INTERACTIVE TACTICAL TRAINING AND
THE REFLECTIVE STUDY OF THE
EMERGENT RESPONSES OF ARTIFICIAL
INTELLIGENCES

Luke Geoffrey Thiele

This is submitted for the degree of
Doctor of Philosophy

School of Architecture, Landscape Architecture and Urban Design
The University of Adelaide
January 2007
TABLE OF CONTENTS

- **Title Page** ... i
- **Table of Contents** ... ii
- **List of Figures** ... v
- **Abstract** .. vi
- **Declaration** ... viii
- **Acknowledgements** ... ix

1. Introduction and Methodology

1.1 Research Topic ... 1
1.2 Background of Research Topic ... 2
1.3 Principal Research Objectives ... 11
1.4 Methodology ... 12

2. Literature Review - Part 1

2.1 Creating Machine Intelligences to Learn From: Chapter Introduction .. 24
2.2 Evolutionary Computing and the Reflexive Observation of AI .. 29
 2.2.1 Lessons from Evolutionary Computing and Artificial Life .. 29
 2.2.2 Evolved Game-playing Machines: Blondie24 ... 40
2.3 Neural Networks and Learning from the Machines 47
 2.3.1 Neural Networks and Intelligent Control 47
 2.3.2 Neural Networks and Backpropagation Learning 61

3. LITERATURE REVIEW - PART 2 ... 67
 3.1 Three Points on the Continuum of Communication 67
 3.2 Point 1: Intelligent Tutors and the Limitations of Present Technology ... 72
 3.3 Point 2: QA and Natural Language Generation 81
 3.4 Point 3: Reflective Learning .. 98
 3.4.1 Virtual Bonesetter (Sourin, Sourina and Tet Sen) 106
 3.4.2 The Virtual 3D Puzzles of Ritter et al. 110
 3.4.3 The Digital Building Games of Radford, Shannon and White 112

4. THE BTS EXAMPLE APPLICATION .. 121
 4.1 Introduction .. 121
 4.2 BTS General Design Considerations 126
 4.2.1 The BTS: Why Cricket? ... 126
 4.2.2 The BTS: Basic Design Philosophy 133
 4.3 The BTS Batters ... 145
 4.3.1 The BTS Batter Representation System 145
 4.3.2 The Basic Structure of the BTS Neural Networks 155
 4.3.3 The Training and Evolution of the BTS Neural Networks 164
4.4 The General BTS Interactive Environment 176
4.4.1 The Learner Input Interfaces of the BTS 180
4.5 An Account of Using the BTS to Study the Artificial Batters 191
4.5.1 Interactions with a Backpropagation-trained BTS Batter 193
4.5.2 Interactions with a Hybrid BTS Batter 207
4.5.3 General Observations on Interacting with the BTS 216

5. THESIS CONCLUSIONS ... 221
5.1 Chapter Introduction .. 221
5.2 Creating the Required Machine Intelligences: Thesis Conclusions 222
5.3 The Reflective Analysis of Artificial Intelligences: Thesis Conclusions 233
5.4 Directions for Future Research .. 239

6. BIBLIOGRAPHY ... 246
ABSTRACT

This thesis investigates how a digital training environment might be constructed to allow humans to study the emergent tactical methods of game-playing artificial systems in an effort to gain new tactical skill. After a theory-based examination of such typically disparate fields as artificial life, computer animation, and education theory, this thesis suggests that learners might be able to acquire new tactical skills as required by observing suitable artificial intelligences via an interactive environment constructed in accordance with the principles of the non language-based educative methodology of "reflective learning". Using the game-based backdrop of providing tactical training to pace bowlers in the game of cricket, this training concept is also additionally examined in this thesis through the design, construction, and case study evaluation of a working prototype application based on these arguments.

The results of these investigations suggest that through real-time computer animation and self-directed "reflective" training procedures it is indeed possible to create a setting in which humans can study and learn from the emergent tactical methods of game-playing machines. These investigations also indicate that while artificial entities suitable for initial training purposes can be created with some difficulty, the present limitations of AI technology make creating computational virtual entities suitable for expert-level training a complex task. Thus, this research indicates that a form of tactics training based upon the study of game-playing artificial entities is possible, although further advancements, particularly in the area of real-time machine learning, are
necessary before such a mode of training can achieve a level of performance suitable for use with expert human players.