 reveals a subtle β-dependence in eigenmode structure. The leading

eigenvalues {cj} are plotted in Figures 3.18 and 3.19 as functions of β for selected

ζmax values. Figure 3.20 plots the spanwise wavenumber β∗
j corresponding to the

stability minimum. Table 3.1 lists the critical Reynolds number (Re, α, β; j)c for

modes j = 1 and j = 2 (obtained by a rigorous procedure of numerical optimization

over (Re, α, β) space). Table 3.2 summarizes the stability minima {βcj} and max-

ima {β∗
j } for j = 1, 2 and 3. (The non-negative transverse wavenumbers {γj} shown

in this table will be defined below.) Table 3.3 lists the unstable range of stream-

wise wavenumber α for j = 0, 1, 2 for the two cases Re = 105 and Re = 2 × 105.

Figure 3.21 presents neutral-stability curves in (Re, α) space for j = 1 and j = 2

at selected β values. Figures 3.22 and 3.23 present composite neutral curves for
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Mode ζmax βc β∗ γ̃ γc γ∗

25 -0.09 +0.15 0.09 0.09 0.11

1 30 -0.075 +0.14 0.07 0.07 0.08

35 -0.11 +0.13 0.11 0.12 0.14

25 -0.19 +0.27 0.175 0.26 0.29

2 30 -0.16 +0.21 0.14 0.18 0.20

35 -0.20 +0.24 0.225 0.31 0.35

25 -0.27 +0.4 0.35 0.59 0.78

3 30 -0.26 +0.37 0.27 0.45 0.57

35 -0.28 +0.38 0.34 0.58 0.72

Table 3.2: The stability minimum βc < 0 and stability maximum β∗ > 0 for each of the

three leading viscous modes. Results for ζmax = 35 are those of Parker and Balachandar

(1999). For Modes 1 and 2, βc values are optimized over α, whereas results for Mode 3

and for β∗ are approximate and generally refer to α = 0.2. For comparison, the table also

provides approximate data (γ̃, γc, γ
∗) on the spanwise length scales of the blending-layer

vortex structures in each mode. In particular, the non-negative wavenumber γ̃ corresponds

to the spanwise wavelength measured in the (η, ζ) plane, whereas γc and γ∗ are measured

transverse to the directions (α, βc) and (α, β∗) of wave propagation.

j = 0, 1, 2 with respect to (α, cr, ω), where ω is the temporal frequency defined by

ω = αcr. (3.54)

Finally, Figure 3.24 plots the growth rate

κ = αci (3.55)

at near-optimal values of α for j = 0, 1, 2.

The discrete viscous modes described above are, in fact, illusory. A hint of this

appears in Figures 3.18 to 3.20, which show that the viscous eigenvalues converge

incompletely as a function of ζmax (notwithstanding rapid convergence in spectral

order N , comparable to that of the inviscid eigenvalue c0). Indeed, the eigenmode

plots of Figures 3.14 to 3.17 are domain-dependent. For example, Figure 3.14 depicts

Mode 1 as possessing approximately one half-vortex within the indicated blending

layer, defined for present purposes in domain-dependent terms by

ζ∗ < ζ < ζmax (3.56)

where the empirical constant

ζ∗ ≈ 7 (3.57)
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Re = 105 Re = 2 × 105

Mode ζmax β
α1 α2 α1 α2

25 0 0.133 0.216 0.107 0.204

0 (inviscid) 30 0 0.143 0.216 0.115 0.205

35 0 stable stable

25 0 stable 0.185 0.277

1a (streamwise) 30 0 stable 0.179 0.283

35 0 stable 0.172 0.28

25 -0.090 0.224 0.261 0.149 0.286

1b (oblique) 30 -0.075 0.222 0.271 0.160 0.288

35 -0.110 0.185 0.278 0.138 0.288

25 -0.19 0.104 0.241 0.073 0.256

2b (oblique) 30 -0.16 0.130 0.246 0.084 0.266

35 -0.20 stable 0.125 0.252

Table 3.3: The range α1 < α < α2 of unstable wavenumbers of each of the leading

eigenmodes, shown for the two cases Re = 105 and Re = 2×105. Results listed for ζmax =

35 are those of Parker and Balachandar (1999), and are accurate to within Δα = 0.005.

denotes the effective size of the inner corner region (which interrupts the spanwise

periodicity of the viscous modes). The higher modes in Figure 3.14 apparently pos-

sess j−1 vortices (j ≥ 2) within the truncated blending layer defined by (3.56).

Equivalently, Mode 1 corresponds to approximately one-quarter of a spanwise wave-

length, and higher modes to 1
2
(j−1) of wavelengths1. This phenomenon is induced

by the periodic domain boundary condition (3.43c), ie

∂Q/∂ζ = iβQ at ζ = ζmax , (3.58)

whose secondary effect is to enforce

∂|Q|/∂ζ = 0 at ζ = ζmax. (3.59)

Thus, the viscous modes are not truly discrete; rather, they are defined by the

continuous four-dimensional parameter space (Re, α, β, γ), where γ is a non-negative

transverse wavenumber describing the spanwise length scale of the mode. The role

of the domain parameter ζmax is now clear: it effectively collapses the continuous

spectrum γ ∈ R+ down to a discrete pseudo-spectrum { γj }. For our results with

1Slightly different results are reported by Parker and Balachandar (1999) for the viscous modes

with ζmax = 35. In this case, Mode j corresponds to approximately j vortices or j/2 spanwise

wavelengths for all j > 0.
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β = 0, this is given by

γ ≈ 1
2
π/(ζmax − ζ∗) for j = 1, (3.60a)

γ ≈ (j−1)π/(ζmax − ζ∗) for j = 2, 3, ... . (3.60b)

For oblique modes, the formulae (3.60) define the apparent transverse length scale

{γ̃j} as viewed in the (η, ζ) plane, rather than the physical spectrum {γj} measured

transverse to the direction (α, β) of wave propagation. In general, therefore,

γ̃ ≤ γ with equality iff β = 0. (3.61)

More precisely, since the propagation angle θ relative to the corner line is given by

tan θ = β/α, (3.62)

it follows that

γ/γ̃ = sec θ =
√

1 + (β/α)2 (3.63)

where γ̃ is specified by (3.60).

Ideally, ζmax should be treated as a surrogate for the physical parameter γ. In

practice, however, it would be impractical2 to conduct a thorough survey of the four-

dimensional parameter space (Re , α, β, ζmax). It is also difficult to ensure true inde-

pendence between the two parameters β and γ, which interact through the domain

boundary condition. In any case, this boundary condition inevitably introduces some

local distortion into the eigenmode, especially in the case of strongly-oblique modes

(which deviate significantly from standing-wave configurations). We will therefore

continue to treat the viscous modes as quasi-discrete; where possible, however, we

present results for at least two different ζmax values. Discrepancies in data based

on ζmax are thus natural and inevitable, since they correspond to slightly different

physical modes. This will be most noticeable for data on stability limits, since the

critical Reynolds number is an extremely sensitive function of the eigenvalue.

Having clarified the nature of the viscous modes, we now examine their stabil-

ity characteristics. In the special case of streamwise modes (ie for β = 0, as in

Figure 3.14), the stability of the modes matches their order of appearance. Thus,

Mode 0 (inviscid) is the least stable, followed respectively by Mode 1 (Rec = 115K),

then Mode 2 (Rec = 260K), and so on. Hereafter, therefore, we focus almost ex-

clusively on the oblique viscous modes. These are highly sensitive to the spanwise

2Apart from the issue of computational cost, we are effectively limited to ζmax ≤ 30 by the

accuracy of the laminar-flow data available to us. For this reason Tables 3.1, 3.2 and 3.3 draw on

published data of Parker and Balachandar (1999) for the case of ζmax = 35.
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Figure 3.18: The eigenvalues { cj } of Mode j for j = 0, 1, 2, 3 (indicated by dots, asterisks,

circles and crosses respectively), plotted as functions of spanwise wavenumber β. Solid and

dashed curves correspond to ζmax values of 30 and 25 respectively. Each curve interpolates

raw data spaced at intervals of Δβ = 0.02. Parameter values throughout are Re = 105

and α = 0.2.
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Figure 3.19: Upper-left and lower-left: The eigenvalue c1 of Mode 1b, plotted as a function

of β ≤ 0 for parameter values of Re = 105, α = 0.25, and ζmax = 20, 25 and 30. The

asterisks indicate the critical wavenumber βc for each ζmax value (estimated to within

Δβ = 0.005 using cubic-spline interpolation of raw data for Δβ = 0.02). Upper-right and

lower-right: The eigenvalue c2 of Mode 2b for Re = 105, α = 0.2 and ζmax = {20, 25, 30},
with βc indicated by circle markers.



3.6. METHOD 4 (VISCOUS) 103

20 25 30

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

ζmax

β

20 25 30

0.36

0.38

0.4

0.42

0.44

0.46

0.48

ζmax

c r

20 25 30

−0.005

0

0.005

0.01

0.015

0.02

0.025

ζmax

c i

1b  (α = 0.2)
1b  (α = 0.25)
2b  (α = 0.15)
2b  (α = 0.2)

1b  (α = 0.2)
1b  (α = 0.25)
2b  (α = 0.15)
2b  (α = 0.2)

1b  (α = 0.2)
1b  (α = 0.25)
2b  (α = 0.15)
2b  (α = 0.2)

Figure 3.20: Left: The critical spanwise wavenumber βcj for j = 1 and j = 2, plotted

as a function of α and ζmax for Re = 105. The asterisk (j = 1) and circle (j = 2)

markers correspond to ζmax values of 20, 22, 24, 25, 26, 28 and 30. Centre and right: The

eigenvalues c1 and c2 corresponding to the wavenumbers β = βcj shown at left.

wavenumber β; in general, a given mode is much more stable as an outgoing dis-

turbance (β > 0) than as an incoming (β < 0) or streamwise (β = 0) disturbance.

Over the range of β values indicated in Figures 3.18 to 3.19, the imaginary part ci

of a viscous eigenvalue satisfies the inequalities

ci(β) < ci(0) < ci(−β) for 0 < β < 0.4, (3.64a)

∂ci/∂β < 0 for βc < β < β∗, (3.64b)

where

εj = O(10−1) is a positive constant. (3.65)

The critical wavenumber βc is negative, satisfying

βc ≈ − j

12
for ζmax = 30, j = 1, 2, 3, (3.66)

whereas the stability maximum β∗ > 0 is positive and slightly larger in magnitude:

β∗ = (1 + ε)|βc|. (3.67)

The three cases β = 0, β < 0 and β > 0 will henceforth be denoted by the labels a,

b and c respectively. The real parts of the three leading viscous eigenvalues satisfy

the inequality

cr1 < cr2 < cr3 < cr0. (3.68)
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In general, Mode 1b is found to be most active at relatively high α values (0.2 �

α � 0.28), whereas Mode 2b is most active for 0.15 � α � 0.2 (see Table 3.3 and

Figure 3.22). However, Mode 2b is active over a much wider α range than either

Mode 0 or Mode 1b.

The above results are in qualitative agreement with those of Parker and Bal-

achandar (1999), but show significant quantitative disagreement. For example, their

values for |βc| and β∗ at j = 1, 2, 3 are uniformly larger than ours. This is not sur-

prising, however, since their eigenmodes have uniformly smaller spanwise length

scales (recall that their results show j vortices for ζ∗ < ζ < ζmax = 35, whereas

our results show max{j−1, 1
2
} vortices for ζmax = 25, 30). We believe, therefore,

that these numerical discrepancies have a sound physical basis. Further support for

our hypothesis is provided by the pooled data of Table 3.2 (which reveals a strong

correlation between γ, |βc| and β∗ across all ζmax values) and Figure 3.20 (which

indicates that |βc| is a decreasing function of ζmax for 20 ≤ ζmax ≤ 30 and j = 1, 2).

The latter may at first appear contradictory to the above hypothesis (given our sug-

gestion that |βc| increases between ζmax = 30 and 35), but is fully consistent with

the observed trends in β and γ.

The most striking point of difference between our results and those of Parker

and Balachandar (1999) relates to the leading mode of instability. Parker and Bal-

achandar (1999) identify the leading instability as Mode 1b, for which they report

a critical Reynolds number of

Rec = 86 000 at j = 1, α = 0.237, β = −0.11 (ζmax = 35), (3.69)

compared with Rec = 106K for Mode 2b and Rec ≈ 500K for Mode 0. However,

our results favour Mode 0 and Mode 2b, as the following data indicates:

j = 0 : Rec = 43 500 at α = 0.197, β = 0 (ζmax = 25), (3.70a)

j = 1 : Rec = 90 500 at α = 0.248, β = −0.075 (ζmax = 30), (3.70b)

j = 2 : Rec = 65 500 at α = 0.172, β = −0.19 (ζmax = 25). (3.70c)

In fact, the true limit for Mode 2b may be well below the nominal value of Rec =

65 500, since Figures 3.18 and 3.19 represent ci2 as a decreasing function of ζmax over

the indicated range (20 ≤ ζmax ≤ 30). Incidentally, the opposite trend is observed for

Mode 3b in Figure 3.18. Intriguingly, there is a strong physical resemblance between

Mode 2b at 20 ≤ ζmax < 25, Mode 3b at ζmax = 30, and Mode 0 (inviscid; ζmax

arbitrary). In particular, their respective vortex structures exhibit similar spanwise

length scales and off-square orientations. This in turn leads us to speculate that

the true viscous-stability threshold may actually coincide with the inviscid limit

Rec = 43 500.
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Figure 3.21: Upper figure: Neutral-stability curves for Mode 1a (dashed curves, β = 0)

and Mode 1b (solid curves, with β = βc < 0 as indicated). Dot-markers indicate raw

data for ζmax = 30; curves without data markers correspond to ζmax = 25. Lower figure:

Neutral-stability curves for Mode 2b at β = βc with ζmax = 30 (with dot-marked data)

and ζmax = 25 (unmarked curve).
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dot-markers for ζmax = 30), and Mode 2b (dashed for ζmax = 25; solid with circle markers

for ζmax = 30). Some data markers have been omitted in the interests of clarity. Lower

figure: The corresponding neutral-stability curves in (Re , cr) space, where cr denotes the

real part of the eigenvalue c.
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Figure 3.23: Neutral curves for Mode 0 (ζmax = 25, solid), Mode 1b (ζmax = 30, dot-
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Since the viscous modes are highly sensitive to the direction (α, β) of propagation,

it is natural to ask how β affects their physical structures. For β �= 0 one observes a

slight interlacing of the spanwise vortices (compare, for example, the left- and right-

hand panels of Figure 3.17). A more striking spanwise effect is evident in Figure 3.15

between modes 1a, 1b and 1c (left-hand panels) and between 2a, 2b and 2c (right-

hand panels). As β becomes more negative, the innermost blending-layer vortex

becomes more vigorous relative to adjacent vortices; conversely, as β becomes more

positive, the inner vortex weakens and the dominant eigenmode activity shifts away

from the corner line. (We have confirmed this trend over a wide range of β values.)

In other words, the b-type modes (β < 0) are more strongly influenced by the inner

corner region than their c-type counterparts (β > 0), and more closely resemble the

inviscid mode in structure. This appears to explain the instability of the b-type

viscous modes relative to the c modes. It also lends support to the above conjecture

that the viscous stability limit coincides with that of the inviscid mode.

A final piece of evidence is provided by the eigenmode growth rates in Figure 3.24,

which plots instability growth rates for Modes 0, 1b and 2b. For the given (near-

optimal) parameter values, the inviscid mode is found to be dominant for Re � 105,

whereas Mode 2b dominates at higher Reynolds numbers. We therefore hypothesize

that the instability mechanism will in practice be a combination of inviscid and

viscous effects.

3.7 Summary

This chapter reports on four different numerical methods for the solution of an

elliptic eigenvalue equation. Methods 1, 2 and 3, detailed in §§3.3–3.5, focussed

exclusively on the inviscid mode of instability (governed by the Rayleigh equation,

with Re formally infinite), whereas Method 4 in §3.6 examined all modes simultane-

ously at finite Re values. Each method succeeded in identifying a (unique) inviscid

mode. Method 4 established that this mode is indeed dominant and is characterised

by a critical Reynolds number of Rec = 44K, ie approximately half that of 2D Bla-

sius flow. Using Method 4, we have also amassed a wealth of numerical data on the

viscous modes, the results of which suggest that both inviscid and viscous modes

play a role in destabilizing the laminar flow.

Some further remarks are in order regarding Methods 1–3 (which effectively con-

stituted pilot studies for the full analysis of Method 4). Although Methods 1–3 each

yielded tentative identification of the inviscid mode, we were unable in each instance

to demonstrate satisfactory numerical convergence within the limits of available
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computing power. This came as a considerable disappointment to us, since we had

expected efficiency dividends from these pilot studies. In retrospect, our inviscid-

mode focus proved counter-productive. Method 1 exploited matrix sparsity, thereby

permitting N ×N grid discretizations as dense as N = 200; however, its utility was

effectively limited to finite-difference methods. (The singular nature of the Rayleigh

equation may also have contributed to this poor numerical performance.) In con-

trast, Method 2 provided spectral accuracy in the spatial domain, but offered little

scope for efficiency gains beyond those of the standard QZ eigensolver. Method 3

provided improved spatial resolution over Method 2; its results were promising but

still inadequate. Nevertheless, this hard-won experience led directly to the success-

ful Method 4. Method 4 also owes a great deal to Parker and Balachandar (1999),

although it is more efficient than their numerical method by an order of magnitude.

Although our findings are similar to those of Parker and Balachandar (1999),

they differ in two major respects. Firstly, we find that the flow is inviscidly unstable,

whereas Parker and Balachandar (1999) find that the inviscid mode is active only at

Re � 500K (versus Re � 86K for the viscous modes). Secondly, while our viscous

data agrees qualitatively with theirs, we suggest that our data is more comprehensive

and yields a lower stability limit for the viscous modes. Similar remarks may be

made regarding the recent work of Galionis and Hall (2005), who reported a critical

Reynolds number of 100K < Rec < 150K for the inviscid mode.



Chapter 4

The laminar flow external to a

corner

4.1 Introduction

In this chapter we consider the laminar flow external to a streamwise square corner.

It is qualitatively similar to the internal corner flow of Chapter 2 except that the

cross-sectional domain is three-quarter infinite rather than one-quarter infinite. To

the best of our knowledge, this particular laminar flow has not been the subject of

any previous theoretical or experimental studies, even though it is readily amenable

to the analytic and numerical tools discussed in Chapter 2. Instead, we compare

our results with published experimental data on low-speed turbulent corner flows.

4.2 Analysis

The external square corner is formed by the intersection of two quarter-infinite walls

as follows:

Horizontal wall: y = 0, z ≥ 0, (4.1a)

Vertical wall: z = 0, y ≤ 0. (4.1b)

Thus, the flow occupies the three-quarter infinite domain D defined by

D = {(y, z) : y, z ∈ R; but if z > 0, then y ≥ 0 }, (4.2)

as illustrated in Figure 4.1a. The corner line is coincident with the x-axis and

parallel to the primary or streamwise flow U , which has unit free-stream velocity

U = 1. As in Chapter 2, we assume symmetry of the flow with respect to the corner

111
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bisector:

U(y, z) = U(−z,−y) and V (y, z) = −W (−z,−y), (4.3)

and in particular that

W = −V along the bisector z = −y for y > 0. (4.4)

Since we anticipate Blasius-type wall boundary layers of non-dimensional thickness

O(Re−1
2 ), we adopt without modification the similarity variables of Chapter 2, ie

η =
Re

1
2 y√
2x

and ζ =
Re

1
2 z√
2x

, (4.5)

on the understanding that η and ζ are no longer restricted to non-negative values.

Our working domain D̃ constitutes the upper half-region, ie

D̃ = {(η, ζ) : η ≥ 0, ζ ≥ −η }, (4.6)

which we truncate for computational purposes to the trapezoidal sub-domain

D̃ = {(η, ζ) : 0 ≤ η ≤ ζmax, −η ≤ ζ ≤ ζmax }, (4.7)

as illustrated in Figure 4.1b.

The external-corner flow is subject to the same governing equations and physical

boundary conditions as listed in §2.2 for the internal corner. The asymptotic analysis

of §2.3.1 also carries over save for a reversal of the crossflow W , as we now demon-

strate. Equation (2.23) shows that to leading order, the blending boundary layer

comprises a Blasius profile (U0, V0) with superimposed crossflow. Consequently, on

exiting the blending layer one obtains

V (η, ζ) = β + o(1) for η, ζ � 1, (4.8)

where β = 1.2168 is the Blasius constant. The inviscid outer-region flow takes the

form

(U, Ω, θ)outer = (1, 0, 0) + exp. small terms, (4.9a)

(W − iV )outer =

∞∑
n=0

cn(ζ + iη)−n, (4.9b)

where the complex coefficients {cn} are independent of the spatial coordinates. Com-

parison of (4.9) with (4.8) yields

Im[c0] = −iβ. (4.10)
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Figure 4.1: Upper figure: Cross-sectional flow domain D for the laminar flow external

to a corner. The corner is formed by two quarter-infinite walls located respectively at

η = 0 (for ζ > 0) and ζ = 0 (for η < 0). The streamwise velocity U is directed into the

page. Lower figure: The trapezoidal computational domain D̃ obtained by truncating D
to a spanwise size ζmax = 30 while assuming symmetry of the flow with respect to the

corner bisector ζ = −η. The blending boundary layer is approximated by the highlighted

sub-domain 0 < η < η∗ where η∗ ≈ 5.
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Next, comparison of (4.9) and (4.10) with the bisector-symmetry condition (4.4)

yields

Re[c0] = −β, c0 = −(1+i)β, (4.11)

and

(V, W, φ, ψ)outer = (β, −β, η−β, ζ+β) + O(ρ−1), (4.12)

where ρ denotes distance from the corner line, ie

ρ2 = η2 + ζ2. (4.13)

This result scales the leading-order crossflow component W0, which takes the form

W0(η) = −βg(η), (4.14)

where the crossflow shape function g is defined in §2.3.1.2. This component consti-

tutes an outflow in the lower half of the blending layer (ie W0(η) > 0 for η � 2) and

an inflow elsewhere (W0(η) < 0 for η � 2).

4.3 Numerical method

Our numerical method for solving the governing equations follows that of §2.3.6

for the internal corner. Numerical convergence was found to be somewhat faster

than for the internal-corner case, requiring approximately one hundred thousand

iterations of the solution algorithm. However, just as for the internal corner, strict

domain convergence was precluded by our use of leading-order far-field boundary

conditions, ie

(U, V, W ) = (U0, V0, W0) at η = ζmax and ζ = ζmax. (4.15)

The numerical results presented in §4.4 were derived using grid-steps of h1 = 0.05

and h2 = 0.25 in the boundary layer and outer regions respectively. The computa-

tional domain D̃ was of size ζmax = 58, the maximum permitted by the restriction

(2.75) on numerical stability of the solution algorithm1.

4.4 Results

Our results for the laminar flow external to a corner are shown in Figures 4.2 to 4.6.

Figure 4.2 focusses on the inner corner region, plotting the streamwise velocity U

and secondary velocity (V, W ) out to a distance of |ζ | = 6 from the corner line.

1The value ζmax = 60 used for the internal corner proved non-viable for external corner.
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Figure 4.2: Streamwise velocity U (upper figure) and secondary velocity (V,W ) (lower

figure), plotted for {(η, ζ) : −6 ≤ η, ζ ≤ 6}.
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Figure 4.3: Bisector velocity profiles for the external corner (solid curves) and internal

corner (dashed curves) as follows. Upper left: Streamwise velocity Ubis(η); the Blasius

profile U0(η) (dot-dashed) is shown for comparison. Upper right: Magnitude Qbis of the

secondary velocity. Lower left: Rescaled streamwise velocity Ubis(ρ) plotted as a function

of distance ρ ≡ √
2η from the corner line. Lower right: Rescaled secondary velocity

r(η) ≡ Qbis/Q∞ with Q∞ =
√

2β ≈ 1.721, plotted for 0 ≤ η ≤ 25.
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Figure 4.3 plots the bisector profiles Ubis(η) and Qbis(η) of the streamwise velocity

U and secondary velocity Q =
√

V 2 + W 2 respectively. Figures 4.4 and 4.5 plot

U and Q out to |ζ | = 15 in order to highlight the algebraic spanwise development

of the blending boundary layer. Finally, Figure 4.6 plots Q out to |ζ | = 40 to

illustrate the difficulty of accurately capturing the O(ρ−1) outer-region variation of

the secondary flow (note that the Q = 1.7 and Q = 1.75 contours extend almost to

the computational far-field boundary max{η, ζ} = ζmax).

In some respects, the external-corner flow is qualitatively identical to the internal

flow discussed at length in Chapter 2, especially with respect to their respective

asymptotic properties. Both flows exhibit slow algebraic variation of the secondary

flow in the blending layer and outer region, coupled with fast O(ζ−2
max) algebraic

variation of (U, V ) within the blending layer. In the far-field limit ζ → ∞, both flows

feature a reversed profile for the crossflow W0(η); this is evident in Figures 4.4–4.6

in the form of strongly inflectional profiles for the boundary-layer secondary velocity

Q0(η; ζ) for any given ζ > 0. Both flows exhibit very low secondary velocities within

the inner core region, with Q(ρ)/Q∞ � 0.1 for ρ � 1.5 for the external corner. Unlike

the internal case, however, the external secondary flow possesses a stagnation point

(see Figures 4.2b and 4.3):

Vbis(η) < 0 for 0 < η � 0.72 and Vbis(η) > 0 for η > 0.72. (4.16)

The surrounding secondary flow traces out a heart-shaped trajectory as it is deflected

around the core region and back towards the corner bisector.

In other respects, the external-corner flow represents the inverse of the internal

corner. Whereas for the internal flow the bisector secondary velocity Qbis strongly

overshoots its limiting value Q∞, its external counterpart undershoots its limit

(Qbis < Q∞). Whereas Qint attains its global maximum on the bisector (namely

Qmax = 2.1 Q∞ at η = 4.0), Qext attains its (relatively weak) maximum at a loca-

tion far from the corner line:

Qmax ≈ 1.79 ≡ 1.04 Q∞ at (η, ζ) ≈ (4.6, 9.6). (4.17)

The most important qualitative difference between the two flows relates to stream-

wise velocity. In a nutshell, Uint is strongly inflectional whereas Uext is monotonic.

Thus, the local effect of the square corner is to expand the internal boundary

layer and constrict the external boundary layer. This effect, though intuitively

predictable, appears to be substantially more pronounced one would anticipate on

purely geometric grounds (see, for example, the lower-left panel of Figure 4.3, where

we plot Qint and Qext as functions of distance ρ from the corner line). This in turn

indicates that the core-region flow in both configurations is strongly nonlinear.
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plotted for {(η, ζ) : −15 ≤ η, ζ ≤ 15} with contour spacing ΔU = 0.1 and ΔQ = 0.2

(except where indicated otherwise). The contours corresponding to U = 0.5, U = 0.9 and
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Furthermore, we find marked differences between the laminar corner flow com-

puted here and the experimentally measured configurations of turbulent corner flow.

Recall from §1.3.5 that Moinuddin et al. (2001, 2004) have reported a ‘bulging’ of

the corner-line boundary layer in the low-speed turbulent regime. The origin of this

bulging effect was initially unclear; since, however, it is entirely absent from the

laminar flow, we concur with their conclusion that it constitutes a strictly turbulent

phenomenon. This hypothesis is also consistent with the observation that the tur-

bulent corner boundary layer is several times thicker than its laminar counterpart

depicted in Figures 4.2 to 4.4.



Chapter 5

Corner flows: Conclusions and

recommendations

5.1 Conclusions

The corner-flow research plan outlined in §1.3.8 listed the following four objectives:

1. To conduct a thorough study of zero pressure gradient (ZPG) laminar flow

internal to a square corner.

2. To pioneer the study of laminar flows external to a corner.

3. To conduct a systematic analysis of oblique and/or pressure-driven corner

flows.

4. To compare a variety of numerical methods applicable to 3D laminar flows

and eigenmode instabilities.

The first of these objectives has largely been fulfilled; our findings on this front were

detailed in Chapters 2 and 3, and are summarized in §§5.1.1 and 5.1.2 below. The

second objective was partially realised in Chapter 4, whose findings are summarized

in §5.1.3 below. (An eigenmode stability analysis has also been attempted for this

external flow; publishable data, however, has proved elusive at the time of writing.)

Little progress has been made on the third objective, owing largely to lengthy lead

times on the first two objectives. However, some progress has been registered on

the final objective, notably in Chapter 3 where we compard several eigensolvers for

elliptic problems on unbounded domains.

121



122 CHAPTER 5. CORNER FLOWS: SUMMARY

5.1.1 Laminar flow internal to a square corner

In Chapter 2 we presented a detailed analysis of Blasius-type (ZPG) laminar flow

in a streamwise corner. Even though this problem has previously been tackled by a

number of authors over a period of several decades, we believe our numerical results

make a useful contribution to the field of laminar corner flows. Throughout, we

have highlighted the difficulty of accurately representing the algebraic variation of

the flow as a function of distance ζ or ρ from the corner line. In particular, we have

shown that (a) results published prior to 1971 were invariably either incorrect or

incomplete; (b) only Rubin and Grossman (1971) employed a completely rigorous

process of asymptotic matching (albeit lacking a rational procedure for determin-

ing the first-order constant κ); and (c) all post-1971 authors (ourselves included)

employed reduced versions of the Rubin and Grossman (1971) analysis.

We find good qualitative agreement between all post-1970 results, including our

own. We estimate that our data for the streamwise velocity U(η, ζ) ≡ U0(η)+O(ζ−2)

is accurate to three figures — a satisfactory level of accuracy for the ensuing stability

analysis of Chapter 3. However, we also find significant differences between pub-

lished numerical data for the secondary velocity (V, W ), which decays at the slow

asymptotic rate of O(ζ−1, ρ−1). Amongst published data, the least accurate results

appear to be those of Ghia (1975). This lack of accuracy may be attributable to the

author’s novel numerical method (ie domain mapping rather than domain trunca-

tion); on the other hand, it may merely indicate incomplete numerical convergence,

and Ghia’s method may in fact be accurate and highly efficient.

Our literature review also extends to a survey of numerical methods. Our own

method, involving finite-differencing over a large but finite domain, was expected

to deliver reasonable accuracy at modest cost. In reality, however, it presented us

with three simultaneous difficulties: weak domain convergence; slow numerical con-

vergence; and strict limits on the stability of the iterative solution algorithm. We

ameliorated the latter two problems using a novel domain decomposition. Although

we were unable to achieve rigorous domain convergence, we believe that our numer-

ical data accurately describes all salient features of the laminar flow. For future

work on corner flows, however, we recommend the exclusive use of spectral or pseu-

dospectral numerical methods, following the examples of Parker and Balachandar

(1999) and Galionis and Hall (2005).

5.1.2 Stability of laminar flow internal to a corner

In Chapter 3 we presented a two-part study of the hydrodynamic stability of ZPG

laminar corner flow to eigenmode instabilities. The first part of our study, comprising
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§§3.3 to 3.5, is restricted to eigenmodes of inviscid character, and does not yield

any estimates of critical Reynolds number Rec. The second part, comprising §3.6,

encompasses both viscous and inviscid corner modes at finite Reynolds number. The

inviscid analysis was intended as a pilot study on efficiency grounds (since it requires

only a single working flow variable, compared with up to four flow variables for the

viscous analysis).

The ‘inviscid’ method yielded inconclusive results, notwithstanding the expen-

diture of large quantities of human and computer time. Three numerical methods

were attempted: finite differencing coupled with the iterative eigensolver of Otto

and Denier (1999); pseudospectral discretization with the QZ eigensolver, following

Balachandar and Malik (1995); and an improved pseudospectral/QZ eigensolver.

Although we did find evidence of the inviscid corner mode reported by Balachan-

dar and Malik (1995), we were unable to achieve satisfactory numerical convergence

of the corresponding eigenvalue (even when attempting to duplicate the published

numerical method and parameter values).

Our ‘viscous’ method follows Parker and Balachandar (1999) by combining pseu-

dospectral discretization with an Arnoldi eigensolver; our novel coordinate-mapping

technique, however, provides an additional efficiency gain of one order of magni-

tude. We have thereby confirmed the existence of a (unique) inviscid corner mode

and of a broad spectrum of viscous modes of Tollmien–Schlichting type. We report

that the leading mode of instability is indeed of inviscid type (as hypothesized by

Zamir (1981)), with a stability threshold of Rec = 44 000. This result is in strik-

ing disagreement with those of both Parker and Balachandar (1999) and Galionis

and Hall (2005), who find the leading mode to be of viscous type (Rec ≈ 105).

We suggest that this discrepancy is attributable to weaknesses in their respective

numerical methods (in particular, the treatment of the crucial pressure boundary

conditions). Furthermore, we suggest that their respective ‘viscous’ analyses fall

short of identifying the most unstable spanwise wavenumber, leading to slightly el-

evated estimates of the viscous stability threshold Recv. Although we have declined

to offer a precise estimate of Recv, we show that it is significantly lower than the

2D limit Rec = 91 000, and may in fact coincide with the ‘inviscid’ threshold of

Rec = 44 000.

5.1.3 Laminar flow external to a square corner

In Chapter 4 we presented original research on the laminar flow external to a stream-

wise square corner. We report that the internal and external corner flows are quali-

tatively similar in some respects and very different in other respects. In particular,
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both flows exhibit algebraic characteristics in the blending boundary layer, coupled

with strongly nonlinear boundary-layer interaction within the inner corner region.

On the other hand, the streamwise velocity profile is uniformly non-inflectional in the

external case, whereas in the internal case the bisector profile Ubis(η, η) is strongly

inflectional; the latter, we suspect, is responsible for the inviscid-type instability

mode identified in Chapter 3. Similarly, we find that the bisector secondary velocity

Qbis is monotonic in the external case but strongly non-monotonic in the internal

case. Some of the above flow characteristics might have been anticipated intuitively

on geometric grounds; nevertheless, we argue that they are in fact quite striking,

and reflect the strongly nonlinear and three-dimensional nature of the interaction

between the two wall boundary layers of each flow. In the external case, this interac-

tion gives rise to a well-defined secondary-flow vortex in the inner corner region. We

argue that this vortex is a strictly laminar phenomenon, bearing only a superficial

resemblance to the turbulent external boundary-layer vortex structures observed by

Moinuddin et al. (2001, 2004).

Since this laminar flow is non-inflectional, we conjecture that it is more stable

than the corresponding flow internal to a corner. We have attempted to test this

hypothesis by adapting the stability analysis of §3.6 to the present case of external

flow. Unfortunately, at the time of writing we have been unable to demonstrate

numerical convergence or to reach any conclusions of a qualitative nature. The dif-

ficulty would, however, appear to be connected to our reformulation of the generic

instability equations (3.5) in cylindrical coordinates (ρ, θ), and our subsequent dis-

cretization of the (ρ, θ) domain using a Chebyshev pseudospectral scheme. The

poor performance of this scheme may be due to interpolation of the laminar-flow

data computed using the low-order finite-difference scheme of §4.3. It would clearly

be desirable, therefore, to re-compute the laminar flow using a spectral scheme in

cylindrical coordinates. This project would be well worthwhile since, if successful,

it could be readily adapted to the case of arbitrary corner angle 0 < Φ < 2π.

5.2 Recommendations for further research

We close this section with three recommendations for future work on laminar corner

flows.

Our first recommendation is to round off the above study of Blasius-type corner

flow. In particular, we recommend pseudospectral implementations of the methods

of Rubin and Grossman (1971), Ghia (1975) and Dhanak and Duck (1997), with

a view to identifying the most accurate and efficient method for computing the
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laminar flow. The study should also consider whether these methods are suitable

for more general corner flows, as discussed in Recommendations 2 and 3 below1.

Secondly, we recommend a thorough numerical study of Falkner–Skan corner

flows, for which analytic results are readily available in the literature. In particular,

we recommend that stability analyses be performed for laminar corner flows driven

by weakly to moderately favourable streamwise pressure gradients, given that the

experimental review of Zamir (1981) strongly suggests that this class of laminar

corner flows is of the greatest practical significance. For the Falkner–Skan model,

this regime corresponds to 0 < n � 0.1 (say), where n is defined by (1.26). This

study should encompass laminar flows of both Blasius and non-Blasius type, since

it remains unclear at this stage which type is more likely to occur in practice. The

study might also seek a universal criterion for the stability of laminar corner flows.

For example, it may be possible to show that the stability of any laminar corner flow

can be reliably estimated from the local boundary-layer Reynolds number Reδ(x) at

any given streamwise location x, irrespective of the precise experimental conditions.

This would be a valuable finding, since Reδ(x) can be estimated a priori for a given

streamwise velocity U∞(x) or pressure P∞(x).

Thirdly, we recommend that the study of pressure-driven laminar corner flows be

extended from the Falkner–Skan model to more realistic models, such that the inci-

dent streamwise flow U∞(x) is smooth and bounded throughout any finite domain,

including across the leading edge at x = 0. We realize that this represents an ambi-

tious undertaking, for at least two reasons. Firstly, it implies a partial breakdown

of the property of streamwise similarity encapsulated in the Falkner–Skan model.

Secondly, a streamwise marching algorithm may prove non-viable, given that Duck

et al. (1999) and Duck and Owen (2004) encountered a confounding streamwise

eigenmode in non-similar corner flows2. It nevertheless appears feasible, at a min-

imum, to compute accurate flow profiles in the asymptotic far-field limit (ζ → ∞)

and thereby estimate the boundary-layer Reynolds number Reδ at any streamwise

location. Ideally, this data would in turn furnish boundary conditions for a fully

three-dimensional analysis of the flow.

Last but not least, we recommend that further wind-tunnel experiments be con-

1Note that Ghia’s method is not immediately applicable to general Falkner–Skan corner flows,

whose secondary velocity is theoretically unbounded in the asymptotic limit ρ → ∞. However,

Ghia’s mapping technique may still be applicable (and efficient) if implemented in conjunction

with domain truncation rather than as an alternative to it.
2Although this mode appears to be unstable only for Blasius-type flows, its numerical effects are

also apparent for non-Blasius flows under unfavourable or weakly favourable streamwise pressure

gradients.
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ducted on internal and external corner flows in the laminar and transitional regimes.

We are well aware of the practical difficulties of producing clean, low-speed lami-

nar flows, and of conducting instrumental measurements within boundary layers of

millimetre- to centimetre-scale thickness. Nevertheless, it should at least be fea-

sible to build on the findings of Zamir (1981) for laminar and transitional corner

flows under weakly-favourable pressure gradients. At a minimum, it should prove

possible to estimate the laminar-stability threshold Rec as a function of streamwise

pressure gradient or local boundary-layer thickness Reδ(x). Finally, it should also

be possible to determine the qualitative nature of the laminar flow (ie Blasius-type

or non-Blasius), either by direct measurement of the velocity vector or by comparing

theoretical and experimental values of the viscous skin friction. Such data would

not only be of considerable practical value, but would also prove extremely useful

as a benchmark for future work on three-dimensional boundary layers.
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