THE UNIVERSITY OF ADELAIDE

COUPLED FLUID FLOW-GEOMECHANICS SIMULATIONS APPLIED TO COMPACTION AND SUBSIDENCE ESTIMATION IN STRESS SENSITIVE & HETEROGENEOUS RESERVOIRS

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

by

Ta Quoc Dung

Australian School of Petroleum, South Australia

2007
Acknowledgements

First of all, I would like to express my deep sense of gratitude to Dr. Suzanne Hunt for her principle supervision and important support throughout the duration of this PhD research. I am grateful to her not only for encouragement and guidance during academic years, but also for patience and help with regard to my English as well as spending time to understand me personally.

I am also highly indebted to Prof. Peter Behrenbruch for his constant direction through petroleum courses in the Australian school of Petroleum (ASP) and giving me guidance. His industrial experience contributes to my professional development.

I would like to thank my supervisor Prof. Carlo Sansour for his exceptional guidance and inspiration. He led me into the fascinating world of theory of continuum mechanics. In addition, he introduced me to the other beauty in my life: Argentinean Tango.

I also would like to take this opportunity to express my gratitude to all colleagues and administrators. Particularly, I would like to thank Do Huu Minh Triet, Jacques Sayers, Dr. Hussam Goda, Dr. Mansoor Alharthy, Son Pham Ngoc, Pamela Eccles and Vanessa Ngoc who have always been warm-hearted and helpful during the most challenging times of PhD life. Thanks go to all friends in the ASP who shared many hours of exciting soccer after working hours.

Financial support for both academic and life expenses was provided by the
Vietnamese Government. The ASP scholarship committee is highly acknowledged for approval of additional six months scholarship. Special thanks go to my Geology and Petroleum faculty at Ho Chi Minh City University of Technology for special support through this research.

Last, but not least, I would like to thank my family who believe in me at all times with their unconditional love.
ABSTRACT

Recently, there has been considerable interest in the study of coupled fluid flow – geomechanics simulation, integrated into reservoir engineering. One of the most challenging problems in the petroleum industry is the understanding and predicting of subsidence at the surface due to formation compaction at depth, the result of withdrawal of fluid from a reservoir. In some oil fields, the compacting reservoir can support oil and gas production. However, the effects of compaction and subsidence may be linked to expenditures of millions of dollars in remedial work. The phenomena can also cause excessive stress at the well casing and within the completion zone where collapse of structural integrity could lead to loss of production. In addition, surface subsidence can result in problems at the wellhead or with pipeline systems and platform foundations.

Recorded practice reveals that although these problems can be observed and measured, the technical methods to do this involve time, expense, with consideration uncertainty in expected compaction and are often not carried out. Alternatively, prediction of compaction and subsidence can be done using numerical reservoir simulation to estimate the extent of damage and assess measurement procedures. With regard to reservoir simulation approaches, most of the previous research and investigations are based on deterministic coupled theory applied to continuum porous media. In this work, uncertainty of parameters in reservoir is also considered.

This thesis firstly investigates and reviews fully coupled fluid flow – geomechanics modeling theory as applied to reservoir engineering and geomechanics research. A finite element method is applied for solving the governing fully coupled equations. Also simplified analytical solutions that present more efficient methods for estimating compaction and subsidence are reviewed. These equations are used in uncertainty and stochastic simulations. Secondly, porosity and permeability variations can occur as a result of compaction. The research will explore changes of porosity and permeability in stress sensitive reservoirs. Thirdly, the content of this thesis incorporates the effects of large structures on stress variability and the impact of large
structural features on compaction. Finally, this thesis deals with affect of pore collapse on multiphase fluid and rock properties. A test case from Venezuelan field is considered in detail; investigating reservoir performance and resultant compaction and subsidence.

The research concludes that the application of coupled fluid flow – geomechanics modeling is paramount in estimating compaction and subsidence in oil fields. The governing equations that represent behaviour of fluid flow and deformation of the rock have been taken into account as well as the link between increasing effective stress and permeability/porosity. From both theory and experiment, this thesis shows that the influence of effective stress on the change in permeability is larger than the effect of reduction in porosity. In addition, the stochastic approach used has the advantage of covering the impact of uncertainty when predicting subsidence and compaction.

This thesis also demonstrates the influence of a large structure (i.e. a fault) on stress regimes. Mathematical models are derived for each fault model to estimate the perturbed stress. All models are based on Mohr–Coulomb’s failure criteria in a faulted area. The analysis of different stress regimes due to nearby faults shows that effective stress regimes vary significantly compared to a conventional model. Subsequently, the selection of fault models, fault friction, internal friction angle and Poisson’s ratio are most important to assess the influence of the discontinuity on the reservoir compaction and subsidence because it can cause a significant change in stress regimes.

To deal with multiphase flow in compacting reservoirs, this thesis presents a new method to generate the relative permeability curves in a compacting reservoir. The principle for calculating the new values of irreducible water saturation (S_{wir}) due to compaction is demonstrated in this research. Using coupled reservoir simulators, fluid production due to compaction is simulated more comprehensively. In the case example presented, water production is reduced by approximately 70% compared to conventional modeling which does not consider changes in relative permeability. This project can be extended by applying the theory and practical methodologies developed to other case studies, where compaction and stress sensitivity dominate the drive mechanism.

Ta, Q. D. and S. P. Hunt (2005). Investigating the relationship between permeability and reservoir stress using a coupled geomechanics and fluid flow model. 9th Conference on Science and Technology, held in Ho Chi Minh City University of Technology, Viet Nam.

STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma at any university or other tertiary intuition and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:………………………………..Date………………………..
CONTENTS

CHAPTER 1: LITERATURE REVIEW ON COUPLED SIMULATION AND COMPACTION RESEARCH 1

1.1 Problem statement 1

1.2 Summary of literature and thesis overview 2
 1.2.1 Coupling of fluid flow and rock deformation. 2
 1.2.2 Stress sensitive permeability and porosity 4
 1.2.3 Numerical scheme – Finite element advancement 7
 1.2.4 Uncertainty in subsidence and compaction research 8
 1.2.5 Multiphase continua in the coupled model 8

1.3 Research objectives 9

1.4 Outline of the thesis. 12

CHAPTER 2: THE CONTINUUM MECHANICS THEORY APPLIED TO COUPLED RESERVOIR ENGINEERING PARTICULARLY IN SUBSIDENCE AND COMPACTION RESEARCH 14

2.1 Introduction 14

2.2 Fundamental theories 15
 2.2.1 Liner elasticity definition 15
 2.2.2 Kinematics 17

2.3 Principle laws 20
 2.3.1 Conservation of mass 20
 2.3.2 Balance of momentum 22
 2.3.3 The balance of angular momentum 23
2.4 Coupled fluid flow – geomechanics models 28
 2.4.1 General form of coupled fluid flow – geomechanics models 29
 2.4.2 Coupled radial single-phase fluid flow – geomechanics model 32
 2.4.3 Coupled two phase fluid flow – geomechanics model 37

2.5 Numerical solution of the governing equations 38
 2.5.1 Finite Difference Method (FDM) 38
 2.5.2 Finite Volume Method (FVM) 39
 2.5.3 Finite Element Method (FEM) 40
 2.5.4 Equation discretization 40

2.6 Analytical solutions for compaction and subsidence 43

2.7 Conclusions 44

CHAPTER 3: THE IMPACT OF UNCERTAINTY ON SUBSIDENCE AND COMPACTION 45

3.1 Introduction 45

3.2 Why do we need to investigate uncertainty on subsidence and compaction 46

3.3 Geostatistics principle 47
 3.3.1 Histograms of data 47
 3.3.2 The normal distribution 48
 3.3.3 The lognormal distribution 49

3.4 Stochastic model - Monte Carlo simulation 50

3.5 Validation the results of stochastic based simulation with numerical reservoir based simulation 55
 3.5.1 Reservoir rock properties 56
 3.5.2 Fluid properties 56
 3.5.3 Computational methodology 57
3.5.4 Results and Discussions 58

3.6 Conclusions 70

CHAPTER 4: POROSITY AND PERMEABILITY IN STRESS SENSITIVE RESERVOIR 72

4.1 Introduction 72

4.2 The relationship between permeability and reservoir stress in coupled fluid flow – geomechanics model 73

4.3 The relationship between porosity changing and permeability reduction due to stress variation. Carmen – Kozeny’s equation 75

4.3.1 Case study using the advantage of modified Carmen – Kozeny’s equation to predict subsidence and compaction. 76

4.3.2 Results and discussion 79

4.4 Analytical equation of sensitive permeability with in depletion reservoir pressure. 83

4.4.1 Determination current permeability with production field data 84

4.4.2 Determination of current permeability from tested core data. 86

4.4.3 Planning for management in reservoir with the change in permeability. 87

4.4.4 Applications 87

4.5 Permeability and porosity core data in South Australia oil field 89

4.5.1 Apparatus and experimental procedure 89

4.5.2 Porosity, permeability properties at overburden stress condition 90

4.6 Conclusions 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Relative permeability models</td>
<td>127</td>
</tr>
<tr>
<td>6.4</td>
<td>Practical implementation</td>
<td>134</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Description of Lagoven</td>
<td>135</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Material properties of reservoir</td>
<td>137</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Fluid properties</td>
<td>137</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Interpretation of historic data</td>
<td>139</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Results and discussions</td>
<td>143</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>147</td>
</tr>
</tbody>
</table>

CHAPTER 7: DISCUSSIONS 149

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS
LIST OF FIGURES

Figure 1-1: Flow chart showing objectives of the PhD research. 11
Figure 2-1: Schematic showing of fluid flow in a single element 33
Figure 3-1: Histogram of Young’s modulus data 48
Figure 3-2: Example of lognormal distribution 50
Figure 3-3: Stochastic vs. the deterministic model 51
Figure 3-4: Distribution data for (a) Young’s modulus (e) which fitted with the exponential distribution and truncated where a minimum value of 40,000psi and maximum value of 230,000psi. (b) Poisson’s ratio (ν) distribution fitted with a normal distribution, Poisson’s ratio distribution has a mean of 0.29 and a standard deviation of 0.09 and it is truncated leaving a range of 0.02 – 0.5. (c) reduction of pore fluid pressure (∆pf) which has uniform distribution with minimum value of 1500psi and maximum value of 2000psi. 53
Figure 3-5: Eight layers reservoir model measuring 10000 × 10000 × 160ft, grid cell size 500 × 500 × 20ft in the x, y and z direction, respectively. total number of cells is 3200. 55
Figure 3-6: Compaction versus production period. deterministic values of geomechanical rock properties used E=86500psi, ν=0.21 58
Figure 3-7: Compaction profile along at center of reservoir model at the end of numerical simulation. E=86,500psi, ν=0.21. 59
Figure 3-8: Compaction profile along at center of reservoir model at the end of numerical simulation taking into account influence of Poisson’s ratio on compaction. (case 1 with E=86,500psi, ν=0.21, case 2 with E=86,500psi, ν=0.29). 60
Figure 3-9: Compaction (∆h) distribution for experiment-2. the mean of Young’s modulus used in the experiment-2 is 86,508.81psi
and a standard deviation is 41.17 psi. The constant value of Poisson’s ratio is 0.21.

Figure 3-10: Subsidence (s) distribution for experiment-2. The mean of Young’s modulus used in the experiment-2 is 86,508.81 psi and a standard deviation is 41.17 psi. The constant value of Poisson’s ratio is 0.21.

Figure 3-11: The impact of Young’s module on compaction and subsidence.

Figure 3-12: Compaction (δh) distribution for experiment-3. The mean of Young’s modulus used in the experiment-3 is 86,508.81 psi and a standard deviation is 41.17 psi. The mean of Poisson’s ratio distribution used is 0.29 and a standard deviation is 0.09.

Figure 3-13: Subsidence (s) distribution for experiment-3. The mean of Young’s modulus used in the experiment-3 is 86,508.81 psi and a standard deviation is 41.17 psi. The mean of Poisson’s ratio distribution used is 0.29 and a standard deviation is 0.09.

Figure 3-14: Tornado plot for (a) compaction, (b) subsidence.

Figure 3-15: Tornado plot for compaction where with pore pressure reduction is added.

Figure 3-16: Compaction as uncertainty variables (E, ν and Δpf) are added.

Figure 4-1: Production well model.

Figure 4-2: Variation of permeability and porosity with modified Carmen-Kozeny’s relationship.

Figure 4-3: Sink subsidence with different production time.

Figure 4-4: Subsidence of sink at differently initial porosity models.

Figure 4-5: Pore pressure reduction with differently initial porosity models.

Figure 4-6: Normalized permeability and porosity (current by initial) plotted as function of effective stress. The initial porosity and permeability values are given.

Figure 4-7: Effective stress increasing plotted with production times.
Figure 4-8: Plot of log of the ratio q_i/q as function of reservoir depletion pressure

Figure 4-9: Plot of log of the ratio k_i/k as function of pressure decrease in laboratory

Figure 4-10: LP401 permeameter

Figure 4-11: Normalized permeability as a function of effective overburden stress for Eromanga basin. Core 1 and core 2 are the Berea sandstone used for comparative purpose

Figure 5-1: Three different stress regimes, after (Hillis 2005)

Figure 5-2: Stress variation in field.

Figure 5-3: Mohr’s circle

Figure 5-4: Stress state at failure situation

Figure 5-5: Moving of Mohr’s circle due to fluid injection

Figure 5-6: Variation of Mohr’s circle due to fluid production within a passive basin regime

Figure 5-7: Variation of Mohr’s circle due to fluid production within normal stress regime.

Figure 5-8: Variation of Mohr’s circle due to fluid production within thrust stress regime.

Figure 5-9: Stratigraphy summary of Eromanga basin (Boreham and Hill 1998)

Figure 5-10: Stress perturbation around the tip of fracture

Figure 5-11: Symmetric well model

Figure 5-12: Subsidence variation between conventional permeability (permeability fixed throughout model run) and stress sensitive permeability (permeability permitted to vary throughout model run) models after 200 days of production ($k_i = 30\text{md}, \phi_i = 0.15$).

Figure 5-13: Influence of a large structure on subsidence, $\Delta\sigma_3$ is the variation in the predicted applied horizontal stress possible around a discontinuity such as a fault, (applied in the stress sensitive permeability models after 200 days with $k_i=30\text{md}, \phi_i=0.15$).
Figure 6-1: Water production due to compaction
Figure 6-2: Distribution of input data for calculation of no and nw
Figure 6-3: Distribution of no and nw
Figure 6-4: Tornado graph to invest the impact of parameters on both no and nw
Figure 6-5: Structure map of Bachaquero reservoir and reservoir area grid
Figure 6-6: Relative permeability curves used in Lagoven area before sand rearrangement
Figure 6-7: Historic data from Lagoven field
Figure 6-8: Water cut rate and subsidence rate in Lagoven area:
Figure 6-9: Relative permeability curves used in Lagoven area after sand rearrangement
Figure 6-10: Water production rate due to the change in relative permeability.
Figure 6-11: Prediction of oil production rate and water production rate
Figure 6-12: Compaction contour
Figure 6-13: Compaction profiles
LIST OF TABLES

Table 3-1: Rock and model properties for the Gulf of Mexico 54
Table 3-2: Fluid properties 57
Table 3-3: Compaction with different values of Poisson’s ratio 60
Table 3-4: Numerical simulation results 61
Table 4-1: The summary relationships of stress sensitive permeability. 74
Table 4-2: Material properties of reservoir in the simulation 78
Table 4-3: Porosity and permeability at ambient conditions (ac) and overburden condition (oc) in the Cooper basin 91
Table 5-1: Material properties of reservoir in the simulation 111
Table 6-1: Summary information 131
Table 6-2: Summary of input data for calculation of \(n_o \) and \(n_w \) 132
Table 6-3: Summary of \(n_o \) and \(n_w \) 133
Table 6-4: Material properties of reservoir in the simulation 137
Table 6-5: Summary of fluid properties 138
Table 6-6: Critical phase saturation and relative permeability data 138