Option pricing using path integrals

by

Dr. Frédéric D.R. Bonnet

B.Sc. (Mathematical and Computer Science with Honours), 1998.
Ph.D. in Science (Theoretical and Astrophysics), 2002.
The University of Adelaide.

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering
Faculty of Engineering, Computer and Mathematical Sciences
University of Adelaide, Australia

July, 2008
Contents

Contents

Abstract xi

Statement of Originality xiii

Acknowledgments xv

Conventions and formsetting xvii

0.1 Typesetting xvii

0.2 Software xvii

0.3 Data .. xvii

0.4 Mathematical Symbols xviii

Publications xix

List of Figures xxi

List of Tables xxv

Chapter 1. Introduction 1

1.1 History of Financial Markets ... 6

 1.1.1 Bachelier Theory ... 6

 1.1.2 History of Brownian Motion 8

 1.1.3 History of Stochastic Calculus 10

1.2 The Various Techniques Used in Finance 11

 1.2.1 Binomial Tree Diagrams 13

 1.2.2 Econometrics ... 16

 1.2.3 Stochastic Calculus 19

 1.2.4 Path Integrals ... 20

1.3 Outline of Thesis ... 23

1.4 Statement of Original Contributions 24
Chapter 2. Distributions and Time series processes

2.1 The Gaussian Distribution .. 29
2.2 Non-Gaussian Distributions 30
 2.2.1 Student \(t \)-Distribution 30
 2.2.2 General Error Distribution 31
 2.2.3 The Generalized Hyperbolic Lévy Motion Distribution, \(\text{GH}(x) \) 32
 2.2.4 The Hyperbolic Distribution, \(\text{H}(x) \) 34
 2.2.5 The Normal Inverse Gaussian Distribution, \(\text{NIG}(x) \) 35
2.3 Linear Processes ... 37
 2.3.1 The \(\text{AR}(p) \) Model 37
 2.3.2 The \(\text{ARMA}(p,q) \) Model 38
 2.3.3 The \(\text{ARCH}(p) \) Model 38
 2.3.4 The Linear \(\text{GARCH}(p,q) \) Model 39
 2.3.5 The \(\text{GARCH}(1,1) - \text{NIG}(x) \) Model 43
2.4 Non–Linear \(\text{GARCH}(p,q) \) Processes 45
 2.4.1 The \(\text{AGARCH} - \text{I}(p,q) \) Model 49
 2.4.2 The \(\text{AGARCH} - \text{II}(p,q) \) Model 51
 2.4.3 The \(\text{GJR} - \text{GARCH}(p,q) \) Model 51
 2.4.4 The \(\text{EGARCH}(p,q) \) Model 52
2.5 The Maximum Likelihood Method 52
2.6 Chapter Summary .. 52

Chapter 3. Brownian Motion 55

3.1 Random Walks .. 56
 3.1.1 Symmetric Random Walks 56
 3.1.2 Scaled Symmetric Random Walks 58
3.2 Brownian Motion ... 59
 3.2.1 Filtration for Brownian Motion 62
 3.2.2 Quadratic Variation 63
3.3 Chapter Summary .. 66
Chapter 4. Stochastic Calculus

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Itô Calculus</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Itô Integral for Simple Process</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Itô Integral for non Simple Process</td>
<td>73</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Itô–Doeblin Formula</td>
<td>75</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Multivariate Stochastic Calculus</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Discretization Methods (SDE Numerical Approaches)</td>
<td>81</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The Euler–Marayama Scheme, $\gamma = 0.5$</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Milstein Scheme, $\gamma = 1.0$</td>
<td>85</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The Order $\gamma = 1.5$ Strong Taylor Scheme</td>
<td>87</td>
</tr>
<tr>
<td>4.2.4</td>
<td>The Runge–Kutta Scheme a Strong Order $\gamma = 1$ Scheme</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Jump Process and Lévy Processes</td>
<td>95</td>
</tr>
<tr>
<td>4.4</td>
<td>Stochastic Volatility Models</td>
<td>95</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Mean Reverting Stochastic Volatility Models</td>
<td>95</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Pricing With Equivalent Martingale Measure</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Connection With Partial Differential Equations</td>
<td>103</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The Feynman-Kac Formula</td>
<td>105</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Forward Kolmogorov Equation (The Fokker–Planck Equation)</td>
<td>107</td>
</tr>
<tr>
<td>4.5.3</td>
<td>The Backward Kolmogorov Equation</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>Chapter Summary</td>
<td>109</td>
</tr>
</tbody>
</table>

Chapter 5. Option pricing and derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Some Concepts</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>European Options</td>
<td>114</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The Black–Scholes–Merton Model</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Exotic Options</td>
<td>123</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Knock In/Out Barrier Option</td>
<td>125</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Lookback Option</td>
<td>128</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Asian Option</td>
<td>128</td>
</tr>
<tr>
<td>5.4</td>
<td>American Option</td>
<td>129</td>
</tr>
<tr>
<td>5.5</td>
<td>Chapter Summary</td>
<td>131</td>
</tr>
</tbody>
</table>
Chapter 6. Path integrals in finance

6.1 The Path Integral in Quantum Mechanics ... 134
6.2 The Path Integral in Quantum Field Theory ... 137
6.3 The Path Integral in Finance .. 139
 6.3.1 The Correct Formulation of the Lagrangian Density 140
6.3.2 Standard Gaussian Path Integrals ... 144
6.3.3 Non-Standard Gaussian Path Integrals ... 148
6.3.4 The Multifractal Random Walk Model ... 154
6.3.5 The Path Integral for the Multifractal Random Walk Model 157
6.4 The Instanton Method .. 160
 6.4.1 The Instanton Method for the Non-Gaussian Model 161
6.5 Numerical Approach to the Evaluation of the Path Integral 173
 6.5.1 Discretisation of the Path Integral .. 173
6.5.2 Evaluating the Path Integral for $N = 2$... 180
6.5.3 Maple Output for the Path Integral When $N = 3$ 181
6.5.4 Monte Carlo Methods for the Path Integral 182
6.5.5 Pertubation Theory for the Path Integral .. 183
6.5.6 Variational Methods for the Path Integral 183
6.6 Chapter Summary ... 183

Chapter 7. Agent models

7.1 Introduction ... 188
7.2 The Minority Game ... 189
 7.2.1 The Model .. 190
 7.2.2 The Price Function in the Minority Game 196
 7.2.3 The Dollar Game ... 200
7.3 Financial Bubbles ... 201
 7.3.1 Positive Feedback Model With Multiplicative Noise 203
7.4 Minority Game and Dollar Game Price Function With Real Data 206
7.5 Chapter Summary ... 211
Contents

C.1 More Different Options ... 238
 C.1.1 Non-Vanilla Exercise Rights 238
 C.1.2 ‘Exotic’ Options with Standard Exercise Styles 239
 C.1.3 Non-vanilla path dependent “exotic” options 240
C.2 Maximum of Brownian motion with drift 242

Appendix D. The Fokker–Planck Equation 245
 D.1 The Sturm–Liouville equation 246
 D.2 The connection between the Schröedinger equation and Fokker–Planck equation 252
 D.3 The wave function and the probability density in quantum mechanics 253

Appendix E. Source code 255
 E.1 The R script nasdaq.r 256
 E.2 The Perl script strip yahoo.pl 264
 E.3 The discretization methods 270
 E.3.1 The headers file for the discretization code 270
 E.3.2 The main code for the discretization code Sde main.f90 271
 E.3.3 The subroutine drift func.f90 286
 E.3.4 The subroutine diffusion func.f90 287
 E.3.5 The subroutine wiener.f90 287
 E.3.6 The subroutine explicit sol.f90 289
 E.3.7 The subroutine euler.f90 291
 E.3.8 The subroutine milstein.f90 292
 E.3.9 The subroutine dfridr1.f90 293
 E.3.10 The subroutine strg 15 taylor.f90 294
 E.3.11 The subroutine dfridr.f90 296
 E.3.12 The subroutine gaussian.f90 297
 E.4 The routines used in the main for different distributions and PDF 299
 E.4.1 The subroutine Gen hyper geo(x,a,y,dyda,delta), GH(x) 300
 E.4.2 The subroutine hyper geo(x,a,y,dyda,delta), H(x) 304
E.4.3 The subroutine \textit{hist vol}, the historical volatility 305
E.4.4 The subroutine for the Bessel function 307
E.4.5 The subroutine \textit{student}(x,a,y,dyda,delta), \textit{f}(x) 311
E.4.6 The subroutine \textit{gauss}(x,a,y,dyda,delta), \textit{f}(x) 314
E.4.7 The subroutine \textit{func}, \textit{func test v} and \textit{func improper v} test functions314
E.4.8 The subroutine \textit{get pdf()} 315
E.4.9 The subroutine \textit{fit pdf.f90} 318
E.4.10 The subroutine \textit{mrqmin.f90} 320
E.4.11 The subroutine \textit{qromo md.f90} 322
E.4.12 The subroutine \textit{midexp md.f90} 322
E.4.13 The subroutine \textit{trapzd.f90} 323

E.5 Some functions used in the evaluation of functions and options 324
E.5.1 The subroutine \textit{black scholes}, the Black–Scholes model and the
Greeks 324
E.5.2 The \textit{cum norm}(x) function 325
E.5.3 The \textit{Erf}(x) function 325
E.5.4 The \textit{Erfc}(x) function 326
E.5.5 The \textit{log}(\Gamma(x)) function 326

E.6 The minority game ... 327
E.6.1 The headers file for the minority game code 327
E.6.2 The minority source code 328
E.6.3 The routine that initialises the real data 338
E.6.4 The routine \textit{real.f90} 342

E.7 The code that calculates the Bubble in section 7.3 345

\textbf{Appendix F. Maple output for the non–Gaussian model} \hspace{1cm} 347
F.0.1 Maple output for the path integral when \(N = 2 \) 348
F.0.2 Maple output for the path integral when \(N = 3 \) 349

\textbf{Bibliography} \hspace{1cm} 355

\textbf{Index} \hspace{1cm} 367
Abstract

It is well established that stock market volatility has a memory of the past, moreover it is found that volatility correlations are long ranged. As a consequence, volatility cannot be characterized by a single correlation time in general. Recent empirical work suggests that the volatility correlation functions of various assets actually decay as a power law. Moreover it is well established that the distribution functions for the returns do not obey a Gaussian distribution, but follow more the type of distributions that incorporate what are commonly known as \textit{fat–tailed} distributions. As a result, if one is to model the evolution of the stock price, stock market or any financial derivative, then standard Brownian motion models are inaccurate. One must take into account the results obtained from empirical studies and work with models that include realistic features observed on the market.

In this thesis we show that it is possible to derive the path integral for a non-Gaussian option pricing model that can capture fat–tails. However we find that the path integral technique can only be used on a very small set of problems, as a number of situations of interest are shown to be intractable.
Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968. Copying or publication or use of this thesis or parts thereof for financial gain is not allowed without the authors written permission. Due recognition shall be given the author, and the University of Adelaide, in any scholarly use that may be made of any material in the thesis.

Signed

Date
Acknowledgments

I would like to acknowledge the support that my supervisors have given me along the course of the program. In particular I would like to thank Professor Derek Abbott for all the financial support that he has provided me along the years that I have been part of the Electrical and Electronic Engineering school. I would like to also take the opportunity to thank Andrew Allison for taking the time to listen and for all of his constructive comments. Furthermore I would like to thank John van der Hoeck for all the support he has given me with some of the mathematical aspects.

A special thanks to my family members without whom things would not have been possible.

I would like acknowledge the School of Electrical and Electronic Engineering and the Australian Research Council for their financial support. I also acknowledge the SPIE travel grant that covered some of the travel expenses.

Special thanks to Carl Chiarella (University of Technology of Sydney), Lisa Borland (Evnine-Vaughan Associates), Jean-Philippe Bouchaud (Capital Fund Management), Didier Sornette (Université Nice Sophia–Antipolis) who kindly hosted my short visits to their research labs.

I would also like to take the opportunity to thank some of the researchers who patiently took some of their time to listen through some of the technical discussions, and for useful and stimulating discussions, these include Robert Elliot (University of Calgary), Dominique Guegan (Université Panthéon-Sorbonne), and Peter Hänggi (Universität Augsburg). Also acknowledged is Michel M. Dacorogna for finding the paper on the origin of the term martingale (Mansuy 2005).

Finally I would like to thank Professor Bevan Bates for his constructive advice and support. I would like to thank the research committee as a whole for their help and advice.

At last I would like to thank Rose-Marie for organizing the weekly lunch meetings, which provided nice lunch breaks.
Conventions and formsetting

0.1 Typesetting

This thesis is typeset using the \LaTeX\ Xe software. WinEdt build 5.4 was used as an effective interface to \LaTeX\ (Oetiker et al. 2000). Harvard style is used for referencing and citation in this thesis. Australian English spelling is adopted, as defined by the Macquarie English Dictionary (Delbridge 2001).

0.2 Software

The results were obtained using mathematical packages (Mathematica, Matlab), statistical packages (R).

The programming language used was Fortran 90 with parallel commands embedded in it. Also used was C++.

The reason being that it is more realistic in our days to have a wide range of computer skills instead of just a highly specialized one which may not be compatible elsewhere.

0.3 Data

The data was obtained from two different sources

- The yahoo finance website (Yahoo Finance 2008).
- The Tick Data website (Tick Data Global Historical Data Solutions 2008).
Conventions and formsetting

0.4 Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\aleph</td>
<td>The Kurtosis.</td>
</tr>
<tr>
<td>$E[f(x)]$</td>
<td>The expected value of $f(x)$.</td>
</tr>
<tr>
<td>$\text{Var}[f(x)]$</td>
<td>The variance of $f(x)$.</td>
</tr>
<tr>
<td>t</td>
<td>Time.</td>
</tr>
<tr>
<td>$S(t)$</td>
<td>The asset price at time t.</td>
</tr>
<tr>
<td>$\mathcal{O}(S(t), t)$</td>
<td>The option price of a given asset $S(t)$ at a time t.</td>
</tr>
<tr>
<td>$X(t), Y(t)$</td>
<td>The random process $X(t)$ and $Y(t)$.</td>
</tr>
<tr>
<td>\mathcal{F}_t</td>
<td>The filtration of t.</td>
</tr>
<tr>
<td>$E[X(t)]$</td>
<td>The expected value of the random process $X(t)$.</td>
</tr>
<tr>
<td>$\text{Var}[X(t)]$</td>
<td>The variance of the random process $X(t)$.</td>
</tr>
<tr>
<td>$L(\theta)$</td>
<td>The loglikelihood function a distribution with parameter set θ.</td>
</tr>
<tr>
<td>$\mathcal{L}(\dot{x}(t), x(t), t)$</td>
<td>The Lagrangian functional for the path integral.</td>
</tr>
<tr>
<td>$\mathcal{A}[x(t)]$</td>
<td>The action functional for the path integral.</td>
</tr>
<tr>
<td>$\mathcal{D}x(t)$</td>
<td>Integral measure for the path integral.</td>
</tr>
</tbody>
</table>
Publications

List of Figures

1.1 Louis Bachelier .. 7
1.2 Daily returns for the NASDAQ and its PDF 12
1.3 The lattice graph for a binomial tree 15
1.4 Daily returns for the NASDAQ and S&P500 17
1.5 Particle moving from A to B 21

2.1 Distribution function of the NASDAQ and S&P500 28
2.2 Distribution function of the NASDAQ and S&P500 29
2.3 Student distribution fit to NASDAQ and S&P500 tick data 36
2.4 Time series of the NASDAQ $r(t)$ 40
2.5 Histogram of the NASDAQ $r(t)$ 41
2.6 The $qnorm$ – QQ plot of the NASDAQ for GARCH(1,1) 42

3.1 Random walks .. 56
3.2 Sample paths for Brownian motion 61

4.1 Simple \hat{I}to process 71
4.2 Non–simple \hat{I}to process 73
4.3 Sample paths for the explicit solution versus the numerical schemes ... 92
4.4 Sample paths for the explicit solution versus the numerical schemes ... 93

5.1 Put and call graph of the payoff function for the European option 116
5.2 Knock in/out Barrier option 126

6.1 The graph of the probability distribution function Eq. (6.71) when $q = 1.43150$
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>The graph of $Z(t)$ and $\beta(t)$</td>
</tr>
<tr>
<td>6.3</td>
<td>The evolution of the coefficient c as a function of the parameter q</td>
</tr>
<tr>
<td>6.4</td>
<td>The graph of $x(t)$ when $C_1 = C_2 = h(q) = 1$ and $\gamma(q) = 1$</td>
</tr>
<tr>
<td>6.5</td>
<td>The graph of $P(x(t))$ when $C_1 = C_2 = h(q) = 1$ and $\gamma(q) = 1$</td>
</tr>
<tr>
<td>6.6</td>
<td>Same graph as in Fig. 6.5 for $P(x(t))$ when $C_1 = C_2 = h(q) = 1$ and $\gamma(q) = 1$</td>
</tr>
<tr>
<td>6.7</td>
<td>The graph of $x(t)$</td>
</tr>
<tr>
<td>6.8</td>
<td>The graph of the Lagrangian functional Eq. (6.91) for a given $x(t)$</td>
</tr>
<tr>
<td>6.9</td>
<td>The graph of the functions $\gamma(q)$ and $h(q)$</td>
</tr>
<tr>
<td>6.10</td>
<td>The graph of the coefficients C_1 and C_2</td>
</tr>
<tr>
<td>6.11</td>
<td>The graph of the solution $x(t)$ of the Euler–Lagrange equation</td>
</tr>
<tr>
<td>6.12</td>
<td>The graph of the solution $x(t)$ of the Euler–Lagrange equation</td>
</tr>
<tr>
<td>6.13</td>
<td>The Lagrangian density</td>
</tr>
<tr>
<td>6.14</td>
<td>The discrete path with $N - 1$ paths</td>
</tr>
<tr>
<td>6.15</td>
<td>The discrete path when $N = 1$</td>
</tr>
<tr>
<td>6.16</td>
<td>The discrete path when $N = 2$</td>
</tr>
<tr>
<td>6.17</td>
<td>The discrete path when $N = 3$</td>
</tr>
<tr>
<td>6.18</td>
<td>The discrete path when $N = 4$</td>
</tr>
<tr>
<td>7.1</td>
<td>The Global efficiency σ^2/N and the predictability H/N versus the critical parameter $\alpha = 2^M/N$</td>
</tr>
<tr>
<td>7.2</td>
<td>The global efficiency σ^2/N and the predictability H/N versus the critical parameter $\alpha = 2^M/N$</td>
</tr>
<tr>
<td>7.3</td>
<td>The global efficiency σ^2/N versus the critical parameter $\alpha = 2^M/N$ for the Minority Game</td>
</tr>
<tr>
<td>7.4</td>
<td>The predictability H/N versus the critical parameter $\alpha = 2^M/N$</td>
</tr>
<tr>
<td>7.5</td>
<td>The price function $P(t)$, Eq. (7.9)</td>
</tr>
<tr>
<td>7.6</td>
<td>The simulated price function in the Minority Game</td>
</tr>
<tr>
<td>7.7</td>
<td>The price function in the Minority Game</td>
</tr>
<tr>
<td>7.8</td>
<td>The simulated price function in the Minority Game for different sample paths</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>7.9</td>
<td>The time series for the bubble defined in Eq. (7.20) versus the time t</td>
</tr>
<tr>
<td>7.10</td>
<td>Time series for the NASDAQ</td>
</tr>
<tr>
<td>7.11</td>
<td>Time series for the S&P 500</td>
</tr>
<tr>
<td>7.12</td>
<td>Time series for the NASDAQ</td>
</tr>
<tr>
<td>7.13</td>
<td>Price function for the $-$Game versus the Minority Game in the Minority Game as a function of time t</td>
</tr>
<tr>
<td>7.14</td>
<td>Price function for the $-$Game versus the Minority Game in the Minority Game as a function of time t</td>
</tr>
<tr>
<td>7.15</td>
<td>The time series for the NASDAQ versus the $-$Game price function in the Minority Game as a function of time t</td>
</tr>
<tr>
<td>7.16</td>
<td>Time series for the S&P 500 versus the $-$Game price function in the Minority Game</td>
</tr>
<tr>
<td>7.17</td>
<td>Price function for the $-$Game versus the Minority Game when the payoff function are set to 0 in the Minority Game as a function of time t</td>
</tr>
<tr>
<td>A.1</td>
<td>The unit circle in $2D$</td>
</tr>
<tr>
<td>C.1</td>
<td>Range of $(\hat{M}(T), \hat{W}(T))$</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Student distribution fit result .. 37
2.2 The results for a mean and variance equation ARMA(0,0)+GARCH(1,1) 43
2.3 The results for a mean and variance equation ARMA(0,1)+GARCH(1,1) 44
2.4 The results for a mean and variance equation ARMA(1,1)+GARCH(1,1) 45
2.5 The results for a mean and variance equation ARMA(2,2)+GARCH(1,2) 46
2.6 The results for a mean and variance equation ARMA(1,2)+GARCH(2,2) 47
2.7 The results for a mean and variance equation ARMA(2,2)+GARCH(2,2) 48
3.1 Brownian motion multiplication table ... 66
5.1 The results for the Black–Scholes–Merton model for a European option . 124