EARLY LIFE ORIGINS OF THE INSULIN RESISTANCE SYNDROME IN THE AGED GUINEA PIG

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

by

Prema Thavaneswaran B.Sc. (Hons)

Discipline of Physiology
School of Molecular and Biomedical Science
University of Adelaide
Australia

November 2007
TABLE OF CONTENTS

ABSTRACT... VIII

DECLARATION ... X

ACKNOWLEDGEMENTS ... XI

PUBLICATIONS ARISING FROM THIS THESIS.. XII

RELATED PUBLICATIONS ... XII

COMMONLY USED ABBREVIATIONS .. XIII

LIST OF TABLES .. XV

LIST OF FIGURES .. XVIII

CHAPTER 1 LITERATURE REVIEW ... 1

1.1 INTRODUCTION ... 1

1.2 INTRAUTERINE GROWTH RETARDATION ... 2

1.2.1 Risk factors for IUGR in humans ... 4

1.2.2 Regulation of intrauterine growth .. 6

1.2.2.1 Mechanisms underlying IUGR ... 8

1.2.3 Catch-up growth ... 9

1.2.4 Regulation of postnatal growth ... 10

1.2.4.1 Mechanisms underlying catch-up growth ... 12

1.2.5 Short and long-term consequences of IUGR and catch-up growth 13

1.2.6 Experimental models of IUGR and catch-up growth 16

1.2.6.1 Guinea pig model of spontaneous fetal growth restriction 16

1.2.6.2 Other experimental models of IUGR and catch-up growth 17

1.3 INSULIN RESISTANCE SYNDROME ... 21

1.3.1 Metabolic and vascular actions of insulin ... 22

1.3.2 Aetiology of the Insulin Resistance Syndrome .. 25
1.3.3 Ageing and the Insulin Resistance Syndrome .. 28
1.3.3.1 Human studies ... 28
1.3.3.2 Animal studies .. 29
1.3.3.3 Significance of the current study .. 30
1.3.4 Early life origins of the Insulin Resistance Syndrome 31
1.3.4.1 Altered body composition ... 34
1.3.4.1.1 Human studies .. 34
1.3.4.1.2 Animal studies ... 35
1.3.4.1.3 Significance of the current study .. 37
1.3.4.2 Insulin resistance and dyslipidaemia ... 35
1.3.4.2.1 Human studies .. 38
1.3.4.2.2 Animal studies ... 40
1.3.4.2.3 Significance of the current study .. 41
1.3.4.3 Impaired glucose tolerance and NIDDM ... 42
1.3.4.3.1 Human studies .. 42
1.3.4.3.2 Animal studies ... 44
1.3.4.3.3 Significance of the current study .. 46
1.3.4.4 Hypertension ... 47
1.3.4.4.1 Human studies .. 47
1.3.4.4.2 Animal studies ... 48
1.3.4.4.3 Significance of the current study .. 49
1.4 AIMS AND HYPOTHESES .. 50
1.4.1 General hypothesis ... 52
1.4.2 Specific hypotheses .. 52
1.4.3 Aims ... 53

CHAPTER 2 EFFECT OF AGEING ON THE METABOLIC AND CARDIOVASCULAR HEALTH OF THE GUINEA PIG 56
2.1 INTRODUCTION .. 56
2.2 MATERIALS AND METHODS .. 58
2.2.1 Animals .. 58
2.2.2 Hyperinsulinaemic euglycaemic clamp .. 59
2.2.3 Intravenous glucose tolerance test ... 60
2.2.4 Blood pressure ... 61
2.2.5 Plasma metabolite and hormone analyses .. 62
2.2.6 Body composition ... 62
2.2.7 Statistical analysis ... 63
2.3 RESULTS ... 64
2.3.1 Whole body insulin sensitivity and circulating lipid profile............. 64
2.3.2 Glucose tolerance and insulin secretion ... 64
2.3.3 Blood pressure .. 69
2.3.4 Body size and composition ... 75
2.4 DISCUSSION .. 80

CHAPTER 3 EARLY LIFE INFLUENCES ON BODY SIZE AND
COMPOSITION IN THE AGED GUINEA PIG .. 87
3.1 INTRODUCTION .. 87
3.2 MATERIALS AND METHODS .. 89
3.2.1 Animals ... 89
3.2.2 Body composition .. 90
3.2.3 Statistical analysis ... 90
3.3 RESULTS .. 92
3.3.1 Effect of litter size on birth weight ... 92
3.3.2 Effect of birth weight class on size at birth, neonatal growth and survival to 400 days of age ... 92
3.3.3 Effect of birth weight class on body size and composition in the aged guinea pig ... 95
3.3.3.1 Adult size ... 95
3.3.3.2 Adiposity .. 95
3.3.3.3 Skeletal muscle mass .. 95
3.3.3.4 Organ and gland weights .. 98
3.3.4 Effect of neonatal fractional growth rate class on body size and composition in the aged guinea pig .. 98
3.3.4.1 Adult size .. 98
3.3.4.2 Adiposity .. 104
3.3.4.3 Skeletal muscle mass .. 104
3.3.4.3 Organ and gland weights .. 104

iv
3.3.5 Relationship of adult size to size at birth and neonatal growth rate in the aged guinea pig ... 110
 3.3.5.1 Size at birth .. 110
 3.3.5.2 Neonatal growth rate ... 110
3.3.6 Relationship of adult adiposity to size at birth and neonatal growth rate in the aged guinea pig ... 115
 3.3.6.1 Size at birth .. 115
 3.3.6.2 Neonatal growth rate ... 116
3.3.7 Relationship of adult skeletal muscle mass to size at birth and neonatal growth rate in the aged guinea pig ... 116
 3.3.7.1 Size at birth .. 116
 3.3.7.2 Neonatal growth rate ... 119
3.3.8 Relationship of adult organ and gland weights to size at birth and neonatal growth rate in the aged guinea pig ... 119
 3.3.8.1 Size at birth .. 119
 3.3.8.2 Neonatal growth rate ... 121
3.4 DISCUSSION .. 128

CHAPTER 4 EARLY LIFE INFLUENCES ON WHOLE BODY INSULIN SENSITIVITY AND LIPID PROFILE IN THE AGED GUINEA PIG 134
4.1 INTRODUCTION .. 134
4.2 MATERIALS AND METHODS ... 134
 4.2.1 Animals .. 137
 4.2.2 Hyperinsulinaemic euglycaemic clamp 138
 4.2.3 Plasma metabolite and hormone analyses 138
 4.2.4 Body composition .. 139
 4.2.5 Statistical analysis .. 139
4.3 RESULTS ... 141
 4.3.1 Effect of birth weight class on adult whole body insulin sensitivity and circulating lipid profile in the aged guinea pig 141
 4.3.2 Effect of neonatal fractional growth rate class on whole body insulin sensitivity and circulating lipid profile in the aged guinea pig 141
 4.3.3 Relationship of whole body insulin sensitivity and circulating lipid profile to size at birth, neonatal growth rate and adult size in the aged guinea pig 146
4.3.3.1 Size at birth ... 146
4.3.3.2 Neonatal growth rate ... 157
4.3.3.3 Adult size ... 157
4.3.3.4 Partial correlations ... 162

4.3.4 Relationship of whole body insulin sensitivity and circulating lipid profile to body composition in the aged guinea pig ... 167

4.1.4.1 Adiposity ... 167
4.3.4.2 Skeletal muscle mass ... 167
4.3.4.3 Liver weight ... 171

4.4 DISCUSSION ... 172

CHAPTER 5 EARLY LIFE INFLUENCES ON GLUCOSE TOLERANCE
AND INSULIN SECRETION IN THE AGED GUINEA PIG 180

5.1 INTRODUCTION ... 180

5.2 MATERIALS AND METHODS ... 182

5.2.1 Animals ... 182
5.2.2 Intravenous glucose tolerance test 183
5.2.3 Plasma metabolite and hormone analyses 183
5.2.4 Body composition .. 184
5.2.5 Statistical analysis ... 184

5.3 RESULTS ... 186

5.3.1 Effect of birth weight class on adult glucose tolerance and insulin secretion in the aged guinea pig .. 186

5.3.2 Effect of neonatal fractional growth rate class on glucose tolerance and insulin secretion in the aged guinea pig ... 186

5.3.3 Relationship of glucose tolerance and insulin secretion to size at birth, neonatal growth rate and adult size in the aged guinea pig 191
5.3.3.1 Size at birth ... 191
5.3.3.2 Neonatal growth rate ... 198
5.3.3.3 Adult size ... 198
5.3.3.4 Partial correlations ... 198

5.3.4 Relationship of glucose tolerance and insulin secretion to body composition in the aged guinea pig .. 206

5.3.4.1 Adiposity ... 206
CHAPTER 6 EARLY LIFE INFLUENCES ON BLOOD PRESSURE IN THE AGED GUINEA PIG

6.1 INTRODUCTION
6.2 MATERIALS AND METHODS
 6.2.1 Animals
 6.2.2 Blood pressure
 6.2.3 Body composition
 6.2.4 Statistical analysis
6.3 RESULTS
 6.3.1 Effect of birth weight class on blood pressure in the aged guinea pig
 6.3.2 Effect of neonatal fractional growth rate class on blood pressure in the aged guinea pig
 6.3.3 Relationship of blood pressure to size at birth, neonatal growth rate and adult size in the aged guinea pig
 6.3.3.1 Size at birth
 6.3.3.2 Neonatal growth rate
 6.3.3.3 Adult size
 6.3.3.4 Partial correlations
 6.3.4 Relationship of blood pressure to body composition in the aged guinea pig
 6.3.4.1 Adiposity
 6.3.4.2 Skeletal muscle mass
 6.3.4.3 Organ and gland weights
6.4 DISCUSSION

CHAPTER 7 GENERAL DISCUSSION
REFERENCES
APPENDIX A
ABSTRACT

In human populations, perturbed growth in early life and ageing have been identified as risk factors for the development of the 'Insulin Resistance Syndrome' (IRS). The consequences of restricted prenatal growth on postnatal function have been investigated using numerous experimental models of intrauterine growth retardation, mainly in the rat. These studies have shown that some, but not all aspects of postnatal function that are programmed in humans, are also programmed in the rat. In addition, few experimental studies have investigated the effect of perturbed postnatal growth on adult function, or whether ageing amplifies the effects of events in early life. Therefore this study was designed to determine firstly, whether the IRS develops with increasing age in the guinea pig as it does in the human, and secondly whether the development of this syndrome is more pronounced in aged offspring which have undergone spontaneous fetal growth restriction and accelerated growth in the neonatal period.

Whole body insulin sensitivity of glucose metabolism, subcutaneous adiposity and skeletal muscle mass were reduced, while visceral adiposity and fasting concentrations of plasma glucose, insulin, triglycerides and total cholesterol were increased, in aged (14 months) compared to young adult (4 months) guinea pigs. An increase in resting systolic, diastolic and mean arterial blood pressure and pulse pressure was also observed in offspring with increasing age.

Spontaneous fetal growth restriction in the guinea pig reduced size at birth, but increased the neonatal fractional growth rate for weight in male and female offspring. In aged female offspring, small size at birth was associated with decreased whole body insulin sensitivity of glucose metabolism, increased fasting concentrations of plasma glucose and insulin, impaired glucose tolerance and elevated resting systolic and mean arterial blood pressure, pulse pressure and heart rate. An increased neonatal fractional growth rate for weight was associated with elevated fasting concentrations of plasma glucose and triglycerides in aged females, while a low fractional growth rate for weight during the neonatal period increased resting systolic blood pressure. In aged male offspring, large size at birth was associated with decreased whole body insulin sensitivity of glucose metabolism and increased fasting concentrations of...
plasma insulin, while disproportionate fetal growth, as indicated by a low ponderal index at birth, was associated with increased fasting concentrations of plasma total cholesterol. A low fractional growth rate for weight during the neonatal period decreased whole body insulin sensitivity of glucose metabolism and increased fasting concentrations of plasma free fatty acids in aged males, while an increased neonatal fractional growth rate for weight was associated with elevated fasting concentrations of plasma triglycerides and raised resting pulse pressure and heart rate.

In conclusion, the guinea pig appears to be a suitable animal model of ageing, displaying many of the metabolic, cardiovascular and anthropometric changes seen in humans. Furthermore, the effects of perturbed prenatal and early postnatal growth on the development of the IRS in the aged guinea pig exhibit a sexually dimorphic pattern, however the mechanisms responsible for the emergence of this syndrome in a gender-specific manner remain to be determined.