Studies of the Two-Component Signal Transduction System RR/HK06 in Streptococcus pneumoniae

Alistair James Standish, B Biotech (Hons)
A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Adelaide

September 2006

Discipline of Microbiology and Immunology
School of Molecular and Biomedical Sciences
The University of Adelaide
Adelaide, S.A., Australia
TABLE OF CONTENTS

Abstract vii
Declaration x
Acknowledgements xi
List of Abbreviations xiii

CHAPTER ONE – INTRODUCTION 1
1.1 Streptococcus pneumoniae 1
1.2 Pathogenesis of disease 2
1.3 Virulence Factors 3
 1.3.1 Polysaccharide capsule 3
 1.3.2 Pneumolysin 4
 1.3.3 Choline binding proteins 6
 1.3.3.1 Choline Binding Protein A 6
 1.3.3.2 Pneumococcal Surface Protein A 8
1.4 Current methods for treatment and prevention 9
 1.4.1 Antibiotics 9
 1.4.2 Polysaccharide capsule vaccines 9
 1.4.3 Polysaccharide capsule-protein conjugate vaccine 10
 1.4.4 Protein vaccines 11
1.5 Virulence gene regulation 12
1.6 Two-Component Signal Transduction Systems 13
 1.6.1 Introduction 13
 1.6.2 Histidine kinases 14
 1.6.3 Response regulators 15
 1.6.4 Model systems 17
 1.6.5 TCSTSSs as anti-microbial targets 18
 1.6.6 Pneumococcal TCSTSSs 19
1.7 Pneumococcal TCSTSS RR/HK06 22
1.8 Aims of this thesis 22
CHAPTER TWO – MATERIALS AND METHODS 24

2.1 Bacterial strains and cloning vectors 24

2.2 Growth Media 27

2.3 Chemicals, Reagents and Enzymes 28
 2.3.1 Antibiotics 28
 2.3.2 Oligonucleotides 28

2.4 Serotyping of pneumococcal strains 32

2.5 Optochin Sensitivity 32

2.6 Bacterial Transformation 32
 2.6.1 Transformation of E. coli 32
 2.6.1.1 Preparation of competent cells 32
 2.6.1.2 Transformation of E. coli 33
 2.6.2 Transformation of S. pneumoniae 33
 2.6.2.1 Preparation of competent cells 33
 2.6.2.2 Transformation of pneumococci 33
 2.6.2.3 Back transformation of pneumococci 34
 2.6.3 Transformation of L. lactis 34
 2.6.3.1 Electroporation of L. lactis 34

2.7 DNA isolation and manipulation 35
 2.7.1 Agarose gel electrophoresis 35
 2.7.2 Pneumococcal Chromosomal DNA isolation 35
 2.7.3 Purification of Plasmid DNA 36
 2.7.4 Restriction endonuclease digestion of DNA 36
 2.7.5 DNA ligation 36
 2.7.6 Polymerase Chain Reaction (PCR) 36
 2.7.7 Purification of PCR products 37
 2.7.8 Isolation and purification of PCR fragments from agarose gels 37
 2.7.9 Cloning of PCR products 37
 2.7.10 DNA sequencing and analysis 38

2.8 Protein analysis 39
 2.8.1 SDS-PAGE 39
 2.8.2 Preparation of Whole Cell Lysates for SDS-PAGE analysis 39
 2.8.3 Western blotting 39
TABLE OF CONTENTS

- **2.8.4** Pro-Q Diamond phosphoprotein stain 40
- **2.9** Protein purification 40
 - **2.9.1** Expression of recombinant proteins 40
 - **2.9.2** Purification of RR06 and RR13 by Ni-NTA chromatography 41
- **2.10** RNA Methods 42
 - **2.10.1** RNA extraction from *S. pneumoniae* 42
 - **2.10.2** RNA extraction from eukaryotic cells 42
 - **2.10.3** Reverse transcription PCR (RT-PCR) 43
 - **2.10.4** Real Time RT-PCR 44
 - **2.10.5** Microarray analysis 44
- **2.11** Electrophoresis Mobility Shift Assays (EMSA) 45
- **2.12** Solid phase binding assay 46
- **2.13** DNase I Footprinting 47
- **2.14** LexA Bacterial Two Hybrid System 47
- **2.15** Eukaryotic cell culture 47
- **2.16** Infection of epithelial cell monolayers with *S. pneumoniae* D39 48
- **2.17** *In Vitro* Adherence Assay 49
- **2.18** Challenge of mice. 50
 - **2.18.1** Growth of challenge strain 50
 - **2.18.2** Intranasal Challenge 50
 - **2.18.3** Sacrifice of mice 50
 - **2.18.4** Immunisation Protocol 51
 - **2.18.4.1** Antigen Preparation 51
 - **2.18.4.2** Intraperitoneal Immunisation 51
 - **2.18.4.3** Analysis of Sera by Western Blotting 51

CHAPTER THREE – RR/HK06 AFFECTS **cbpA** EXPRESSION

- **3.1** Introduction 53
- **3.2** Results 54
3.2.1 Construction of *S. pneumoniae* D39 with deletions in *rr06* and *hk06* 54
3.2.2 Comparative growth rates of mutants 65
3.2.3 Effect of *hk06* and *rr06* deletion on pneumococcal virulence protein expression 55
3.2.4 Effect of D39Δhk06 and D39Δrr06 mutations on transcription of *cbpA* 56
3.2.5 Construction of mutations in *hk06* and *rr06* in *S. pneumoniae* strain TIGR4 57
3.2.6 Comparative growth rates of mutants 59
3.2.7 RR/HK06 regulation of *cbpA* in TIGR4 60

3.3 Discussion 61

CHAPTER FOUR – BINDING OF RR06 TO THE *cbpA* PROMOTER REGION 64

4.1 Introduction 64
4.2 Results 65
4.2.1 Purification of RR06 and RR13 65
4.2.2 Electrophoretic mobility shift assays 66
4.2.3 Immunisation of mice with His6-RR06 and analysis of sera 67
4.2.4 Solid phase binding assay 68
4.2.5 DNase I Footprinting 69
4.2.6 Dimerisation of RR06 70

4.3 Discussion 71

CHAPTER FIVE – ROLE OF RR/HK06 IN VIRULENCE 75

5.1 Introduction 75
5.2 Results 76
5.2.1 Adherence to epithelial cells 76
5.2.1.1 Adherence of D39, D39Δhk06, D39Δrr06, and D39*cbpA* to A549 and Detroit 562 cells. 77
TABLE OF CONTENTS

5.2.1.2 Adherence of TIGR4, TIGR4hk06:erm, TIGR4rr06:erm, TIGR4rr06
TIGR4rr06 and TIGR4cbpA:erm to A549 cells 78
5.2.2 In vivo studies 79
5.2.3 Release of IL-8 by respiratory epithelial cells in response to D39,
D39Δhk06, D39rr06 and D39cbpA 86
5.3 DISCUSSION 81

CHAPTER SIX – UNDERSTANDING THE REGULATION
OF cbpA BY RR/HK06. 85

6.1 Introduction 85
6.2 Results 85

6.2.1 Construction of D39Δrr/hk06 and TIGR4rr/hk06:erm 85
6.2.2 Over-expression of rr/hk06 88
6.2.2.1 Construction and characterisation of phk06, prr06, and
prr/hk06 86
6.2.2.2 Effect of over-expression on CbpA levels 88
6.2.2.3 Over-expression in TIGR4, WCH4861 and WCH4832
S. pneumoniae 89
6.2.3 Amino acid substitutions in RR/HK06 90
6.2.3.1 Construction of amino acid substitutions in HK06 and
RR06 90
6.2.3.2 Effect of amino acid substitutions on cbpA expression
on CbpA expression 92
6.2.3.3 Effect of Over-expression of RR06D516 and RR06D51N
on CbpA expression 92
6.2.4 Pro-Q Diamond staining 93
6.3 Discussion 94

CHAPTER SEVEN – GLOBAL REGULATION BY
RR/HK06 98

7.1 Introduction 98
7.2 Results 98
7.2.1 Microarray analysis 98
 7.2.1.1 Comparison of D39:pControl and D39:prr06 98
 7.2.1.2 Comparison of TIGR4:pControl and TIGR4:prr06 100
7.2.2 Vancomycin resistance 101
7.2.3 Comparative protein expression 101
 7.2.3.1 D39 S. pneumoniae 101
 7.2.3.2 TIGR4, WCH4852, and WCH4851 S. pneumoniae 103
7.2.4 Effect of RR/HK06 on pspA Expression 104
7.2.5 Regulation of PspA and Gls24 by RR/HK06 105
 7.2.5 Electrophoretic mobility shift assays 107

7.3 Discussion 107

CHAPTER EIGHT – FINAL DISCUSSION 113

8.1 Future Directions 120

Bibliography 122
Appendix 157
ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is a major human pathogen responsible for significant morbidity and mortality worldwide. Pneumococcal disease, which can include both invasive conditions such as pneumonia, bacteremia and meningitis, as well as less severe conditions such as otitis media, is almost invariably preceded by asymptomatic colonisation of the nasopharynx. To successfully adapt to the different ecological niches it encounters, the pneumococcus is likely to rely on the co-ordinated regulation of key virulence factors. As is the case for many other prokaryotes, this is likely to occur through two-component signal transduction systems (TCSTs). TCSTs comprise a histidine kinase (HK) and response regulator (RR). They respond to environmental stimuli and regulate gene expression by interacting with the transcription machinery. Thirteen complete TCSTs have been identified in *S. pneumoniae*, along with a lone RR.

This study focused on one of these systems, designated RR/hk06.

In order to study this system, in-frame deletion mutants of *hk06* (*D39Δhk06*) and *rr06* (*D39Δrr06*) were constructed in *S. pneumoniae* D39. Western immunoblots and real-time RT-PCR analysis showed that expression of the major virulence factor and protective antigen cholera binding protein A (CbpA) was increased (approximately 5-fold) in *D39Δhk06* but decreased (approximately 3-fold) in *D39Δrr06*, compared to the wild-type D39. This suggested *cbpA* expression is regulated by RR/HK06. Furthermore, binding of RR06 to DNA upstream of the *cbpA* start codon was demonstrated by solid phase binding assays, confirming this regulation. Over-expression of the system showed that RR/HK06 activates expression of *cbpA* in D39. However, an in-frame deletion mutant in both *hk06* and *rr06* (*D39Δrr/hk06*) produced similar levels of *cbpA* mRNA as the D39 wild-type.
Over-expression and mutation of \(rr/hk06 \) in 3 other \(S. \) pneumoniae strains showed that R2:HK06 regulates the expression of \(cbpA \) across all 4 pneumococcal strains tested, albeit with some differences. Most RRs are active in the phosphorylated form, as illustrated by the fact that mutations in the cognate HK result in a reduction in regulated gene expression. Thus, the increased expression of \(cbpA \) in D39\(\Delta \)hk06 was unexpected and prompted further investigation. Amino acid substitutions in D39 HK06 led to the hypothesis that R06 may activate \(cbpA \) expression in the non-phosphorylated form, as a substitution thought to specifically abrogate the phosphatase activity of HK06 led to levels of \(cbpA \) expression similar to that seen in the wild-type D39. However, further biochemical analysis is needed to confirm this.

Studies into the system's role in the virulence of \(S. \) pneumoniae showed that RR/HK06 is important for the ability of the pneumococcus to adhere to epithelial cells in vitro and to survive and proliferate in an in vivo model. Both D39\(\Delta \)hk06 and D39\(\Delta rr06 \) exhibited reduced adherence to human epithelial cells, even though D39\(\Delta \)hk06 showed increased levels of CbpA, a known pneumococcal adhesin. These findings clearly implicate additional RR/HK06-regulated factors in adherence to epithelial cells of human origin. In vivo experiments in mice showed that D39\(\Delta rr06 \) had an increased capacity to colonise the nasopharynx and cause disease compared to the parental strain, while D39\(\Delta \)hk06 was unable to persist in the lungs and blood. However, a strain deficient in CbpA showed no significant differences relative to the wild-type in its ability to colonise the nasopharynx or translocate to the lungs and blood. These data clearly indicated that other, as yet uncharacterized RR/HK06-regulated factors play a significant role in both colonisation and invasive disease, at least in the mouse model.

In order to identify other RR/HK06-regulated genes, microarray analysis was undertaken to investigate changes in gene expression when RR06 was over-expressed in both D39 and TIGR4 \(S. \) pneumoniae. \(cbpA \) and its co-transcribed upstream gene showed
substantial increases in expression when RR06 was over-expressed in both strains. However, there were no other similarities between the genes regulated by RR/HK06 in the two strains, suggesting that regulation varies between *S. pneumoniae* strains. In D39, RR06 over-expression decreased expression of numerous factors including the major virulence factor *spsA*, and another pneumococcal TCST5 *mreRS*. Further investigation of *spsA* regulation by RR/HK06 showed that the factor appeared to be regulated in a different manner to that seen for *chpA*.