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ABSTRACT

The design of hydraulic systems that have to cope with natural flows of flood
magnitude is risk-based The estimation of flood risk relies on joint probability
theory where the combination of stochastic inputs such as rainfall and a desctiption
of the hydrological/hydraulic runoff process determine the probability distribution
of flooding events. To date both the design storm approach presented in Australian
Rainfall and Runoff (Institution of Engineers Australia, 1987) and continuous
simulation through a Monte Catlo approach have provided workable methods for
deriving empirical flood probability distributions as an estimate of this flood risk.
While the continuous simulation apptoach has long been viewed as the best way to
evaluate the probabilistic behavior of surface water systems, the design storm
approach has remained the preferred choice due to its simplicity and ease of use.
However with the onset of powerful personal computers providing the ability for
increasingly complex analysis within the requited timeframes, the tendency towatds

using a continuous simulation approach will continue to grow.

The idea behind the Monte Catlo continuous simulation approach is that a long
model simulation will eventually sample all possible joint probability interactions (i.e.
all combinations of rainfall input and runoff model conditions etc) within a system.
If this is the case, the derived flood distribution from these simulations can be
viewed as an accutate inference of the true flood distribution and therefore can be
used for engineering analysis and evaluation of flood risk. A drawback of the Monte
Carlo approach is the required input of a long rainfall record. In the absence of a
significant historical record, rainfall models can be used to provide the required data
but ate in turn reliant on adequate historical data for calibration. Accurate calibration
of rainfall models is particularly impottant in Australia where the variability of rainfall

at short and long term time scales is large.

Australia does have an extensive network of rainfall recording stations. These sites
tecord rainfall data in various forms ranging from a daily time step down to six-
minute resolution. While the size of historical daily recotds is often large, there are

very few six-minute (Pluviogtaph) recotds available of significant length. Indeed,



analysis of Australia's pluviograph records indicates that the average length of the
more than 900 pluviograph data sets available from the Buteau of Meteorology is
approximately 15 years. Only a small number of sites have a record length exceeding
40 years and of these only 40 or so remain active. Even with the high quality of
rainfall data in Australia, periods of missing or cotrupt data ate often present. Not
only does this lack of significant shott time scale data provide a major obstacle in the
application of a Monte Catlo apptroach to risk estimation, it also inhibits the
application of rainfall simulation models that use this data for ditect calibration. 'This
lack of data is particulatly important if we consider the tails of the flood probability
distribution where it is unlikely that a 15-year histotical record can provide accurate
estimates of a 100 year flood event. While the advent of numerous stochastic rainfall
models provide methods for extending historical rainfall records, without adequate

historical rainfall data available for calibration their accuracy 1s questionable.

This thesis describes the development of a new technique which significantly extends
the applicability of stochastic point rainfall models that require historical data for
calibration. The technique is demonstrated using a high-resolution point rainfall
model based on wet-dry alternating storm events. The original model presented by
Heneker ¢/ al. (2001) uses storm events which ate defined by the observed event
distributions of dry periods, storm event durations and storm intensity conditioned

on storm duration and replicates this event structure during simulation.

Significant improvements to the otiginal model ate presented as the first patt of this
thesis. 'The parameterisation used to describe the event distributions has been
simplified and the number of parameters reduced resulting in a model that is more
robust and easier to calibrate. In addition, the Mettopolis algorithm (Metropolis ez al.
(1953)) was incorporated into the model providing a description of the posterior
distribution of model parameters and as a tesult enables a description of parameter
uncettainty within the model structure. These imptovements have produced a model
that is well defined and can be vigorously compared against numerous observed
statistics in a quantitative manner. Simulation results indicate that the modecl is able

to replicate both calibrated and non-calibrated statistics at various time scales.



The otiginal model required the use of a long pluviograph record at the site of
interest to ensute an accurate calibration of model parameters. To circumvent this
testriction in the application of the model 2 new ‘master'- 'target' scaling relationship
has been developed and incotporated into the model. A model calibration is
undertaken at a ‘mastet’ site with a long pluviogtaph record which is then updated
and scaled to the ‘target’ site of interest using the information from either a short
pluviograph or daily rainfall record. This structure has removed the need for
significant pluviograph data at the ‘target’ site and enables the rainfall model to be

applied at sites with short pluviograph or daily rainfall records.

The approach has been tested at numerous pairs of sites providing evidence of its
success in generating accurate synthetic pluviograph data across the countty and
within vatious climatic regions. Model results are presented and compated for both
the obsetved pluviograph data (for individual storm and sub-daily statistics) and daily
data (for longer aggregated statistics) available at the target sites and compares well to
Australian data. The rainfall model presented in this thesis can be used to provide
accurate synthetic rainfall data at sites with minimal historical rainfall data providing a

powetful tool for application in hydrological risk analysis across Australia.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The design and analysis of complex hydraulic engineering systems is typically risk-
based. Underground urban pipe networks, bridges, culverts, channels and wetlands
are all designed to cope with natural stormwater flows of a certain flood magnitude.
The estimation of how often these systems will fail (ot the probability of observing
an event that exceeds an assumed design level — flood risk) is fundamental to the risk

analysis process.

The estimation of flood risks relies on joint probability theory where the
combination of inputs such as rainfall and a description of the hydrological/hydraulic
runoff process determine the probability distribution of flooding events. Within
Australia engineers often use the approach presented in Australian Rainfall and
Runoff (referred to as ARR) (Institution of Engineers Australia, 1987) which is
known as the design storm approach. The method for evaluating flood risk
probabilities is based on a design rainfall storm for which “the intention is to detive a
flood of selected probability of exceedance from a design rainfall of the same
probability” [ARR, p6]. This approach relies on the assumption that median values
of all other variables other than rainfall (such as losses, base flow, temporal patterns
and hydrograph model parameters) can be used and still estimate an accurate runoff
representation providing a flood of the same exceedance probability as the input
design storm. Unfortunately, ARR does not demonstrate that this objective is

achieved and indeed admits that “there is a need for research to test this approach”.
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The problem of estimating flood risk can also be solved empirically using a Monte
Catlo continuous simulation model which requires simulating the flood response due
to a long rainfall record and empirically deriving the resultant flood probability
distributions. This technique wotks on the basis that a sufficiently long simulation
will eventually sample almost all possible joint probability interactions (ie. all
combinations of rainfall input and possible runoff conditions etc). If this can be
achieved successfully, the detived flood probability distribution can be viewed as an

accurate inference of the true flood probability distribution.

Despite the theoretical supetiority of the continuous simulation approach, designers
actoss Australia continue to adopt the design rainfall method as the method of
choice not only due to its simplicity, but also due to the problems associated with
using continuous simulation models in the past. These models rely on a large
number of Monte Catlo simulations, which in turn requires significant computational
effott and storage space. Previously this could be seen as prohibitive, however with
the continual increase in the power and availability of personal computers, this issue

has become less relevant.

A more significant issue is the availability and length of historical rainfall records
available for use in Monte Catlo applications. This is particularly important if we
consider the tails of the flood probability distribution where it is unlikely that a 15-
yeat histotical record can provide accurate estimates of a 100 year flood event. While
the advent of numerous rainfall models can provide a method for extending
historical rainfall records, without adequate historical rainfall data available for
calibration their accuracy is questionable. In particular, models which attempt to
produce synthetic rainfall at the sub-hourly time frame are often susceptible to
insufficient calibration data for the complex processes that these models are
attempting to reproduce. This is particularly relevant for analysis of systems where
initial catchment conditions ot storage volume is important (i.e. flood analysis or
when investigating Water Sensitive Utban Design components in new ot existing
stormwater systems). Without the local availability of significant high resolution data
for calibration or a technique to use alternate additional data soutces (i.e. daily), these
models will continue to temain restricted in their application and usefulness as an

engineering tool.
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The Australian Government’s Bureau of Meteorology is tesponsible for the majority
of climate stations actoss the country recording various climatic variables including
wind, solar radiation, cloud cover and rainfall. If we consider rainfall recording
stations to understand the calibration data available for high tesolution rainfall
models, then these stations are defined as belonging to one of two types, either the
obsetved rainfall depth 1s recorded over a given day (Daily gauge) or continuously on
a chart (Dines pluviograph) while the tipping bucket rain gauges record the time of
tips. The distribution and length of these rainfall stations across the country
provides a snapshot into the potential availability of calibration rainfall data within

Australia.

At the time of writing the Bureau of Meteorology administered approximately 942

pluviograph rainfall sites in total across the country (see Figure 1.1).

R e o W Y
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Figure 1.1: Australian Bureau of Meteorology: Pluviograph Recording Stations

A first glance gives the impression that this number of gauges could be considered an
excellent basis fot rainfall model calibration and provides a useful data tool for

engineers in general. However, further analysis into the extent of this data reveals
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significant inadequacies. Of the 942 pluviograph sites in Australia, the combined
average length is only approximately 15 years. Even if this value is slightly biased by
a number of sites that are relatively new (ot were recorded for a specific purpose and
contain only a few years of record), more alarming is the fact that of all sites that are

still active, only 36 have a record length greater than 40 years.

Assuming 40 years of historical record is adequate for model calibration, Figure 1.2
displays the sparse nature of these pluviograph calibration sites available in Austtalia.
Complicating issues further is that these historical records often contain sections of
missing or erroneous data (faulty gauges, time aggregated rainfall totals), which
present another obstacle (and a potential reduction in data length) in using this data

to successfully calibrate high resolution rainfall models.
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Figure 1.2: Australian Bureau of Meteorology: Pluviograph Recording Stations with a
Historical Record Greater than 40 Years

Further analysis of Figure 1.2 shows that while sparse in number, the long term
pluviograph records across Australia are located at the major Australian centres and

are distributed throughout the major climatic regions. These climatic regions are
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shown in Figure 1.3 (i.e. Tempetate climate of Adelaide/Melbourne/Sydney, Sub-
Tropics of Brisbane, the Desert of Alice Springs etc). The distribution of long term

sites across majot climatic regions enables these sites to be used as a basis for

potential regionalisation work.
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Figure 1.3: Climate Classification of Australia (Australian Bureau of Meteorology website)

In addition to the network of pluviograph stations, the Bureau of Meteorology
administers approximately 18,000 daily tecording stations (See Figure 1.4). These
rainfall stations provide daily records not only across mainland Australia but also on

islands off shore and even across Antarctica (not shown).
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Figure 1.4: Australian Bureau of Meteorology: Daily Recording Stations

If the assumption of a 40 year calibration record is continued, then there are in
excess of 7,300 daily sites which contain a sufficient data record and just over 4,400
of these are still active. For models that are able to utilise daily data for calibration,
the Australian data set provides a comprehensive number of sites to choose from
with a distribution across the nation that almost guarantees an adequate calibration
site can be found within close proximity. In locations where no data is available,
techniques also exist which provide interpolated daily data recotrds at the site of
interest based on neighbouring data sites. These in turn can be used for model

calibration.

The compatison between potential pluviograph and daily calibration sites presents a
stark contrast. Not only are there more active daily stations with long historical
records (4,400) than the total number of pluviograph stations (932) within Australia,
pluviograph stations in general have been focused on major centres along the coast.
Figure 1.5 displays the extensive coverage of daily sites in direct compatison to their
pluviograph counterparts when considering only those sites with more than 40 years

of record.
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Figure 1.5: Australian Bureau of Meteorology: Pluviograph and Daily Recording Stations
with a Historical Record Greater than 40 Years

It is clear that any model relying completely on significant historical pluviograph data
for calibration is severely limited in its application in Australia in contrast to models
capable of using daily data records. If a continuous rainfall simulation model was
developed with adequate complexity to capture the sub-daily rainfall characteristics
but also structured in a manner to utilise the limited information available from a
daily calibration site, it is also clear that such a model would provide a valuable

hydrological tool capable of wide spread application across Australia.

1.2 Aims

Continuous simulation models can provide significant advantages over the design
storm approach to engineeting analysis and design, however these models require a
description of the stochastic rainfall input. In the absence of a significant historical
record, rainfall models can supplement the histotical information, however high
resolution rainfall models in particular ate limited in their application due to the

spatse natutre of calibration records and periods of time within these records which
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are missing or have been influenced by malfunctions ot errors with the recording

apparatus.

The ultimate goal of this research was to provide a rainfall simulation model which
could successfully simulate accurate synthetic pluviograph records at sites across
Australia with minimal or no historical pluviogtaph data. To achieve this objective

five aims were developed:

(1) To develop or select a rainfall model capable of simulating synthetic

pluviograph data;

(2) To refine and improve the rainfall model by including uncertainty and a
Monte Carlo simulation structute ensuring the calibration process is robust

and comparison to observed data is accurate.

(3) To verify the accuracy of the rainfall model by analysing its performance and
structure at sites with significant pluviograph records for calibration and

compatison;

(4) To extend the application of the model to sites with minimal historical

pluviograph data available for calibration and finally;

(5) To extend the application of the model to sites with only histotical daily data

and no pluviograph data available for calibration.
1.3 Research Outline

The outline of this research can be presented with a description of each chapter.
Chapter 2 contains a review of cutrent methods or approaches available for rainfall
simulation and desctibes the rainfall model selected for re-development. After a
review of point rainfall models (including Poisson, Cluster, Markov and Alternating
Renewal Models), an alternating renewal model introduced by Heneker ez a/. (2001)

was selected for further development and use. The selected point rainfall model
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introduced by Heneker ez a/. (2001) calibrates to storm event data extracted from
histotical pluviograph records and as such is not vulnerable to missing or corrupt
data petiods in the historical record. The model was also able to reproduce both
calibrated and non-calibrated statistics when applied to sites across various climatic
tegimes in Australia making it an ideal choice for further investigation. Chapter 3
considers the Heneker ¢ /. (2001) model further and presents enhancements to the
model structure and calibration process which improve the robustness and accuracy
of the model calibtation. This is particularly important if the model was to be
calibrated successfully at sites with little or no pluviograph data. Chapter 4 considers
parameter uncettainty and how including a description of uncertainty within the
model can be used to improve statistical compatisons to observed data sets. Chapter
5 presents a validation of the improved model against numerous Australian data sites
actoss a range of climatic conditions. This provides evidence of the models
petformance with adequate calibration data and its ability to replicate required

observed statistics.

Chapter 6 develops a new calibration process which enables the rainfall model
parametets to be calibrated at site locations with only a short historical pluviograph
data recotd. In its original form, the adopted rainfall model (as is the case with most
rainfall models that describe the rainfall process at a sub-hourly scale) required a
significant length of historic data for accurate calibration. To provide a method for
calibrating to a short historical record, a master-target relationship is introduced.
This telationship is developed to exploit the similarities in the model parameters
between two sites which reside in a similar region. This master — target framework
uses the selection of a mastet site containing a long pluviograph record as a basis
with which the model can be accurately calibrated initially. This initial calibration is
then updated by the limited pluviograph information available at the target site of
interest. 'This mastet-tatget calibration approach ensures the model is able to

desctibe the rainfall process at the target site with minimal calibration data.

In addition to developing a process for shifting each model parameter, a technique
was requited to deal with the major issue of the different lengths and time periods
over which the master and target data sets were observed. In order for the process

to be successful, concurrent data petiods were required for comparison at the master
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and target site to ensure any calibration of the model when shifting from the mastet
to the target site was a reflection of the requirements of the model parameters and
not a reflection of the differences in data time periods. To citcumvent this issue a
pivotal intermediate calibration step is also introduced which enables the model to
capture variations that exist between the two sites as a result of their different record
lengths and non-concutrent data periods, which are then taken into account ptiot to
a final comparison between the sites to shift the model parameters from the master
to target sites. The overall approach is then tested by selecting target sites with
sufficient data for compatison (but only using a sub-set of this data for calibration),
providing evidence of its success in generating accurate synthetic pluviograph data at
sites across the country and across vatious climatic conditions. Model results atre
presented and compared for both the observed pluviograph data (for individual
storm and sub-daily statistics) and daily data (for longer aggregated statistics)

available at the tatget sites.

Chapter 7 develops a process for calibrating the pluviograph rainfall model at sites
with no historical pluviograph data. A master-target relationship similar in structutre
to Chapter 6 is developed with the master site consisting of a long pluviogtaph
record while the target site contains only daily data. Initial calibration is completed at
the master site, forming the basis for furthet calibration to the daily record at the
target site. This approach ensures the model can successfully capture the undetlying
structure of the sub-daily rainfall (through the calibration at the master site) while
having the ability to capture the required rainfall differences (through the use of daily
data) that occur at the target site. A simulated likelihood fitting apptoach is
developed to facilitate this process and enable direct comparison between aggregated
master simulation data and the observed daily data at the target site. Model results
are presented for the same pluviograph sites as used in Chapter 6 which enables a
comparison of the accuracy of the two approaches (with and without pluviograph
data) and ensures sub-daily statistics are successfully reproduced when calibrating

with daily data at the target site.

Finally conclusions and recommendations of the research presented in this thesis are

made in Chapter 8.

10



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The modelling of hydrological engineering systems often requires the input of a long-
term historical rainfall record. Fot example, volume based design of a stormwater
detention or wetland system involves the interaction between existing system levels
and incoming flow. Similatly the runoff tresponse from the catchment itself which
determines the incoming flow is dependent on the initial conditions of the catchment
and whether it has been a relatively wet or dry period. These problems can only be
accurately modelled through the use of a continuous water balance simulation. In
the absence of a significant historical tecord or to provide further engineering system
evaluation through continuous simulation, rainfall models can be used to provide
synthetic records as inputs into such system simulations. A major issue which
confronts the users of rainfall models, patticularly those which attempt to reproduce
rainfall at the sub daily time step, is the lack of quantity and quality within historical
rainfall records available for model calibration. With this in mind this chapter
reviews the developments of stochastic point rainfall models at various time scales
and current tegionalisation techniques. This review has identified a particular point
rainfall model that is suitable for further development and the key features of a new
regionalised framework that will enable the model to be applied at numerous sites

across the country.

11
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2.2 Physical Process of Precipitation

Precipitation is the primary source of the Eatth’s water supplies and is the blanket
term used to describe rain, snow, hail and all other forms of moisture that fall from
clouds in the atmosphere. The physical generation of precipitation can only proceed
when four processes occur in sequence. Initially there must be a cooling of moist air
to the dew point temperature. This is usually a product of warm moist ait cooling as
it rises through the atmosphere. Once this occurs, condensation follows forming
cloud droplets or ice crystals. This is a complex process and relies on the presence of
dust and aerosols in the atmosphete to provide a sutface for condensation to occut.
The efficiency of the condensation process is influenced by the size and number of
these microscopic particles that are available (Butroughs, 1999). If these patticles are
not present in the atmosphere, the condensation process and thetefore precipitation
cannot begin. As time progtesses, crystals formed during the condensation process
continue to develop and grow forming raindrops. Finally a constant supply of watet
vapour provides the fuel required to ensure these processes continue to produce

precipitation in one of its many forms (Gilman, 1964).

The three dimensional interaction between these processes and the surrounding
atmosphere due to local and global circulation pattetns ensutres the precipitation
process can be considered pseudo-chaotic. Due to the complexity involved and out
lack of complete understanding, physical based models which attempt to
mathematically describe these underlying physical processes can only have limited
application both in the temporal and spatial scale (Cho 1985, Cho and Chan 1987).
The difficulty in producing such deterministic physical models that adequately
describe this complex and evolving process of tainfall have lead teseatchers to
concentrate on modelling rainfall stochastically to reproduce certain statistical

attributes of the observed data.

12
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2.3 Stochastic Rainfall Modelling

The stochastic modelling of rainfall is an invaluable tool for desctibing and providing
rainfall information to designers and engineers. Unlike deterministic models, which
attempt to model and reproduce the exact physical processes involved duting the
precipitation process, stochastic rainfall models are a generalised mathematical model
of the system used to reproduce obsetvable quantities and statistics. In the
stochastic model, the actual physical process of rainfall plays no part. Stochastic
models with a good theoretical structure will have model parameters that are based
on a physical charactetistic (such as storm duration); however this is not a pre-
requisite in models of this type. Yevjevich (1974) provided an interesting
compatison between determinism and stochasticity in hydrology and noted that the
best form of hydrological model is likely to be a combination of deterministic
measurable parameters with a stochastic model structure. This would seem to
provide a model that had reliable and understandable inputs but also enabled the
model to capture the vatiability and randomness often observed in natural processes
and systems. Raudkivi and Lawgun (1974) also discussed the use of deterministic
and stochastic models and concluded that it is unlikely deterministic models could be
applied in design situations due to the complexity and number of variables involved.
Continuing in this vein, Cho (1985) argued that it is more practical and justifiable to
assume a stochastic process for rainfall rather than try to develop a deterministic

model.

Typically stochastic rainfall models can be classified into two types. Stochastic
rainfall models that try to capture the characteristics of rainfall through time at a
single point are commonly teferred to as point rainfall models. Models that also
include the development and decay of rainfall over space as well as time and are
interested in how the rainfall fluxes actoss a catchment are referred to as spatial
rainfall models. As the purpose of this study was to provide accurate representation
of rainfall at a single point given limited calibration data, spatial rainfall models wete

not considered.

13
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2.4 Point Rainfall Models

The history of stochastic point rainfall modelling extends back to the 1930's. A
papet wtitten by Shamir (1965) refers to eatlier work by Slade (1936) where a
probability distribution was fitted to annual rainfall data. Since this beginning,
numetous techniques and methods of rainfall modelling have been developed. While
the number of rainfall models is large, generally they can be classified as one of three
main types. The first and possibly the best known rainfall models are those which
ate based on the Point Process. The genetal theory behind point processes is
outlined by Cox and Isham (1980) while the use of these processes and the
mathematical structure of various rainfall modelling approaches can be found in
Waymite and Gupta (1981a, 1981b, 1981c). Poisson models belong to the group of
Point Process models, as do cluster models which ate an extension to the Poisson
assumption. The second group of models are referred to as Matkov models.
Matkov models employ a discrete time step and inherit their name through the use of
a Markov conditional structure between subsequent time steps. As they are based in
discrete time, generally they have not been applied to a sub-daily scale. The final
group of rainfall models are based on the assumption of independent storm events
which ate typically defined as ‘wet’ or ‘dry’. As the model generates a synthetic
rainfall record through the altetnate simulation of these storm events, the models are

often referred to as ‘Wet-Dry Spell’ or Alternating Renewal models.

The development of rainfall models has been dominated by Poisson, Markov ot
Alternating Renewal models, allowing the selection of an appropriate model for this
study to focus in these areas. The development and propetties of each type of model
is presented in further detail below. In selecting 2 model to extend through a new
tegionalisation technique, attention was paid to the ability of the model to reproduce
statistics not used during its calibration process, which provide a valuable check of
the validity of the model. Attention was also paid to statistics which are ctitical for
engineering design purposes such as Intensity-Frequency-Dutation cutves. Finally if
a model is to be used as an engineeting tool, the modcl parameters should be
identifiable and easy to calibrate at any site. The parameter structure was also taken

into account when selecting the appropriate rainfall model.

14
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2.4.1 Poisson Models

A number of well known rainfall models in existence today are based on the Poisson
model structure which utilises the basic point process approach. The point process
approach describes the occutrence (position) of independent events in the modelling
space. For rainfall models the occurrence process defines the position of rainfall
occurrences in time ot the temporal position. Generally these models can assume a
continuous time process where events can occur at any point on the time axis, ot a
discrete time process where events must occur at certain fixed intervals ie. marks

located at daily intervals.

The simplest continuous-time point process is the Poisson process in which the
events can occur randomly at any point in continuous time. The Poisson process
assumes that the time between events is independent and exponentially distributed.
In addition, the number of events over a time interval is also independent and

Poisson distributed.

In a Poisson model if a magnitude ot rainfall intensity is attached to each occutrence,
the process is known as a matked point process, i.e. a2 mark or magnitude of intensity
for each rainfall event. If in turn these magnitudes do not have an associated
duration, i.e. the entire magnitude/depth occurs instantaneously at each mark in the
Poisson process then this can be referred to as a Marked Poisson or White Noise
model. Eatly wotk on models of this type includes that of Todorovich and
Yevjevich (1967) (see Figure 2.1) who considered the individual storm depths (U)
associated with a Poisson atrival process to be gamma distributed. Todorovic (1968)
and Todorovic and Yevjevich (1969) continued with this model structure but
abandoned the gamma distribution for rainfall amounts in favour of an exponential

distribution for seasonal precipitation.
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Figure 2.1: Marked Single Poisson Arrival Model / Poisson White Noise Model

Poisson White Noise models requite the determination of ‘independent’ storm
events to provide calibration storm data. In the latter wotk of Todorovic and
Yevjevic (1969) they used the assumption that a consecutive sequence of rain
obsetvations was considered an event. For the case of houtly data, if an hour of rain
was surrounded by two dty hours, then a storm of duration 1 hour is recorded.
Similarly the daily record can be distinguished into independent stotms by grouping
consecutive runs of wet days located between dry days. In this way the number of
storms and rainfall amounts over a certain time interval could be calculated and the

model parameters calibrated.

Eagleson (1978) extended the basic Poisson atrival model by including rectangular
rainfall pulses, rather than instantaneous rainfall bursts. He explicitly defined the
time between storms or intet-event time (t) and the storm duration (t) as
exponential distributions and used the ptevious two-parameter gamma distribution
(T'odorovic and Yevjevic, 1967) to model individual storm depths (see Figure 2.2).
His model was calibrated using independent storm events from a 10-minute time
resolution record and was successfully applied to estimate the disttibution of annual

rainfall given limited calibration data.
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Figure 2.2: Independent Poisson Marks (IPM) Model / Rectangular Pulse Model
(adapted from Eagleson, 1978b).

A further improvement to models of this type was proposed by Rodtiguez-Iturbe ¢/
al. (1984). The Poisson Rectangular Pulse model developed by Rodriguez-Iturbe ez
al. (1984) was still charactetised by an intensity (I) and associated duration (t;) that
were independent and identically distributed. The major advantage of their model
ovet previous rectangular pulse models was the ability of rainfall pulses from

different storms to ovetlap (see Figure 2.3).
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Figure 2.3 Poisson Rectangular Pulses Model
(adapted from Rodriguez-lturbe et al., 1984).

This is in contrast to the eatlier work of Eagleson (1978) where storm events were
considered independent and did not overlap. The simulated intensity at a point in
time is determined by the sum of intensities from each individual active storm event.
The resultant simulation had a mote realistic variation of storm intensity over time
and ensured aggregated statistics ovet numerous time scales could be calculated.

Rodriguez-Iturbe e al. (1984) exploited this result by detiving aggtregated rainfall
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moments at a given time scale and then used these parameters to fit to obsetved data.
In a similar result to Todorovic and Yevjevich (1969), they noted that the nature of
this process lends models of this type to be scale dependent given that parameter
estimates and accuracy in results are different when using data at different scales (ie.
daily rather than hourly time scales). They also suggested Poisson White Noise
models could not teproduce rainfall statistics for the houtly or daily scale due to the
correlation present at these time scales and the underlying independence assumption
used to form the Poisson model. Poisson White Noise models were also shown by
Foufoula-Georgiou and Guttorp (1986) to be inadequate for representing short-time
increment rainfall. Burlando and Rosso (1993) were also able to show that there was
no significant improvement in extreme event estimation when shifting from a
Poisson White Noise to a Poisson Rectangular Pulse model. They also suggested
that these models did not provide an adequate description of the tempotal vatiation
of intensity evident in real rainfall events. In otder to improve the reproduction of
the important internal storm event structure, a further extension of Poisson models

was developed which have become well known as Cluster models.

2.4.2 Cluster Models

Cluster models ate an extension of the Poisson and therefore the Point Process
approach and are generally a two-level process. At the primary level, rainfall
generating mechanisms or storm origins occur according to a Poisson process. Fach
storm otigin then gives tise to a group, ot cluster of rain cells. Within a clustet, the
distribution of rain cells is completely defined by the number and the distribution of
their position with reference to the storm origin. The superposition of these rain

cells provides the temporal definition of each storm event.

Two of the better-known cluster Poisson models are the Neyman-Scott and the
Bartlett-Lewis models. Both models are able to take into account the apparent
clustering of rainfall cells with respect to time. Howevet, they differ in their
treatment of the position of rain cells within the cluster structure. Neyman-Scott
models explicitly define the distances from each cell to the ptimary storm origin and
assign an approptiate distribution to this independent vatiable. In contrast Bartlett-

Lewis models assume that the interval between subsequent cells is independently
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distributed. This is the major difference between these two representations of the

clustering natute of rainfall and can be seen in Figure 2.4.
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Figure 2.4: Schematic of the Neyman-Scott and Bartlett Lewis Models
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The origins of the Neyman and Scott model trace back to the clustering structure
being used to describe the spatial distribution of galaxies (Neyman and Scott 1958).
Since then this structure has been successfully applied to model such things as the
occurrence of earthquakes (Vere-Jones (1970), Lawrance (1972)) and then rainfall.
Kavvas and Delleur (1981) first noted that the occurrence of daily rainfall in Indiana
exhibited a clustering structure which could be modelled using the basic Neyman-
Scott process. They used a geometric distribution for the number of rainfall events
in a given cluster and an exponential distribution for the distances of events from
their cluster centres. Their work concluded that the cluster model has the ability to
preserve the dependence structure and marginal probabilities of the rainfall process,
but the model form was homogeneous and could only be applied to stationary

rainfall occurrences.

Duting theit comparison of three rainfall models, Rodriguez-Itutbe er 4. (1984)
derived the second order properties of the accumulated rainfall amounts over
different time scales for a Neyman-Scott White Noise Model. They then applied
these results to fit a model to daily data in Denvet, Colorado and Agua Fria,
Venezuela. Rodriguez-Ttutbe ¢ al. (1984) observed that the Neyman-Scott model
was supetior in describing the rainfall process than the Poisson models for both the

houtly and daily rainfall data they examined.

Valdes ez al. (1985) te-examined the time scale dependency for the three models
(Neyman-Scott White Noise, Poisson White Noise and Poisson Rectangular Pulse).
This involved determining whether the parameters ate consistent when estimated
from data at different time scales. From their analysis, the Neyman-Scott process
appeated the best option in terms of parameter stability. While their Neyman-Scott
White Noise model outpetformed other models over the various time scales that
were analysed, theit results indicated an inability of the model structure to preserve
the extreme value distributions (storms at the extreme high end of the rainfall

distribution).
Foufoula-Geotgiou and Guttorp (1986) also studied the Neyman-Scott White Noise

model in their analysis of event based data and concluded that the model cannot be

time-scale invariant and that the application of the model should be restricted to the
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time scale of the available data. They examined alternate fitting routines and noted
the insufficiency of the second-order statistics in identifying the underlying
continuous ptrocess, patticularly when using daily data. Foufoula-Geotgiou and
Guttorp (1986) were also able to show that the choice of distribution to represent the
cluster size was a great influence on the generated rainfall sequence and found a
better fit through the application of a negative binomial rathet than a geometric or
Poisson distribution. While the Neyman-Scott White Noise model provided good
agreement with observed rainfall, it was concluded that the model did not provide an
adequate description of the underlying rainfall process and that model patametets

were difficult to define due to a lack of physical meaning.

The inadequacies of previous models led Rodriguez e# al (1987a) to introduce the
Neyman-Scott Rectangulat Pulse and the Bartlett-Lewis Rectangulat Pulse model. A
Poisson and a geometric distribution for the number of cells within a cluster were
considered for the Neyman-Scott model and a geometric distribution chosen for the
Bartlett-Lewis. Both models assumed the distribution of storm cell duration to be
exponential. Rodtiguez-Itutbe ¢f a/. (19872) detived the second otder properties of
the aggregated process for both the Neyman-Scott and Bartlett-Lewis models and
the probability that an arbitraty interval is dry for the Bartlett-Lewis model.
Cowpertwait (1991a, 1991b) extended this and provided an expression for the
probability that an arbitrary interval is dry for the Neyman-Scott model.

In applying their new models and analysing data from Denver, Rodtiguez-Tturbe ¢f al.
(1987b) concluded that they were capable of reproducing the observed statistics at
various levels of aggregation but had problems reproducing the probability of zero
tain and extreme rainfall values. They found that one set of parameters could
effectively represent all levels of cumulative rainfall from 1 to 24 hours and that the
parameters of the two models (Neyman-Scott and Bartlett-Lewis) were often
identical. These results wete reinforced by Cowpettwait (1991b) who applied the

Neyman-Scott model to houtly data in England.
To imptove the prediction of zero rain periods at each aggregation level, Rodriguez-

Itutbe et al (1988) proposed a modification to the Bartlett-Lewis model and

introduced randomness into the mean rain cell duration parameter between events.
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Application to houtly data in Denver and Boston showed an improvement in the
reproduction of zero rain periods, however the simulation of extreme rainfall values
temained a problem. TIslam e /. (1990) also applied the modified Bartlett-Lewis

model to houtly data in Italy and showed similar results.

Butlando and Rosso (1991) provided a compatison between the modified model
structure introduced by Rodriguez-Tturbe ef a/ (1988) and Islam ef a/ (1990) and the
otiginal Bartlett-Lewis and Neyman Scott Rectangular Pulse models. Using the same
hourly data from Italy, they were able to show that the modified model did not
ovetcome the inadequacies of the otiginal models and that the increase in complexity
was not warranted. Butlando and Rosso (1991) also pointed out that while the
Bartlett Lewis process allows for an easier mathematical framework and a larger
number of relationships for calibration, it is regularly outpetformed by its Neyman-

Scott counterpart.

Entekhabi ez al. (1989) followed a similar path to Rodriguez-Iturbe e /. (1988) and
introduced modifications to the Neyman-Scott model in otrder to improve the
reproduction of dry probabilities and extreme values. By applying a gamma
distribution to randomly vary the mean rain cell duration, structural inter-storm
variability was introduced. Similar to the tesults found by Rodriguez-Iturbe ez /.
(1988) with the modified Bartlett-Lewis model, thete was a significant improvement
in the reproduction of dry probabilities; however the reproduction of extreme values

remained a problem.

Velghe ef al. (1994) motivated by the increasing number of modified models in the
literature provided a compatison between the original Bartlett-Lewis and Neyman-
Scott models and the modified models introduced by Rodriguez-Itutbe ef 4. (1988)
and Entekhabi e/ 2/ (1989). They confirmed an improvement on the otiginal models
in terms of the reproduction of zero depth probability and to a lesser extent the
extreme values. Howevetr Velghe ¢ a/. concluded that the models had lost accuracy
in reproducing the second order statistics duc to the higher complexity ol patameter
estimation involved. They also found that the Bartlett-Lewis model was mote

sensitive to the moment equations used during calibration, and that the reported
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improved results wete the result of only one data set and were not sufficient to

suggest that cluster models in general were suitable for modelling rainfall.

Cowpertwait e al. (1996a, 1996b) applied the Neyman-Scott Rectangular Pulse model
in their work on sewer rehabilitation studies in the United Kingdom. The
introduction of daily transition probabilities provided an improvement to the otiginal
poor reproduction of dty sequences and dry day proportions. Results indicated that
the model was still not able to adequately reproduce extreme values particulatly with
a return period greater than 5 years. This was satisfactory for the purposes of a
sewer rehabilitation study where events with return periods less than 5 yeats are of
primary concetn; however for the purposes of most engineering design practices, this
is not adequate. An over-simplification in the parameterisation of the model in
particular the averaged intensity of the model’s rain cells, was given as a reason for

the difficulty in reproducing extreme values.

Onof and Wheatet (1993) provided a further extension to the Bartlett Lewis model
by initially incorporating a gamma distribution to describe rain cell duration. Results
indicated an overestimation of the auto-correlation statistics and mean inter-event
times; however the model did improve the reproduction of dry interval ptoportions.
The simulation of houtly data indicated additional problems with the ovetestimation
of extreme values for return periods greater than two years and the average event
duration. Further modification with the supetposition of a jitter process on each
rectangular pulse was incorporated by Onof and Wheater (1994). This was
introduced to provide a more realistic representation of the rainfall process and to
improve the auto-cotrelation results. While improvements in the reproduction of
extreme events and auto-correlations were evident, difficulties wete encountered

duting parameter estimation due to the large number of model parametets.

Gyasi-Agyei and Willgoose (1997) followed Onof and Wheater (1994) and developed
a combination model. Based on the Bartlett-Lewis model, they incorporated an
auto-tegressive jitter process to fix the deficiencies in the modelled second-order
properties. Using 15 minute data from central Queensland, they were able to show
improved results when compated to the otiginal Bartlett-Lewis model (Rodriguez-

Itutbe ¢f al. (1987)) and the modified randomised Battlett-Lewis model (Rodriguez-
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Tturbe ¢/ al. (1988)). Gyasi-Agyei and Willgoose (1999) further generalised their
model by replacing the Bartlett-Lewis model with a binary chain to reptresent the
rainfall process. The binary chain presetved the dry and wet sequences as well as the
rainfall mean while the correlated jitter was again employed to improve deficiencies
in the second order propetties. Two possible binary chain models were considered
(a non-randomised Bartlett-Lewis model and a Markov chain model) with the
Bartlett-Lewis model being preferred due to a lesser number of parameters. While
the authors show improved results in comparison to eatlier models, no aggregation
levels greater than 24 hours, Intensity-Frequency-Duration (IFD) cutves ot extreme

values were shown.

Calenda and Napolitano (1999) provided an investigation into the estimation of
parametets for the Neyman-Scott models. Their calculations showed that the
estimation of model parameters by the method of moments is significantly affected
by the choice of the aggregation scale of the data and if equations at different
aggregation scales are used, the difference in these scales is also an issue. When the
aggregation scales chosen are too close, the resulting objective function is very flat

and ensures the optimal parameters are difficult to find.

Cameron e a/. (2000) provided an evaluation of an exponential model adapted from
Eagleson (1972), a data-based model from Cameron ¢ 4/ (1999) and the random
parameter Bartlett-Lewis Gamma Model of Onof and Wheater (1994). While they
were able to again show the merits of using a clustet based model to represent
rainfall and general statistics, the reproduction of extreme values was pootr. To
overcome this, Cameron ¢f @/ (2001) introduced a generalised Pareto distribution to
represent depths of high intensity rain cells and improve the reproduction of extreme
values. They concluded that the reproduction of previous aggregated statistics was

reasonably consistent and that the modelling of the extremes was improved.

Koutsoyiannis and Onof (2001) introduced a disaggregation process for the
generation of houtly data that aggtregate up to the given daily data totals. Their work
combined a cluster Bartlett Lewis process with a process to adjust the finer time scale

data so as to obtain the required coatser data. They used data from the United
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Kingdom and the United States to test the petformance of their methodology and

were able to preserve most of the statistical properties of the rainfall process.

Extending the single site disaggregation, Koutsoyayiannis, Onof and Wheater (2003)
developed a methodology for the spatial-temporal disaggregation of rainfall. Using a
hybrid model with temporal charactetistics based on the Bartlett-Lewis Rectangular
Pulse model, they combined univariate and multivariate rainfall models operating at
different time scales. These models were used to derive spatially consistent houtly
rainfall series in areas where only daily data is available. While providing encouraging
results, the authors noted deficiencies in the results with over predicting very low
values of dry periods and simulating low intensity during events when the intensity is

actually zero.

All of the work on Poisson models discussed above rely on neat perfect data sets for
calibration. Their calibration process traditionally relies on aggregation statistics
which can be cotrupted by sections of etroneous or missing data. Cowpertwait
(1991a) proposed that if only a few data points were missing in a month of data,
these were to be taken as zero and if a significant number of points were missing that
month was to be deleted from the record. If numerous months wete deleted, then
that year was discarded from the record. If a different month was missing from the
same record, then the cottesponding month in the deleted section is inserted.
Cowpertwait had the advantage of dealing with rainfall records that contained very
small amounts of cotrupted or missing data (1% missing). Numerous data sets in
Australia have a missing or cotrupted percentage closer to 6% - 10% (Heneker ¢t al.
(2001)). Gyasi-Agyei (1999) in their application to Australian data discatds entire
months with any missing data, ensuring valuable information is lost. This may have
an adverse impact on the ability of the model to replicate the observed statistics
given the increase in missing data may affect the calibration statistics, patticularly for

short records.
While Poisson models and in particular cluster models are extremely popular in the

literature, questions remain as to the ability of these models to represent zero depth

ptobabilities and extreme values. The reproduction of extreme values is often critical
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in a design situation and these models must be used with particular attention to this

detail particularly at the small time scale.

2.4.3 Markov Models

An alternative approach which can be used to reproducc the rainfall occurrence
mechanism and any associated dependence structure is the Markov Chain. Markov
chains work on the basis that the present state for a given time interval is dependent
upon the state(s) of the previous time interval(s). A first ordet Markov chain
calibrated to simulate daily data would simulate day x based upon the state of day x-1.
A second order model would take into account the states of day’s x-1 and x-2 etc.
This same Markovian structure can be applied to models that are tequited to work at
smaller or larger time scales. The controlling factor in a Markov chain is the
transition probabilities, which govern the chance of observing a patticular new state,
given the previous state(s) of the model. Matkov models are completely defined by
the initial probability disttibution and their transition probabilities, which are usually
in the form of a probability matrix. Waymire and Gupta (1981a) provide 2 good
mathematical summary of the Markov process. Assuming the variable (Y) to be

Markov dependent, let the transition matrix be denoted by

le:pDD wa]
Pow Pwbp

Wherte ppy, is the probability that the ith interval is dry given the previous (@-1th
interval is dry and is described as:
Ppp = prob(dry —dry)=P(Y;=0]Y,_, =0) i=12,..

and

Pwp =1-ppp

while pyy is the probability that the ith interval is wet given the previous (i-1)th
interval is wet and is described as:
Pww = prob(wet — wet) = P(Yi =0|Y,, = 1) =12,

1

and

Pwo =1-Pyw

26



Chapter 2: Literature Review

A graphical representation of a first order two state Matkov chain can be seen in

Figure 2.5.
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Figure 2.5: Two-State First Order Markov Model Structure

Markov chains have been a popular method for representing the daily occurrence
process due to their explicit description of the dependence structure evident at this
scale. Gabriel and Neumann (1957, 1962) were one of the first to apply a fitst order
Markov chain to model the daily rainfall occurtence process with some success.
Their Markov chain consisted of constant transition probabilities over the year (a
homogeneous parameter set), and found that their model was adequate to describe
data for Tel Aviv. Adapting this approach, Caskey (1963) and Weiss (1964)
incotporated vatiation in their transition probabilities over the year (non-
homogeneous) and applied this to several cities in the United States with varying

SucCcCess.

A first order Markov chain was applied by Hopkins and Robillard (1964) to data
from Canada. Their model was unable to describe the daily rainfall process in
months that histotically contained vety little rain with only a few rain days. Green
(1964) showed that the first order Matkov chain proposed by Gabtiel and Neumann

(1957, 1962) was outperformed by an alternating renewal model when comparing
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certain conditional probabilities (See Section 2.4.4 for a description of the alternating
renewal process). In further findings, Green (1965) concluded that the geomettic
memoty of the first-order Markov chain is not adequate to describe long droughts ot
wet spells. This result is particulatly important for models calibrated to Australian
data where often long term dry spells are evident. Feyerherm and Bark (1967) also
showed that a first order model was inadequate in describing the higher-order
dependence of daily rainfall in Indiana and introduced a second otder Markov chain

for this purpose.

Smith and Schreiber (1973) suggested that the earlier work of Weiss (1964) and
Gabtiel and Neumann (1962) was based on what could be refetred to as frontal rain
storms, and extended this earlier work by analysing air mass thundetstorm data in
North America. They compared a first order Markov chain to a simple independent
event-based Bernoulli model. The Matkov chain model was able to describe
numerous statistical properties of the thunderstorm occurrence process. However,
the authors conceded that there is no evidence that this occurrence process is a
stmple Markov structure ot that a higher order model would not improve tresults. In
order to increase their Markov chain model's accuracy from year to year, an
additional annual variance was incorporated on top of the nonhomogeneous

transition probabilities.

Initially the application of Matkov chains was predominately restricted to replicating
the occurrence process of daily rainfall and less attention was focused on
incotporating a model for rainfall amounts. Haan ez a/ (1976) combined the
simulation of both the rainfall occurtence process and depths via a first order
Matkov chain with a seven-state (one dry, six wet) transition probability mattix.
Ramnfall was divided into classes, where the class boundaties for the states of the
Markov chain were found using a geomettic progression. The disttibution of rainfall
amounts within a class were considered uniform with the exception of the last class
in which a shifted exponential was used. While the seven-state model petformed
well, there was an over-estimation of simulated rainfall amounts in each class, which

in turn produced a consistent error in annual rainfall totals.
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Pattison (1965) modelled the houtly rainfall process by the combination of a first
order and a sixth order Markov chain. During the simulation procedure, if the state
of the previous hout was wet, the model used a first order dependence structute to
determine the cutrent state. If the ptevious hour was dry, the model used a sixth
order structure to determine the state of the current hour. Pattison simulated rain
amounts by incorporating 20 rainfall states and using transition probabilities. These
transition probabilities were varied from month to month. While the model was
capable of replicating the charactetistics of the houtly rainfall process during storm

petiods, dry periods between storms were overestimated.

Srikanthan and McMahon (1985) developed multiple state models for the genetation
of daily, hourly and six-minute data and applied them to locations around Australia.
They used a sliding scale technique where generated rainfall values were
consecutively scaled using numerous transition probabilities from the original daily
value to houtly and then to 6 minute intetval rainfall events. The daily model
consisted of seven wet states with associated transition probabilities calibrated
monthly. The simulated daily depths were a result of the cutrent state of the model.
For the largest wet state, 2 normally disttibuted random variable was transformed via
the Box-Cox technique to give large simulated daily depths. The temaining wet
states in the model employed a similar procedure using a linear distribution. Results
indicate a reasonable compatison to various aggregated statistics, but the authors
acknowledged a less than satisfactory result in the reproduction of several maximum
daily rainfalls, wet and dry day runs and mean rainfall depths for three types of wet
days.

Their generation of houtly rainfall was developed as a two-stage process. Initially the
daily model was used to determine whether a day was wet or dry and given that a day
was wet, the type of wet day. Wet days were divided into two types based on the
daily rainfall depth and a dividing rainfall threshold. For each type of wet day a time
dependent second otder Markov chain was used to determine whether each hour in
the wet day was wet or dry. An houtly transition probability matrix was finally used
to genetate the houtly rainfall depths. The use of houtly transition probability
mattices that vary from month to month produces a2 model with a latge number of

patameters. While this was reduced by an adjustment to the model that grouped
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houts into blocks of four, the number of parameters is still large. A number of
statistics were compated to the observed data with a concession from the authors

that the results are less successful than the daily model.

Stikanthan and McMahon's (1985) 6-minute model was a combination of three sub-
models, a daily, houtly and a 6-minute model. The 6-minute model followed a
similar progression to the houtly model with the exception that houtly rainfall was
now also divided into one of four types. A 6-minute transition probability matrix
was incotporated to generate 6-minute rainfall values over a wet hour. If the hourly
rainfall depth exceeds 5mm, then continuous rain is assumed over the hour. While
showing satisfactory results, the increase in parameters to use this type of model at

the 6-minute level limits its application.

Rajagopalan e al. (1996) presented a nonhomogeneous Markov model for daily
precipitation. They assumed that the transition probabilities from state to state vary
smoothly over the year and estimated the corresponding Fourier seties using non-
patametric techniques. This enabled the model to be fitted for the entire year rather
than in homogeneous seasons or months, as is usually the case. While the model was
able to reproduce numerous statistics, the application of the non-parametric fitting
approach limits the extrapolation of daily rainfall values beyond the observed
maximum. This is also an undetlying problem of Markov models in general as the
estimation of transition probabilities generally relies on the observation of transitions
in the historical record. For short records, or records with large etroneous ot

missing sections of data this could introduce a bias to the calibrated probabilities.

Jimoh and Webster (1999) showed a first order Markov model was capable of
describing the occutrence process of wet and dry days in Nigetia. Their focus was
on techniques incotporating variation in the transition probabilities over the year.
The use of a Fourier series, averaging techniques or a combinations of these wete
found to be equally as good at providing the required non-homogeneity of model

parametets.

Although Markov chains appeat to provide a simple mathematical model of rainfall,

their dependence structure cannot describe the long-term persistence (droughts and
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floods) evident in short time-increment rainfall records. The frequency and
implication of these long dry periods in Australia ensures their accurate description is
of particular concern. When considering short time increment rainfall tecords (high
resolution; 5,6,10 minutes), small order Markov chains are also unable to desctibe the
clusteting effect present at such a fine time scale. Increasing the order degree of a
Markov chain to successfully describe the complexities of the high resolution rainfall
process would present a significant computational challenge and with alternate
effective models available, this apptoach is unnecessary. Of additional concern is the
reliance and resttiction evident through estimating transition probabilities from short
records, or records with large erroneous ot missing sections of data which can
introduce a bias to the calibrated probabilities. Disaggregation techniques can be
employed to enable a daily Markov model to generate sub-daily time scales, howevet
the extra model and subsequent parametetisation increases the models complexity

and possible regionalisation effort.

While Matkov chain models may be adequate for some sites and some seasons,
taking the above issues into account and additional concetrns through regionalising
Matkov chains due to their inherent site specific nature and the lack of discernable
physical meaning in their parameters, a mote appropriate rainfall model structure was

sought.

2.4.4 Alternating Renewal Models

Alternating renewal models (or Wet-Dry Spell models) are event based models which
replicate the occutrence process of rainfall by simulating wet and dry storm events.
These events atre continuous petiods of mostly wet ot continuously dry observations
that are assumed independent and separated from previous obsetvations by a
minimum independence criterion (typically a minimum period of no rain). It follows
that the event occutrence process for an altetnating renewal model is completely
defined by the probability distributions that describe the lengths of these wet (t) and
dry (t) events (sce Figure 2.6). The simulation proceeds by sampling alternatively
from the dry and wet spell probability distributions, until the required length of
record is reached. An additional probability model is then used to desctibe the

intensity (i) or depth of each wet storm event.
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Figure 2.6: Schematic of Alternating Renewal Process

A major advantage of the alternating renewal structute is the ability to calibrate to
data sets with sections of missing historical data. As the model is event based,
missing sections of data will only influence the calibtation if these periods
consistently contain rare storms not found anywhere else throughout the record.
Given that missing sequences from data records are typically random, this is usually
not an issue. The ability to use data sets that contain missing data is a major
advantage over models that calibrate to aggregation statistics (see for example
Poisson models Section 2.4.1) ot rely on a continuous data set to determine
transitions between rainfall types (Matkov models). Once the simulated time series
and gross rainfall amounts has been simulated, each individual storm event can then
be disaggregated to the required time scale providing a model that is capable of

providing synthetic high resolution rainfall data.

Green (1964) compared an eatly alternating renewal model to the eatlier Markov
model of Gabtiel and Neumann (1957, 1962). It was assumed that the sequence of
wet and dry days formed an alternating renewal process and FExponential
distributions wete chosen for the lengths of dry and wet spells. The renewal model
out performed the Markov structure for data at Tel Aviv, however neither model
wotked well for data from Chesite, England. The work of Green provided one of

the first definitions of what constitutes a 'storm' event.

In an Alternating Renewal Model (or Wet-Dry model) the historical seties must be

divided into independent wet and dry events. The independence critetion is usually a
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set length of dry petiod which is used to sepatate consecutive events. For the case of
daily data (as analysed by Green (1964)) a single dry day is often chosen as this
minimum dry ot minimum inter-event time. Thus a sequence of consecutive wet
days is considered to belong to the same wet storm event until a dty day is observed.
Any subsequent sequence of dry days is then part of the current dty event until a wet
day is observed and so forth. It is understood that 'real’ physical storms may have
petiods of no rain or dry petiods as part of their temporal structure, however due to
the coarse nature of daily data, this fact is overlooked. For the purposes of high
tesolution data (5, 6, 10 minutes) a minimum dry time in minutes ot houts is usually
chosen and used to define independent storm events. Once a wet event begins, the
event continues until a dry period is observed gtreatet than this minimum dty time.
This allows the definition of storm events for high tesolution data to proceed in a
similar fashion to the simpler definition for daily records; however it does have the
capacity to incotpotate dry periods less than the minimum inter-event time to be
included in wet events thus providing a more realistic representation of a storm

event.

Grace and Bagleson (1966, 1967) extended the eatlier daily wotk of Green (1964) by
introducing an alternating renewal model calibrated to a ten-minute rainfall record.
The minimum inter-event time used in their study was obtained by setially correlating
the historical rainfall depth seties. Through testing the rank cortelation coefficient
the lag at which there was no significant dependence was determined. A lag time of
140 minutes was found to provide this independence criterion for data in Vermont.
The Weibull distribution was calibrated to the distributions of inter-event times and
storm durations. A regression relationship between event depths and dutations was
developed with a Beta disttibution fitted to the residuals to incorporate a conditional
depth — duration relationship in order to simulate rainfall amounts. A similar
technique for defining the minimum inter-event time was also applied by Satiahmed
and Kisiel (1968) in their wotk on representing summer thunderstorm occurrence. A
minimum inter-event time of 3 hours was chosen and the Weibull distribution used
for the distributions of inter-event times and storm dutations. These models were
able to show satisfactory results. Grayman and Eagleson (1969) looked at houtly
data from Boston and found the storm dutation, depth and time between storms

were exponentially distributed.
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Restrepo-Posada and Eagleson (1982) provided an alternative approach to the
definition of storm independence. In contrast to the eatlier work of Grace and
Eagleson (1967) and Sariahmed and Kisiel (1968), they argued that the choice of
analysing rainfall depths for the purposes of independence was flawed and that it was
mote appropriate to investigate the independence of successive inter-event times
themselves for this purpose. By assuming a Poisson atrival process and therefore
inferring that the distribution of inter-event times was exponentially distributed, they
wete able to calculate an independence citetion to separate independent storms. An
iterative procedute was introduced to calculate an optimal minimum inter-event time
that ensured the resultant distribution of ‘independent’ inter-event times was
sufficiently exponential. ~ This simple algorithm given the assumption of an
exponential distribution for inter-event times was shown to work well at three arid-

climate sites.

Koutsoyiannis and Xanthopoulos (1990), Koutsoyiannis and Foufoula-Georgiou
(1993) and Koutsoyiannis and Pachakis (1996) also developed rainfall models based
on a Poisson process and followed the assumption of Sariahmed and Kisiel (1968)
that the distribution of intet-event times from independent events must follow an
exponential distribution. To satisfy this assumption, a minimum inter event time was
calculated and later used to distinguish independent events. Koutsoyiannis and
Xanthopoulos (1990) found this value ranged from five to seven hours for houtly
data while Koutsoyiannis and Foufoula-Georgiou (1993) and Koutsoyiannis and
Pachakis (1996) determined a time of seven hours, based on a Kolmogorov-Smitnov

test of the exponential disttibution.

Relationships and compatisons can be made between the alternating renewal model
and models of the Matkov Chain type. An altetnating renewal model is conceptually
similat to a Markov Chain where the probability of simulating a dry spell after a wet
spell is equal to unity without correlation. Roldan and Woolhiser (1982) compared
an alternating renewal model to a fitst order Markov Chain. The sequences of wet
and dry days wete simulated using a truncated geomettic distribution of wet day
intervals and a truncated negative binomial disttibution of dry days. They found the

Matkov Chain to be supetior at the four US cities studied. Small and Morgan (1986)
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detived a relationship between a continuous alternating renewal model and a Matkov
chain for the occutrence of daily rainfall. The gamma distribution was used for the
distribution of dry intervals and the wet intervals were assumed to be exponential.
They found that the Markov model worked well in some ateas of the United States,
however in other ateas the clustering structure appatent in tainfall occurrence could
not be modelled using a Markov Chain and was more accurately represented by the

alternating gamma model.

Foufoula-Geotgiuo and Lettenmaier (1987) developed a Matkov tenewal model to
analyse daily rainfall. In simple terms a Markov renewal process is different to the
generic Matkov chain as the probability of observing a wet day does not depend
solely on the state of the previous day (wet or dry) but on the number of days since
the last wet event. The model presented by Foufoula-Georgiuo and Lettenmaiet
(1987) assumed that times between wet events ot intet-arrival times belonged to
cither one of two types. Geometric distributions were used to describe the intet-
arrival times for each type, with an ovetlying Markov structure governing the
transitions from one type to the other. Rainy petiods followed each dry interval and
within rainy periods, the model behaves exactly as a Markov chain. (Le. regular
transition probabilities are employed to determine whether the next day is wet and
temains part of the cutrent wet event, or a new dry petiod begins and is therefore
sampled from the predetermined type 1 or 2 dry distribution). In otrder to
distinguish the historical events from the record, wet events were defined as any day
with measurable precipitation. Finally the distribution of rainfall amounts was
desctibed by an exponential distribution. The model was able to presetve the daily
statistics for data in Washington, but no wotk was undertaken on data at finer time
scales. Tt is also unclear as to the motivation behind the two types of dry petiods.
While the authors claim that one type may telate to dry periods between major storm
fronts and the second to subsequent dry periods which occur in the aftermath of
storm events, the authors note that the intet-atrival times from the obsetved record
cannot be classified directly as belonging to one type or the other. Only probabilistic
classification is available, ensuring these parameters have no physical meaning, are

not easily identifiable and difficult to extrapolate or regionalise to other sites.
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Hutchinson (1990) combined previous work on Markov chains and renewal models
to develop a three-state continuous Markov model. The first state of the model
represents a dry spell (state 1) which is always succeeded by state 2, state 3 is
identified as a wet spell and is also always succeeded by state 2 and finally state 2 is
denoted as a transition dry spell state which can be succeeded by either state 1 or 3.
As the mean duration of dry events from state 1 is greater than that of dry and wet
events in states 2 and 3, the resulting simulation produces rainfall events which
consist of a cluster of showers (consecutive petiods of state 2 and 3), similar to the
those of cluster based models. However as durations are incorporated ditectly, the
model structure ensures that showers occur sequentially unlike cluster models which
allow showers to ovetlap. This provided advantages over the previous cluster
models in terms of physical interpretation of parameters, mathematical tractability
and parameter estimation. A mixed geometric distribution was used to describe the
durations of dry petiods and the duration of overall rainfall events. Intensity was
included via an exponential process, which was auto-cotrelated for the duration of
each overall event, but independent from one event to the next. In effect, this
provides a representation of the temporal pattern of rainfall and was consideted an
improvement from previously accepted ideas of assuming intensity to be
independent of the duration of the shower and independent of the intensities of
other showers (Rodriguez-Tturbe e al. (1987a,b)). Incorporating a cortelation
between intensities within an overall storm provides a similar structute to alternate
models that employ a temporal pattern to disaggregate a uniform intensity pulse.
However the model of Hutchinson (1990) still ignotes any possible cortelation
between event duration and intensity as the intensity of an overall storm event is only
correlated to other event intensities within the storm and not the duration of the
storm. While the model had difficulties replicating the observed wet run statistics, it
was shown to outpetform the eatlier Bartlett-Lewis model of Rodriguez-Ttutbe ez 4.

(1987b) for non-calibrated statistics.

Lall ¢t al. (1996) used non-parametric techniques to describe the distributions of dry
spells, wet spells and rainfall amounts in theit alternating renewal modcl of daily
rainfall. Their model also incorporated extra information in terms of the joint and

conditional distributions of wet and dry spell durations. While their model was able
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to reproduce some of the daily statistics for data in Utah, the sample sizes required

for their model is significant and limits its application.

Wong (1996) used an alternating renewal model structure with monthly parametets
to simulate a synthetic 6-minute rainfall record. The first order Matkov equation
with a transformed gamma disttibuted random variable was used to generate inter-
event times and storm durations. The generation of event intensity was based on the
intensity-frequency-duration cutves for the site. Cutves were estimated from the
histotical record for storm durations of 0.5,1,3,6,9,12,18,24 and 72 hours. Other
durations wete linearly interpolated from these values. Presented results for
simulated intet-event times and storm durations showed a reasonable comparison to
the obsetrved values however the model genetated some unrealistic long storms
prompting the proposition of an upper limit on the simulation. A discrepancy in the

number of storms (7%) between simulated and observed was also noted.

Lambert and Kuczera (1996) undettook an extension of the eatlier wotk of Eagleson
(1978) and described the distributions of inter-event times using a gamma
distribution, storm durations using an exponential distribution and the cortesponding
intensity by a generalised Pateto distribution (Rosjberg ¢ a/. (1992)). They desctibed
an intra-storm disaggregation scheme based on a constrained random walk through
dimensionless depth-time space. This disaggregation scheme was developed to
circumvent one of the disadvantages of wet-dty modelling in that once a storm has
been identified, the internal characteristics of that storm need to be reproduced
during the simulation. The disaggregation scheme proposed by Lambert and
Kuczera (1996) ensured the internal rainfall patterns remained, however an

underestimation of IFD data was evident for longer durations.

Lambert and Kuczera (1998) continued to work in this area and introduced a
generalized exponential probability model. The structural development of this model
enabled the authots to remove bias arising from the binned nature of observed
rainfall. Typically rainfall records are recorded as discrete depths (mm) over a finite
time period (minutes, hours ot days). This binned nature of recorded rainfall leads to
assumptions and uncertainty when using the resultant data. For example, if a storm

lasts for 5 bins in a 6-minute format, i.e. there are 5 'wet' bins in a sequence, the
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duration of this storm sits somewhere between 30 minutes and 18 minutes in reality.
This can be seen in Figure 2.7 whete it could have been raining for the exact length
of the 5 bins or it may have started raining just before the second bin and finished
just after the fourth bin. Thus the exact storm duration is indeterminate and the
exact beginning or end of the event can only be determined to the degree of accuracy
of the bin widths. This was taken into account in the model and likelihood function

developed by Lambert and Kuczera (1998).

7'y
Max possible actual length
< P
Min possible actual length Actual storm ends
o somewhere between
< p the beginning and end
HEptH of bin 5
| [ |
I i i b
1 2 3 4 5
Bins

Figure 2.7: Description of the binned nature of rainfall

Heneker ¢/ al. (2001) extended the previous work of Lambert and Kuczera (1996,
1998) and other event based models to overcome some of their shortcomings.
Storm events wete extracted from six-minute historical records and again the
generalised exponential distribution was used to describe the distributions of intet-
event times and storm durations. The intensity of each wet event was described by a
Pareto disttibution with the cotresponding parameters conditional upon storm
duration. It was shown that this model was not only capable of reproducing the

distributions of dty spell and storm durations that wete used in the calibration, but
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also statistics that were not introduced into the calibration procedutre. Of significant
interest were the simulated and observed Intensity-Frequency-Duration curves which
showed good compatison for various cities, and resulting aggregation statistics.
These values were not used in the calibration of the model and the reproduction of

these values suppotts the credibility of the model.

2.4.5 Discussion of Point Rainfall Models and the
Selection of one for Further Development and
Regionalisation

Point rainfall models have been developed to teproduce the structure of rainfall
using various techniques. Eatlier models were often based on the theory of Markov
chains with their explicit dependence structure. More recently event based
alternating renewal models and to a greater extent Poisson cluster models have
received substantial covetage in the literature. Investigation into published models
and previous results provides an insight into the selection of a suitable model for the

putposes of this study,

Poisson models and in particular cluster models continue to receive substantial
literature coverage. Their structure ensures that the conditional telationship between
intensity and duration cannot be modelled explicitly even though it is generally
accepted that this dependency exists (Grace and Eagleson, 1966, 1967; Acreman,
1990; Lambert and Kuczera, 1996). Another setious concern for the application of
these models is when the historical record contains missing ot ertoneous data

petiods.

The length of most rainfall records ensures the chance of obsetving high ARI events
is unlikely. Periods of missing data exacerbate this issue by increasing the chance
that high ARI events have not been recorded. While the amount of missing data can
significantly affect the application of a chosen model, very few teseatchers publish
how to adequately deal with this. This is particularly an issue for models which rely
on aggregated statistics for calibtation such as the cluster models. Cowpertwait

(1991a) described a replacement strategy to handle missing data in his wortk on the
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Neyman —Scott model. Missing daily data within a particular month was replaced
with data from the same month within a different year but where the monthly totals
wete similar. If many months wete missing then the whole year was deleted ot if
only a few data were missing those values were replaced by zero. Although this
apptoach may be adequate for some data sets, there is no confidence that this

approach will be adequate to compensate for significant missing or rejected data.

Numetous authors claim that Bartlett-Lewis and Neyman-Scott based models are
able to reproduce a variety of rainfall statistics over different levels of aggtegation.
Frequently published results indicate an inability of these models to replicate statistics
not used during the calibration process. The application of these models to historical
data sets with missing or etroneous data petiods is also a concern. While techniques
have been suggested to circumvent this problem (Cowpertwait (1991), Gyasi-Agyei
(1999)) questions remain as to the influence and effectiveness of these techniques
given the quality of historical records. In addition to this, many researchers have
indicated that parameters for the cluster models are difficult to estimate. This is
pattly because they are not intuitive ot easily observed from the historical data.
Foufoula-Georgiou and Guttorp (1986) suggested that since the N-S model does not
provide an adequate description of the undetlying rainfall generating process, no
physical meaning should be attached to the parameters. Even though some
parameters of the cluster models have been given a physical intetpretation, such as
the duration of a rain cell, they ate not readily determined directly from a tainfall
record. Onof and Wheater (1994) showed for their random-parameter Bartlett Lewis
Model that as the number of parameters increased, identification of these parameters
became more difficult and alternative identification strategies gave significantly
different values for the same parameter. Given this parameter sensitivity, doubts
remain as to the robustness and stability of the model and its results. Velghe ez 4.
(1994) further confirmed that cluster models are very sensitive to the sclection of
calibration equations used. Calibration with one set of equations provided a poor
reptoduction of the percentage of dry intervals. In order to improve this result one
of the equations was replaced but this in turn produced a poor reproduction of zcro

depth probability.

40



Chapter 2: Literature Review

Not only ate cluster models difficult to calibrate and contain patametets with little
physical interpretation, the undetlying process duting calibration is of concern.
Cluster models are calibrated using aggregated tainfall data, where the methodology
is based on a continuous process. As a result, the discreteness of the data is not
taken into account. Foufoula-Georgiou and Lettenmaier (1986) suggested that the
problem is the result of the inappropriate assumption that a continuous-time point
process, can be calibrated against an aggregated record. Foufoula-Geotgiou and
Lettenmaier (1986) further showed this to be the case for all continuous-time
stochastic models. ‘They concluded that using aggtegated rainfall data to calibrate
continuous-time point process models introduced biases in parameter estimation that
can result in misleading interpretations regarding observed rainfall clustering. Several
researchers have also indicated that the inferred desctiption of the undetlying process
is dependent upon the scale at which the model is fitted (Rodtiguez-Iturbe ¢f al.
(1984), Valdes ez a/ (1985)). 'This provides limitations on the models ability to
extrapolate to other time scales and the ability to model the properties of the
continuous process. In contrast, parameter estimation is straightforward for event-
based models, which if continuous, allow the incotporation of estimation procedutes

to account for aggregated data.

Markov models provide a simple desctiption of the rainfall occutrence process.
Typically these models have been applied to represent daily rainfall however some
authors have extended this to finer time scales. Matrkov chains have been shown to
wotk at specific sites and for specific seasons but have not been shown to
consistently model the rainfall structure or process. When applied to shott time
increment rainfall, a large number of parameters are introduced while still being
unable to describe the clustering effect (higher chance of a wet increment occutting
during a storm event than during a dry period) evident in histotical records. In
addition to this, some existing models use a number of wet states cotresponding to
different types of rain during a wet increment. These states require probability
distributions introducing more parameters into the model. Large number of
parameters with litle ot no physical meaning provides problems during the
calibration process creating a model which is difficult to apply. If a2 Matkov chain is
applied to a historical record with significant missing data periods, the determination

of state transitions and hence model parameters is hampeted. This can also be a
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problem at numerous Australian sites whete there are a limited number of wet events

in a given season ot month.

Alternating renewal models have been shown to petform well over numerous levels
of aggregation and preserve statistics that were not used during the calibration
process. This is an important result particulatly when considering a rainfall model
for regionalisation as it provides credence to the model structure and introduces a
level of confidence on the outcome of the tegionalisation process. Alternating
renewal models are unique as they are not restricted or hampered in their application
due to erroneous or missing data petiods. Given that missing data sections ate
tandom (ie. missing event durations and depths are not consistent), then no
significant bias is introduced through the removal of these periods from the record.
Indeed a significant advantage of models of this type is the ability to include good
data sections of a month whete missing data is present. ‘This ensutes mote
information is available for calibration to the same length of record in comparison to

cluster based models.

Like Matkov models, parameters ate easily defined and have a definite physical
meaning. This ensures model parameters are intuitive and can easily be estimated
from the historical record. Even if the renewal model is continuous, estimation
procedures can be incorporated to account for the aggregated and binned nature of
observed rainfall records. Two drawbacks in the use of alternating renewal models
ate the requirements of sepatating independent storm events and the need to
disaggregate wet events down to the time scale of interest. Previous treseatch has
shown that these issues are easily handled by the selection of an appropriate model
and or structure and numerous authors have presented model results that compate

favourably to observed records.

The above discussion led to the selection of an alternating renewal model for further
development in this study. The systematic and extensive model development
provided by Lambert and Kuczera (1996, 1998) and Heneker ¢f a/. (2001) coupled
with good results for calibrated and non-calibrated statistics has ensured this
patticular alternating renewal model was chosen. The original Heneker ¢ al. (2001)

model is presented in further detail at the beginning of Chapter 3. It is important to
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note that while the Heneker ez 4. (2001) model was chosen for further development
in this thesis, most of the techniques ptresented in this study can be applied to othet
alternating renewal models or alternatively to cluster based models with little or no

adjustment.

2.5 Regionalisation Techniques

Regionalisation has for many years been a standard hydrological tool, used to
facilitate extrapolation from sites at which records have been collected to othets at
which data is required but unavailable (Riggs, 1973). Typically regionalisation of
hydrologic models has been focused on linking the parameters of the model to
physically based measurable quantities and the development of tegional parameter
sets through the use of homogeneous regions. The purpose of these techniques
cither explicitly or implicitly is to identify areas that exhibit similat hydrological
properties, ensuting that a calibrated model that wotks for a specific site can be
applied to other sites in the atea. Before considering the regionalisation of the
rainfall model presented by Heneker ¢ 4. (2001) it is appropriate to investigate
various techniques and evaluate their applicability to the problem of event based

tainfall modelling directly.

2.5.1 Identification of Homogeneous Groups (or
Clusters)

Traditionally the first step in many regionalisation processes has been the
identification of homogeneous regions. If a number of sites (rainfall or stream flow
etc) can be placed togethet into a group that exhibit similar hydrological processes or
statistics, then they can be defined as belonging to a homogeneous group or region.
After the definition of the group boundaties, model parameters can be developed
from the combination of data sites inside the homogeneous group. These
parameters can then be applied ot moved to sites of interest within these boundaties
that contain little ot no historical data. The development of homogeneous regions
and groups of sites has received substantial literature coverage with particular

reference for use in regional flood frequency analysis.
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Tasker (1982) noted that many investigatots initially identified regions and sub-
tegions subjectively based on the residuals from a regression analysis. The residuals
were used as a guide for drawing homogeneous regional boundaries on a map of the
area (see Wandle (1977), Guetzkow (1977)). A mote objective method of defining
these homogeneous regions of similar hydrologic or basin charactetistics was
presented by DeCoursey (1973) and later by DeCoursey and Deal (1974). They
applied a technique known as cluster analysis (Cooley and Lohnes (1971)). Clustet
analysis is the organisation of observed data records to identify groups or clusters of
sites that are similar within clusters and dissimilar besween clusters. Typically when
employing cluster analysis, the criterion used to determine similatity between sites

and the classification of a new site into an existing cluster must be defined.

The eatly work of DeCoursey (1973) and DeCoutsey and Deal (1974) introduced the
use of the simple Euclidian distance as a measure of similarity between sites or

clusters of sites. The Fuclidian distance is given by

: ;
dj ={Z(xij ~Xq )2J @1)

where d, is the ‘distance’ between stations j and k, x; 1s the i"™ hydrological ot basin
characteristic at station j and p is the total number of characteristics being considered

for the cluster analysis.

In otder to use cluster analysis, an initial grouping of the sites into groups must be
undertaken. DeCoursey and Deal (1974) arbitrarily divided their (N) sites into two
groups and petformed a discriminant analysis to determine whether any sites do not
belong to their current group. Sites that are shown to be in an incottect group are
switched and the iterative analysis continued.  Additional clustets can be
incorporated by dividing existing clusters into two and so on. An alternative
technique referred to as the complete leakage algorithm (Soakl and Sneath 1963), the
farthest neighbour (Lance and Williams 1967) ot the maximum method (Johnson
1967) has also been applied as an alternative for the first step in the cluster analysis

process. All these methods are based on initially nominating each site as a cluster of
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one site. Distances between this site and every other site can then be calculated using
the Fuclidian distance fotrmula. At each step, the two closest sites are combined to
fotm a single cluster. Once clustets contain mote than one site, (i.e. there is more
than one value of (x)as there are two or more sites in clustet j) then the largest
distance between all sites in the cluster and the object site k can be adopted as the
corresponding distance d, between the cluster j and the site (or cluster) k. This was
similar to Tasker (1982) who was able to show that the adaption of the eatlier cluster
analysis of DeCoursey and Deal (1974) has the ability to define sites into

homogeneous groups.

Cluster analysis was also investigated by Mosley (1981) when attempting to identify
regions of catchments in New Zealand which have similar hydtological regimes.
Mosley (1981) was able to show that when thete are a numbet of factors that have an
equal influence on the hydrological regime of a catchment; homogeneous regions are
difficult to define. It was also noted that cluster analysis should not be used
independent of subjective decisions for the purposes of defining these regions, but
that it is a useful tool for interpreting the available data sets. Once cluster analysis
has been performed, then local knowledge of the climate, topography etc should be
incorporated to describe why certain sites are similar in their catchment response.
Unlike some of the eatlier work, sites in a given cluster were required to be spatially
continuous. This enabled homogeneous zones to be located on a map of New
Zealand. It is not a requitement of cluster analysis that sites be geographically
contiguous in a given grouping. Indeed for studies that focus on catchment
responses such as stream-flow ot floods, it is possible that sites considerable
distances apart geographically are more similar in terms of their hydrological
response than those nearby. However as noted by Burn ¢ al. (1997), having regions
that are largely geographically contiguous provide an advantage when ungauged

catchments must be assigned to a specific region.

Burn and Boorman (1993) continued to use the idea of cluster analysis when
grouping hydrologically similar catchments in their study of 99 catchments in the
UK. They used what is referred to as the K-means clusteting algotithm to minimise
their objective function, an extension of the simple Buclidian distance equation given

by
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K M _ B
F=3 S Y w,(x,-ct) 22)
k=1 iel, m=1

where (W) is the weight applied to feature (characteristic) m in the Fuclidian
distance measure, (X)) is the value of feature m for site i, ((ka) is the centroid
coordinate for feature m of cluster k, (K) is the total number of clusters, (I,) is the set
of objects in cluster k and (M) is the total number of features. In this fashion, sites
that have similar characteristics to their counterpatts in the cluster will provide a low

scote and hence a better fit to the cutrent grouping set-up of the sites.

Hosking and Wallis (1993) incotporated a different approach using L moments
(Hosking (1986, 1990)) to provide an objective test as to whether certain groupings
of sites actually belong to a homogeneous tegion. Theoretically in 2 homogeneous
region all sites should have the same L-moments, however owing to sampling
variability this will not necessatily be the case. Making use of this fact L-moments
for all sites in a proposed homogeneous region were calculated. A heterogeneity
measute is used to indicate whether the obsetved variability in these statistics was
simply due to sampling variability or due to the incorrect classification of sites into
the proposed homogeneous region. Sites could then be re-classified and the process

repeated to improve results.

Burn e al (1997) provided an “agglomerative hierarchical” clustering technique
combining previous techniques to determine homogeneous regions. First a region
forming process is adopted which detetmines an initial set of clusters. ‘This process
follows the previously introduced steps of cluster analysis. At each step the
dissimilarity or distance measure is calculated between each pair of objects (an object
is still either a single site or a grouping of sites) and the union of the two closest
objects forms a new cluster. The distance measure is now tecalculated from the new
clustet to all other objects and again the two closest objects form a new cluster. This
process is repeated until the requited number of clusters has been formed. Burn ez a/.
(1997) then use the heterogencity measute of Hosking and Wallis (1993) to
determine whether the sites now placed within a cluster ate sufficiently hydrologically

homogeneous. For a tegion that fails this test, further subdivision of the region is
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undertaken through the re-application of the original cluster analysis. When all
regions are either sufficiently homogeneous or contain too few sites to be further
subdivided, the process stops. As part of the cluster analysis, a geographical distance
measure was incorporated ensuring that largely geographically contiguous regions
wete identified. This provides an advantage for classifying ungauged catchments as
the location of the site on a map determines which cluster the site belongs to. The
technique was successfully applied for a set of 217 catchments in West-Central
Canada.

DeGaetano (1998) developed a clusteting algorithm for specific application to
extreme rainfall data. The basis of this work was that the largest rainfall events at all
stations within a subregion ot cluster could be represented by the same theotetical
extreme value distribution. Smirnov tests calculated for each iteration were used as a
measute of whether the distributions of sites in a proposed cluster were similar. Like
Burn ¢t al. (1997) a measure of the geographic proximity between sites was also
incorporated. The application of cluster analysis on the distribution of the climate
vatiable, rather than the variable avetage is noticeably different to previous
techniques and provides a significant advantage. Not only ate stations grouped on
the location (mean) of a patticular variable, but also on the other parameters that
define the distribution. This becomes important if the regional assumptions are to
be used for extrapolation of values outside those contained within the original
historical records. The presented tresults of DeGaetano (1998) compared favourably
when tested with the heterogeneity measure of Hosking and Wallis (1993), however
the authot concedes that cluster analysis by its nature contains significant bias. These
ate a tesult of the type of clustering selected, the inclusion of redundant or irrelevant

data and by the vatiable nature of climate data.

In addition to the negative discussion of DeGaetano (1998), Acreman and Wiltshire
(1989) challenged the idea and use of homogeneous regions developed through
clustet analysis or similar techniques. They argued that the estimated tregional
relationship (disttibution or cutve) would only be valid for a site situated at the
centroid of the group of sites used in the analysis. It was also argued that cettain
sites could belong to a given tegion more than others and that some sites may

influence the regional relationships more, introducing additional bias. To citcumvent
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this problem, they suggest that instead of defining each site as part of a group, each
site should be allocated its own group consisting of sites that have similar hydrological
properties. These sites could then be used to estimate the required characteristics at

the site of interest.

Burn (1990) further developed the ideas of Acteman and Wiltshire (1989) and
teferred to it as the region of influence approach. The region of influence approach
has the advantage of eliminating the distinct boundaties developed by defining
homogeneous regions. In ordet to define a target sites region of influence, a distance
measure was calculated from the target site to evety other site. A surrounding site
that recorded a distance measure less than a nominated threshold value or cut off
point is then included in the region of influence for the target site. These sites are
then combined to form a regional flood frequency cutve, only applicable at that
specific target site. A modified Euclidian distance measure is used to determine the

distance from the target site to the othet sites and is defined as

1
D, = [i w, (x,'" —x )2 :| ’ (2.3)

Where
D; is the weighted distance between site i and station j, W, is the weight applied to

the attribute m to reflect its relative importance, P denotes the number of attributes
andx, is the standardised values of the measure of attribute m for site I. The

standardisation is applied to remove the problem of units and is calculated by
subtracting the sample mean from the value and dividing by the sample standard

deviation.

Ribeiro-Cottea et al. (1995) investigated using canonical correlation analysis to
identify regions of influence for drainage basins instead of a threshold style
ptocedure. They were able to identify regions for 55 catchments in Canada. The
region of influence approach has also been applied by El-Jabi e a/ (1998) for the

regionalisation of 100 year floods in Canada with some success.
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Nathan and McMahon (1990) continued to taise and discuss the apparent problems
associated with the identification of regions using techniques based on cluster
analysis. Of major concern was the selection of important characteristics and their
cotresponding weighting which are used to determine similarity between catchments
and/or sites. This can often be a compromise between available data, the judgement
of theit importance by the modeller and model computation time consttaints. The
measure used to assess similarity is also highly dependent on the scale of data used.
A clustering algorithm working with rainfall in millimetres for instance would obtain
a different set of similarities to those working with rainfall in metres. As noted by
Nathan and McMahon this can be removed by scaling the vatiables so that they all
have 2 mean of zero and a unit vatiance; however information on the variability of

individual measures is lost.

An additional problem associated with these techniques is the abundance of different
algorithms and distance measures available. It is evident that these different
measutes and techniques can produce different groupings of sites based on the same
data. Even if the use of several techniques ptovides a set of similar clusters, there
will still remain sites that ate not continually allocated to the same cluster set and thus
must be classified on an atbitrary basis. This fact was noted by DeGaetano (1998)
who suggested that numerous cluster analyses with different techniques should be
undertaken and then the best groupings of sites can be chosen when compating

solutions with physical and climatological considerations.

The region of influence approach appears to circumvent numetous identified
problems with the use of traditional clustet analysis. Cluster analysis relies on
including vatiables in the analysis which have a significant impact on the required
output. This selection is dependent on the expectations of the modeller and
introduces a bias into the region identification process. The inconsistent results
produced when using different clustering algotithms ot data recorded at diffetent
time scales also inttoduces doubt on the validity of cluster analysis as an accurate
method of determining homogeneous regions, if they exist. The region of influence
approach removes any boundaries and associated problems with sites that are located
on or near these boundaties. However the problem of selecting catchment attributes

and the associated bias is still evident. This apptoach also requires the determination
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of a threshold value, which alters the number of sites that have an impact on the

calculation of data at the target site.

The application of homogeneous tegions through cluster analysis and the region of
influence approach has been widely adopted for regional flood techniques; however
their usefulness for rainfall modelling is questionable. The selection of influential
vatiables for use in a rainfall cluster analysis is problematic at best due to the
influence of unmeasurable quantities such as local and global atmosphetic
fluctuations. While it is conceivable to group sites for the purpose of regional flood
analysis by using influential variables such as catchment conditions, observed rainfall,
clevation, slope etc, it is difficult to measure and distinguish similar indicators for
rainfall.  The atmosphetic processes and fluctuations that influence rainfall are
difficult to detetmine directly. However, it may be treasonable to assume that a
regional shape distribution of rainfall exists, but the determination and use of this
distribution is the primary concern. The idea that sites within a region may have a
consistent distribution was the motivating idea behind developing the new methods
presented in this study. Given the idea of a consistent regional distribution for
rainfall, a technique to apply this idea and successfully regionalise the rainfall model is

required.

2.5.2 Regional Flood Analysis

A significant amount of literatutre on the regionalisation of hydrological models has
been focused on flood frequency analysis and the prediction of stream flows.
Generally regional flood frequency modelling can be classified into two groups. The
Index Flood method introduced by Dalrymple (1960) and the Multiple Regression
method attributed to Benson (1962). While these procedures are used to provide
regional predictions of extreme values rather than regional continuous simulations as
is required for this study, an investigation into their use provides further
understanding of the general procedures available and possible extensions to rainfall

modelling.

Boyd (1978) provided a good explanation of regional flood frequency techniques

employed in Australia and in particular the use of multiple regression as a
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regionalisation tool when investigating 79 catchments in New South Wales. In
applying multiple regression on flood peak discharges to various catchment
charactetistics, Boyd noted that the inclusion of a large number of physical and
hydrological variables in the regression procedure ensures the resulting regtession
equations ate applicable to a very wide range of catchments. This in turn ensures
that a high degree of regional homogeneity is not required removing the need for
extensive wortk in defining homogeneous tegions using cluster analysis or a similat
procedure. Regional regression models have also been used to develop relationships
between catchment physical quantities and low-flow statistics [Thomas and Benson
(1970), Thomas and Cervione (1970), Vogel and Kroll (1992) and Kroll and
Stedinger (1998, 1999)] and for flood flows [Matalas and Giltoy (1968), Tasket et al.
(1996)]. Given the number of options available, Valdés e al (1979) provided a
technique for choosing between vatious alternative streamflow regression models in
the literature. The use of regression models which link physical desctiptors to
hydrological models can be an advantage over alternative regionalisation techniques
as the model can be applied instantly to any site where the physical descriptor can be
determined or measured. However using this physical descriptor to model link for
rainfall modelling is problematic. Rainfall is a complex process which is dependent
on local and global atmospheric physical properties. These properties ate not easy to
measute ditectly and have resulted in the development of statistical based rainfall
models in comparison to physical process models for rainfall. The ability to link a
rainfall model to physical atmosphetic condition measurements and successfully

predict rainfall volumes ot events is questionable at best.

Boughton (1984) presented an alternate approach to regionalisation with a simplified
water balance model that could be applied to ungauged catchments. Instead of
applying a regression procedure, physical catchments were classified into one of three
types depending on simple field obsetvations. The parameters of his water balance
model wete fixed dependent on the given classification and the estimation of
parameters for ungauged catchments was simply based on this site classification.
Given an obsetved daily record, the resulting watet yield could be estimated fot the
ungauged catchment. While this simplified model provided good tesults for the
estimation of stteam flow, it was not rigorously tested under different catchment and

climate tegimes and it is unlikely that a similar classification strategy with fixed
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tegional parameters could be undertaken for rainfall modelling. Again the model
would rely on a physical input record at the site of interest to assist in modelling the
site specific behaviour. (In the case of his stream flow model, the physical record is
the observed daily rainfall) Given the complex nature of rainfall, it is unlikely that a
similar single physical descriptor could be found to adequately desctibe the changes
in observed rainfall from one site to the next nor is it likely that sites could be

grouped together and have identical model parameters.

Sefton and Howarth (1998) established telationships between physical catchment
descriptors and the dynamic response charactetistics obtained from the output of a
rainfall-runoff model. Given the driving variables of rainfall and temperature, and
the measurement of the descriptors (topogtaphy, soil type, climate and land cover)
flow can be simulated for any catchment in the region. They applied their multiple
regtession model to two test cases in England and Wales and were able to
satisfactorily reproduce the daily flows. An advantage of the model was that no
attempt was made to group or define homogeneous regions. However measuring
physical descriptors that influence rainfall as opposed to stream flow is significantly
more difficult and provides a limit to the application of simplified techniques such as
this and the previously discussed Boughton (1984) model.

Seibert (1999) also analysed a region containing 11 catchments by establishing
functional links to catchment characteristics. A two-parameter regression function
was used (one of either a linear, exponential, powet or log function). Unlike previous
works, Seibert concluded that while the tesults appeared acceptable, the use of this
technique itself is questionable. The uncertainty in the relationship between model
parameters was a major concern. The regression of parameters requires a certainty
about the model values. If this knowledge is not certain, the value of regressing
these against the physical charactetistics may be in question. Seibert found that for a
certain catchment, a number of vatious parameter values might provide the same
goodness of fit. It is therefore difficult to relate this range of parameters to physical
properties to provide a regional estimate. The inter-relationship between physical
quantities was also discussed. If it could be shown that two physical based quantities

wete cotrelated, then this also could induce problems into the regression routine.
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A final problem associated with models that link physical propetties to model
parameters arises when the required site of interest lies some distance away from the
calibrated sites. Seibert (1999) tecognised this fact and stated

"Obviously, using larger regions increases the number of gauged catchments.
However at the same time the variation of climate and physiography between the
catchments increases as the sampling atea increases, i.e., more variables have to be
included into the regtession analysis".

From these results, it appears that regtession may be a useful tool for localised
regionalisation; however when the problem is over a latger scale for instance the

process of rainfall, an alternate method must be found.

Index flood procedures use the undetlying assumption that the sites in a given
homogeneous region share an identical frequency distribution apatt from a site-
specific scaling factor. This scaling factor is called the index-flood. The term “index
flood” is a temnant of the early work of Dalrymple (1960) who applied this

procedure to flood data, however theoretically it can be applied to any data set.

Given data at (N) sites, with site (i) having sample size (n;) and obsetved data at these
sites (Qy, j=1,...,m). Let the quantile function of the frequency distribution be
(Q,(F), 0<F<1). Given the assumption of the existence of an identical regional

frequency distribution with localised scaling from an index flood then we can write

Q(F) = ng®), i=1,...,n 2.4

() is usually taken as the mean at site frequency distribution but any location
parameter of the distribution can be used instead. (q(I)) is the regional growth
cutve, a dimensionless quantile function common to every site in the homogeneous

region.

A number of researchers have used the annual maximum seties in conjunction with
the index flood procedure for modelling extreme hydrological events (see Hosking e
al. (1985), Lettenmaier ¢/ al. (1987), Hosking and Wallis (1988)). Birikundavyi and
Reusselle (1997) use the index flood technique with the Partial Duration seties while

Madsen ez al. (1997) suggests that using the Partial Duration series with the index
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flood technique provides a more efficient technique (than using the annual maximum
seties) for estimating regional floods. The index flood method has had significant

success for the purposes of stream flow regionalisation.

Jin and Stedinger (1989) developed a maximum likelihood technique which took into
account both the regional information and the local at-site historical information
with a regional index flood distribution. They concluded that regional flood analysis
can be improved by using both a good regional model and good historical data

provided it is used carefully.

Regional frequency techniques have previously been interested in estimating extreme
values or flow quantiles at ungauged catchments. It is conceivable that methods such
as the index flood could be applied to estimate extreme rainfall values however it
would still not be able to ditectly calibrate a rainfall model in ordet to provide a
continuous rainfall record. Physical tegression of rainfall model parameters to
catchment characteristics could provide a regionalised rainfall model, however the
choice of appropriate physical desctiptots is difficult and problems associated with
leaving out influential descriptors is evident. Given the physical variables that
influence rainfall are not only local (and potentially) measurable quantities such as
elevation, distance to coast, sutrounding hills etc but also atmospheric conditions
such as global circulation, cloud development, atmospheric wind patterns etc, the
availability of applicable data and as a consequence the usefulness of models which
tequire this information is a major issue. Rainfall patterns are influenced by
atmospheric  fluctuations and the complex interaction between vatious
meteorological parameters and at this time the data required to undertake a

successful regression analysis to these physical desctiptots is not available.

2.5.3 Rainfall Model Regionalisation

The application of regionalisation procedutes to rainfall models specifically has had
limited coverage in the literature. Typically models that rely on daily data for
calibration do not require the use of regionalisation techniques as there is an
abundance of daily rainfall records available for use. However, models that attempt

to reproduce extreme values or are calibrated to pluviograph data need to
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incotporate regionalisation techniques in one form or another to ensute wide spread

application.

Cao (1974) provided an eatly technique for estimating short duration-depth-
frequency cutves at sites which only record daily data. Sites which recotd short-time
increment rainfall in the area were grouped into homogeneous regions and a
common tegional depth-duration-frequency curve estimated. A target daily site is
then allocated to one of these groups by a comparison of the one-day depth
distribution between the site and the groups of sites. Once allocated to a group, the
target site adopts the regional frequency cutve, providing an estiate of the required
duration-depth-frequency curve. While only presenting results for Sardinia, a good

estimation of these curves was achieved.

Cong et al. (1993) extended the eatlier frequency curve similarity assumption of Cao
(1974) by assuming that the distribution form of rainfall at all stations in a study area
are the same. By applying various mathematical and statistical tests, they were able to
ascertain a) the form of the regional distribution and b) the probability that this
determination was in fact true. This result could then be used to assume a
distribution for any site within the region. They applied their technique to annual
daily maxima in Pennsylvania and West Virginia. While this technique can be applied
to develop a regional distribution cutve, the authors note that it cannot be applied to

determine the distribution at any individual site.

Hay ef al. (1991) developed a regionalisation method by introducing a 'weather state'
model in which measurements of synoptic atmospheric information are used to
classify each day into one of a small number of states. The weather state effectively
acts as an automatic classifier of atmospheric conditions. Historical data is then used
to fit 2 model relating these weather states to the observed daily rainfall. As the
model is fitted to atmospheric information, it can be applied in any region so long as
the climatic driving fotce of precipitation does not change and the controlling

synoptic variables are incotporated into the fitting procedure.

Hughes and Guttorp (1994) also applied a similar weather state technique, by relating

site precipitation to synoptic atmospheric patterns and in patticular to sea level
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pressutes. A major assumption in models of this type is that the relationship
between the climatic state and the precipitation does not alter over time due to
climate change and other influences that have not been included directly in the
model. While this type of model provides a solution to the regionalisation issue, it
tequires the selection of approptiate atmospheric variables which introduces
uncettainty and relies on the understanding and assumptions from the modellet.
Models of this type are also reliant on the availability of good quality climate data at
the time step of interest which may also be an issue. This method does have the
potential to develop into a useful tool for predicting effects due to climate change
(Hughes ¢7 a/. (1993)) if it can be incorporated into atmospheric forecasting models
however its applicability to fine time scale rainfall modelling is questionable.
Typically in the literature these models were focused on reproducing the occutrence
process of daily rainfall and as a result no simulation of rainfall amounts was

presented.

Arnbjerg-Nielsen ¢z al. (1996) again dealt with extreme rainfall and studied the
tegional variation of extreme values of peak intensity in Denmark. Interested in
identifying variables that could describe the regional fluctuations; they analysed the
correlation structute between various extreme values and possible covariates. They
found that the annual average precipitation and the 0.2yr return petiod for depth pet
day at a nearby gauge with daily resolution could be used to desctibe the regional
vatiations in the maximum 10-minute intensity of a rain-event and the total depth of
rain events at certain return periods. While this was seen as a success, these regional
variables could not explain the variation in longer return periods. Their analysis was

also hindered by the availability of only 15 yeats of data.

Cowpettwait ¢f al. (1996) developed a methodology to enable the application of the
Neyman-Scott (NS) model to ungauged catchments. Similar to the later rainfall
runoff work by Sefton and Howarth (1998) and Seibert (1999), the model was
calibrated to 112 sites scattered throughout the United Kingdom. A set of
explanatory variables was then developed which was used to describe and tclatc the
changing physical process of rainfall at each of these sites. By using linear regression
on the model parameter estimates against these explanatory variables, a telationship

was developed that could be applied to any site for which the explanatory variables
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could be calculated. The general regression model for each of the NS model

patametets can be written as

In(y)=a,+a, X, +a, X, +a,X; +..+ a,X, +¢& (2.5)

Where \, is the NS model parameter for ith station-month, X; is the jth explanatory
variable for the ith station-month, a; is the least-squares regression patameter for the

jth explanatory vatiable, & is the residual error in the regression model for the ith
station month and n relates to the number of explanatoty variables that were found

to contribute significantly to the prediction of the NS patameter.

For the purposes of their wotk, the explanatory variables selected were Altitude (A),
Notth Ordinance Survey (OS), Grid Reference (N), West-Fast effect (W) and the
distance from the Coast (C). The West-East effect was a result of the well-known
'tain-shadow' that the Pennine mountain range causes on rainfall in the UK.
Depending on the location of the site in relation to this range, the rainfall statistics
vary significantly. Wigley ez a/. (1984) proposed the use of an east-west dividing line
to delineate areas that were affected by this range. Cowpertwait ez a/. (1996) adopted
this line as the criteria for defining the east-west effect. As the values (A,OS,N,W
and C) are all measurable at any point in the UK, Cowpertwait ¢/ al. (1996) had

ptovided a regionalised Neyman-Scott rainfall model.

While the regionalisation method of Cowpertwait ¢/ al (1996) was claimed to be a
success, the authors cautioned that errors on selected individual sites are due to the
microclimate effects that produced precipitation vatiation from site to site. To
temove this etror, other explanatory vatiables would need to be introduced to
develop a relationship that enables the microclimate effects to be included. This
illustrates the difficulty faced when relating stochastic rainfall model parametets to
physical quantities. The assumptions made by including some physical descriptors
and not others due to modeller input or a lack of available data induce errors in the

final model.

Jones and Thornton (1999) introduced an alternate method linking a third-ordet

Markov rainfall model to climate surfaces. Climate surfaces ate usually developed for
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monthly rainfall and minimum and maximum temperature. These climate surfaces
ate calculated by dividing the study region into pixels of a nominated size. Jones and
Thotnton (1999) used a simple interpolation algotithm based on the inverse square
of the distance between the station and the interpolated point to calculate the sutface

values for each pixel. This is given by

5 5
xpixel = 21 di_2 X ZI:-C% (26)

t

Equation (2.6) ensures that the climate sutface passes exactly through each station
point an advantage over alternate techniques of interpolation. As the weight distance

2
i

[i] approaches infinity as (d) approaches zero, the value of a pixel containing a
station observing climate data tends towards the value of that station. These climate
sutfaces wete then used to calibrate the rainfall model. Initially daily records from
across the world were grouped into similar climatic clusters. The rainfall model can
then be calibrated at any pixel point by considering how the pixel climate surface
adjusts the parameter values within each cluster relative to the cluster climate means.
Presented results indicated the model performed well over long periods of time (crop
growing seasons) but discrepancies wete mote common over shorter periods. One
site showed consistent deviations from the observed and it was concluded the poot
tesults wete a factor of its complex climate, the size of the pixels not reproducing
small variations in climatic vatiables and the groupings during the cluster analysis.
This technique requites the calculation of climate surfaces for any required value at
the time period of interest. A model calibrated to monthly data therefore requires 12

monthly rainfall sutfaces. For a model that uses a finer time scale, the computational

burden increases.

Gyasi-Agyei (1999) extended the eatlier jitter rainfall model presented by Gyasi-Agyei
and Willgoose (1997, 1999) and identified regional model parameters from daily
rainfall statistics. A total of 13 sites in central Queensland were used for the study.
After simplifying the parameters of the model by removing correlated parameters
and those that remained constant over the year, the model was calibrated to one

(Rockhampton) of the sites in the region. The data from all 13 sites was then

58



Chapter 2: Literature Review

combined and a regional parameter set identified. Gyasi-Agyei (1999) concluded that
while there were differences between the patameter sets, a single set of regional
parametets could be used for all sites. These regional parameters and the observed
daily data at the tatget site of interest are then used to estimate model parametets at
the required simulation time scale used in the generation of short-time increment
rainfall. This technique was shown to produce houtly rainfall but was not adequate
for generating a synthetic G6-minute record. Significant variations in one of the
assumed constant parameters at this time scale led to the development of an alternate
technique for 6-minute generation. The jitter model was employed to simulate at the
houtly level and the resulting houtly rainfalls disaggregated into 6-minute periods.
Gyasi-Agyei (1999) assumed that the disttibution of fractional rainfall proportions in
wet 6-minute bins was uniform. Therefore given 5 wet bins in an hour of 50mm of
rain, a uniform distribution can be used to generate fractional weights. Each weight
is divided by the sum of the five values and these are then multiplied by the hour rain
depth to obtain 6-minute rainfall values. It was not shown how the number of wet
bins in an hour was calculated. Presented results showed good agreement between
the observed and simulated dty probabilities, mean, variance and lag-1
autocovariance at selected months for certain levels of aggregation. Extreme rainfall
results were not presented and the author proposed further research to improve the

reproduction of second order moments.

Wotling ez al. (2000) ptovided another physical link model to regionalise the extreme
precipitation distribution in Tahiti. A limited set of variables that described the
topogtaphical envitonment were linked to the parameters of the rainfall intensity
distribution through the use of a stepwise regtession with 20 rainfall sites. These
regression estimates were then applied to 300 fixed points on a grid and the resulting
intensity estimates interpolated to provide an approximation of extreme rainfalls over
the entire island. Wotling ez a/. (2000) concede that the linking of model or
distribution parametets to topographical descriptots, while working well in Tahiti is
restricted in its application to mountainous ateas where the relationship between

rainfall and the topographical descriptots is very strong.

Smithers and Shulze (2001) developed a regional estimation of short duration design

storms using L-moments. Using 172 rainfall stations in South Africa, 15 relatively
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homogeneous clusters wete developed. The index storm method was used and
defined as the mean of the annual maximum seties. A relationship between this
index storm and the mean annual rainfall was derived enabling short duration design
storms to be estimated at ungauged sites in South Africa. Except fot two clusters,
results indicated the ability of this technique to estimate the 24 hour design storm.
Results presented for smaller durations showed a progressively worse compatison to

observed values.

2.5.4 Summary of Rainfall Model Regionalisation

The regionalisation of hydrological models is often a tequited element in the
application of these models for engineering analysis. Histotical tecords are often
short and can only provide a small amount of direct information about the site in
question. This leads to models that ate pootly calibrated and in tutn provide
questionable results. This is particulatly relevant when utilising shott time increment

(6 minute) rainfall data as an input into hydrological studies.

While significant work has been presented on regionalisation methods, work in this
area has primarily been focused on stream-flow and flood frequency rather than
rainfall specifically. However the undetlying theoty used for regionalisation of
catchments can generally be applied to regionalisation of rainfall models and may

even be applied with more confidence as noted by Cong e a/. (1993) who wrote

“... the assumption that the distribution form (not the distribution itself which
involves parameters) of the rainfall is the same for all stations in a homogeneous
region is more reasonable than a similat assumption fot floods, because the effect of

the ground surface condition on tainfall is much less than floods.”

Numerous techniques presently exist that enable the development of a telationship
between model parameters and measurable physical quantities and thetefore provide
a regionalised hydrologic model. While these techniques ate different, the same
inherent weakness is present particulatly when looking specifically at regionalising
rainfall models. These types of models requite the measurement of physical

properties that affect obsetved rainfall values. As rainfall is linked to atmospheric
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dynamics, annual and inter-annual global climate variations and smaller area
fluctuations, the ability to include enough physically measurable quantities in the
development of these relationships must be questioned. The inclusion of certain
physical parameters over others is also generically flawed and is an individual bias

introduced by the expectations of the modeller.

The application of homogeneous regions for the purposes of developing contiguous
areas that exhibit identical hydtological properties has merit and has been
successfully applied in numetous studies for the purposes of regional flood
frequency. If a sufficient netwotk of long term historical rainfall records were
available to enable such an analysis, a patameter contour map could be produced
actoss the country. This would enable the simulation of rainfall at any point of
interest at the required time scale. However given the complex atmosphetic
interaction in the development and production of rainfall, the lack of significant data
tecords and the cost of acquiring available data sets, this method is not viable both
economically and computationally. Alternative methods such as compiling climate

surfaces at the daily or finer time scale also require extensive tresoutces prohibiting

their use directly.

The shortcomings of existing regionalisation techniques and the lack of quality long
histotical data sets for calibration have motivated the development of an alternative
approach to simulating shott time increment rainfall at ungauged sites. This new
approach adapts the undetlying theoties of regional flood frequency and in particular
the index flood method and applies it to the patameter distributions of a high
resolution point rainfall model. Initially a master set of calibrated parameters are
determined based on a neatby pluviograph record and once this master parameter set
has been calibrated, any site specific short pluviograph or daily data recotds ate then
used to adjust the master parameter set and provide model parameters at the target
site of interest. This enables the existing model to improve its application to short
historical pluviograph trecords and use the abundance of daily data records around
Australia as the basis for a new regionalisation approach, providing a rainfall

simulation tool capable of simulating accurate high resolution rainfall data across the

countty.
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In otder to develop and apply a new regionalisation technique, existing models were
investigated with the view of selecting an approptiate model for further
development. For the purpose of this study, the selected model was the event based
model presented by Hencker ez 4/ (2001). The Heneket ¢f /. (2001) rainfall model is
an alternating renewal model and calibrated to independent storm events. The
calibration of the model to independent storm events ensures the model can be
calibrated to records with missing periods of data. This was seen as an important
attribute when considering models that ate calibrated to short time increment rainfall
records which often contain large periods of missing ot ettoneous data. In addition
to developing a new regionalisation technique, this study also presents significant
improvements to the model in terms of parameter calibration, identification and the
inclusion of parameter uncertainty. These ideas wete lacking in the original model
and are a significant improvement to the model when compating results to observed
statistics.  The key ideas behind the Heneker et al (2001) model and the

improvements are presented in the following chaptets.
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CHAPTER 3

IMPROVEMENTS TO THE HIGH
RESOLUTION POINT RAINFALL
MODEL

3.1 Introduction

The existing rainfall model presented by Heneker e# al. (2001) and selected for further
development as part of this study belongs to the group of wet-dry alternating renewal
models. Models of this type are characterised by their calibration to independent
storm events. The initial development of the model, while adequate for its desired
purpose, contained a number of deficiencies in its original form which warranted
attention ptior to the development of a regionalisation approach for applying the
model at sites with little ot no calibration data. It was important that the model
produced favourable simulation compatisons to observed statistics, was robust
duting calibration and requited minimal user input. In order to verify its
performance, the otiginal model was comprehensively investigated and then

modified ensuring the improved final model is easy to use, accurate and robust.

3.2 Description of Original Rainfall Model

The otiginal point rainfall model developed by Heneker ez 4/ (2001) is an event based
model whete the event series is completely defined by the probability distributions of
inter-event time, storm duration and conditioned storm intensity. In its original form
given an adequate record available for calibration, the model is capable of
reproducing various rainfall statistics including certain values that were not used

during the calibration process. This was an important consideration when selecting
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this model for further development and the ability to replicate non-calibrated
statistics is an indication that the model is theoretically well structured. The structure
of the model and the results presented by Heneker e a/ (2001) motivated

improvements and the new regionalisation approach proposed in this thesis.

3.2.1 Model Structure

The Heneker ¢ al (2001) model is based on the alternating renewal process
introduced by Green (1964). As discussed in section 2.4.4 the simulated time seties
is completely defined by a sequence of wet events (storms) interspersed with dry
events. For the Heneker ¢ 4/ (2001) model this structure was characterised by three
main vatiables, the dry periods ot inter-event times #, the wet periods ot storm
durations 7, and the average intensity 7 and is shown schematically in Figure 3.1.
Probability distributions were used to describe the observed populations of intet-
event times and storm durations, while a third conditional probability distribution
was used to describe the relationship between storm intensity and storm duration.
This provided a simulation which was able to generate a rectangular rainfall pulse for
each storm event dependent upon the duration of the event. Finally a temporal
pattern model takes the simulated rectangular rainfall pulse and disaggregates the
storm event down to the time step requited (typically 6 minutes). In this fashion the
model was able to provide a synthetic pluviograph record which compares

favourably to vatious observed data statistics.

Rainfall ?
Intensity
(mm/hr)

-

“>—> Time

Figure 3.1: Schematic of the Heneker et al. (2001) model
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3.2.2 Probability Model of Inter-Event Time & Storm
Duration

In order to fit a probability disttibution to the obsetved inter-event time 7, and storm
duration 7, populations, a procedure was employed to extract independent events
from the continuous historical record. After extensive analysis of correlation results,
Hencket et al. (2001) adopted a minimum inter-event time of 2 hours to distinguish
between independent storms. This value provides a balance between ensuting
consecutive events are sufficiently independent and the need to have as much
calibration storm data as possible with a fixed length historical record. While this
minimum inter-event time diffets between researchers, 2 houts was shown to be
sufficient ctitetia for the definition of independence across numerous Australian

sites.

Once the critetia defining storm independence has been set, the historical record can
be examined. A histotical wet storm event begins with any recorded observation of
rain and continues until a dry period is obsetved that exceeds the minimum intet-
event time. When a dry petiod greater than 2 hours is obsetved, the previous wet
event is complete and a new dry event begins until the next observed petiod of tain.
Using this definition of storm independence and the resulting extraction procedure
ensures dry periods of no rain can be present during wet events, a phenomenon that
is readily observed in real storms (see Figure 3.2). Upon completion of this storm
processing step, probability distributions can be fitted to the tesulting populations

during the calibration process.
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Figure 3.2: Schematic of Calibration Procedure

3.2.3 Calibration of Inter-Event Time & Storm Duration

In order to model the distributions of inter-event time and storm duration a
combination probability kernel was used. Lambert & Kuczera (1998) introduced a
generalised exponential distribution which is the basis for the calibration of inter-
event time and storm duration. The generalised exponential distribution takes the

form

F(x]6,)=P(x <x]6,)=1-exp[-g(x,6,)] x>0 (3.1)

where X is the independently distributed random variable, # telates to the time at the
start of the storm or inter-event time. (If parametets ate calibrated monthly, this
relates to the month at the start of the event. Parameters can also be calibrated using
harmonics across the yeat, in this case 7is expressed as a fraction of the year that has
passed), 6, is a model parameter vector dependent on # and g(x|8) is a kernel

function. Re-expressing this equation as

In[1- F(x | 6,)] = —g(x,6,) x>0 (3.2)
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and using the appropriate kernel allows the distribution to be plotted on exponential
probability papet. The kernel chosen by Heneker ez 4l (2001) to best fit the data was
a combination of the Genetalised Pareto Distribution (GPD) (Rosjberg ez al. 1992)

and the power law kernel shown tespectively below.

gl 9,):-%11{1—9, -9"—] 6, <0,6, >0, (3.3)
1 2

g(x,6,)=6,x% 6, >0,8, >0, (34

The combination of equations 3.2, 3.3 and 3.4 gives the complete kernel used to

describe the distributions of inter-event times and storm durations:

In[1- F(x | 6,)] = —g(x.6,) = ;—1In(1 -0, QLJ — Byx%
2

6,<0,6,,0,,6, >0, (3.5)

The patameter vector 8, is calculated using maximum likelihood techniques.

3.2.4 Method of Maximum Likelihood

The method of maximum likelihood was chosen by Heneker ¢ 4/ (2001) and is also

used during this study for estimating the optimal model parameter set.

Given a set of observations X (x,, X, ..., X,), the method of maximum likelihood
finds the parameters 6, of a model that ate most consistent with these observations.
Consistency is measured by the probability of a model generating the observed value.
The method is intuitively appealing as it tries to find the values of the parametets that
would have most likely produced the observed data. If the obsetrved samples have a
density function f{x;6), the likelihood of observing a patticular value x; can be
assumed to be proportional to the value of the probability density function evaluated

at x,. Therefore the likelihood of observing a set of observations X is given by
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L(O; | X4, X500 X)) = F(X4; 0, )(X5:6,)..F(X:64) (3.6)

(Independence assumed)

The value of ¢, which maximises the likelthood function can be obtained ecither by

differentiating the likelhood function with respect to 6, or by nummerically
maximising the likelihood. Typically the shuffled complex evolution method
(SCE_UA) described by Duan er 4l (1992) and the simplex search method
introduced by Nelder and Mead (1965) are used to find the maximum likelihood

parameter S.

Since the natural logatithm function In is strictly increasing, the maximum value of
L(G)|x,%,...,x,), if it exists, will occur at the same point as the maximum value of

n[L(6,| x1,%5...,x,)]. This log likelihood function was the form used duting this
study. The numbers produced by the multiplicative natute of the likelihood function
become too small for current computers to distinguish from zero and therefore the

log likelihood function becomes easiet to work with.

The parameters can be fitted as constants over the entire yeat, to individual months
or allowed to vary smoothly ovet the year via harmonics in order to capture any
seasonality in the data. Validation of parameter values can be undertaken priot to
and after the simulation. Probability plots comparing observed and predicted storm
events indicate the success of the search routine and the distribution assumptions.
At the completion of the requited simulation, plots compating observed and
simulated event distributions and aggregated statistics for various time petiods can be
produced to provide evidence of the quality of the simulation. Example calibration
plots for selected months in Melbourne can be seen in Figure 3.3 and Figure 3.4.
These plots cleatly indicate that the inter-event times and storm durations are not
exponentially distributed (exponential distributed vatiables would plot as a straight
line) and that the combination kernel employed by Heneker ez o/ (2001) provide an

excellent fit to the observed distributions.
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Figure 3.3: Heneker et al. (2001) model fitted to monthly inter-event time data for
Melbourne in January
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Figure 3.4: Heneker et al. (2001) model fitted to monthly storm duration data for
Melbourne in May
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3.2.5 Probability Model of Average Rainfall Intensity

The description of rainfall intensity is an integral part of the alternating renewal
model. Scatter plots clearly indicate that the rainfall intensity is dependent on storm
duration. Figure 3.5 displays such a scatter plot for Adelaide. It is evident from this
plot that the calibration and simulation of rainfall intensity corresponding to each
storm event 1s not a trivial task. Short rainfall events tend to have a slightly higher
intensity pulse in compatison to longer duration events. This cotrelation between
the intensity of a rain event and the cotresponding storm duration requires the
incotporation of a conditional relationship. In addition to this, a probability

distribution must be chosen to describe the population of rainfall intensities.
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Figure 3.5: Average storm event intensity v duration for Adelaide

Heneket ez al (2001) used the GPD distribution to represent average rainfall
intensity. The GPD has a number of advantages which provide significant benefits
when it is used to describe average rainfall intensity. Most notable of these
advantages is the existence of an upper bound when the standard deviation has a
value higher than the mean. This ensures long duration events will not have
untealistically large intensities associated with them producing large abnormal storm

depths, a problem which was observed and identified by Heneker (2002).
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Another advantage of the GPD is that its two parameters can be directly related to
the mean and standard deviation of the observed population. The resulting model of

conditional intensity is given by the following equations

In(1 - F(x))= allln(l—@l i] 3.7)

0,
6,<0,6,>0
where the parameters of the GPD 6, and 6, are dependent upon the mean and

standard deviation and are given by

g o) e

and the mean u and standard deviation o ate conditional on the storm duration

denoted as

w0 = f(in(t,)) 3.9

where #,is the cortesponding storm duration.

This relationship between the GPD parameters and the sample event statistics
ensured the conditional relationship between storm dutation and intensity could be
modelled. To gain an insight into the relationship between the mean and standard
deviation of intensity against duration, the historical intensity-duration pairs are
ordered from shortest to longest duration and then divided into groups of 50
consecutive events. The mean and standard deviation in each group can be
calculated and these ate then plotted against storm duration. A typical result for the

mean avetrage storm intensity versus duration can be seen in Figure 3.6 for Adelaide.
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Figure 3.6: Mean average storm event intensity against duration for Adelaide

The values of g, & cottespond to the mean and standard deviation of the average

storm event intensity. In order to model these changes of g, @ with storm duration a
piece-wise linear relationship was developed. A series of straight line segments link
the changes in slope of the conditional relationship. Breakpoints are manually
included at certain durations by the modeller to ensute sections between breakpoints
ate predominantly lineat. For the above Adelaide data, breakpoints were set at 0.1,
0.2, 0.3, 1.0, 3.0, 10, 18 houts. The resulting piece-wise linear model of mean average
storm intensity can be seen in Figure 3.7. During simulation, the values of z, 0 can
be calculated from this continuous picce-wise linear function and are then used to
estimate the GPD model parameters in otder to generate an average intensity. In
this fashion the complex conditional relationship between intensity and duration was
modelled successfully. Seasonality can again be incorporated by the use of monthly
parametets or harmonics and maximum likelihood techniques are employed to find

the optimum parameter set.
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Figure 3.7: Fitted piece-wise linear model of mean average storm event intensity v

duration for Adelaide

3.2.6 Disaggregation of Rainfall Events

Rainfall models that generate rainfall at time scales in the otder of minutes require a
method to ensure the intra-storm variability of rainfall is reproduced. Fach observed
rainfall event has a cottesponding temporal pattern ie. internal periods of varying
rainfall intensity over time mixed with petiods of no rain. Once the rain event series
and corresponding intensity has been simulated, a disaggtegation procedure can be

included to teplicate these internal storm characteristics.

The main idea behind the disaggregation scheme introduced by Heneket ez 4. (2001)
is that the temporal storm pattern can be conceptualised as a conditional random
walk on a dimensionless mass curve. If the rainfall trace of a storm event is
consideted, when moving from one time step to the next the trace can either move
upward corresponding to a rainfall period, or temain horizontal indicating an internal

dry period. This is shown diagrammatically in Figute 3.8.
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Figure 3.8: A non-dimensional description of the rainfall temporal pattern

The process used to describe the progression in this dimensionless mass space 1s
assumed to be a self-similar, discrete stochastic ptocess. The self-similatity concept
whete storms are assumed to exhibit similar internal propetties despite differences in
storm duration and depth provides the ability to simulate high resolution temporal
patterns for long duration storms. This has been used with success previously by

Woolhiser and Osborn (1985) and Koutsoyiannis and Foufoula-Georgiou (1993).

The disaggregation procedure developed by Heneker ef al (2001) separates the
internal wet and dry petiods of a rainfall event and considers them separately.
During the simulation process, the tequired wet and dty periods are generated and
then using a non-replacement-sampling scheme, the dry periods ate interspersed
within the wet periods to produce the final temporal pattern. These procedures ate

now investigated in turn.
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3.2.7 Intra-Storm Rainfall

The treatment of the internal event rainfall periods begins by temoval of any intra-
storm dry petiods. The rainfall petiods are then consolidated into a continuous

sequence of varying rainfall intensity ot increasing depth providing a rainfall trace.

For each observed rainfall trace, storm duration is non-dimensionalised (from
Heneker ¢z al. 2001) by 7 = #/#, whete t is the time since the start of the storm and 4,

is the total storm duration. Depth is non-dimensionalised by 0 = d(#)/ d(t,) whete d(2)
is the cumulative rainfall up to time 7 and 4(#,) cotresponds to the total event depth.

All rainfall traces therefore lie between (0,0) and (1,1) and have a non-negative slope.

In ordet to describe the progression of the rainfall trace, the non-dimensionalised
space 7 is initially divided into ten finite intervals. A jump distribution is used to
desctibe the progression through the non-dimensionalised space from one interval to
the next. By analysing the histogram of all observed jumps in each tenth of the
dimensionless event duration space, an assumption for this jump distribution can be
made. As shown in Heneker (2002) and teproduced in Figure 3.9, Figure 3.10 and
Figure 3.11 (for Melbourne, Adelaide and Sydney respectively), the shape of the

histogram suggests that a log-normal distribution can be used.
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Figure 3.9: Melbourne Jump Distribution
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Figure 3.11: Sydney Jump Distribution

The first jump from the origin (0,0) to the first duration interval of #,/70 can be

described by the matginal distribution of all initial jumps in the obsetved record.

However subsequent jumps must be conditional on the cuttent location in the non-

dimensionalised space. This ensures that the rainfall trace always ends up at (1,1)

after disaggregation. A truncated log-normal distribution with a jump mean 7 and a
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jump standard deviation s was used to model the observed jumps of the rainfall trace
inside each interval. To ensute the mean and standard deviation of these jumps tend
towards zero (for constrainf) as the rainfall trace approached the end of the
dimensionless storm, the following parabolic cutves were used to desctibe the

parameters 7 and 5. These were then calibrated to the observed rainfall traces.

m=(1—06,_1)(m +my6,1) (3.10)
s=(1-6,_1)(s; +526,1) (3-11)

_d®
where 0 = d(td)

The distribution of internal rainfall jumps used duting the disaggregation process is
therefore predominantly a conditional relationship based on what has transgressed
previously throughout the storm. For the purposes of simulation, rainfall events are
non-dimensionalised and divided into 10 initial intervals each one tenth of the total
storm duration in length. Rainfall depths are calculated and assigned through the
disaggregation process into each of these intervals. The assumption of self similarity
then allows the disaggtegation scheme to be applied to each of these 10 intervals
separately and so on. This process continues until the length of these intervals are

less than or equal to the tequired time resolution.

3.2.8 Internal Storm Dry Periods

Once the wet intervals of the storm event have been simulated and disaggregated
down to the requited time scale, the insettion of dry intetvals produces typical
historical temporal patterns. To do this, a dry spell fraction P is introduced, which
defines the number of dry increments in any given storm. Heneker ez ak (2001)
characterises storm events as belonging to one of three groups with regatds to the P
value. Storms with a total duration of less than 0.5 houts are assumed to have no dry
periods and are assigned a P value of 0. During the simulation process, any storm

where 7, < 0.5 did not require the insertion of internal dry petiods.
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After the treatment of all short storms (#, < 0.5 hours), Heneker ¢f al. (2001) divided
the remaining storms into two groups. Through an analysis of the distribution of
intra-event dry fractions (see Figure 3.12), they found a significant number of storms
had alow P (P, 0<P<0.05) value between 0 and 0.05. The shape of the disttibution
of all remaining storms with a higher P value (P, P > 0.05), indicated that it could be
modelled using a Beta disttibution with a lower limit of 0.05 and an upper limit
(Pyrix) defined as the maximum P observed in the data. The storms allocated a low P

value (P;) where modelled using a uniform distribution.
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Figure 3.12: Distribution of intra-event dry fractions for Melbourne.

The calibration process requires the calculation of four parameters from the
observed data. These relate to the two parameters of the Beta distribution, the
probability of P, and P,.,. During a model simulation, the sampled P value
determines the number of dry intervals that are interspetsed into the rainfall trace.
To insert these dty periods, a random insertion without replacement scheme is
employed to intersperse these dty intervals into the simulated rainfall trace,
producing the temporal pattern of the rainfall event. 'T'wo constraints are introduced
to control this insertion process. Fitstly, any dry period within the storm must not
exceed the minimum inter-event time of two hours, which was mitially used to
determine storm independence. Secondly, the first and last interval of the storm

must always be wet to ensure the storm duration remains correct.

78



Chapter 3: Rainfall Model Improvements

3.2.9 Summary

The model results presented by Heneker e al. (2001) show the model to be capable

of generating synthetic rainfall data down to time resolutions in the otder of minutes.

The reproduction of short duration IFD values at most sites gives an indication of

the effectiveness of the disaggregation procedure. Obsetved and simulated intet-

event times and storm durations compare well, as does the mean of annual rainfall.

Indicative plots comparing obsetved and simulated data from Melbourne for IFD,

monthly and annual rainfall are shown in Figure 3.13, Figure 3.14 & Figure 3.15

respectively and display the ability of the model to capture these statistics.
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Figure 3.13: Simulated and observed IFD probability distributions for Melbourne
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Even though the model was deemed a success, the model in its original form

contained areas that could be significantly improved.

While investigating the

petformance of the original model and calibrating to numerous rainfall sites across

Australia, it became apparent that model parameters were not always well detetmined

by a global search routine. Further analysis has indicated the existence of significant
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parameter correlations within the adopted probability structure used to desctibe inter
event times and storm durations. The existence of these parameter correlations can
be shown to induce ‘flat’ areas in the objective function space (regions where the
likelihood is almost identical over a vast range of parameter combinations). This
makes it difficult for global seatch routines to determine the optimum parameter
values. For the purposes of regionalisation, it is important that model parameters are
well defined and not significantly cotrelated so master calibrations can be adapted

and used at other sites with confidence.

To improve the estimation of model parameters and provide an easier model to
regionalise, an investigation into the relationships between model parameters has
been undertaken. A well known technique known as the Metropolis algotithm (Lee
(1989), Gelman ez al. (1997)) (2 Monte Catlo Markov Chain) has been incorporated
into the new model and has allowed an insight into these parameter relationships.
The result of this work is the complete removal of one superfluous parameter.
Replacing the otiginal 4 patameter distribution with a modified 3 parameter version
has removed the significant parameter cottelation, resulting in optimum model
parameters that are well identified and assists in understanding the relationship

between parameters in the model.

Another issue watranting attention was the procedure introduced by Heneker ¢ 4
(2001) to calibrate storm event intensity. The original calibration process required
modeller input at various stages, resulting in the procedute being time consuming
and potentially biased on the expectations and interpretations of the modellet. This
was not the case for the calibration of storm inter-event time ot storm durations
which were operator independent. This manual intervention introduces an
inconsistent calibration process which has the possibility to vary significantly
between data sites and modellers. Analysis of the intensity-duration relationship has
led to the development of an automatic calibration procedure which tremoves the
need for modeller input and simplifies the calibration process. This has improved
the reliability of the model and in turn its usefulness and functionality as a
hydrological tool.

These ideas and results behind these two majot improvements to the model are

presented below.
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3.3 Identifying and Removing Correlated
Parameters

The ability to successfully identify optimum model parameters is a critical step in the
application of hydrological models. With substantial improvements in computing
power and improved searching algorithms, the identification of model parameters
continues to become easier to accomplish. However, the ability to determine the
true optimum parameters is particularly important for a model being used for

tegionalisation. This was summarised by Kuczera (1983) when he said:

“If the full potential of the regionalisation approach is to be realized, it is desitable
that optimized parameters be close to their true values; that is, they should be

precisely inferred ot well determined.”

The importance of accurate calibration was also discussed by Gaume ef a/. (1998)
who noted that it (an accurate calibration) can not be ovet estimated and that
correlations between parameters provides a major obstacle in the ability to accurately
identify model parameters. The ability to analyse and remove cotrelated parameters
would improve the calibration process and provide further evidence of a well

developed model.

The existence of parameter cortelations can influence the calibration process by
yielding objective function sutfaces that are complex with numerous flat areas and
localised valleys. These surface structures can become problematic for search
routines (and modellers) interested in finding the optimum parameter values.
Cottelations in the parameter structute can also result in an uncertainty in the fitted
parameter values, which in turn may produce a poor simulation result. If parameter
correlations can be identified, the model can be teconstructed/re-structured to

remove the need for these parameters, thus improving the model.

Fort these reasons, improving the Henckert e 2/, (2001) model by removing parameter

correlations was seen as an important step towards providing a robust model capable
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of further development into a regionalised rainfall model. In order to analyse the
Heneket ef al (2001) model parameters an estimation of the distribution of these
parameters after calibration (p(8]y)) is required. Unfortunately, it is difficult in
complex models with numerous patameters to obtain samples from this posterior
parameter distribution ditectly. To circumvent this problem, the Metropolis
algotithm, a member of the Monte Catlo Matkov Chain simulation (MCMC) family,
was incorporated into the original model. A brief desctiption of the workings of the
Metropolis algorithm is provided below. For a more detailed description of
Metropolis, mathematical background and alternative MCMC’s the author
tecommends Lee (1989), Gelman ez /. (1997) and Gamerman (1997).

3.3.1 The Metropolis Algorithm

The Metropolis algorithm was developed initially by Mettopolis ¢# 4. (1953) to deal
with the calculation of chemical substance propetties that are determined by the
equilibtium of potential energy and the vector position of the chemical molecules. In
its presented form, the algotithm is able to sample from the posterior distribution of
parametets in a complex model such as this, where direct calculation of these

distributions is not possible.

The idea of all MCMCs, is to simulate a random stepped walk through the parameter
space whereby samples drawn at each step in the process eventually converge to the
stationary postetior distribution of the calibrated model parameters. As samples are
drawn sequentially and the next sampling distribution is dependent on the previous
value, the process forms a Matkov Chain. The requited posterior parameter
distribution is denoted p(0|y) and is often called the target distribution. This refets
to the fact that in reality the distribution is only inferred from the accepted

simulation samples and in essence is targeting the true parameter distribution.

Initially samples are drawn from an approximation of the parameter distribution
teferred to as the jump distribution. As the algorithm proceeds, controlled
adjustment of this jump distribution ensures subsequent samples are more likely to
be similar to those that would be drawn from the real tatget distribution. During the

process, drawn samples are accepted ot rejected as a sample of the true target
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distribution based on a certain test criteria. This technique allows the algotithm to
convetge towards the true target distribution. Mathematical proofs are available (see
Gelman ¢f al (1997)) that show samples drawn after convergence are equivalent to
drawn samples from the required target distribution. The adjustment of the
approximate distribution at each step, which allows the simulation to converge to the
target distribution, is the primary teason that this technique can be used with success
in higher dimensional ptroblems. This is not the case for one/low-dimensional

approaches such as importance sampling where the distributions remain the same.

A key to Markov Chain simulation is running the simulation long enough to ensure
that the distribution of current draws from the simulation are close to the required
stationary distribution. The question in practice becomes just how long should the
algotithm run to ensure convergence? If the algorithm is launched with several
sequences each an independent Matkov chain simulation, then the ‘mixing’ of these
independent paths (occurs when each independent path is sampling from the same
parameter region) provides evidence that the algotithm has converged. Various
other parametric and non-parametric techniques exist which are available to test for

convergence (see Gelman ez a/. (1997)).

To gain an understanding of the workings of the algorithm, an example situation
with 4000 randomly generated data points from a normal distribution with a mean of
10 and a standard deviation of 10 is presented. An SCE_UA search was conducted
initially, assuming an undetlying normal distribution and using an objective function
based on Maximum Likelihood criteria. This search resulted in returned optimum
parameters of 10.012 (mean) and 9.914 (Standard Deviation). Due to the large
number of data points (4000) and a two patameter distribution (normal) it is
reasonable to expect the calibrated parameters are well defined and concentrated
around the optimum modal parameters. The steps involved in then applying the

Metropolis algorithm are as follows
1. A starting point 6, is drawn which can be randomly selected ot centred about

the modes/best fit of the distribution providing that p(8,|y) > 0 (ie. the

initial point is feasible).
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2. A candidate point 6" is sampled from the approximate or jump distribution
Jt(®’, 6,,) at time t.

3. ‘The ratio of the densities at these points is calculated, that is r = %93%}%

t-1

4. A random number is generated between 0 and 1. If this value is less than ,
then the candidate point is accepted as a sample of the postetior distribution.
If this value is greater than r the candidate point is rejected. Once a point has
been accepted, the algorithm shifts to this point for the next iteration. If the
candidate point is rejected, then the algotithm stays in its cutrent position.
The acceptance/rejection process ensures that the algorithm will always
accept candidate points which have a greater density than that of the previous
time step while also sometimes accepting points which have a lower density.
This enables the algorithm to explote the entire parameter space and
eventually converge on the cotrect posterior distribution.

5. Repeat the process iteratively until convergence.

After assigning random starting points inside the parameter space, Figure 3.16 shows
the first 30 iterates of the algorithm. The solid squares ate included to indicate the
starting points of the 4 independent path sequences. It can be seen that the random
walks have each traced a path through the parameter space, however it is clear at this

early stage that convergence has not yet been reached.
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Figure 3.16: 30 Independent Sequences of a Markov Chain Simulation of a Normal
Distribution. (Modal Parameters of 10.012 and 9.914)

Figure 3.17 presents a more mature simulation after the first 1000 iterations. The
sequences ate much nearer to convergence indicated by each independent path
spending mote time around the same position in the patameter space. This mixing
of the 4 paths gives an indication that the model is converging and therefore drawing
samples that are more likely to be from the underlying posterior distribution. It is
also evident that the independent sequences have been able to successfully explote
the parameter space as evidenced by accepted samples near the extremities. The

sequences now almost have a common stationary distribution of p(8 |y).
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Figure 3.17: 1000 Independent Sequences of a Markov Chain Simulation of a Normal
Distribution. (Modal Parameters of 10.012 and 9.914)

Given a matute converged simulation (Figure 3.17), the postetior parameter
distributions can now be inferred from subsequent samples. Figure 3.18 displays the
iterate cloud of the final 2000 samples. These samples can be considered as draws
from the tatget distribution and thus give the parameter distributions relating to the

calibrated mean and standard deviation of the assumed notmal model.
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Figure 3.18: Final 2000 Independent Iterates of a Markov Chain Simulation of a Normal
Distribution. (Modal Parameters of 10.012 and 9.914)
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The efficiency of the Metropolis algorithm is related to the selection of the jump
distribution. Primarily a good jump distribution must be easy to sample from. It
must also ensure that each jump goes a reasonable distance in the parameter space so
that the random walk does not explote the parameter space too slowly and that
candidate points are not rejected too frequently so that the algorithm doesn’t waste
time standing still. Gelman er @/ (1997) provide suggestions to imptrove the
efficiency of algorithms which are progressing slowly. Typically for a multivariate
normal distribution, the optimal jumping rule should have an acceptance rate around
0.44 in one dimension or 0.23 in high dimensions. If the simulation is proceeding
with an acceptance rate significantly different to these values, then the following
adjustments can be included into the algotithm to improve efficiency.

1. After a certain number of iterations, the covariance of the jumping
distribution can be adjusted to be proportional to the postetior covatiance
mattix estimated from the accepted simulation samples.

2. The scale of the jumping distribution can be increased or decreased if the

acceptance ratio is too high or too low respectively.

Monte Catlo Markov Chain simulation provides a useful technique to determine the
parameter distributions in complex models. The algotithm is relatively simple to
implement and relies on the ability to draw samples from the jumping distribution,

the ability to calculate r and the ability to generate random numbers.

3.3.2 Incorporating The Metropolis Algorithm into the
Rainfall Model

The Metropolis algorithm in the form presented above was incorporated into the
structure of the Heneker ¢/ 4/ (2001) model to allow parameter uncertainty to be
examined. The likelihood functions in the model provided an ideal objective
function for determining the required value of r. In order to implement the
Metropolis algorithm, the only remaining requirement was the selection of an
approptiate jumping distribution.  Accepting the requitement that the jumping
distribution must be symmetric for implementing the basic Metropolis algorithm, the

selection is somewhat arbitrary. For the purposes of this study, a multivatiate normal

88



Chapter 3: Rainfall Model Improvements

distribution was chosen. The multivatiate normal is symmetric and has the
advantage that samples from this distribution are easily obtained. Generalisations of
the Metropolis algorithm (namely the Metropolis-Hastings algorithm see Hastings
(1970)) can handle the selection of jumping disttibutions which are not symmetric

but this has not been required during this investigation.

The following values wete used for all Metropolis simulations. Three parallel
independent paths were simulated each with 11500 samples. The first 1500 samples
of each path were discarded leaving a total of 10000 per path. Initially these
independent sequences were seeded by sampling from a multi variate normal

distribution centred at the optimum or modal parameters.

3.3.3 Dry Spell and Storm Duration Parameter Analysis
using the Metropolis Algorithm

As previously discussed the calibration of inter-event times and storm durations are

undertaken with a generalised exponential with a kernel function given by

In(1- F(x)) = gilln(l-el %]-93)/’4 (3.12)

2

6, <0,6,,0,,8, >0,

The four model parameters for both the intet-event and storm duration calibration
can be referred to as the shape 6,, location 0, constant 8; and exponent 0,
parameters. A pait-wise comparison of the resulting Mettopolis postetior parametet
distributions shows the existence of significant parameter correlations in the original

model structure.

A typical result where two parameters exhibit very little to no correlation is shown in
Figure 3.19 (in this case the shape and location of an inter-event calibration for
Sydney data). As can be seen from the bi-variate plot, movements away from the
mode of the parameter produce a significant decrease in the goodness of fit as

evidenced by a decrease in the density of accepted samples. The bi-variate normal
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shape that is evident in Figure 3.19 is a good indication that this pait of parametets is

well defined and has little correlation.
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Figure 3.19: Scatter Plot from Metropolis Output Comparing Shape 6, and Location 6,
Parameters (Calibrated to Sydney Inter-Event Data January)

A similar plot of the constant 6; and exponent 0, parameters from the same
distribution and with the same data shows a very different result. Figure 3.20 is an
example of two parameters that exhibit a classical ‘cigar’ shape and thus have
significant correlation. Changes in the fit of the model due to a change in one
parameter have been compensated by a cotresponding adjustment in the second
parameter which ensutes a similar goodness of fit. The density of accepted samples
along the ‘cigat’ shape is similar suggesting that any point on the curve is as good a fit
as any other. This can provide difficulties for the search routine in finding the
optimum parameter values, and provides parameter estimates that have a high degtee
of uncertainty. An analogy of this problem is the simple sum of two variables, where
there are an infinite number of combinations that can be chosen for values of x and y
such that x + y = 10. Generally the existence of highly cottelated parameters may
not be a major problem, however for the purposes of regionalisation it is desirable
that the master parameter values are well defined. Figure 3.20 through Figure 3.23

show similar plots for other data sets, other months and for the calibration of storm
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duration indicating that this is a genetic problem with the adopted hybtid probability

distribution.
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Figure 3.20: Scatter Plot from Metropolis Output Comparing Constant 85 and Exponent 0,4
Parameters (Calibrated to Sydney Inter-Event Data January)
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Figure 3.21: Scatter Plot from Metropolis Output Comparing Constant 8, and Exponent 8,
Parameters (Calibrated to Melbourne Inter-Event Data June)
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Figure 3.23: Scatter Plot from Metropolis Output Comparing Constant 8; and Exponent 6,

Parameters (Calibrated to Brisbane Storm Duration data April).
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3.3.4 Improvements to the Calibration of Dry Spell and
Storm Durations through a 3-Parameter Model

A simplification to the hybtid four parameter distribution was chosen to describe the
distribution of inter-event times and storm durations and remove the high parametet
cotrelations displayed above. The nature of the cigar shaped postetior distribution
suggests that an equally good fit could be obtained by fixing one parameter (either
the exponent ot constant parameter) at a certain value and leaving the other
parameter vatiable to compensate. This would remove the parameter correlations

while still providing an adequate description of the observed distributions.

To implement this proposed change, the model was initially calibrated using the
otiginal 4 parameter model. The average value of the exponent parameter was then
calculated from this monthly calibration and the model re-fitted to the obsetved data
keeping the exponent parameter constant. A compatison between this new 3
parameter model and the original 4 parameter vetsion was undertaken by way of best

likelihood estimates and plots of observed versus predicted values.

Figure 3.24 compates the maximum likelihood estimates for both the 3 parameter
and 4 parameter model. While a slight decrease in the likelihood is noted (thus a
worse fit), this minimal difference does not decrease the performance of the model
(the maximum change in likelihood estimate from one model to the other was 6350.6
to 6354.7). Figure 3.25 compares the distributions of obsetved and calibrated data
using both the 4-parameter and the 3-parameter model. As evidenced in these plots,
there is vety little difference in calibration accuracy between these two options.
Analysis of the parameter distributions (Figure 3.26 and Figure 3.27) which are
produced with the 3-parameter model indicate that all model parameters ate now

well defined and are without significant correlation.
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Figure 3.24: Comparison between Maximum Likelihood Function Values for the Original 4
Parameter Model and the New 3 Parameter Mode! (Calibrated to Melbourne Inter-Event

Data)
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Figure 3.26: Scatter Plot from Metropolis Output Comparing Shape 8, and Location 6,
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Figure 3.27: Scatter Plot from Metropolis Output Comparing Location 8, and Constant 8;

Parameters (Calibrated to Melbourne Inter-Event data June).
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3.3.5 Intensity Parameter Analysis using the Metropolis
Algorithm

The intensity model presented by Hencker ez 2. (2001) requites the calibration of the
two parameters (namely the mean and standard deviation) of a regular Generalised
Pareto Distribution to the population of conditional intensity through a piece wise
linear model structure. These parameters are ditectly related to regular probability
distribution parameters and as such it was believed that the possibility of
encountering significant parameter cotrelaons was small. However for
completeness, the Metropolis algorithm was again incotporated into the calibration
of event intensity model and similar parametet disttibution outputs as that presented
for dry spell and storm duration parameters wete produced. Figute 3.28 indicates the
typical correlation between the mean and standard deviation patameter at a given
breakpoint, in this case for Melboutne data. As expected the scatter plot indicates

that there is little to no parameter correlation between the two parametets within the

intensity model at a given breakpoint.
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Figure 3.28: Scatter Plot from Metropolis Output Comparing the Mean and Standard

Deviation Parameters, 0.2 Hour Storm Duration Breakpoint (Calibrated to Melbourne

Storm data December).
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The second compatison to check within the calibration of storm intensity is the
possibility of significant correlation between parameters associated to different
breakpoints. While the patameter values at subsequent breakpoints are intrinsically
linked due to the structure of the piece wise linear model, does this relationship
cottespond to significant parameter correlations that make it difficult for the search
routine to determine the optimum patameters? Figure 3.29 displays the cottelation
between the mean parameter at subsequent breakpoints for data from Melbourne.
Again it can be seen that the shape of this scatter plot suggests there is little or no

parameter cottelation in the calibration of conditional storm intensity parameters.
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Figure 3.29: Scatter Plot from Metropolis Output Comparing the Mean Parameters, 0.2
Hour and 0.4 Hour Storm Duration Breakpoints (Calibrated to Melbourne Storm data
December).

While these results from analysing the calibration of conditional intensity suggest that
model parametets are cleatly defined and the optimal parameter values can be found
using an adequate searching algotithm, the process for developing the required piece
wise linear relationship during the calibration process remained cumbersome and
inconsistent. If the model was to be used within a tegionalised framework, further

improvements to this section of the calibration process were required.
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3.4 Improvements to the Calibration of Storm
Intensity

The original structure of the Heneker ¢f /. (2001) rainfall model used a Generalised
Pareto Distribution to model the distribution of event storm intensities. As

discussed previously, the probability model was govetned by the following equations

1 X
n(1- F(x))= o3 r.{l -6, E] (3.13)
6, <0,6, >0
whete the parameters of the GPD 6, and 6, are dependent upon the mean and

standatd deviation and atre given by

5 =% y([g—j]—lj, 0, =% ;{[g—an] (3.14)

and the mean p and standard deviation G ate conditional on the storm duration

denoted as

#.0 = f(in(z, ) (3.15)

where t, is the corresponding storm duration.,

The complex conditional relationship between the mean rainfall intensity () and
storm duration (t) denoted in (3.15) was modelled using a piece-wise linear
relationship. A series of straight line segments were used to map the changes in
slope of the conditional relationship, while breakpoints located at certain durations
defined the start/end of each linear segment (see Figure 3.30). A similat relationship
was used to model the telationship between the standard deviation of rainfall
intensity and storm duration. At each breakpoint, the mean and standard deviation
parameters from Equation (3.15) are calibrated using maximum likelihood techniques
with the observed storm data. By calibrating the parameters of Equation (3.15) at
each of the breakpoint positions, the piece wise linear relationship can then be used

to determine parametet values for any storm duration.
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Figure 3.30: Schematic of Piece-Wise Linear Relationship

The otiginal calibration procedute required significant modeller input during various
stages of the process. Initially data pairs of intensity and the cotresponding storm
duration were ranked in otder of increasing duration and then collected into bins of
50 consecutive points. The mean and standard deviation of these 50 storm
intensities and the resultant average storm duration were then calculated and plotted
on a log scale to produce a calibration plot. The initial position of the breakpoints
within the piece wise linear model were then determined by analysing scatter plots of
these average mean intensity against duration and average standard deviation of
intensity against duration. Examples of these plots are shown in Figure 3.31 for
mean intensity against duration and Figure 3.32 for standard deviation of intensity

against duration.
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Figure 3.31: Calibration Plot for Mean Average Intensity (Data for Melbourne)
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Figure 3.32: Calibration Plot for Standard Deviation of Average Intensity (Data for

Melbourne)

The next step in the calibration process was to examine these plots and identify

specific durations where the scatter cloud underwent a significant change of

shape/slope. At these positions, a breakpoint was created in the plece-wise linear

model in an attempt to describe the complicated conditional relationship. These

breakpoints are indicated on the calibration plot (Figure 3.33) by a vettical straight

line.
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Figure 3.33: First Iteration Breakpoint Calibration

Calibration then proceeded by an iterative process where a simulation of the model
would be run and extra breakpoints introduced to the relationship to improve the
compatison between simulated and observed values. In

Figure 3.34 additional breakpoints have been introduced 0.5 and 0.9 houts with 0.2,
0.7, 2 and 10 hour breakpoints introduced in Figure 3.35. Analysis of the standard
deviation of average storm intensity and storm duration introduced breakpoints in a
similar manner. When the resultant simulation provided an accurate compatrison to

the observed statistics, the calibration ceased.
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Figure 3.35: Final Breakpoint Calibration

The manual selection of breakpoints in its original form was inefficient and
uncertain.  The iterative process was time consuming and inconsistent as the
breakpoint selection was dependent on each individual modeller’s expectations
and/ot interpretations of the calibration plots. As a result the calibration may be

pootly fitted by an mexperienced model uset who does not select an adequate
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number of breakpoints or over fitted by the introduction of additional breakpoint
parametets which have little influence. Ideally, model results should be independent
of the model user and should be designed to require no manual interaction teducing

the chance of error and the time of calibration.

3.4.1 Investigation into the Intensity-Duration Shape

To develop an efficient automated calibration procedutre, a better understanding of . -

the shape of the conditional calibration relationship was tequited. If the shape could
be shown to be consistent ot predictable, then the breakpoint locations could be
standardised across a number of sites reducing the need for manual intervention.
Thete was also a possibility that a function could be used to describe the complex
conditional relationship and remove the need to use the breakpoint linear segment

approach altogether.

To investigate the shape of the conditional intensity — duration relationship,
aumerous sites across Australia were selected and their records adjusted to ensute
each site contained concurtent data periods. Calibration plots were then produced
for all sites and compared with the expectation that a similar conditional intensity-
duration relationship would be obsetved across a number of sites. Such an
expectation was not unreasonable given sites located within ptoximity of one and
other should be influenced by similar rainfall patterns and events driven by large
climatic factors. While there is likely to be small localised differences, a similar
pattern should be observed overall. The results of the investigation provided below
indicate that this is the case, and remarkably that the relationship is similar across

sites a great distance apatrt.

A comparison between 5 capital cities in Australia illustrates the similatity in the
structure of the intensity — duration relationship. Figure 3.36 presents the mean
intensity - duration relationship for data from Perth, Adelaide, Brisbane, Sydney and
Melbourne. If the relative scaling of sites is ignored (i.e. Brisbane generally sits well
above other sites due to its higher rainfall), it can be seen that the intensity-duration
relationship is consistent actoss a number of rainfall sites. While these Australian

sites are a significant distance apart geographically, they still exhibit a similar
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conditional intensity — duration relationship. Analysing a similar plot confirms the

same tesult for the standard deviation of intensity mn Figure 3.37.
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Figure 3.36: Comparison of Mean Intensity v Duration at Numerous Rainfall Sites
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Figure 3.37: Comparison of Standard Deviation of Intensity v Duration at Numerous

Rainfall Sites

If the investigation is refined further and local regional sites compared, the consistent
shape is even more pronounced as is evidenced by Figure 3.38 and Figure 3.39 for

sites in New South Wales where there is very little spread in the plotted data cloud.
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Figure 3.38: Comparison of Mean Intensity v Duration for New South Wales Rainfall Sites
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Figure 3.39: Comparison of Standard Deviation of Intensity v Duration at New South
Wales Rainfall Sites

This observed consistency in results was encouraging and suggested that a similar
breakpoint structure across all sites could be used to describe the conditional
relationship.  Significantly, this would remove the need to determine individual

breakpoints for a given site therefore temoving the need for modeller input.
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Initial investigations into the use of such a blanket approach to the problem
(whereby the number and locations of breakpoints were set and incorporated into
the model removing the need for an iterative scheme), were not successful as the
complex nature of the relationship and the model structure made it difficult for
accutate calibration. Nine standard breakpoints were set up after analysis of
numerous calibration plots and from user expetience with their locations fixed at 0.2,
0.3, 1.0, 1.8, 2.4, 3.0, 9.0, 12.0 and 24.0 hours. Defining breakpoints at these
locations provides sufficient structure to the piece wise linear relationship to capture
the required variability however, attempts at numerous sites with this approach
produced poor calibrations. While the calibration did estimate a set of model
patametets, they were not able to locate the optimal set. Resultant simulations
provided poor compatisons between observed and simulated statistics, significantly
pootet than the original iterative manual calibration approach. This unfortunate
outcome was suspected to be a result of the large search space introduced by the
numbet of parameters (or the degrees of freedom) being calibrated concurrently (this
is not an issue in the original model which employed an iterative process) and by the
range of possible values each patameter could undertake. This was in direct contrast
to the original iterative procedute which, though time consuming and requiting
manual input, provided the chance to incrementally increase the number of
breakpoint locations and by using an interpolation of the previous best fit also
provided a significantly smaller seatch space at each step for the calibration process

to manage.

Even though the blanket approach had not been an immediate success, it was
obvious that the use of such an apptoach to the calibration of mntensity had
significant merit. Not only would it remove the need for an itetative process, it
would also temove the need for modellet input teducing a major source of etror and
inconsistent results. However without additional modification to the calibration
procedute it was evident that a blanket style approach could not be employed. With
this in mind the possibility of developing some form of function to desctibe the
conditional relationship warranted investigation. The consistent natute of the
calibration plots (as discussed above) provided the ideal opportunity to introduce a

continuous function to describe the required shape at all sites. This function

106



Chapter 3: Rainfall Model Improvements

description could then be used to provide an initial estimate of the parametets within
the standardised breakpoint piece-wise linear model, increasing the efficiency and
tobustness of the calibration process. Thete was also the possibility that
development of such a continuous function may remove the need for a piece wise

linear model, providing an alternate solution to the intensity calibration process.

3.4.2 Initial Duration - Intensity Relationship
Description using a Continuous Function

To provide an initial mathematical description of the intensity — duration
relationship, a continuous function was developed which contained enough
variability to describe the obsetved intensity variations while still having significant
constraint to ensure model parameters could be found quickly when using a global
searching algorithm. While the obsetved shape of the intensity — duration
relationship is complex, it was hoped that a function could be developed which
desctibed the structure adequately to provide an initial fit to the piece wise linear
model in the worse case or in the best case provided an alternate option for the

modelling of storm event intensity.

Initially considering data around Sydney, analysis of the average mean calibration plot
suggest that the overall shape could be approximated by the combination of a
constant ot linear trend across the range of storm durations, and a curved deviation
below this trend beginning at approximately 0.7 hours, and returning at 30 hours
(Figure 3.40). This has been shown graphically in Figure 3.41. A similar description
is present in Figure 3.42 for average standard deviation calibration plot, where
deviation away from the linear trend begins earlier (0.3 hours) returns at around 3

hours and sits above the general linear trend.
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Figure 3.40: Comparison of Mean Intensity v Duration for New South Wales Rainfall Sites
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Figure 3.42: Schematic of Standard Deviation of Intensity Calibration Plot Trend

In otder to provide an approximation of this shape, a hybrid function was developed
which combined a simple linear trend with an additional function incotpotated to
desctibe the shape of the deviation away from the general trend. Desctibing this
deviation is difficult in a consistent manner across numetous sites due to local
variations. In some instances, as is the case for Sydney data, the deviation begins
around 0.7 hours (for average intensity) and returns at 30 hours. Other sites this
deviation can be more or less pronounced and occur at different times over different
petiods. In addition the adopted function must have the ability to adapt to the
different shapes evident between the mean and the standard deviation calibration
plots. After investigating a number of functions, the shape of the Beta distribution

was chosen. This distribution is given by

-X
1 el ?)
pix) = () e (3.16)
B°T(e)
where
—_—,B"T ( ) is a scaling value to ensure the integral of the density equals 1, x relates to
o

the storm duration, and « and { are the parameters of the Beta distribution.
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As only the shape of the disttibution is required, the scaling value of the Beta

function can be distegarded, leaving

p(x) = (X)“’1e[%] (3.17)

In this form the Beta function has the ability to form almost any shape imaginable to
describe the deviation in the intensity — duration relationship. The interactions
between o and B control the location of the deviation peak, the length of the decay,
and to a lesser extent the size. A further control on the size of this deviation was

provided by including a scaling value to the size of the deviation.

Combining this scaled Beta distribution with a generic linear equation, the final form
of the continuous function used to describe the conditional intensity - duration

relationship is given by
(_td]
f(td)=91 +92td —93 td04_1e 65 (318)

t; denotes the storm duration and f(t)) provides an estimate of the average storm
intensity. 6 are the parameters of the hybtid function, with 6, and 6, providing the

linear trend, and the deviation shape controlled by 6,, 6, and 6,.

The calibration of this function to Sydney data can be seen in Figure 3.43. The
continuous function is able to provide a reasonable approximation of the conditional
telationship, while being simple enough to enable a quick calibration. It is also
obvious from this plot that the continuous function, as could be expected, smooths

some of the local vatiability that occurs in the data.
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Figure 3.43: Example Hybrid Continuous Function Calibration (Data from Sydney,
January)

A similat result is seen in Figure 3.44 for data from Melbourne where the piece-wise

linear fit calibrated using the continuous function as a statting point is included for

comparison.
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Figure 3.44: Comparison between Beta Continuous Function and Automatic Piece-Wise

Linear Fit (Data from Melbourne, August)
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The results presented in Figure 3.44 indicate that the piece wise linear fit captures the
localised variations in the duration-intensity relationship more accurately in contrast
to the continuous function on its own. Compatison between calculated likelihood
values for the piece wise linear fit and the continuous function using optimal
parameter values confirms this result. Table 3.1 and Table 3.2 present the likelihood
values for Melbourne and Sydney Data respectively. In these tables the smaller the

value, the better the fit to the observed data.

Table 3.1: Likelihood Function Comparisons for the Intensity Calibration Options
(Melbourne)

MONTH CONTINUOUS | AUTOMATIC
FUNCTION PIECE WISE
FIT FIT
January 1094.7 1068.1
February 1052.3 1015.7
March 1185.1 1161.8
April 1441.2 1413.8
May 1485.9 1449.8
June 1304.0 1283.6
July 1435.6 1381.7
August 1726.2 1673.8
September 1618.3 1577.7
October 1603.2 1572.5
November 1444.8 1426.4
December 1298.3 1274.7
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Table 3.2: Likelihood Function Comparisons for the Intensity Calibration Options

(Sydney)

MONTH CONTINUOUS | AUTOMATIC

FUNCTION PIECE WISE

FIT FIT

January 1692.7 1656.4
February 1801.4 1778.5
March 2041.4 2019.6
April 1683.9 1653.7
May 1575.1 1556.6
June 1485.4 1459.6
July 1017.8 970.8
August 1100.3 1072.3
September 1228.9 1198.8
Octobet 1479.8 1445.9
November 1644.3 1618.9
Decembet 1634.2 1615.4

As shown in these typical results, using the continuous function calibration as a
starting point for the automatic piece-wise linear model produces a better description
of the conditional telationship than simply using the hybrid function on its own.
This can be seen graphically in Figure 3.45, where the cumulative improvement to

the model calibtation (improvement to likelihood) over the year is displayed.
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Figure 3.45: Cumulative Likelihood Improvement

While the continuous hybrid function is not able to desctibe the variations within the
calibration shape adequately on its own, it is an extremely useful pre-calibration step
within the calibration process. The continuous function provides both an initial
statting point for each parameter within the parameter search space (which is close to
the optimal value) and decreases the size of the search space by providing realistic
limits on parameter values around these initial parameter estimates. The SCE search
routine takes these initial parameter values and is able to refine them quickly within

the limited search space to determine the optimal parameter set.

3.4.3 Verification by Simulation

Compartisons between observed and simulated data sets wetre undertaken at various
sites to ensure that the new calibration technique were able to teproduce the same
observed statistics and distributions as the previously used manual calibration
technique. While the new calibration routine solves the issue of manual modelet
input and improves the efficiency of the search routine, it should also petrform to the
same standard as the previously used manual approach if it is to be adopted as an

alternative.
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Results from the manual calibration model showed good treproduction of both
aggregated rainfall totals and Intensity — Frequency — Duration curves. If the new
automated calibration was shown to also reproduce these values, its validity as a
calibration tool could be verified. Extensive validation of the improved model is
presented in Chaptet 5 incorporating all improvements however Figure 3.46 and
Figure 3.47 display typical reproductions of monthly rainfall disttibutions using the
automated calibration procedure. These plots indicate good agreement between
observed and simulated values suggesting thete is no reduction in the ability of the

model to reproduce these non-calibrated statistics.
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Figure 3.46: Comparison of Observed and Simulated Rainfall Intensity Values for
Brisbane Data, July
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Figure 3.47: Comparison of Observed and Simulated Rainfall Intensity Values for Sydney

Data, August

An additional check using Intensity — Frequency — Duration curves is provided in

Figute 3.48 and Figure 3.49 below.

Again, the automatic calibration model

reproduces these statistics across vatious time scales with the advantage that there is

no manual intervention in the calibration process.

10

©
-—

Intensity (mm/hr)

0.01

0.001

O
<
v
[ ]
L g
v

Obs 1 hour
Obs 24 hours
Obs 72 hours
Sim 1 hour
Sim 24 hours
Sim 72 hours

.01

10 20 30

50

Percent

70 80 90 95 99 99.9 99.99
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Figure 3.49: Intensity Frequency Duration Comparison for Various Durations, Brisbane

3.5 Summary

The existing rainfall model presented by Heneker ef 4. (2001) and selected for further
development as part of this study contained a number of deficiencies in its original
form which watranted attention prior to the development of a regionalisation

approach for applying the model at sites with little ot no calibration data.

Analysis of calibrated inter-event time and storm duration parameter distributions
from the otiginal model setup of Heneker ¢f 4. (2001) showed significant correlations
were present which provided identification problems when searching for optimal
model parameters. The incorporation of the Metropolis algotithm led to an
investigation into the intet-parametet relationships and enabled one parameter
variable being replaced with a constant numerical value. Checks between the altered
and original model have shown this simplified description of the storm event
distributions with one less parameter per month are as accurate as the original model.
This has increased the confidence and stability in the maximum likelihood patametet
estimations, which provides a benefit for future regionalisation work. A similar

investigation into the calibration of conditional storm intensity has indicated that the
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existing model does not contain significant parameter correlations and in its present

form calibrated parameters are well defined.

Improvements to the calibration process for storm intensity were investigated and
analysis across numerous sites indicate that a similar shape exists within the
conditional intensity — duration calibration telationship that is well desctibed by using
a piece-wise linear relationship which has a constant set of breakpoints across all
sites. This significantly removes the need for the manual selection of breakpoints.
The automatic calibration process has been completed by using a hybrid continuous
function to describe the conditional relationship and provide initial parameter
estimates at the set breakpoint positions. The adoption of constant breakpoints and
the inclusion of initial parameter estimates through the use of a hybrid function have
ensured optimum parameter values ate quickly and easily determined with no manual

intervention.

Validation of the changes to the calibration procedure was undertaken through a
comparison of simulated and observed statistics with selected plots presented here
and a more detailed analysis of the overall model with all updates provided in
Chapter 5. Favourable comparisons between observed and simulated values
demonstrate the ability of the new intensity calibration to accurately describe the
obsetved relationships, improving the robustness of this section of the tainfall

model.

In otder for the model to be used within any regionalisation framework it was
important that improvements were made without decreasing the accuracy of the
model itself. This has been achieved and the incorporation of the automatic
calibration of event intensity and the removal of highly cortelated supetfluous
patametets has provided a rainfall model that is efficient, well defined and easy to
use. The remaining deficiency in the model structure warranting attention is the
treatment of uncertainty. Understanding and defining uncertainty is important when
constdering the performance of the regionalised rainfall model and techniques which
have been developed and incotporated into the model to describe uncertainty are

presented in the next chaptet.

118



CHAPTER 4

INCLUSION OF PARAMETER
UNCERTAINTY IN SIMULATED TIME
SERIES

4.1 Introduction

The development of any advanced rainfall model reliant on the estimation of model
parameters from limited observed data should incotporate some description and or
treatment of uncertainty. Uncertainty in model parameter estimation can atise due to
the length of the observed rainfall data available for calibration or as a result of
sampling vatiability associated with the descriptive statistical disttibutions used within
the structure of the model. It is unreasonable to expect a model calibrated to 5 yeats
of data to perform as well as a model calibrated to 100 yeats. In addition, sampling
uncertainty associated with the probability descriptions that define the model can be
a very real source of concetn, particularly when comparing simulated and observed
results. As the model uses a random number generator duting simulation, two
realisations of the model using identical model parameters can be significantly
different if the sequence of random numbers is not the same. Providing a means to
take this sampling uncertainty into account imptoves the validity of the reported
simulation statistics for compatison, not only at sites which contain a long historical
tecord for compatison, but pethaps mote importantly when compating model results

after regionalisation.

In addition to describing the potential sources of model uncertainty, there is a need
to understanding any influence of this uncertainty within the probabilistic model to
ensure model results and limitations are also understood. In order to provide a more
complete hydrological model and an accurate comparison between observed and

historical data statistics, (particularly relevant when investigating model
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regionalisation performance) an investigation into the influence of parameter
uncertainty when simulating rainfall time series has been incorporated into the

Heneker ¢z a/. (2001) model.

Parameter uncertainty is an important consideration in models of any type but is
particularly impottant for stochastic models. Consider the calibration of a model to
two data sets, one set containing 5 calibration data points and the other 100,000. It is
teasonable to assume that 5 data points would be insufficient to desctibe the
vatiation in the input data to the same degree of accuracy as 100,000 points.
Extending this, a simulation model calibrated to 100,000 data points should result in
better defined model parameters and consequently 2 model more likely to replicate
the observed data statistics than one calibrated to 5 points. If parameter uncertainty
1s not treated explicitly, then care must be taken in assuming the same confidence in
the two model outputs. To investigate this potential influence within the tainfall
model, estimated postetior parameter distributions have been determined and used
within the simulation routine. As these posterior disttibutions are influenced by the
length and variability in the calibration data, the resultant simulation results are also
affected. This provides an explicit measure of the confidence in the simulation

outputs.

A multiple Monte Catlo simulation structure has been included in the simulation
model to provide the ability to generate numerous realisations of the output data
which take into account patrameter uncettainty and sampling vatiability between
model runs. The end result is a set of final results which can be presented with
simulation limits, providing a supetiot comparison between observed and simulated
statistics. This ability is a valuable improvement to the original model and enables
improved infetences to be made about the quality of the resultant simulations and
their ability to tepresent the observed data. When consideted within the application
of a regionalisation procedure, simulation bounds will provide an immediate
indication of the certainty in the resultant simulations which have been calibrated
within the regionalisation framework. This is a valuable tool for assessing the quality

of a regional calibration.
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4.2 Review of Existing Models to Capture
Uncertainty

The importance of treating uncertainty explicitly within a given model structure was
emphasised by Katergaris and Hadgraft (1994). Their work was based on a simple
flood frequency analysis and was able to show that due to patameter uncertainty, the
width of the confidence intervals after analysis increases by 15-30%. This lack of
confidence in model output is important when model results ate used in any
hydrological or hydraulic system analysis. Their idea was further generalised by
Chaubey ¢ al. (1999) who suggest that the treatment of parameter uncertainty is a
necessity in any complex model. During their study into a water quality model, they
were able to show that model results were influenced by the variability in the
observed data. Without capturing this uncertainty explicitly, the accuracy of the

resultant simulation models is questionable.

In its original form the Heneker ¢z al. (2001) rainfall model includes a treatment of
data uncertainty associated with the binned nature of historical rainfall observations.
As the historical data is recorded only every six minutes, the exact duration of intet-
event times and storm durations are not known exactly. An adjustment to the
likelihood calculation (Lambert and Kuczera (1998)) was included which took this
into account during the calibration procedute, providing an improved estimate of the
optimum parameter values. However, the extent of parameter uncettainty remaining
after calibration was not explicitly defined or previously taken into account. In
addition to this, simulation results from the model have typically been presented as a
single realisation with the optimum parameter values (Heneker ez al. (2001), Heneket
(2002)). What these wortks have failed to considet is the issue of sampling variability

when comparing observed statistics against model simulations.

A significant conttibution in the area of parameter uncertainty was presented by
Kuczera and Parent (1998). Their discussion centred on conceptual catchment
models and the use of Monte Carlo Markov Chains and in particular the Metropolis
algorithm to accurately estimate the parameter posterior distribution. Once this
posterior distribution has been estimated, parameter uncertainty can be taken into

account through numerous simulation replicates that use samples from the posterior
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parameter distributions. These simulations can then be collected and provide

simulation confidence limits on model outputs/statistics.

The use of MCMC’s for estimating parameter uncertainty was also used by Guame e#
al. (1998) within an urban stormwater quality model and in a different application by
Park er al. (2002) for a model estimating the location and amounts of chemical

pollution soutces.

While their work was focussed on catchment models, the simulation algotithm
presented by Kuczera and Parent (1998) was adapted and applied to the Heneker ef
al. (2001) rainfall model. This allowed the generation of 90% simulation limits and
model outputs which take into account the uncertainty in model parametets. The
adapted algorithm is desctibed below.

1. Randomly sample rainfall model parameters 6,.... 0 from their
corresponding postetior distributions p(6;|y).

2. Undertake a simulation using this set of parameters (6,.... 6,)

3. Tf the number of simulations is less than the number of replicates N required,
then return to step 1 to re-sample a parameter set and re-simulate an
additional realisation of the model.

4. For each compatison statistic requited (annual rainfall, inter-event times etc),
rank the N simulated sequences and extract the (100-) and a percentiles to

obtain the (100-2a)% simulation limits.

While this algorithm is sufficiently generic to take into account any model structure,
efficient sampling of the posterior distributions is still requited and in complex
models this is not a trivial task. While sampling from the postetior disttibution had
previously been undertaken by Van Straten and Keesman (1991) (using Monte Catlo
set-membetship) and by Beven and Binley (1992) (using a GLUE approach),
Kuczera and Parent (1998) note that these approaches belong to the family of
impottance sampling algorithms and ate restricted in their application due to the
massive computing resources requited to characterise a highly dimensioned
patameter space. This was patticularly important for rainfall models (including this
model) where a large number of parameters are used. As a result Kuczera and Parent

(1998) presented the Metropolis algotithm as an alternative to provide efficient
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sampling from p(0,]y). As discussed in Chapter 3, the Metropolis algorithm was
incotporated into the rainfall model to investigate parametet correlatons and

tequired only slight adaptation for use during this section of the research.

4.3 Incorporating Parameter Uncertainty into the
Rainfall Model

To incotporate parameter uncertainty within the rainfall model, an estimate of the
model’s postetior patameter distributions was requited. This followed a similar
process to that used in Chapter 3 where a normal model calibration is undertaken
and determines the optimal parameter values for a given set of observed rainfall data.
These optimal parameter values wete then used as the initial seed locations within the
parameter space for use with the Metropolis algorithm. The Metropolis algorithm
then proceeds through a ‘warming up’ process which ensures that the sampling
distribution within the algorithm apptroaches that of the “real” postetiotr patameter
distribution. Once this warming up process is completed, subsequent samples from
the sampling distribution can be assumed to be equivalent to samples from the
posterior patameter distribution. At this stage samples can be taken from the
postetior parameter distributions for each model parameter of intetest and used to
generate a simulated realisation of the model. For the purposes of this research the
number of replicates required (and as a result the number of parameter samples) has
been set to 100. Each parameter set then generates simulated model results with the
complete sample of results analysed and used to generate simulation bounds

(generally 90% simulation limits within which 90% of the simulation tesults lie).

A major advantage of using the Metropolis algorithm to provide efficient samples
from the posterior model distributions is the ability to determine the influence on the
resultant simulations from uncertainty associated with the dry spell (inter-event),
storm duration and storm intensity parameters. By comparing simulations that
include uncertainty associated with one model vatiable at a time (i.e. storm duration),
the influence on the resultant simulation as a tesult of this uncertainty specifically can
be investigated. If storm duration is taken as an example, it could be reasonably

expected that the inclusion of parameter uncertainty associated with the storm
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duration parameters would influence the resultant storm duration statistics.
Intuitively it is less clear as to whether the uncertainty associated with the storm
duration parameters would have a noticeable difference on the average storm depth
or perhaps even on inter-event times? There is also the chance that parameter
uncertainty has no influence on the resultant simulation confidence suggesting that
the model could be calibrated to very small historical records without a noticeable

decrease in accuracy.

In order to investigate the relative influence of parameter uncertainty, a number of
100 year simulations were undertaken while including the various uncertainty
options. This provided the opportunity to compare the relative influence of each
storm event parameter set on the resultant model outputs. In addition to
investigating this parameter uncettainty associated with the storm event parameters,
the influence of sampling variability associated with changes to the random number
sequence used during the simulation were also included. This provided an
understanding of the sampling uncertainty within the model and was determined
through changes to the seed parameter within the random number generator. In
Section 4.3.1 and 4.3.2 the influence of uncertainty associated with the bulk storm
parameters is investigated for models calibrated to long historical records. This
provides an insight into the relative influence of each bulk storm parameter on the
tesultant model simulations. Further work provided in Sections 4.4 and 4.5
investigates the influence of the length of available calibrating data on the resultant

model simulations.

4.3.1 Influence of Intensity Parameter Uncertainty on
Rainfall Model Simulations

The postetior parameter distributions estimated through the use of the Metropolis
algorithm were used to determine the influence of including uncertainty on the
ramnfall intensity model parameters. These parameter distributions describe the
distributions of stotm intensity model parameters at each breakpoint within the piece
wise linear structure which has been used to desctibe the conditional intensity —
duration relationship. It was expected that the influence of uncertainty associated

with the calibration of the storm mtensity parameters would be minimal on the

124



Chapter 4: Parameter Uncertainty

aggregation statistics in the model results. "This was due to the relative influence that
the distribution of storm intensity has on the simulation statistics, particulatly at a

latge time scale.

To understand why the uncertainty associated with the simulation of storm intensity
should only have a minimal influence on the resultant model simulations; one has to
compare the relative influences each section of the model has on the model outputs.
For example it is understood that the simulation of intet-event times influences the
simulation process by determining the number of rain events and their distribution
throughout the year. Similatly the simulation of storm duration directly influences
the length of rain events and provides a lesser influence on the number and
distribution of these events throughout the year. (A lesser influence due to its
telative average length in compatison to the average inter event times) In addition,
the simulation of storm dutations influences the storm intensity as a result of the
conditional intensity - duration relationship within the model. In contrast,
uncertainty associated with storm intensity only influences the rain intensity/depth
for a given storm. As a result slight changes to the storm intensity parameters will
have a small influence on aggregation statistics at short time scales with the influence
propottionally decreasing as the aggregation level is increased. (ie. a + or - 5%
change to storm intensities throughout the year has a minimal impact on the
resultant annual rainfall in contrast to a + ot - 5% change to the inter event times

which could result in a significant decrease in the number of storm events within a

year)

To investigate the influence of uncertainty associated with the simulation of storm
intensity, simulations wete undertaken with two different configurations within the
uncertainty model. The first configuration ignores the potential uncettainty
associated with storm intensity. This provides a base simulation which is only
influenced by the sampling variability associated with the use of the random number
generator within the probabilistic model. A second configuration was also used
which includes the uncertainty associated with storm intensity and is also still
influenced by the sampling variability associated with the probabilistic model. If the
influence of uncertainty associated with stotm intensity is minimal (as expected), the

difference between these two simulations should be minimal. Figure 4.1 presents the
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comparison between the two model configurations for Perth data. The resultant
difference between these model outputs is approximately 5Smm per yeat, suggesting
the influence of additional uncertainty associated with intensity parametetrs on the

reproduction of annual rainfall is small.
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Figure 4.1: Comparison between Intensity Uncertainty and Random Variation, Annual
Rainfall (Calibrated with Perth Rainfall Data)

At aggregation levels over a much shorter timescale a similar result is observed.
Figure 4.2 displays the average monthly rainfall for data from Perth. This also
indicates minimal influence on the model results as a consequence of intensity

uncertainty.
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Figure 4.2: Comparison between Intensity Uncertainty and Random Variation, Monthly
Rainfall (Calibrated with Perth Rainfall Data)

While intensity uncettainty has little effect on simulated rainfall values, it was
expected that uncertainty associated with storm duration would have a far greater
influence. This is due to the relative influence of storm duration (2-5 hours) in
compatison to storm intensity (1-3 mm) which are used to genetate storm depth.

This influence is investigated in the following section.

4 3.2 Influence of Inter-Event Time and Storm Duration
Uncertainty on Rainfall Model Simulations

To investigate the influence of uncertainty associated with the inter-event time and
storm duraton model parameters, the Metropolis algorithm was again used to
estimate the postetior parameter distributions. These were then used in various
combinations to assess the relative influence of each parameter set on the model
output. Again, for each option 100 simulation realisations were run and the results
used to generate simulation bounds describing the influence of each model section

on the resultant output.

Figure 4.3 presents the 90% simulation bounds for the mean inter-event time for

each month given the inclusion of various uncertainty options. As was the case
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when investigating the uncertainty associated with storm intensity, the sampling
variability resulting from the use of a random number sequence within the
probabilistic model is included and named “Random Number Uncertainty”. This
relates to the simulation bounds generated as a result of the probabilistic structure of
the model and will be obsetved in all simulation results. The “Inter-event
uncertainty” relates to the simulation output when parameter uncertainty associated
with the inter-event times is considered. Similatly “Storm Duration Uncertainty”
presents the tesults when parameter uncertainty for storm duration parameters is
included, and finally the “All Uncertainty” option is presented to display how these

individual options combine to produce a complete simulation outcome.

It can be seen from Figure 4.3 that the upper bound “All Uncertainty” result for
month 2 drops slightly below all other uncertainty configurations for the month of
February. While initially seen as peculiar, this outcome is a result of the sampling
uncertainty within the model. As each configuration run of the model results in a
new trandom number sequence (which is used to generate the mean inter event times,
storm durations and storm intensities), each run has the opportunity to be influenced
slightly differently by any associated sampling uncertainty. In this case this results in
a slightly lower mean inter event time for the “All Uncertainty” option in compatison

to the individual uncertainty configuration runs.

128



Chapter 4. Parameter Uncertainty

500 I | | | I 1 I 1 1 1
‘ : : : : —— Inter Event Uncertainty
——a— Storm Duration Uncertainty

200 [\ I b cousis SRRV S—— - - - + - - Random Number Uncertainty
-\ : : : : : —=&— All Uncertainty

300

100

Mean Inter Event Time (Hours)

Figure 4.3: 90% Simulation limits for the mean Inter-Event time due to various Uncertainty
Options (Calibrated with Perth Rainfall Data)

To provide an improved visualisation of the results, the distance between the

simulation limits wete calculated and extracted into column format for presentation

below (Figure 4.4).
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Figure 4.4: Comparison of 90% simulation limit ranges for mean Inter-Event time due to
various Uncertainty Options (Calibrated with Perth Rainfall Data)
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It is clear from Figure 4.4 that the inclusion of parameter uncertainty associated with
inter-event times has a strong influence on the resultant simulation of inter-event
times. As expected the uncertainty associated with inter-event times has influenced
the simulation of inter-event times and hence the model output, but this influence is
not consistent across the year. It is also not likely to be consistent between different
groups of years, patticularly in Australia which undergoes periods of drought

associated with climatic events such as El Nino.

Another expected outcome from the results in Figure 4.4 is that the influence of
uncertainty associated with storm duration on the simulation of intet-event times is
negligible. The simulation bounds generated when simulating with storm duration
uncertainty are the same as that for the model run when only sampling variability was
included. This was an expected outcome because the certainty (or lack of) in the
calibration of one model parameter (storm duration) has no influence on the
calibration cettainty of another (inter-event times) for models of this type which ate

calibrated to independent storm events.

It is also important to note that the influence on the tresultant simulation limits
generated by the sampling variability within the model provides a pseudo lower
bound in terms of uncertainty. If the distance between simulation limits is close to
that of the random sampling equivalent, then the influence on that statistic of

including parameter uncertainty for that parameter is minimal.

A similar result can be obsetved when the influence of parameter uncertainty on the
simulation of storm duration is presented below in Figure 4.5. Again the greatest
influence on the 90% simulation limits was provided by uncertainty associated with
the variable of interest, in this case storm duration. The inclusion of uncertainty
associated with inter-event time has had no impact on the resultant simulation of

storm duration.
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Figure 4.5: Comparison of 90% simulation limit ranges for mean Storm Durations due to
various Uncertainty Options (Calibrated with Perth Rainfall Data)

The results presented above give further evidence that without including parameter
uncertainty explicitly, model results can be misleading. Even with the use of a long
historical record, thete is an element of uncertainty associated with the stochastic
parameters in the model. The incorporation of the metropolis algorithm and the
ability to produce multiple realisations for the purposes of generating 90% simulation

limits ensures this uncertainty is quantifiable in the model.

4.4 Influence of Record Length on Posterior
Parameter Distributions

Having established that parameter uncertainty does indeed have an influence on
model simulations, the question then becomes what influence does the length of the
historical record have on the accuracy of the model and the resultant 90% simulation
limits? Section 4.2 desctibed how an increase in uncettainty should result as the
calibration length is decreased. It would be reasonable to expect simulations
incorporating uncertainty resulting from a calibration to shorter histotical records
would produce larger 90% simulation limits due to the increased vatiability in the

calibrated parameters. To investigate the issue of record length, the model was
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calibrated to three different lengths of histotical record namely the full length, half
length and a short 5 year record. A compatison could now be made between the
simulation results from each length of calibration record. With a large number of
sites across Australia containing 5 years of historical record, if it could be shown that
calibration to this short 5 year record did not inctease the model uncertainty
significantly, then there was the possibility that a regionalisation technique would not

be required.

The incotporation of the Metropolis Algorithm into the rainfall model provides the
ability for efficient sampling from the posterior parameter distributions p(6,|y).
Once a large number of samples have been generated, a histogram can be formed
indicating the shape of this postetior disttibution. If the algorithm has been
successfully integrated into the model and is working well, then as the length of the
historical data available for calibration is increased, the associated certainty in the
model parameters should also increase. When analysing the shape of the resultant
postetior disttibution, an increase in certainty is evidenced by a postetior histogram
that has a smaller spread and a much higher peak than a cotresponding histogram
from the same model calibrated to a shorter historical record. In extreme cases,
increasing uncertainty will result in a significant decrease in the confidence of the
estimation of the optimum parameter value, and as a consequence the accuracy of

model output is questionable.

An investigation into the influence of record length on the resultant postetior
parametet distribution has been undertaken with data from Perth. Figure 4.6 shows
the resultant parameter distribution given a calibration to the full available record
length (42 years) for Perth while Figure 4.7 presents the result from a 5 year subset of
the full length record.
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Figure 4.6: Posterior Distribution Dry Spell Constant Parameter 64, Full Length Calibration
Data (Data from Perth, January)
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Figure 4.7: Posterior Distribution Dry Spell Constant Parameter 84, Short Length
Calibration Data (Data from Perth, January)

It is clear that the uncertainty associated with this particular parametet (the ‘constant’
parameter in the description of inter event times with an optimum value of 0.00075)
increases as the calibration data length decreases. This is evidenced by the increase in

the breadth of the histogram and a smaller peak value, a typical result for all model
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parametets. The optimum parameter value of 0.00075 has successfully been located
with the full length record and there is a regulat histogram shape and a definite peak
at this optimum value. For the model calibrated with 5 yeats of data, the histogram
is flat, with little or no definition at the peak. The optimum value determined via the
search routine was estimated at 0.0007 but it is evident from the histogram that a
range of possible values between 0.0006 — 0.000775 provide almost the same level of
fit. The parameter distribution is not well defined and as a result the model
calibrated to only 5 yeats of record will produce vastly different results to that model
calibrated to the full length record. Not only is the histogram flat increasing the
uncertainty in the calibration which in turn will increase the resultant simulation
bounds, but the optimal parameter value estimated via a maximum likelihood
apptroach is actually a different value when comparing the two models. In this case
the optimum parameter is known to be 0.00075 and as the model calibrated to the
shott record has not been able to successfully determine this value, the simulated
distribution of inter-event times generated by the short calibration model will not

replicate the observed statistics of the full length historical record.

Approximately 20 years or half of the available historical rainfall data is sufficient to
obtain the optimal inter-event parameters for Perth as can be seen in Figure 4.8.
Even in this case however where the optimal parameter value has been identified,
there is significant additional uncertainty associated with this calibration as evidenced
by the flatter histogram in comparison to the patameters calibrated to the full length

record.
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Figure 4.8: Posterior Distribution Dry Spell Constant Parameter 64, Half Length
Calibration Data (Data from Perth, January)

The implication of this result can be understood if we considet the application of the
model to Australian rainfall data. As discussed previously, there are a significant
number of sites with short term histotical records. The parameter distributions
above show that direct calibration to these short term data sets is problematic at best.
It would be teasonable to assume given these results that a direct model calibration
would require a data record of approximately 30 years. Given this is the case, in
otder to apply the model to shotter historical records the development of 2 modified
calibration ot robust regionalisation technique is tequired to allow the use of these
short data sets for model calibration. While regionalisation approaches are discussed
in detail in Chapters 6 and 7, it is useful to understand these restrictions on applying
the model directly to shorter record lengths. The influence this has on the resultant

model simulations is discussed in the next section.

4.5 Influence of Record Length on Resultant Model
Simulations

In otder to understand the implications of calibrating with short historical records

and the resultant impact on the accuracy of the model, the rainfall model was
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calibrated to both the full length record and the 5 year subset. Once calibrated,
simulation results were then generated to gain an insight into the resultant influence

of record length on the model outputs.

Figure 4.9 compares the simulation limits for mean inter-event times between the
model calibrated to the full-length record and that calibrated to the 5-year subset. It
is obvious that there is an inctease in uncertainty associated with calibration to the
short 5 year record. This is particularly the case for the Summer-Autumn petiod
whete the number of storms and hence data points from the data are at a minimum.
The significant size of the resultant simulation bounds suggests the accuracy of the

resultant simulation must be under question.
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Figure 4.9: Comparison of simulation limit ranges for mean Inter-Event times due to
different Calibration Record Lengths (Calibrated with Perth Rainfall Data)

A similar result can be seen in Figure 4.10 when applied to mean storm durations.
Again the lack of storm events available for calibration is evidenced by the large

differences through Summer-Autumn.
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Figure 4.10: Comparison of simulation limit ranges for mean Storm Durations due to
different Calibration Record Lengths (Calibrated with Perth Rainfall Data)

The decrease in calibration data was also expected to increase the 90% simulation
limits on aggregated statistics and result in a less accurate simulation. Figure 4.11
presents the aggtregated annual rainfall simulation comparison between a model
calibrated to the full length data record and one calibrated to 5 years of data. As
expected the model calibrated to the short record has not reproduced the obsetved
data with all observed data points residing outside of these 90% limits. In
comparison, the model calibrated to the full record length has successfully captured

the annual rainfall distribution.
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Figure 4.11: Comparison of Annual Rainfall limits due to Full and Short Record Lengths
and Incorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)

The inability of the model to successfully reproduce the obsetved statistics with a
short historical record is a clear indication that the model in its original form required
significant data records to ensute accurate calibration and as a result limits its
application. It follows that a technique to enable calibration to small data sets would

be of great benefit and was a major incentive to develop a tegionalisation model.

In order to graphically represent the additional influence of tecord length on the
uncertainty 90% simulation limits, annual simulation results were adjusted so that the
results from the different length calibration tecords (full, half and short record
lengths) were similar in respect to their simulation medians. In this way the
aggregated rainfall from each simulation could be plotted on the same graph and a

direct comparison of the spread of these 90% simulation limits undertaken.

Figure 4.12 and Figure 4.13 present the influence of data length on the tresultant
simulation of adjusted monthly and annual rainfall respectively. Again included with
the annual rainfall is the sampling variability associated with the probabilistic nature
of the rainfall model. This random sampling variability was produced by setting the
model parameters constant at their optimal values ensuting the only soutce of

variation was a result of this sampling variation. As was the case when investigating
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the inter-event time and storm duration uncertainty, this sampling variability result

can be thought of as the lower limit of uncertainty and is a result of the stochastic

structure of the model. As expected, decreasing the length of calibration record has

introduced mote uncertainty and therefore greater simulation bounds.
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Figure 4.12: Comparison of January Rainfall limits due to different Calibration Record

Lengths and Incorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)
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Figure 4.13: Comparison of Annual Rainfall limits due to different Calibration Record

Lengths and Incorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)
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To gain insight into the influence of specific parameter uncertainty on annual rainfall

statistics with decreasing record length, further results were produced with

simulations considering only inter-event uncertainty (Figure 4.14) or stotm duration

uncertainty (Figure 4.15).
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Figure 4.14: Comparison of Annual Rainfall limits due to different Calibration Record

Lengths and Incorporating Inter-Event Uncertainty (Calibrated with Perth Rainfall Data)
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Lengths and Incorporating Storm Duration Uncertainty (Calibrated with Perth Rainfall

Data)
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A compatison of Figure 4.14 and Figure 4.15 shows a greater increase in the 90%
simulation limits for inter-event times than for storm durations with a decrease in
calibration record length. This result suggests uncertainty associated with the
simulation of intet-event times has a greater influence on the annual rainfall than that
for storm duration. To understand why this is the case, the relative average length of
these events and the associated uncettainty must be considered. The uncertainty
range associated with intet-event times is almost 100 times that of the corresponding
value for storm duration. For example in Januaty, the uncertainty associated with the
inter-event times is in the otder of 200 houts, wheteas this drops to 1.6 hours for the
cotresponding Januaty storm durations. Cleatly there is a greater scope for a small
change in the inter-event times to influence the rainfall totals for a given period and
as a result this larger vatiability has a greater impact on the monthly and subsequently
annual rainfall variability, increasing the annual rainfall limits. Importantly this
suggests that in order to accurately model the aggregated rainfall distributions, the
inter-event parametets must be well founded and clearly defined. As a result any
regionalisation work must provide a model which captures the inter-event times to

an adequate level of accuracy to enable reproduction of these aggregated statistics.

4.6 Summary

The treatment of patameter uncertainty is a key ingredient to accurate stochastic
rainfall models. Vatiability in the length and quality of existing rainfall data ensures
simulation results from models which do not explicitly incorporate uncertainty either
through calibration or simulation must be viewed with extreme caution. The
Metropolis algotrithm has been incorporated into the existing rainfall model
presented by Heneker ez 4/. (2001), enabling the identification of calibrated parameter
distributions. These calibrated distributions are influenced by the length and quality
of the historic data set providing a direct treatment of parameter uncertainty.
Including these patameter distributions and introducing a Monte Carlo structute to
the simulation process has resulted in significantly improved simulation outputs.

These outputs allow improved comparison between the extended model and
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historical rainfall statistics, providing additional confidence in the ability of the model

to reproduce calibrated and non-calibrated statistics.

Uncertainty associated with the calibration of inter-event times and storm durations
provides the greatest influence on the resultant simulations within the model. In
comparison only a minor influence is observed due to uncertainty associated with
storm intensity. As expected, the simulation bounds expand with a dectrease in
calibration data, and the large uncertainty associated with very short calibration
records introduces some doubt onto the validity of simulations that do not attempt

to describe uncertainty.

The performance of the model in its curtent form when calibrated to short historical
records is under question. The level of confidence in model calibration and the poot
comparison to observed rainfall statistics suggest the model is incapable of ditect
calibration with short records. In order to use these numerous short pluviograph
records available across Australia and provide confidence in the tresultant model
structure and simulations, a regionalisation approach is requited. Befotre developing
a regionalisation approach, complete validation of the model after the incorporation
of the improvements discussed in the previous chapters was undertaken and is

presented in the next chapter.
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CHAPTER §

IMPROVED MODEL VALIDATION

5.1 Introduction

This chapter presents a performance examination of the rainfall model originally
developed by Heneker e 4. (2001) and then improved upon during this study for its
suitability for use in developing a regionalisation procedure to enable application with
short pluviograph or daily calibration data. It is important to validate the
petformance of the model at this time to not only instill confidence in its potential
use as a synthetic rainfall genetator but also to ensure additional wotks undertaken as
part of this study have not decreased the capabilities of the otiginal model. Without
a robust working model, there is little point in developing a regionalisation process to
increase its application. Conversely, if the model is robust and able to reproduce
observed rainfall statistics, then this provides an ideal statting point for increasing its

application and usefulness through regionalisation.

Changes to the distributions describing inter-event times and storm durations in
Chapter 3 and the new intensity calibration model presented in Chapter 4 have been
incorporated into the stochastic rainfall model and requite validation through
simulation. Where possible the simulated results are presented with associated
simulation limits, enabling a mote trigorous comparison to observed values than has

been possible previously.

An examination of the observed and simulated probability distributions for intet-
event time, storm duration and average event depth are presented. While these
probability distributions atre used during the calibration and subsequent simulation

process, this comparison provides a level of confirmation that the calibration was
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successful and the observed distributions are being effectively reproduced by the

simulation.

Intensity-Frequency-Duration (IFD) cutves, aggregated statistics and the probability
distribution of annual totals are also examined. These statistics wete not used during
the calibration process and provide further evidence of the credibility and structure
of the model. In particular the reproduction of aggregated statistics in comparison to
their daily counterparts (i.e. daily mean depth, daily dry probability) is investigated as
these statistics could then be used duting regionalisation with daily data. The
influence of record length on the model calibration and resultant simulation was also

examined.

5.1.1 Observed Data Records

To thoroughly test the improved rainfall model, significant historical records across a
range of climates within Australia were used. The sites chosen for specific
compatison and their historic data recotd length wete Melbourne (95 years), Sydney
(78 yeats), Brisbane (83 years), Petth (45 years) and Adelaide (30 years). The
development of successful simulation models at these sites provide evidence that the
model wotks well across a range of climates within Australia (given adequate

calibration data), providing a basis for futute tegionalisation work.

To provide adequate data for comparison, each model was simulated at an equivalent
length to that of the historical tecord and repeated for 100 simulation teplicates.
This provided the ability to produce simulation limits and provide an accurate

comparison to the obsetved data records.

5.2 Calibrated Event Probability Distributions

A necessity of any model calibrated to historical storm event data is its ability to
reproduce the distributions and statistics used during the calibration process. If this
is not the case, the model can be assumed to be pootly formulated and setious

questions must be asked of its validity as a hydrological tool. This section presents
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compatisons between observed and predicted event probability distributions for
inter-event times and storm duration as well as compatisons between simulated and
observed monthly statistics for intet-event times, storm durations and event storm
depth. As these distributions wete used during the calibration process, it was
expected that they would compare favoutably. Monthly parameters have been used
for all calibrations in this study with three (3) patameters calibrated for the
distributions of inter-event time and storm duration events each month while nine
(9) breakpoints at 0.2, 0.3, 1.0, 1.8, 2.4,3.0,9.0, 12.0 and 24.0 houts were used for the

piece wise linear intensity model.

Figure 5.1 (Brisbane in February), Figure 5.2 (Sydney in May) and Figure 5.3
(Melbourne in Septembet) show that the inter-event time distribution 1s well
represented for data at vatious sites and months. (These plots are presented as
exponential probability plots). There is good agreement between observed and
predicted event times indicating a good calibration with historical data. (This is not a
simulation output; it is a comparison between the observed event distribution and

the predicted distribution from the calibrated model).
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Figure 5.1: Observed and Predicted Inter-Event Distribution, Brisbane, February
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Figure 5.3: Observed and Predicted Inter-Event Distribution, Melbourne, September

A similar result was observed for the representation of storm duration event

distributions.  Figure 5.4 (Brisbane in July), Figure 5.5 (Sydney in January) and

Figure 5.6 (Melbourne in October) show good agreement between observed and

predicted values after calibration.
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Figure 5.4: Observed and Predicted Storm Duration Distribution, Brisbane, July
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Figure 5.6: Observed and Predicted Storm Duration Distribution, Melbourne, October

Once the distributions of storm event parameters are satisfactorily replicated, a
comparison can be made between obsetved and simulated monthly averages for
these storm event vatiables. Figure 5.7 (Brisbane) and Figure 5.8 (Sydney) present
the mean and standard deviation of inter-event times for each month. The results
display excellent agreement between the observed data and simulated results with all

observed points sitting well within the 90% simulation limits.
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Figure 5.7: Mean and Standard Deviation of Event Dry Spells for Each Month, Brisbane
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Figure 5.8: Mean and Standard Deviation of Event Dry Spells for Each Month, Sydney

Again, a similar result was obsetved for the reproduction of storm durations. Figure
5.9 (Brisbane) and Figure 5.10 (Sydney) present these results. In almost all cases the
observed data lies within the 90% simulation limits. The mean storm duration for
June in Brisbane has been simulated at 7.3 hours just outside the 7.2 hour simulation

limit. Overall, this is a satisfactory representation of event storm duration.
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Figure 5.9: Mean and Standard Deviation of Event Storm Durations for Each Month,

Brisbane
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Figure 5.10: Mean and Standard Deviation of Event Storm Durations for Each Month,
Sydney

The reproduction of event storm depth is extremely impottant to the overall success
of the rainfall model for both the generation of synthetic pluviograph data and to
capture aggregated rainfall statistics such as monthly and annual totals. Figure 5.11
(Btisbane) and Figure 5.12 (Sydney) present the mean and standard deviation of
event storm depths for each month. These results display cxcellent agreement

between the observed data and simulated results with all observed points sitting

within the 90% simulation limits.
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Figure 5.11: Mean and Standard Deviation of Event Depths for Each Month, Brisbane

35

30

25

Monthly Event Storm Depth (mm)

| | 1 I
90% Sim Limits
— Sim Median
Observed Mean
= Observed Std Dev

L L N

Month

Figure 5.12: Mean and Standard Deviation of Event Depths for Each Month, Sydney
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5.3 Intensity-Frequency-Duration

A compatison of extreme rainfall between obsetved and simulated data provides an
insight into how well the rainfall model is able to reproduce the internal storm
charactetistics or the temporal pattern. In particular, the successful generation of
short duration IFD curves (such as 1 and 3 hours) is dependent on the rainfall model
accurately treproducing bursts of rainfall that occur during storm events. It is
conceivable that the annual maximum 1-hour rainfall value used to produce the IFD
curve may tesult from an hour burst inside a longer duration storm. This point is
impottant as it provides an oppottunity to validate the temporal pattern generatot
incotporated into the model. If the model is able to reproduce these IFD cutves,
then the temporal pattern generator has been successful. Conceptually longer
durations such as those ranging from 12 to 72 houts are more likely to be a tesult of
individual stotm events, which in turn provide a validation of the original intensity-

duration relationship rathet than the temporal pattern.

IFD curves were obtained by moving windows of a fixed dutation incrementally
through each year and determining the annual maximum rainfall depths for each of
these windows. A frequency analysis was then undertaken on these annual maxima
for the various durations to produce the IFD curves. This is a standard method to
determine the statistics of extreme rainfall over different durations for use in

engineering design.

Figure 5.13 compatres the obsetved and simulated IFD curves for 1, 12 and 72 hours
for Brisbane. The simulated and observed IFD curves are similar with almost all of
the observed data points sitting between the simulation limits suggesting that the
model is able to reproduce the random bursts associated with short duration rainfall
as well as the intensity-duration relationship. Figure 5.14 shows a similar result for

data from Sydney.
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Figure 5.14: Simulated and Observed IFD Curves for Sydney
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In conjunction with the IFD results presented above, these plots confitm the ability

of the model to simulate the internal storm charactetistics, which are important when

simulating rainfall at a fine time scale.
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5.4 Aggregated Depth Statistics

The reproduction of aggregated rainfall depth statistics at time scales such as houtly
ot daily is an important attribute of any model under consideration for use in volume
based scenarios or water balance calculations. Reproduction of the 24-hour or daily
aggregation values was also important if the model was to be adapted further for
calibration with daily data using these statistics as part of a new regionalisation

process.

The use of both a pluviograph and a daily data record provide the observed statistics
for compatison. A concern when using pluviogtaph records in an application such
as this is the possibility of missing data. It is common to see sections of missing
data, which spans a few weeks ot months within a pluviograph record. At smaller
time scales it is acceptable to ignote these sections of missing data given the
remaining latge sample set that provides an adequate estimate of the aggregated
statistics. When the time scale is increased however (i.c. monthly or annual rainfall
totals), the pluviograph data tends to undetestimate the actual observed rain totals.
As a result, the observed daily data is aggregated for all comparison statistics at time
scales greater than 24 houts. These daily records are generally longer, free of missing

data and hence provide an improved estimate of these statistics.

Comparisons between the 1 hour aggregation statistics for observed and simulated
rainfall depth are presented in Figure 5.15 for Brisbane and Figure 5.16 for Sydney.
In almost all cases, the observed data sits within the 90% simulation limits. Only a
slight deviation is observed for mean 1-hour Aptil rainfall in Brisbane and September
and November mean 1-hour rainfall in Sydney. This is considered a satisfactory

result as these statistics were not part of the calibration process.
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Figure 5.15: Mean and standard deviation of the aggregated 1-hour rainfall depth for

Brisbane (mm).
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Figure 5.16: Mean and standard deviation of the aggregated 1-hour rainfall depth for
Sydney (mm).

The reproduction of daily aggregated statistics was a major factor when considering a
model for further development and specifically for regionalisation to locations where
only daily data is available for calibration. Any model developed for the purposes of

regionalisation should estimate a statistic for compatison to observed data (in some
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form) in order to assess its performance duting development (and potentially
ongoing). In this case, the ability of the model to replicate 24 hour or daily statistics
successfully provides an opportunity to compare the model to daily data after
regionalisation and more importantly provides confidence in using the available daily
data as part of the model calibration process. Without this ability, there would be no
way to either develop a model calibrated to daily data not compate the calibration ot
performance of the model at sites with daily data even if a regionalisation/calibration

approach was developed.

Figure 5.17 (Brisbane) and Figure 5.18 (Sydney) present the mean and standard
deviation of 24 hour aggtegated rain depth. Impottantly the improved model has
demonstrated its ability to reproduce these statistics with good agteement between

the observed points and the model simulations.
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Figure 5.17: Mean and standard deviation of the aggregated 24-hour rainfall depth for
Brisbane (mm).
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Figure 5.18: Mean and standard deviation of the aggregated 24-hour rainfall depth for
Sydney (mm).

5.5 Annual Rainfall

Annual rainfall is an important statistic in engineeting analysis particularly for longet-
term planning and option evaluation. Figure 5.19 presents the annual rainfall results
for the model calibrated to Brisbane. This result suggests a successful reproduction
of annual mean rainfall as indicated by the agteement between the observed and
simulated values at 50%. However, the angle or slope of the plot gives an indication
of the standard deviation and as the slope of the obsetved data is steeper than that of
the simulated values, the standard deviation produced by model simulation is
presently underestimated. Figure 5.20 presents a similar outcome for simulated and

obsetved data in Sydney.
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Figure 56.20: Simulated and observed annual rainfall distributions for Sydney

This result is typical of event-based models that attempt to describe the underlying

rainfall process with independent wet and dry storm events. Historically the major

consequence of this independence assumption has been an inability to take into

account any inter-annual persistence such as El Nino or the Southern Oscillation.

The result of this phenomenon is inter-annual petsistence in the form of consecutive
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very dry or wet petiods in the rainfall record. The independent event-based model
structure does not generally incotpotate an inter-annual persistence characteristic,
which in turn leads to an undetestimation of the variability of annual rainfall totals.
While research has begun to develop an undetstanding of exactly how El Nino
affects rainfall in Australia (Chiew ef 4/ (1998)), presently more work needs to be
done before such relationships could be explicitly incorporated into the model

structure.

As a potential solution to the problem, significant work has begun (Frost et 4.
(2000)) on inttoducing annual rainfall states into the event-based model structure.
These states mimic the wet and dty yeats obsetved within the historical data set with
each state requiring its own patameter set, calibrated against the observed rainfall
data. Controlled switching between wet and dry model states during calibration
provides a petsistence structure capable of replicating the inter-annual persistence of
El Nino. More information on the defining of these states can be found in the Ph.D.

thesis of Andrew Frost (Frost (2004)) from the University of Newcastle.

5.6 Record Length

One of the issues with stochastic models calibrated to histotical recorded data sets is
the available locations and data available for calibration. As discussed in Chapter 1,
this is particulatly relevant for models such as this one which are calibrated to
pluviograph data, a resource that is constantly under threat due to economic and
political pressures. Catetakers of pluviograph stations can no longer continue to
record data for little ot no purpose. As a tesult more pluviograph stations are set up
for a short (5-10 yeats) lifespan to setve a specific project or objective. All this puts
additional emphasis on the ability of stochastic models to use alternate data soutces

for calibration.

The issue of approptiate record length for model calibration is one that is complex
and cannot be answered definitively. Rainfall trends and observations are different at
every site and as a consequence the data tequirements at each site for a model such
as this are not identical. This can be illustrated using an extreme comparison

between the moderate climate in Adelaide and the tropics of Caitns. An Adelaide

159



Chapter 5: Improved Model Validation

record of 40 years should encompass numerous storms scattered throughout the year
and as a consequence over a 40 yeat record provides a significant monthly data set
tor model calibration. In comparison a tropical location such as Cairns which
observes defined wet and dry seasons may not encompass a significant number of
storm events throughout the dry months within a 40 year record. As a consequence
the model calibrated to 40 years in Caitns may not be as accurate as the one

calibrated to the same 40 years in Adelaide.

While it is difficult to define an absolute record length requitement, it is clear that the
model does require a significant historical pluviograph data for calibration in its
original form. Results presented in Chapter 4 suggest the model calibrated to Petth
data requires approximately 30 years of recotd for accurate calibration and that a
short 10 years of data was not adequate to successfully capture the mean annual
rainfall or the annual rainfall distribution. Expetience suggests that 30 yeats is
generally adequate to calibrate the original model. Figute 5.21 treinforces this idea
and shows that the model calibrated to the full historic record has successfully
reproduced the annual rainfall distribution, while the model calibrated to the short

record has underestimated the annual rainfall totals.
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Figure 6.21: Comparison of Annual Rainfall limits due to Full and Short Record Lengths
and Incorporating All Uncertainty Options, Perth
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The inability to define with certainty the required length of calibration data does not
teduce the effectiveness of the model. As with all models, uneducated use of
tesultant simulations and outputs is not advised. Model calibration and results
require checks and possibly “enginecting judgement” priot to successful application.
The setup and structure of this model enables these checks to be undertaken easily
and efficiently. If a model is not able to be calibrated directly with the available data,
then an alternative calibration technique is trequited and can be provided using a

regionalisation approach.

5.7 Summary

The generation of synthetic rainfall using the improved model adapted in this study
was a success. The ideas of parametet uncettainty and sampling variability presented
in Chapter 4 were used to improve the simulation and enable the generation of
simulation limits for all model results. This in turn has provided an improved
comparison between obsetved and simulated values. While a minor number of
obsetved values fell immediately outside of the 90% simulation limits, overall model

simulations compate favourably with observed statistics across all sites.

The distributions of inter-event time and storm duration were able to successfully
describe the obsetved distributions using the new three parameter model. This
model developed in Chapter 3 and adapted from the work of Heneker e# 4l (2001)
has provided a robust and efficient description of these distributions. Both obsetved
and predicted event distributions and compatisons between observed and simulated
event statistics showed good agreement validating the new model setup. Obsetved
and simulated storm event depth also compated favourably suggesting the selection
of set breakpoints and using an initial continuous calibration function as desctibed in

Chapter 3 worked well.

The reproduction of aggregated rainfall depth statistics at the 24-hour ot daily
aggregation level was also important if the model was to be adapted further for
calibration with daily data using these statistics as part of a new regionalisation

process. The daily mean rainfall was well teproduced suggesting this statistic could
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be used as part of any futute regionalisation work. In addition sub-daily 1 hour

aggregated rainfall was also well reproduced.

The rainfall model was able to teplicate the mean annual rainfall however was not
able to successfully reproduce the distribution of annual rain, slightly underestimating
the standard deviation. This result is typical of event-based models that attempt to
desctibe the underlying rainfall process with independent wet and dry storm events.
As a result, they do not take into account inter-annual persistence due to long-term
events such as El Nino. Work is cutrently underway to develop an explicit model of
this undetlying structure (see Thyer & Kuczera (1999) and Frost (2004)). It is
important when developing a regionalisation structure that either this inter-annual
persistence is taken into account ot similar periods within the histotical time line are
compated when developing the regionalisation model (i.e. comparisons between sites

over similar wet years).
The improved stochastic model of rainfall developed in this study was now very

suitable for further development for potential regionalisation/calibration with short

pluviograph or daily data tecotds.
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CHAPTER 6

REGIONALISATION WITH A SHORT
PLUVIOGRAPH RECORD

6.1 Introduction

Rainfall models in Australia (and indeed internationally) are often restricted in their
application as a result of inadequate data available for calibtation. Models calibrated
to storm events including the model at the centre of this research are particulatly
difficult to calibrate and require significant historical pluviograph data recotds.
Unfortunately, data of this resolution is difficult and expensive to record and as a

result long accurate pluviograph recotds in Australia are not abundant.

Of the mote than 900 pluviograph sites in Austtalia managed by the Bureau of
Meteorology, the combined avetrage length is only approximately 15 yeats. Even if
this value is slightly biased by a number of sites that are relatively new (or were
tecorded for a specific purpose and contain only a few years of recotd), more
alarming is the fact that of all sites that are still active, only a few (35-40) have a
record length greater than 40 years. However, the network of over 900 pluviograph
sites which contain a short historical record is extensive and would provide an
excellent soutce of calibration data if a procedute to take advantage of the availability
of shott pluviograph records was developed. If models such as the one used in this
tesearch are to be setiously considered for use as an engineering tool, a method to

calibrate these model’s with less observed data for calibration was required.

While the number of long term pluviograph records across Australia is small, it was
the distribution of these records across the country which led to the development of

a new regional calibration technique. With the spread of long term records scattered
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throughout the major climatic regions of the country (i.e. Temperate climate of
Adelaide/Melbourne/Sydney, Sub-Tropics of Brisbane etc) a process was developed
which used the information at a long pluviogtaph site and then adjusted the model
based on comparisons to a smaller data set at the site of interest. The adopted
calibration framework uses a master to target (ot slave) relationship which enables
the successful updating of model parameters from one site to another. Model
patameters are first calibrated to the long tecord at a master site and then translated
to the target site using the available short pluviograph data set. The process uses the
expectation that parameter distributions within the model should exhibit a similar
shape when calibrated to data within a similar climatic region (i.e. sites surrounding
Melboutne).

An intermediate step is also introduced which is able to manage issues that arise
when data sets of non-concurrent time periods ate compared. By developing an
additional step in the process, the model is able to consider the real parameter
changes in the model between the master and target sites and is not influenced by the

differences in data length or recording periods.

The introduction of the master — tatget relationship and the regional calibration
process produces a model that is well calibrated at the target site and able to

synthetically extend the shozt historical pluviograph record.

6.2 Regionalisation Model Structure

Investigations outlined in the previous chapters into the various components of the
rainfall model and theitr variability and predictability between sites led to the
development of the final regionalisation model structure. The initial problem itself is
well founded; a model simulation is required at a patticular site which has a short
historical pluviograph record and eithet cannot be calibrated directly due to the lack
of data ot the resultant calibration produces a model which does not adequately
reflect the rainfall pattern at the site of interest. In the first instance, the extreme lack
of data ensures the model calibration process itself cannot be completed (ie.
patameter values cannot be found) while the second situation relates to the fact that

while it may be possible to complete the calibration process with limited available
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data, this does not necessarily ensure that the model will petform adequately and
represent the required statistics and patterns. The challenge then becomes one of
how to utilise the available data set which is not sufficient on its own to produce a
successful calibration to provide a model which does accurately reproduce the

obsetrved long term rainfall statistics.

The improved rainfall model consists of four major components which work
together during simulation to replicate the observed record. Initially a dry spell ot
inter-event time is generated. This is followed subsequently by a wet spell ot storm
dutation, with these two event parameters defining the rainfall time seties.
Associated with this storm duration is the sampling of a storm intensity which
provides the total storm depth and finally the process is completed by disaggregating
the total storm depth via the temporal pattern model to produce 6 minute rainfall
data. To provide an accurate simulation, these components must all be successfully
calibrated at the site of interest. The model structure dictates that each component is
independent, so for the putrposes of calibration these components can be
investigated independently and a process developed for each which enables these
components to be successfully applied to a particular site with only 2 small amount

of historical data.

If direct calibration at the site of interest is not available due to a lack of data, a
regionalised calibration could be achieved through using this shott historical tecord
to update an existing calibration at a neatby pluviograph site with a long histotical
tecord. This structure should ensure that any major rainfall processes and events
over time have been described within the calibration at the neatby long pluviograph
data site, while minor differences between the sites ate captured via the updating
regionalisation procedure. During simulation, the model simulates storm events at
the master site which are then translated in a reverse of the process to equivalent
storm events at the target site by using the same model setup. The master — target

framework is displayed schematically in Figure 6.1 below.
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Regionalisation model to
transfer master information to
target site
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Figure 6.1: Schematic of Regionalisation Structure

For this structure to work, sites must be situated close enough to have expetienced
similar climatic patterns (ie. the process does not wotk when shifting from the
temperate climate of Adelaide to the tropics of Btisbane). Unfortunately as of the
time of writing, there has been no definitive formula or basis found which can
determine whether or not a parameter set can be shifted from one site to another.
Experience to date indicates that sites anywhere from 10 to 580 km away from the
cotresponding master site have been successfully calibrated and simulate accurately
the observed pluviograph statistics. It is anticipated in the future that as the number
of significant data sets inctrease, and mote data becomes available that work can be
done to either formulate such a basis or possibly in the long term develop parameter
contours or a similar generic mapping of model parametets actoss the country. Until
this occurs, the simulation accuracy of the model should be tested at each individual
site with the available pluviograph and/ot daily data as a compatison to ensute that

the regionalisation process has been successful.

6.2.1 Preliminary Investigations

To understand the possible adjustments that would need to be made during the
tegionalisation process, changes in parameter distributions were investigated by
calibrating the model to numerous long historical data records across Australia.
These calibrations were then compared actoss neighbouting sites influenced by
similar climatic conditions. As a basis, paits of sites suttounding a master site were

selected to ensute they had a similar climate classification by the Australian Butreau of
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Meteorology. It was expected that the parameter distributions for each model
component would display a similar shape for sites within a similar climatic region (i.e.
inter-event times in a particular region would exhibit the same general shape). This
was because sites located in a similar region should be influenced by the same majot

climatic fronts and forces.

In addition to this over-arching consistent shape, it was anticipated that micro-
climatic influences which influence each individual rainfall site would alter these
distributions and could be described in some form to enable a regionalisation
updating process to be incorporated into the model. These local site adjustments
may be a tesult of micro climatic factors (i.e. altitude, aspect, and distance from coast
etc) which do not alter the climatic driving forces influencing the major storm
systems, but they do alter the frequency and volume of rainfall recorded between
sites within the same climatic region. This minor influence is postulated to change
the parametetisation of the distributions in the model, but not the overall disttibution
shape. This would allow the parameter distributions to remain the same while still

enabling the use of a scaling shift between sites to capture this minor influence.

To gain an understanding of potential adjustments required between sites, a number
of calibrations at long pluviograph sites were compared. To ensure an accurate
compatison, concutrent data petiods were selected and used in the calibration
process. As an example to undetstand the model development process, wotk on the
intet-event times is presented below. Figute 6.2 displays the distributions of inter-
event times for Melbourne and East Sale in Victotia. These sites are 190 km apart
but both are influenced by the Southetn Australia weather patterns and expetience

similar climatic conditions.
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Figure 6.2: Comparison between Melbourne 86071 (Master) and East Sale 85072
(Target) Inter-Event Distributions for the month of April.

This plot suggests that while the two sites have distinctly different parameter

distributions, the underlying shape (i.e. initial curvature and slope) is similar.

Additional pairs of plots actoss vatying climatic conditions provide a similar result as

evidenced by Figure 6.3 below (Compatison between a calibration at Sydney and

Richmond RAAF)
0 T T . T T T [ T ! T T 7 T T
©  Master
A o Target |-
_2 o M T e A ;
2 AV ; é ;
u- : : B g ' : i
- - - NOPRERSRL .- 11 = - ST biresimimaisi b e susT e e T -
5 ! %, e D :' ]
\ : oy . (s] } s
- i : o"b ] By '
' : ’ Qb : a] L"IE
-4 _ .................. ng ..... Ry e E-E_iﬁ ............ =
3 ! : ; % : o
- ' s . + O !
E : H * . o . E
_5 L nins s s : .................. ................. I 0___5 ................. ..:
_6 [ I L I | L [ L ] 5 1 i L i ]
0 100 200 300 400 500 600

Inter-Event Time (hours)

Figure 6.3: Comparison between Sydney 66062 (Master) and Richmond 67033 (Target)
Inter-Event Distributions for the month of June
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From these and comparisons completed at numerous other pairs of sites, it is evident
that the differences between parameter distributions within a region are adequately
consistent for the development of a regionalisation model. There are no sudden
changes in the shape of the distribution from site to site and not only that, the
difference between disttibutions is relatively consistent (i.e. the differences increase
as the length of inter-event time increases). This was an impottant result as it
suggested that diffetences between inter-event time distributions could be described

through the introduction of a linear scaling relationship.

To incorpotate the linear scaling relationship into the model, a new relationship was
applied between intet-event times at the longer master site and those at the shorter
tatget site. This scalar relationship was dependent on the length of the observed
storm event and translates master site events into a corresponding storm event at the
target site. If we consider the otiginal calibration equation for inter-event time at the

master site as presented in Chapter 3, the relationship is as desctibed by
F(x]8,)=P(X < x| 8;)=1-exp[- g(x,6,)] x>0 (6.1)

Introducing a new linear scaling relationship and variable A into this relationship to
provide the required shift between the master and target distributions yields a new

equation (6.2) for calibration of a regionalised inter-event time

Fy(y 18y, A)=Fx(Ay | 8,) = 1-expl- oAy, 8,)] 6.2)

F, denotes the distribution function at the target site while Fy denotes the
distribution function at the master site. The new scaling value A acts as a multiplier
on the target pluviograph data (y), to provide a best fit between the master
calibration and the target data. In this manner the minor differences between the
two distributions can be described during the calibration. This process is displayed

in graphical form below
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Figure 6.4. Schematic of Master Target Event Scaling

While this model worked when compating data sets of identical length and
concutrent time petiods, the process in this form is not adequate for describing
distribution changes between sites which contain different record lengths or ate
recorded over different petriods of time. To understand why, we need to consider
the sampling vatiability at the annual scale, an issue which was discussed briefly in the
work on parameter uncertainty. In general terms, when comparing statistical
distributions of significant data sets the removal of a small section of data from one
record should not significantly alter the distribution or the compatrison. However,
rainfall records can be short (small in data tetms) and can also incorporate long term
persistence within sections of the record relating to a particularly unusual dry or wet
petiod which may continue over a multi-year petiod. If we consider a shotter subset
of a long histotical rainfall record, it is evident that the subset cannot be influenced
by all of the wet or dry periods (sampled in the longer record) which in turn can
ptoduce a different data disttibution between the long record and its own subset.
Expanding this, a similar result is observed when compating a long pluviograph
record and a neighbouring short record in that the short record has not been
influenced to the same degree by any long term influences and may have missed
significant petiods of rainfall information. As a result, calibration of the linear

regionalisation model between a long and short record (as described in Figure 6.1
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above) would not only be influenced by small climatic differences at the sites, but
also by any differences between the recorded time petiods of the records. This
introduces a major soutce of error and makes it impossible to desctibe the event
distribution changes which arise only from the slight climatic differences between
sites. Befote the regionalisation model structure could be adopted and further
developed to incorporate storm dutation and storm depth parametets, this issue of
sampling variability at multi-year scales and how to deal with non-concurtent data

petiods tequired careful consideration.

6.2.2 Treatment of Sampling Variability at the Annual
Scale

To demonstrate the potential sampling variability issue, a pseudo calibration was
undertaken by shifting from a calibrated master parameter site (using intet-event
parameters) to a smaller subset of the same master record which was acting as the
target site. As the master and target data are from the same site, the regionalisation
model should return a scaling factor of one. (i.e. thete are no adjustments to be
made to the calibrated model parameters as the data is from the same site and
therefore the master parametets ate a true reflection of the required parameter set)
Any sampling variability as a result of the smaller data set not obsetving the same
rainfall periods as its longer counterpart would be evidenced by a deviation from this
expected value of one. In this case using data from Melbourne (Full length 1900-
1995, subset 1985-1995), Figure 6.5, it is clear that this is indeed the case and the

resultant scaling factors did not equal one.
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Figure 6.5: Calibration of Scaling Parameter without adjustment due to Different Record
Periods (Data from Melbourne; Full length 1900-1995, subset 1985-1995)

If the time span of the shorter record coincided with a predominately wet or dry
petiod within the full record, then the shott record will be influenced by these events.
As a result the distributions describing the storm events for the shorter record will
differ (to those of the full record) and the tesultant scaling factors will not equal one.
Cleatly this problem also translates when consideting regionalisation between sites,
Direct comparison between the full length master calibration and the shorter target
site data will lead to a potential bias in the resultant model parameters as a result of
regional wet or dry periods coinciding (ot not) with the time span of the shorter
tecord. To accurately calibrate the scaling factor between sites, the model needs to
compare the differences between the distributions which relate to local climatic
conditions and should not be influenced by issues arising from differences with the

time span and length of the two data sets under comparison.
Additional understanding of this potential bias can be seen with a simple graph

compating the intet-event disttibutions of a full length recotd to a subset of that

record for data from Brisbane and Perth (Figure 6.6 and Figure 6.7).
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Figure 6.6: Inter Event Distributions, Brisbane Different Record Length
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Figure 6.7: Inter-Event Distributions, Perth Different Record Lengths

It is clear from these plots that while the shape of the distribution has remained
consistent, the actual parameterisation of the distributions would differ. Considering

Figure 6.7, 2 model calibrated to Perth data from 1946-1992 would have a slightly
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different set of parametets to the model calibrated to the subset of Perth data from
1982-1992.

To remove any sampling variability and ensure an accurate calibration of the required
scaling factor for regionalisation, the target data should be compared to master
model parameters which are calibrated to a master data set equivalent in length and
concurrent in years. The use of concurrent data would ensute the calculated scaling
factors are a true indication of the local distribution adjustments and ate not a
residual result of the different record lengths. However, in order to use a master —
target relationship with concurrent data petiods directly, the model would first need
to be calibrated to a short sub-set of the master record equivalent in length to that of
the target site. It is the inability of the model to be successfully calibrated to such a
short pluviograph record that has lead to the development of a master-target
relationship to circumvent the problem. Indeed, if the model was capable of being
directly calibrated to a sub-set of the master record, then it would be teasonably safe
to assume the model could also be calibrated directly to the tatget data set and a
regionalisation process would not be required. ‘This is not the case, as calibration of
the original model to short pluviograph recotds is problematic, often resulting in
model parameters that are not well identified and do not desctibe the required
distributions due to the lack of available calibration data. A process which fitstly
allows the model to be calibrated to the complete record at the mastet site, secondly
takes into account the differences in data lengths and time periods between the two
data sets, and finally is still able to accurately adjust these model parameters based on

the limited information from a short pluviograph recotrd was required.

Given the target pluviograph data set will always be shotter and contain less
information than the master record and that the master parameters should always be
calibrated to the full length of the master record to ensure accuracy, the resultant
problem is how to set up the regionalisation model to enable comparison between
data sets which are not concurrent and/or equivalent. To solve this problem, an
additional step in the regionalisation process has been introduced. This additional
intermediate calibration step results in the calculation of an intermediate pre-scale
parameter denoted A, This A, parameter desctibes the differences between data

distributions relating to non-concurtent time periods and by using it in the
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calibration process it ensures compatrisons between distributions at master and target

sites are not influenced by non-concurrent data.

The amended master — target process to calculate the scaling parameter A and the
intermediate parameter A, is shown graphically below in Figute 6.8. The first step
remains the same as the original master — target relationship whereby the model
parameters are calibrated to the full length record at the master site. This paramettic
description of the master storm event distributions is denoted 8. The second step
involves an interrogation of the target data set which allows the model to extract a
subset of the master data which is concutrent and equivalent in length to the target
data. Once this data is extracted, the model uses the master — target relationship to

compare the original master calibration (0) and the new subset of the master data

(now acting as the tatget data) to calculate an intermediate scaling factor A,
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Figure 6.8: Schematic of Pre-Scaling Calibration Step

Once the intermediate factor A, has been determined, it is then applied as a pre-

multiplication factor to the target data. By pre-multiplying by kp, the target data is
adjusted to take into account any differences in the storm event distributions that
may have occurred as a tesult of the differences in data lengths and time periods.

Once this transformation of the target data is complete, the master - target scaling
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process is applied a second time between the master parameters and the ‘new’ target

data to determine the ‘real’ regionalisation scaling factor A. The introduction of this
intermediate step allows the regionalisaion model to more easily determine the
changes in storm event distributions and model parameters as a result of the
differences between sites alone and not to be influenced by the differences in data

lengths or time petiods.

More explicitly, if we again consider the distribution of inter-event times, then as
before (in equation 6.2) we know the introduction of the regionalisation model is

described by
Fe(v18,A)=Fx(\y|6;)=1-exp[-g(Ay.8,)]  x>0,y>0 ©.3)

If we extend this and denoting A, as the intermediate pte-scaling factor to take into

account the differences between data lengths and periods, the calculation of 7Lp at the

master site is described by

Fe(X 181, A,)= F{(i xtarg] | et] 1 —exp[— g[A[i x,arg], etH (6.4)
A A

whete Fy is the distribution at the master site and x,,,, is the subset of the master data

equivalent in yeats to the target data. This provides the calculation of the pte-scaling
factor Xp. Applying this as a multiplication to the target data and re-applying the
mastet — tatget scaling relationship (6.3) gives the overall calibration of the scaling

factor A
Fely 160 A Ap) = Fx (MM, )1 €)= 1-expl- glAA,y ) 8, )| y>0 (6.5)

As explained previously the target data y has been initially multiplied by 7»? to remove
any bias due to the different time petiods covered by the full length master

pluviograph and the shorter target site. This allows a direct comparison between the

calibrated master parameters and target distribution to calculate the real A.
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To test the introduction of the intermediate step, the technique was again used to
calculate A between the full length and a subset of the Melbourne data set but this
time including the intermediate calibration step. Again, the expectation was the
calculation of a scaling factor of one (in this case for inter-event times). Figure 6.9
shows that the inclusion of this intermediate step has cotrected any bias due to the

different record lengths and as expected returned a scaling parameter value of 1.0.
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Figure 6.9: Calibration of Scaling Parameter with and without adjustment due to Different
Record Periods (Data from Melbourne)

The development of a mastet — target framework and the introduction of an
intermediate calibration step to remove the sampling variability issues associated with
the non-concurrent data periods enable the master — target relationship to be
adopted for each model parameter set of the event based rainfall model. The
application and development of these relationships for each section of the model and

the subsequent testing and simulation results are described below.

6.3 Regional Model Application to Inter-Event Times
and Storm Duration Parameters

The ability to successfully reproduce the observed distributions of inter-event time

and storm durations at sites with a short historical record ensures the simulation of
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an accurate storm time series and provides a significant step towards successful
calibration at sites with minimal historical data. The development and petformance

of a master — target relationship to calibrate these sections of the model is now

described in detail.

6.3.1 Model Development for Inter-Event Times and
Storm Durations

As previously shown the distributions of storm events and dry petiods atre similar

and are both described by a generalised exponential distribution given by
F(x18;)=P(X <x|8,)=1-exp[-g(Ay,8,)] x>0 y>0A>0 (6.6)

Introducing a master — tatget relationship and the aforementioned scaling parametet
(A) and intermediate scaling parameter (A) into this event distribution calibration

process results in
F(x | 8,) =1-exp[-g(A(A,y) 6,)] y>0 (6.7)

As the distributions of inter-event times and storm duration are calibrated and
simulated independently, separate scaling parameters (A) and intermediate scaling

parameters (L) are required to be calculated for each event distribution. The
development of a linear scaling factor was important as it increases the likelihood
that it can be identified successfully given the limited data available with only a short
pluviograph record. As model parameters ate calculated on a monthly basis, the
master — target relationship is also developed for each month between the
cotresponding event distributions. Using only a linear scaling factor ensures only a
single parameter is required to be calculated for each month in comparison to the 3
parameters which are used to describe the event parameters at the master calibration
site. Maximum likelihood techniques similar to those employed to fit the parameters

at the master site are used to determine the pre-scale parameter }“p and the optimum

scaling parametet A.
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During simulation, 2 master storm event is simulated using the master calibration
parameter set and is then multiplied by the appropriate scaling factor (Le. storm
duration ot inter event time) to transform the simulated master event into an

equivalent length of storm event at the target site.

Befote the model could be applied and tested at sites around Australia, careful
consideration of the regionalisation model setup is required in order to adopt
apptropriate methods and statistics to check model performance. In the case of a
typical model calibration, a long histotical data set is used duting calibration. As an
example, the Melboutne record contains 95 years of pluviograph storm data. To
assess model performance, the model can be simulated for 95 year replicates and a
direct compatison between observed and simulated data undertaken. This provides
an accurate comparison between observed and simulated data because the calibration
data length is long and provides a reasonable description of the rainfall processes at
the master site. Additional testing using daily data or similar can be used to compare

annual statistics and long term trends.

In contrast to a typical calibration, the regionalisation model uses a short pluviograph
record at the target site to update the master calibration from a site with a long
histotical data record. Let us consider Melboutne as the master and a surrounding
site y as the target with only a shott 10 year record. If the regionalisation model has
been successfully applied, the tresultant model should be capable of simulating the
rainfall events and long term rainfall statistics at site y. Extending this futther, the
resultant model would be equivalent to a model calibrated to 95 years of historic data
(equal to that of the Melbourne master) at site y if this data was available. As a result,
simulated statistics reflect a 95 year period of rainfall records at site y instead of the
obsetved 10 years. Direct comparison between this 10 year observed recotd and the
model ‘calibrated’ to 95 years of record is problematic due to the aforementioned
issues relating to sampling variability at the annual scale in short histotical data sets.
The regionalised model calibrated to effectively 95 years of data and the observed 10

year record now encompass different periods of time.
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For these reasons when applying the regionalisation technique in practice,
comparisons should be made between the regionalised model and an alternate data
source, usually a long daily rainfall record. This will enable checks to occutr between
the aggregated statistics of the simulated model and the daily record over the same
time period as was used for the calibration of the master model parameters. This
provides the best compatison between obsetved and simulated values as equivalent

periods of time are compated.

For the putrposes of this study and model vetification, all target sites have been
chosen with significant periods of data records available. This was important to
ensure that adequate high resolution rainfall data was available for comparison to
validate model simulations and statistics. To ensure the model tests wete as ‘real’ as
possible, the length of data at the master and target sites were adjusted to ensure the
mastet calibration was undertaken to a subset of master data equivalent in length and
concutrent with the full length target data set. Regionalisation was then tested by
utilising a small sub-set of the target data for calibration while model simulations and
results were compared to the full length tatget recotd. This results in some sections
of the available master data being ignored during the testing process but should
produce a regionalised model that is equivalent to a model calibrated to the full
length target record. This also ensures that the final calibrated target model should

reproduce the observed target data distributions without bias.

As an example, consider Melbourne as the master site with its record length from
1890 to 1995, and East Sale as the requited target with data from 1953 — 1992. For
testing purposes the Melbourne tecotd was clipped to coincide with the Fast Sale
data period of between 1953 and 1992. This was then treated as a full length master
recotd for the purposes of calibrating a master parameter set. In addition, the target
site at Hast Sale was then clipped to only a 10 year subset of the 40 year record to
formulate a realistic short pluviogtaph record as a target data set. These two records
were then used as the master & tatget sites during the calibration of the scaling factor
(A). Successful implementation of the master — target relationship should then

produce target scaling factors which, during simulation, generate results that compate

favorably to the otiginal full length (1953 — 1992) data set at Fast Sale.
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In order to show that the distribution of inter-event time could be successfully
translated from master to target sites, a number of master sites were selected from
various locations actoss Australia. These were then used as a basis for shifting to
other shorter target sites in the area. The sites selected for master calibrations and
the associated target sites are shown in Table 6.1.  While the table shows the
available data at the target site, for the purposes of this study only the final 10 years
of target data was actually used during the calibration process. The remainder of the

record was only used for comparison to model simulation results.
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Table 6.1: Master and Target Rainfall Record Details (Pluviograph Model)

Distance
Name BOM # Start Year | Finish Year
)
Mastetr Melbourne 86071 1900 1995 0
Targets East Sale 85072 1953 1992 190
Ellinbank 85240 1961 1992 95
Laverton 87031 1965 1992 20
Distance
Name BOM # Start Year | Finish Year
(k)
Master Sydney 66062 1913 1991 0
Targets Richmond 67033 1953 1993 45
Chichester 61151 1960 1980 185
Distance
Name BOM # Start Year | Finish Year
(km)
Master Adelaide 23034 1967 1997 0
Tatgets Williamstown 23763 1971 1997 40
Stitling 23785 1964 1981 15
Distance
Name BOM # Start Year | Finish Year
(km)
Master Perth 9034 1946 1992 0
Targets Esperance 9631 1963 1991 580
Name BOM # Start Year | Finish Year
Master Brisbane RO 40214 1908 1991 0
Targets Brisbane AMO 40223 1949 1992 10
Kirkleagh 40318 1959 1990 70
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All master calibration results are presented in Appendix B, while the complete set of
target results ate shown in Appendix C. For verification purposes, selected target
tesults for Melbourne (master) — East Sale (target), Sydney (master) — Richmond
(target) and Adelaide (master) — Williamstown (target) are shown and discussed

throughout this Chapter.

6.3.2 Simulated Inter-Event Time Results at Selected
Target Sites

The successful scaling of intet-event time to the target site has two benefits. It
ptovides the necessary accurate description of dry petiods of the target site, but less
obviously, the distribution of inter-event times also has a majot influence on the
number of storms and therefore the resultant rainfall for a given month. In otrder to
verify that these distributions were successfully transferred from master to target site,
two compatrisons wete made. The distributions of inter-event time for each month
for the master, scaled and target data sets wete compared to ensure the distributions
were replicated. These scaling factors were then used in a simulation and the mean
and standard deviation of dry events for each month were compared. Undertaking
these two checks ensures that the calibration of the scaling parameter was successful
and that this was implemented cotrectly duting simulation. Results ate shown in
Figure 6.10 for the reproduction of inter-event distribution for a calibration shifted

from Melbourne to East Sale.
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Figure 6.10: Comparison between Master, Target and Shifted Master Inter-Event
Distributions (Data from Melbourne (Master) East Sale (Target), April)

As can be seen, the inter-event distributions for this month have been well
represented with the introduction of the linear scaling parameter. To further test this
application, simulation results for the monthly mean and standard deviation of inter-
event times have been calculated and are presented in Figure 6.11 and 6.12. In these
plots the observed data has been calculated from the full length target site
pluviograph record. The master statistics have been identified with a dashed line
linking discrete statistics to improve the visual representation of the regional scaling.

The master statistics were also calculated from the full length master record.
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Figure 6.11: Comparison between Observed and Target Simulated Mean Inter-Event
Times (Master — Melbourne; Target — East Sale)

140 - I ! i T ! . : :
: i : : : : ——— 90% Sim Limits
Simulated Median

120 [ : i 'f Obs
I E : : : ; : Master Sigma Dry Spell

100

80

60

Std Dev Inter-Event Time (hours)

40

Zo-ii;iiiiiii

Figure 6.12: Comparison between Observed and Target Simulated Standard Deviation of
Inter-Event Times (Master — Melbourne; Target — East Sale)

All observed statistics sit within the 90% simulation limits providing evidence that

the mean and standard deviation of inter-event times have been well reproduced.
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From these plots it can be concluded that the calibration and application of the
regional scaling parameter have resulted in a successful inter-event shift from

Melbourne to the tatget site of East Sale.

Further evidence is supplied by application of the model to Sydney rainfall data. In
this example, data from Sydney is used as the master calibration site with Richmond
RAAF base introduced as the tatget site. Again a simple plot of the resultant
regionalised parameter distribution (Figure 6.13) suggests the model has been

successfully shifted from Sydney to Richmond.
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Figure 6.13: Comparison between Master, Target and Shifted Master Inter-Event
Distributions (Data from Sydney (Master) Richmond (Target), June)

Resultant simulation statistics (Figure 6.14 and Figure 6.15) provide additional
evidence that the model has been able to describe the required changes between the

master and target site using the lineat scaling parameter.
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Figure 6.14: Comparison between Observed and Target Simulated Mean of inter-Event
Times (Master — Sydney; Target — Richmond)
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Figure 6.15: Comparison between Observed and Target Simulated Standard Deviation of
Inter-Event Times (Master — Sydney; Target — Richmond)

The data compatisons between Melbourne-East Sale and Sydney-Richmond show a

significant change between observed statistics at the master and tatget sites which has
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been well captured by the regionalisation model. As an example the mean inter-
event time for Sydney for the month of June is approximately 42 hours, with a
cotresponding value of 69 hours at Richmond. The model has been able to capture
this significant change in intet-event time statistics while still adequately describing
the distribution itself. A further test of the model arises at sites which do not have
such a clear differential between master and target sites. Fot the regional model to
work successfully it must still calibrate accurately when the vatriance between

observed statistics at the master and target sites 1s minimal.

A good example of this situation is the comparison between Adelaide (master) and
Williamstown (target). With the exception of February and November, the
difference between the monthly mean inter-event times is minimal. Figure 6.16
presents the simulation results after a successful regionalisation shift. Not only has
the model still been able to describe the requited changes for February and
November which required a large change, all other months have also been

successfully reproduced whete only a small adjustment was required.
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Figure 6.16: Comparison between Observed and Target Simulated Mean of Inter-Event
Times (Master — Adelaide; Target — Williamstown)
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Figure 6.17: Comparison between Observed and Target Simulated Standard Deviation of
Inter-Event Times (Master — Adelaide; Target — Williamstown)

6.3.3 Simulated Storm Duration Results at Selected
Target Sites

The successful scaling of storm durations provides the necessary accurate description
of the length of storm events but again in similar fashion to intet-event times, also
has an influence on the number of generated stortm events. The distribution of
storm duration is also linked via the conditional intensity — duration relationship to
storm depth and thetefore it is important that this distribution is accutately

reptoduced by the regional model.

As the probability distributions and description of storm durations are identical to
that of inter-event times, the regionalisation structure used for inter-event times
could be adopted. A ptre-scale factor was again introduced to temove sampling
variability issues with a resultant linear scaling shift employed to describe the changes

in the storm duration distributions between sites.

For consistency, tesults ate presented for the same pairs of sites as that for inter-

event times with further results available in Appendix C. Again if the observed data
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statistics fell within the simulation limits this was considered a successful

regionalisation of the model fot stotm durations.

Figure 6.18 & Figure 6.19 present simulation results from a successful shift between
Melboutne and Fast Sale. There is significantly less adjustment required for storm
duration parameters in comparison to inter-event times as can be seen with most of
the master mean average storm duration statistics sitting within the simulation limits.
As a result only minimal scaling was tequited from Melbourne to Fast Sale.
Howevet the model was able to adequately desctibe the tequired adjustments and

successfully shift the model between these sites.
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Figure 6.18: Comparison between Observed and Target Simulated Mean of Event Storm
Durations (Master — Melbourne; Target — East Sale)
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Figure 6.19: Comparison between Observed and Target Simulated Standard Deviations

of Event Storm Durations (Master — Melbourne; Target — East Sale)

Similar results are evident from regional storm duration calibrations between Sydney

and Richmond. The minimal adjustments have been successfully described by the

incorpotation of the linear scaling model.
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Figure 6.20: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master — Sydney; Target — Richmond)
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Figure 6.21: Comparison between Observed and Target Simulated Standard Deviations
of Event Storm Durations (Master — Sydney; Target — Richmond)

In contrast to the intet-event times, the differences between storm duration statistics
for Adelaide and Williamstown ate significant. Fot the month of June, the mean
storm duration from the full length Adelaide record is approximately 2.5 hours. In

compatison the mean for the full record at Williamstown is close to 4.5 houts.
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Figure 6.22: Comparison between Observed and Target Simulated Mean of Event Storm
Durations (Master — Adelaide; Target — Williamstown)
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Figure 6.23: Comparison between Observed and Target Simulated Standard Deviations
of Event Storm Durations (Master — Adelaide; Target — Williamstown)

It is important to remember that the two record lengths are not identical and

thetefore it is likely that the Adelaide record has obsetved significantly more short

193



Chapter 6: Regionalisation with a Short Pluviograph Record

storms which have effectively decreased the mean storm duration over time. The
success of the regional model between these sites again indicates the importance of
the pre-scaling step and further emphasises the ability of the tegional model to
capture the true adjustments required between parameter distributions at the master

and target sites.

Results presented to date indicate the model has been successful in reproducing the
required distribution changes between master and target sites for inter-event times
and storm durations. However results presented thus far have been compatisons to
calibrated statistics (i.e. the distribution of inter event times was used in the regional
calibration and therefore should be well reproduced in the model simulations). To
test the model further, it is important to compare the reproduction of non-calibrated
statistics potentially from an altetnate data source. This would also test the
performance of the model when inter-event time and storm duration shifts were

combined.

As the inter-event times and storm duration parametets define the number and
distribution of storm events over time, it is approptiate to use the probability of
observing or not obsetving a storm event over a given time frame as a relevant test

of the models performance.

6.3.4 Comparison between Simulated and Observed
Daily Dry Probabilities at the Target Site

The inter-event times and storm duration simulation within an event based model
produce the storm event time seties and therefore the probability of observing wet
and dry events over a given aggregation petiod. To investigate the success ol the
regional model when considering intet-event times and storm durations it is
therefore appropriate to compare the observed and simulated dty probability for a
certain aggregation level. In addition, a major issue when using a regionalisation
technique to simulate rainfall data is the ability to verify the success of the
regionalised model with vety little data available at the time scale of the model
simulation. In general the regional model will be used at sites which do not have a

long historical record for comparison. Without this comparative long 6 minute
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pluviograph record at the target site, an alternative data source at a different time
scale must be used to provide verification of the model output and an indication of
the success of the regionalised calibration. For inter-event time and storm duration
the reproduction of the daily dry probability (the probability of obsetving no rain ina
given day) can be used and compared to the obsetved statistics from a long daily
tecord at the target site to provide further model verification.

Extending this idea further, if it can be shown that the regionalised model is capable
of teproducing this daily statistic after successful calibration, then thete is potential
for this statistic to be used as a check for a regionalised model at a site whete
minimal pluviograph data is available for verification. It is reasonable to assume that
an event model which can successfully simulate the probability of observing a dry
day is also adequately simulating the number and length of storm events and inter-
event times. Therefore the reproduction of the daily dry probabilities is an important
indication of the performance of the model and as it is a non-calibrated statistic

provides furthet evidence of the models structure.

Figure 6.24 presents the probability of observing a dry day for both the observed
data at the target site (East Sale), the simulated limits form the regionalised model
and a dashed line representing the mastet site statistics (Melbourne). The master
statistics are in fact the same as that of the target site data in that they are discrete
points of one value per month, however they have been reptesented as a dashed line
for display putposes as it was difficult to distinguish between the master and target

data points.

195



Chapter 6:

100

90

Probability of Dry Day

40 L

Figure 6.24. Comparison between Observed and Target Simulated Probability of a Dry

Regionalisation with a Short Pluviograph Record

T I 1 1

— 90% Sim Limits

) i : : ; : : Obs
L : : N e Master

Simulated Median

Day (Master — Melbourne; Target — East Sale)

Figure 6.24 indicates that the model has been able to improve the reproduction of

the daily dry probability for all months. The majority of points sits within or just

outside the simulation limits suggesting that the model has been able to adequately

teproduce the daily dry probability at the target site of East Sale. Figure 6.25 and

Figutre 6.26 present similar results from Sydney and Adelaide respectively. The

model regionalised from Sydney to Richmond shows a substantial shift between the

master and the resultant simulation at the tatget site and the target values have been

well reproduced.

196



Chapter 6:

100

90

Probability of Dry Day

Regionalisation with a Short Pluviograph Record

— 90% Sim Limits
Simulated Median
°  Obs

----- Master

Figure 6.25: Comparison between Observed and Target Simulated Probability of a Dry

100

90

Probability of Dry Day

Day (Master — Sydney; Target — Richmond)

il ——— 90% Sim Limits

Sim Median Target |
o Obs

Month

Figure 6.26: Comparison between Observed and Target Simulated Probability of a Dry

Day (Master — Adelaide; Target — Williamstown)
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The data from Adelaide required a less significant change, however again the model
was able to capture the required changes when shifting from mastet to target.
Combining these results with those presented in Appendix C, the regionalisation of
inter-event times and storm durations using a disttibution scaling factot and a master
— target relationship has been successfully introduced into the tainfall model and can

be applied with confidence to sites with short pluviograph tecotds.

This was also an important result for the further development of the regionalisation
model as can be seen in the later chapters, as it enabled the development of a
technique using only daily rainfall data further generalizing the technique and

improving the application of the model across Austtalia.

6.4 Regional Model Application for Storm Event
Depths and Temporal Pattern Parameters

The successful simulation of bulk rainfall amounts and their subsequent
disaggregation into the required time step is the final step in the rainfall model
process. With a successful process developed and tested to calibrate the distribution
of storm durations and inter event times at the target site, a similat process was
required to ensure the reproduction of rainfall distributions and aggtregated totals was
accurate. As was the case with the distribution of Inter-Event times and Storm
Durations, the calibration of storm event depths and temporal pattern disaggregation
parameters are undertaken independently within the model and as a tesult the
potential links and relationships between these parameterisations at the master and

target sites were also investigated separately and ate desctibed below.

6.4.1 Model Development for Storm Event Depths

An important outcome from the eatlier wotk presented in Chapter 3 was the
investigation into the conditional intensity — duration telationship. Chapter 3
demonstrated the similar shape of the conditional intensity — duration relationships
between adjacent rainfall sites. For example sites atound Sydney all display the same
basic intensity — duration shape and patametet charactetistics. This result was

important for the work in Chapter 3 as it provided the basis for a new calibration
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procedure for the storm event depth model parameters. Fot the purposes of this
Chapter it is also important as it provides the base for the development of a

tegionalisation process for these rainfall amounts.

While the results of Chapter 3 indicated that the intensity — duration parameter
characteristics are similar and consistent between sites, the relationship is not so
identical as to require little or no adjustment. Some sites receive consistently mote
intense rain events than others and as a result a regionalisation adjustment for
differences in the intensity of rain events between sites is required. It was initially
hoped that a simple scaling of the marginal (as opposed to the duration conditional)
intensity distribution between the mastet and target sites could successfully desctibe
any required adjustments. Not only would this have provided a simple approach, it
would also tie in nicely with the adopted process for inter event times and storm

durations. Unfortunately this was not the case.

An investigation into the potential of a scaling factor applied directly to the marginal
intensity distribution provides an insight into why such a simple approach did not
work. In the original model the use of the conditional intensity-duration relationship
enables the parameters which govern the distribution of storm intensity to be
influenced by the storm dutation. As a result a short duration storm will have a
different mean intensity in comparison to a longer duration storm. This is to be
expected and was a requirement of the original model to be able to replicate
obsetved statistics at various time scales. If the matginal distribution of intensity is
investigated directly for the purposes of calibrating a scaling factor, this conditional
link to storm duration is ignored and the accuracy of the regionalisation model

suffers as a result.

The application of a scaling relationship directly between both conditional intensity —
duration distributions at the master and tatget sites was also problematic. The
relationship would be tequited to take into account changes to both storm durations
and storm intensities between sites explicitly in the calibration of event depths in
order to keep the conditional relationship intact. This resulted in scaling parametets

at each of the breakpoints in the model, introducing a large number of parameters
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requiring calibration each month at the target site, which was not appropriate given

the lack of calibration data available.

The adopted regionalisation model considets the conditional intensity — duration
telationship implicitly by comparing the disttibution of storm depths rather than
storm intensities in order to calibrate the regionalisation requirements between a
master and a target site. By developing the model to compate storm depths instead
of storm intensity, the conditional intensity — dutation relationship is taken into
consideration implicitly as the data pairs of intensity and duration are considered
together. Almost as importantly, because the process uses the distribution of event
depths rather than storm intensity, the process could be (and subsequently was)
developed further to be used with daily rainfall data with the view of further
generalising the model. This additional work to regionalise the model with only daily

data at the target site is presented in Chapter 7.

The regionalisation model for event depths works in a similar manner to that for
storm durations and inter-event times. Using the master site calibration the model
initially simulates a distribution of storm event depths at the master site. (These ate
simply a product of simulated storm duration and cotresponding simulated storm
intensities) The model then calculates a scaling relationship (Apepn) between the

master (D, ) and target depth (D) distributions, i.e.

PM,) = ApenP (D) (6.8)

In otder to calculate the required regionalisation for the storm intensity distribution
specifically, the model can use the previously described storm duration
regionalisation relationship (A,) (which can be calculated first independently) to pre-
translate the storm durations from master to tatget sites. If we leti = intensity and d

= duration then

P(D,) = A P(D); 0w P(D) = P(i| dyP(d) so
PG, [d,)P(d,) = Aoy P )P() (6.9)

If storm duration regionalisation is pre-calculated, then
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P(d) = &, P(d,) so substituting into (6.9) gives

P(,,|d)P(d,) = ApeuP (i | d) Ay P(d,) (6.10)

And simplifying
P(i,, | dy) = Ay Mpepan PG| dD) (6.11)

Any resultant regionalisation telationship determined when compating the event

depth disttibutions becomes solely a factor of the storm intensity.

Unlike the scaling factors for inter-event times and storm duration, a simple constant
linear factor was not adequate to describe the required distribution changes between
master and target sites. Investigation into the storm depth distributions indicated
that a more complex relationship was required. Figure 6.27 displays the comparison
between storm event depth disttibutions (plotted on a log scale) at Melboutne
(Master) and East Sale (Target). It is clear that there is a more pronounced
difference between sites for storm depths around the 0.9mm mark as opposed to

storm events of greater and lesser depths.
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Figure 6.27: Comparison between Storm Event Depth Distributions Data for July, (Master
— Melbourne; Target — East Sale)
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Figure 6.28 displays a similat result for data from Adelaide (Master) and
Williamstown (Target). In this case there is a decreasing difference between sites as

the storm depth increases which could not be captured with a simple linear scaling

factot.
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Figure 6.28: Comparison between Storm Event Depth Distributions Data for March,
(Master — Adelaide; Target — Williamstown)

The comparisons between mastet and target storm depth distributions led to the
development of a relationship for the scaling factor Ay, which is dependent on
storm event depth. This relationship between Ap,,, and stotm event depth requires
the calibration of 3 parameters. The first is a constant linear scaling factor similar to
that used in the calculation of A for inter-event times and storm duration and is
denoted Ap.,- In addition to this constant factot, two additional parameters
determine the location (A, 2) and size (Apy.5) of the triangle peak which provides
the regionalisation model for event depths a further degree of freedom. This
additional freedom ensutes the model is able to obtain a better fit between the
master and target sites. A schematic of the model structure is displayed in Figure

6.29 below.
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Figure 6.29: Schematic of Scaling Parameter Relationship to Storm Depth

The actual scaling factor during calibration and simulation for a given storm depth is
determined by the combination of the three scaling factors as shown in Figure 6.29.
In this way the scaling factor has enough freedom to capture the required differences
between depth distributions at the master and target sites while still restricting the
number of parametets to 3, 15 less than is required for a direct event intensity

calibration to pluviograph data.

This approach provides a robust methodology to regionalise the storm event
intensity within the model. However, in contrast to the eatlier work when
regionalising storm durations and intet-event times, thete is not an explicit
description of the storm event distributions within the model. In order to utilise a
maximum likelihood approach to calculating the required scaling parametet between
depth distributions, a desctiption or estimate of the storm depth distributions was

also required.
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6.4.2 Incorporating Non-Parametric Kernel Smoothing
Density Estimation

To eliminate the need to incorporate an assumption about the probability
distribution of event depths into the model, the probability density was
apptroximated using the method of ketnel density estimation or ketnel smoothing.
This, coupled with a maximum likelihood apptroach formed the basis of the
calibration of event depths at the target site and removed the need to introduce

turther assumptions into the model structure.

Kertnel smoothing is a well-known and accepted method for the non-parametric
estimation of probability densities. Rosenblatt (1956) introduced the idea of kernel
estimators by proposing to smooth kernel weights on each of the observations.
Since then, ketnel estimating has been used in numerous applications including
hydrologically in  the estimation of flood quantiles (Adamowski,
1985,1989,1996,2000; Guo, 1991; Moon et 4., 1993 among others). A good
introduction to kernel density estimation can be found in Silverman (1986), while
Wand and Jones (1995) provide an account of mote recent developments. Kernel
density estimation is an extension of the histogram, providing a smooth continuous

density estimate. The density estimation equation takes the form

fx(x):Z%K(x_hy‘] (6.12)
i1

where K() is a kernel function centred at each data point y, x is the data value at
which the probability density estimate is requited and h is known as the bandwidth.
The bandwidth sets the degtee of smoothing or influence that each individual kernel
has on the overall density estimate. The kernel K() must be a probability density
function which by definition must have an atea under the kernel function equal to

one. Often, as was the case in this study, the Gaussian kernel is used

K(x) = —exp[_ X J (6.13)
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Introducing the required scaling factor A into the kernel smoothing equation (6.12)
yields

fx (x) =

iK(X n ("y)‘) 6.14)

n
= nh h

In this case n denotes the number of data points at the target site while (Ay),i=1,..,n
is the target depth data. These values of (Ay), are a product of storm duration t, the
corresponding duration scaling A, the corresponding target event intensity and the

requitred depth scaling A.

Figure 6.30 presents a graphical description of the kernel smoothing approach. At
the location of each scaled target depth data point a Gaussian kernel is placed. The
summation of the n kernels of bandwidth h centered at each target observation (Ay);
in (6.14) forms the kernel probability density estimate of a specific mastet depth x.
At locations with a greater concentration of target data points, there will be more
contributions from a number of Gaussian kernels centred at these points giving a
greater density estimate to the master data point x and providing the ability to

compare the two data distributions.
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Figure 6.30: Schematic of Kernel Smoothing Calculation
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Maximum likelihood techniques are again used to find the optimum value of A.
Given that A, is constant (it has been pre-calculated during the storm duration
regionalisation work), A is the only parameter requiting adjustment to produce the
maximum likclthood. An iterative process was used whereby the kernel density

estimation was recalculated for each iterative change in scaling patameter A. As is the

case in all maximum likelihood approaches, the best fit occurs when the product of
fx(x) (or the sum of logfx(x) as i1s the case in this research) for all master

observations 1s at a maximum. This ensures that the scaled target depth distribution
and the observed master depth distribution ate easily compared with the differences
described by the scaling parameter A. Once the optimal scaling patametet is found,
the final target simulation is produced using the master parameter set and this
resultant scaling factor to provide the requited storm event depths at the target site.
(The calibration approach has calculated the scaling parameter at the tatget site to
best fit the target depth distribution to the master depth disttibution; hence during
stimulation the simulated master depths must be scaled by the invetse of this

parameter to produce the required depth values at the target site.)

6.4.3 Storm Event Depths Results - Introduction

To verify the successful scaling of simulated storm depths two compatisons wete
used. First, the distributions of event depths from the obsetved master, target and
simulated target can be compared to provide a check that the regionalisation
calibration for event depths was successful. Secondly, compatisons to the annual
and monthly rainfall distributions provide evidence that the model has captured the
bulk rainfall processes successfully over various scales. The obsetved statistics for
this comparison were calculated from the obsetved daily record at the target site to
provide the most accurate monthly and annual statistics. As the distribution of event
depths was the basis of the calibration process, the compatison to the non-calibrated
monthly and annual rainfall distributions are of gteat benefit in validating the model
structute and performance. An additional comparison between simulated and

observed IFD cutves provides further validation of the storm depth model output;
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however, the IFD cutves are also influenced by the internal storm event
charactetistics and the temporal pattern parameters which are discussed in Section

6.4.6. As a result, IFD compatisons are provided later in Section 6.4.7.

6.4.4 Simulated Storm Event Depth Distribution
Results at Selected Target Sites

As the calibration of the scaling parameter for event depths takes into account the
event depth distributions the following plots give an indication of how well the
model is able to captute the differences between the master and target sites, the
expectation being that the observed data will predominantly rest within the
simulation bounds. As can be seen below and in Appendix C, this is mostly the case
suggesting that the regionalisation model is capable of describing the differences
between disttibutions at pairs of sites. In the selected cases where the observed
values did not rest within the bounds, the points are either on the borderline or just
outside. Considering the calibration data available and the accuracy of all other

reptroduced parameters, this is an acceptable result.
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Figure 6.31: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Melbourne; Target — East Sale)
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Figure 6.32: Comparison between Observed and Target Simulated Standard Deviation of

Event Depths (Master — Melbourne; Target — East Sale)
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Figure 6.33: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Sydney; Target — Richmond)
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Figure 6.34: Comparison between Observed and Target Simulated Standard Deviation of

Mean Storm Depth (mm)
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Figure 6.35: Comparison between Observed and Target Simulated Average of Event

Depths (Master — Adelaide Airport; Target — Williamstown)
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Figure 6.36: Comparison between Observed and Target Simulated Standard Deviation of
Event Depths (Master — Adelaide Airport; Target — Williamstown)

6.4.5 Monthly and Annual Rainfall Results

To further test the performance of the regionalisation ptocess, the ability of the
model to replicate statistics not used during the calibration process was investigated.
Reproducing monthly and annual rainfall totals is important for hydrological risk
assessment models and are two statistics not used during the calibration process.
Their use as a verification tool is futther enhanced by the fact that monthly and
annual rainfall totals were sourced from daily data tecords, a completely different

data set to the pluviograph records used during the calibration process.

Three pairs of sites were selected for presentation in this section, based on the
differences between the master and target rainfall totals. In the first case the master
is Adelaide Airport while the target site is Williamstown. Adelaide Airport has an
annual rainfall 451mm in comparison to that at Williamstown of 717mm. As can be
seen from Figure 6.37 the model has been able to successfully reproduce the mean
annual rainfall when scaling from master to the tatget site. Howevet, consistent with
the original Heneker ¢z 4/ (2001) rainfall model the simulation has undetestimated the

long term petsistence structure at the annual time scale. This is not a drawback of
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the regionalisation process but rather of event based models generally which lack an
intet-annual petsistence structure to capture long term climatic effects. Concurrent
PhD work by Andrew Frost at the University of Newcastle to identify and introduce
a petsistence structure into rainfall models of this type should in the future provide a
way to imptrove the reproduction of the standard deviation of annual rainfall in event
based models. Nevettheless, the ptresented result indicates the ability of the

regionalisation model to translate between master and target sites.
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Figure 6.37 Comparison between Observed and Target Simulated Annual Rainfall
(Master — Adelaide Airport; Target — Williamstown)

Figure 6.38 displays simulated and obsetved monthly rainfall for January again

demonstrating the models ability to simulate and reproduce non calibrated statistics.
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Figure 6.38: Comparison between Observed and Target Simulated January Rainfall
(Master — Adelaide Airport; Target — Williamstown)

Figure 6.39 and Figure 6.40 present data from the target site at Kirkleagh in
comparison to the master data from Brisbane. These sites have annual mean rainfall
which is closer than that between Adelaide Airport and Williamstown but the model

can still be seen to successfully reproduce the desired distributions.
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Figure 6.39: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Brisbane Regional Office Airport; Target — Kirkleagh)
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Figure 6.40: Comparison between Observed and Target Simulated July Rainfall (Master
— Brisbane Regional Office Airport; Target — Kirkleagh)

Finally Figure 6.41 & Figure 6.42 demonstrate the ability of the model to simulate
successfully when there is little change between the master and target sites. Both
Sydney and Chichester have similar annual rainfall totals (1217mm and 1295mm
respectively), but the model has still captured and reproduced the mean annual

rainfall. (Again the standard deviation of annual rainfall has been underestimated)
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Figure 6.41: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Sydney; Target — Chichester)
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Figure 6.42: Comparison between Observed and Target Simulated November Rainfall
(Master — Sydney; Target — Chichester)
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6.4.6 Model Development for Storm Temporal Pattern

Once the gross storm charactetistics have been successfully simulated at the target
site, the temporal pattern model is still required to disaggregate these events to six
minute rainfall totals. As discussed previously, the rainfall model uses 2
disaggregation process expressed as a constrained random walk within non-
dimensionalised duration-depth space. Progtession of a rainfall trace through this
space is characterised by a sequence of jumps described by a truncated log-normal
distribution. The parameters that define this log-normal distribution, namely the
mean and the standard deviation are conditional on the current position in the non-

dimensionalised space and are given by

m=(1—08,_; )Y(m; +my6, ) (6.15)
s=(1-3,1)(sy +526,_1) (6.16)

d
where & = dJ(tEdL)

The distribution of internal rainfall jumps used duting the disaggregation process is
therefore predominantly a conditional relationship based on what has occurred
previously throughout the storm. When comparing the temporal pattetn parameters
between two rainfall sites, it is the changes in these distribution parameters that
require consideration for regionalisation. In order to understand the potential
differences from site to site, a scattet plot of the parameter values against non-
dimensionalised duration can be produced for a number of sites. Figure 6.43

displays a typical single site mastet calibration from Melbourne data.
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Figure 6.43: Temporal Pattern Parameters (Calibrated to Melbourne Data)

The temporal pattern parameters can be consideted as a simple summary of the
typical changes in rainfall intensity over time at a given site. If we compare two sites
which could be considered similar in terms of the type of rainfall that generally
occuts, then it would be logical that the cotresponding temporal pattern parameters
should remain relatively consistent between these sites. As an example it would not
be out of the ordinary to expect that sites within the tropics would exhibit different
rainfall patterns to those in temperate climates. To investigate the possibility that
rainfall sites within a similar climatic region have similar temporal pattern parameters,
a number of sites were calibrated and the temporal pattern parameters at these sites

compared.

Once the temporal pattern parameters were calculated for adjacent sites, they were
co-plotted to give an insight into potential parametet differences. Figure 6.44
compares the temporal pattern parameters calibrated with data from Sydney,
Adelaide, Melboutne and Brisbane. The data used for co-plotting across all sites was
adjusted to be the same length and petiod to ensure that all sites had the chance to
expetience similar or related weather patterns. While Figure 6.44 displays a similar
shape between the parametets at these sites, there are obvious differences in the
temporal structure at these sites. For instance Brisbane expetiences significantly

higher mean intensity butsts and is much more variable than the rainfall expetienced
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in Melbourne, Sydney or Adelaide. Given Brisbane experiences a tropical climate in

comparison to Melbourne, Sydney and Adelaide, this result is feasible.
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Figure 6.44: Australian City Temporal Pattern Parameters

Mote significant for the putposes of tegionalisation is the compatison between
temporal pattern parameters for sites in a specific state or region. Figure 6.45 to
Figure 6.48 shows the extent to which these temporal pattern parameters remain

consistent when comparing regional/state wide sites.
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Figure 6.45: Southern Victorian Temporal Pattern Parameters
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Figure 6.46: Queensland Temporal Pattern Parameters, East of the Divide
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Figure 6.47: New South Wales Temporal Pattern Parameters, East of the Divide
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Figure 6.48: Adelaide Temporal Pattern Parameters

Significantly these plots show a high level of consistent tesults. Not only is there a
self-similar process that was initially exploited to describe the progtession of tain
traces within a storm, these results indicate that the overall process is also similar for
groups of sites within similar climatic regions actoss Australia.  Given an
understanding of the rainfall variation across these sites and the ability of the model
to describe the temporal rainfall patterns, this expected result suggested that
disaggregation parametets for the target sites could be adopted without adjustment
from the master calibration site. This tesult was further verified during simulation as
presented below and removed a significant hurdle in the regionalisation process.
Provided the bulk storm characteristics can be successfully generated at the target

site, the internal storm intensity characteristics can be accurately represented.

6.4.7 Intensity Frequency Duration Curve Results

The comparison between observed and simulated IFD cutves at the Target site
provides a further check on the petformance of the regionalisation model. If the
comparison is favourable then the decision to keep the temporal pattetn parameters

constant between master and target sites can be further justified. As presented below
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in Figure 6.49 to Figure 6.51, the internal storm characteristics have been successfully

reproduced at the target site.

1000 ¢ : : S e N
-| —— 90% Sim Limits oL
Simulated Median

o 1 hour
-~ 100 ¢ 24 hour
< x 72 hour
£
£ = :
2
2 10
L
£
K]
=
& 1

o1 i A N T

A S

.01 A 1 5 10 2030 50

Percent

70 80 90 95

99

99.9 99.99

Figure 6.49: Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Relationship (Master — Melbourne; Target — East Sale)
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Figure 6.50: Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Relationship (Master — Adelaide; Target — Williamstown)

220



Chapter 6: Regionalisation with a Short Pluviograph Record

1000 ¢ : : T ! [
| —— 90% Sim Limits P - T : :
Simulated Median
o 1 hour I ' i : i
= 100 § © 24hour S dosssra R Sy hesseendnnea .
s | x 72 hour P : A e : : ]
£
é "
2
2 10
o
£
8
c
& 1
. >< Y H . H ' : ' ' : : ;
0.1 i i R A T (R T S i i
.01 A 1 5 10 2030 50 7080 90 95 99 999 99.99
Percent

Figure 6.51: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship (Master — Sydney; Target — Richmond)

6.5 Summary

The introduction of the master - tatget linear scaling relationship into the Heneker ¢z
al. (2001) rainfall model has produced a model capable of simulating long-term
synthetic pluviogtraph trecords at numerous sites around Australia with short-term

historical data.

The regionalisation model for inter-event times and storm durations employed a
master — target relationship coupled with a linear updating factor between sites. An
intermediate calibration was developed to remove any sampling variability issues
between the rainfall records at the master and target sites due to their differing
lengths and/or petiods of recotrd. The use of this intermediate step and the new
regionalisation scaling factot enabled a successful translation from simulated intet-
event time and storm durations at a master calibration site to a target site with only a
short pluviograph record available for updating. Verification against calibrated and

non-calibrated statistics has verified the adopted approach.
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A similar master-target relationship was used as the basis in the regionalisation model
development for storm event intensity. As a result of the requitement to consider
the conditional intensity-duration relationship during regionalisation, the event depth
distributions were used for compatison between sites rather than the storm
intensities directly. The introduction of a non-parametric ketnel smoothing
technique to estimate the probability distributions for the event depths removed the
need to assume a set distribution for this previously un-modeled storm parameter.
An investigation into the temporal pattern parametets used in the model indicated
they remained consistent within climate regions allowing the mastet parameters to be
used without adjustment at the target site. The model assumptions and performance
was verified with compatison between obsetved and simulated calibration statistics

and independent statistics from a daily record at the target sites.

Comparisons between the observed and simulated data at vatious paits of sites
indicate the model’s ability to significantly shift the mean and standard deviation of
the bulk storm characteristics in ordet to reproduce vatious calibrated and non-
calibrated statistics at sites with minimal Pluviograph data sets. These results give
validity to the underlying structure of the model. Coupled with the ability to
successfully simulate rainfall amounts at various time scales and apply the existing
disaggregation process to generate synthetic pluviograph data, this model is now a
useful tool capable of being applied to a large number of additional sites across
Australia. To enhance the application of the model futther, a process was developed
to enable model calibration at sites with only daily data available. This work is

presented in the following chaptet.
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CHAPTER 7

REGIONALISATION WITH A DAILY
RAINFALL RECORD

7.1 Introduction

High resolution point rainfall models that can be accurately calibrated to daily rainfall
data would provide a useful tool for investigating engineering systems. Such models
would need to be capable of replicating both daily and sub-daily statistics as well as
longer aggregated values to be confident of the structute and robustness of the
model. In addition the calibration process should be straightforward and capable of

being employed by all model users.

Previously, Chapter 6 demonstrated the ability of the rainfall model to be calibrated
at sites with a short pluviograph record. This chapter further develops the model to
enable calibration at sites with only daily rainfall data. This work meets the final
objective of this study which was “To extend the application of the model to sites

with only historical daily data and no pluviograph data available for calibration”.

As discussed in Chapter 1, there are more than 1400 sites across Australia that now

have active daily rainfall records which contain at least 40 years of historical data (see

Figure 7.1).
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Figure 7.1: Australian Bureau of Meteorology: Daily Recording Stations

This data is readily available and provides a useful resource for researchers and
practising engineers alike. To use this information a Master — Tatget relationship was
developed similar in structure to that introduced in Chapter 6. Again an initial
calibration of model parameters is undertaken at a long pluviograph master site. In
this case, the parameters are then updated through compatison to daily data at the
Target site. This new simulated likelihood approach developed in Section 7.2.1, in
conjunction with non-parametric density estimation allowed model parameters to be
updated directly based on the comparison between simulated daily Master rainfalls

and observed daily Target data.

Model validation occutrred at numerous pairs of sites which were selected to ensure
the target site also contained a significant pluviograph record. Selecting sites with a
significant pluviograph record provided adequate information to test the accuracy of
reproducing vatious statistics at the sub daily time scale as well as aggregated statistics
and monthly/annual rainfall disttibutions. The final model is capable of calibration
to sites with daily rainfall data (available either through direct data measurement or
via the SILO Bureau of Meteorology process for interpolation of data between

teasurement sites), greatly enhancing the application of the model across Australia
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and providing an excellent continuous simulation tool for engineers and designers in

areas where no historical short time increment rainfall data is available.

7.2 Development of the Daily Regionalisation Model
Structure

In order to develop a storm event model that could be calibrated with daily data, the
model parameters and their telationship to the available data required considetation.
At locations where only daily data is available at the target site, it is clear that there is
a limit to the quantity and quality of detailed information which could be used to
calibrate/adjust model parameters. The Master — Target structure presented in
Chapter 6 relied on the fact that there was pluviograph calibration data available
(albeit limited) which could be used to adjust the master parametets providing a
direct update for application at the Target site. While a similar master — tatget
approach was seen to be advantageous in terms of structure and understanding, it

required further development for application with daily data.

The statistics that are available within a daily data record include the probability of
observing rain on any given day, the distribution of rain given the day is a rain day
and the probability a day receives zeto rain. These values (Probability of obsetving
dry days, the probability of obsetving rain days and the distribution of rain totals
given a rain day) are all statistics that can be easily extracted from a daily record and
while they contain no ditect information regarding storm event parametets, their
values are influenced by the distributions of inter-event time, storm duration and
storm depth. It is this relationship between the storm event parameters and the daily
data statistics which led to the adoption of a similar master — target calibration

structure as that developed in Chapter 6.

If we consider the distribution of inter-event times, this distribution provides a major
influence on the frequency of storm events observed during a given period of time.
(i.e. the longer the average inter-event time, the fewer number of storm events in a

day/month/yeat etc). So even though there is no direct information regarding inter-
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event times in a daily record, daily statistics such as the daily dty probability (or the
probability of no rain) or potentially the distribution of consecutive dry days can be
used in the calibration process in some form to infer the required parameter changes

between master and target sites.

In a similar manner, the model parameters which desctibe the values of storm depth
cannot easily be adjusted directly based on daily data as there is limited detailed
information within a daily record regarding the depth of individual storm events.
Consider the situation when two storms events occur on a single recording day. As
the daily data records the observed depth once a day, there is no additional
information available in the daily recotd to estimate the rain contributions each
individual storm event has provided to the overall daily total. Similarly, it is
impossible to define and allocate daily rainfall conttibutions from two storms where
one has continued across the atbitrary recording day boundary and another storm
starts subsequently on that same day. Only in the rare occurrence when an individual
storm event is completely contained within a recording day and it is the only storm
for that day can the recorded daily depth be attributed to an individual storm depth.
Howevet, the ability of the rainfall model to successfully simulate the mean daily
rainfall (when calibrated to pluviograph data) suggests such a statistic could be used

to enable comparison between daily information at master and target sites.

To use the available daily data, a method was required to provide an accurate
comparison between simulated and obsetved daily statistics. This would allow the
model parameters to be adjusted and updated based on compatisons of these daily
data statistics between mastet and target sites. So, while the regional model
developed in Chapter 6 could not be adopted directly, the Master — Tatget structure
was again introduced for use with daily data. This structure had the benefits of
having already been demonstrated as a success with pluviograph data and also
provided a technique to use an initial accurate model calibration at the master site as

the basis for parameter values at the target site.
The introduction of a Master — Target relationship into the model for consideration

with daily data is presented schematically in Figure 7.2. Similar in structute to the

model in Chapter 6, the master site provides an initial accurate calibration to a long
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pluviograph record. In this case however, target daily data is then used to adjust the
model parameters producing a simulation model at the Target site. (Daily data is also
required at the master site to ptovide an initial fit which removes issues associated

with different record petiods. This is discussed in further detail in section 7.2.2)

Master

Long Pluviograph
Calibration of 6,
+

DAILY DATA

Scaling Law

Target
Daily Data

Figure 7.2: Schematic of Regionalisation Structure

One of the requirements of this model structure is the ability to successfully simulate
rainfall at timescales other than those used duting the calibration process (in
patticular at the daily scale). With each iterative change in model parameters, a new
simulation is required to genetate a simulated master daily record which can then be
compated to the obsetved target daily data. This comparison is used to dtive
changes in the scaling model parameters and improve the fit of the model at the
target site. It is important that the model is capable of replicating the daily rainfall
data in the first instance so that any identified parameter changes are a result of site
requitements and are not reflective of simulation errors. In this case, not only should
the model be capable of replicating the daily statistics at the master site after a direct
calibration, but it also should be replicating the daily statistics at the target site after a

successful regionalisation.
As previously shown in Chapter 6, Figure 7.3 presents a compatison between

observed and simulated daily dry probability results when regionalising from a master

at Sydney to the target at Richmond using pluviograph data. The fact that the
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regionalised model has been able to successfully capture this statistic when calibrated
with pluviograph data suggests that this statistic can also be used as patt of the

calibration when developing the daily regionalisation process.
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90 oo R S S— b e f.....i] ° Obs
- : : ; : ; : R Master

Probability of Dry Day

Figure 7.3: Comparison between Observed and Tatget Simulated Probability of a
Dry Day (Master — Sydney; Target — Richmond)

In a similar result, Figure 7.4 displays the ability of the rainfall model to capture the
non-calibrated mean daily depths. (It also indicates the ability of the model to
reproduce this statistic when shifting from master to target with pluviograph data).
Again the model has reproduced this daily statistic and coupled with the previously
displayed ability of the model to replicate aggregated monthly and annual rainfall
statistics, provides confidence that aggregated statistics can be used to calibrate the

storm event parameters in a daily regionalisation model.
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Figure 7.4. Comparison between Observed and Target Simulated Daily Mean Depth
(Master — Adelaide Airport; Target — Williamstown)

In order to calibrate the stotm event model parameters to daily statistics a new
likelihood approach was developed which provides a direct comparison between
simulated model output and the obsetved daily data at the target site. This new
likelihood process exploits the ability of the model to successfully simulate these
rainfall statistics at the daily timescale and provides a robust comparison between

mastet parametets and observed daily data statistics.

7.2.1 Daily Calibration Model Development and
Simulated Likelihood Approach

To develop a master — target likelithood approach to regionalise the rainfall model
using daily data, it is appropriate to review the successful regionalisation model that
was developed for use with a short pluviograph record. It is this master — target

pluviograph regionalisation model that formed the basis for the daily work.

In Chaptet 6, a scaling factor A was introduced to the maximum likelthood equations

to provide new likelihood equations for the regionalised storm event calibrations
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when dealing with a short pluviograph record. Equations (7.1) and (7.2) display the
maximum likelihood equations for inter-event times/storm duration and the non-
parametric kernel smoothing approach that was used as the basis for storm depths

respectively.

Fy(y 18, A)=Fx(Ay | 8)) = 1-exp[-glry, 8,)] x>0 y>0 A>0  (7.1)

Fy denotes the distribution function at the target site while Fy denotes the

distribution function at the master site. The scaling factor A acts as a multiplier on
the target pluviograph data y, to provide a best fit between the master calibration and

the target data.

M:

fy (x) =
x{(X) ™ -

1k [X - () J (7.2)

Il
-

K() is a kernel function centred at each data point, n denotes the number of data
points at the target site while (Ay),i=1,..,n is the target depth data. These values of
(Ay); ate a product of storm dutation t,, the cotresponding duration scaling A,, the

corresponding target event intensity and the required depth scaling A

When using pluviograph data, the scaling value A acted as a direct multiplier on the
observed target pluviograph data (y) ensuring a good fit between the target
pluviograph data set (y) and the calibrated parameters at the master site. Maximum

likelihood techniques wete used to calculate the required scaling parameters.

The development and results of the pluviograph regionalisation wotk in Chapter 6
provided the impetus for incorporating a similar master — target framework for use
with Daily Data. One of the outcomes of the work in Chapter 6 was that of the
temporal pattern parameters and the fact that they were shown to be consistent
enough between sites within a similar climatic tegion and location to be kept the
same without significant detetioration to the accuracy of the model results. This
result also allows these temporal pattern parameters to be kept unchanged when
shifting from master to target site with Daily Data. Without such a result, an

alternative method of estimating the change in temporal pattern parameters would be
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requited and would be a major issue as there is no storm information within a daily
data record which could adjust the temporal pattern parameters in the model
Howevet, given the consistent temporal pattern parametets and the ability of the
model to captute non-calibrated aggregated statistics at the daily level, introducing a
master — target approach provides a workable solution for calibrating the model at

sites with only daily data.

The daily regionalisation model also introduces a set of scaling parameters (scaling

parameters are requited for each of inter-event times, storm durations and storm

depths and ate again denoted A) as a means of shifting from the master to the target
site. Howevet, unlike the pluviograph regionalisation model (and the original model)
which used traditional maximum likelihood methods to ensure the best fit between
estimated model parameters and observed data, the likelithood description for daily
data is not as straightforward. The likelthood model cannot be formulated ditectly as
there is no storm event data available at the target site for comparison. In order to
use available information from a daily data record, an alternate likelihood approach
was requited. This approach has been termed the simulated likelihood approach and
provides a flexible model structure capable of dealing with data at significantly

different time scales to that usually used for parameter calibration.

Simulated likelihood relies on the ability of the model to produce a simulation for
each and every adjustment in regionalisation model parameters during the calibration
process. For each iterative step the regionalisation parameters are adjusted within the
SCE search routine and then these “trial” parameters are used to generate a new
realisation of the model providing the simulated pluviograph data at the target site.
This simulated data 1s then aggregated into a daily time step and compared to the
available observed daily data at the target site. If a better fit is required, the
parameters are adjusted and the model re-simulated and so forth. In this way the
model is capable of being compared and adjusted directly based on its fit to the daily

data record.
The likelihood model for daily regionalisation is set up at the daily time step and is

significantly more complex than that required for pluviograph data calibration. The

first requirement of the model is the capability to compare the distributions of daily
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rainfall totals. For each iteration in the calibration process the scaling parameters (A)
are changed and a new simulation is required to provide simulated target data which
can be aggtregated into a new recotd of simulated target daily depth data (denoted y).
The simulated target data 1s then compared to the observed target daily data and the
maximum likelihood approach drives changes to the scaling parameters until the best
fit is found. In order to incorporate the maximum likelihood approach, a description
of the probability density for these daily rainfall depth distributions was required. As
was the case in Chapter 6 for the disttibution of event depths, the adoption of the

kernel smoothing approach provides this density estimate and takes the form

Z":% [ ~(y) ] (7.3)

where K() is again a kernel function centred at each scaled simulated target daily data
point Ay, x is the observed daily target data value at which the probability density

estimate is tequired for use in the maximum likelthood calculations and h is the

bandwidth. As before, a Gaussian kernel was used for K().

K(x) = —exp[_ X 2] (7.4)

Using the Kernel Smoothing approach in this way enables a comparison between the
master and target distributions of daily rainfall depth totals given the day receives

rain. If all that was required was the best fit between the master and target
distributions of daily depths, then the maximum likelihood estimators for A would be
obtained when the product of fi (X) (or the sum of logfy(x)) for all master

observations was at a maximum with no othet considerations. However, the model
must also take into account any changes to the probability of observing a dry day.
To do this, the dry days are separated from the aggregated daily record and the
ptobability of obsetving a dty day P(Y=0|A,0,) calculated. Considering this in the

likelihood formulation gives the following:

fy (x) = P(dry)=P(Y =0| 4,6,) forx=0 (1.5)
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and

h

i=]

f.0= EH:Z%K(’C_‘@)Q _ Pdry)) = i#K(x_le’)(P(wet)) for 10

The scaling parameter set A is adjusted for each iteration during calibration until
fx(x) for all master obsetvations is at a maximum. This ensures the best fit between

both the simulated and observed dry probability and the distribution of daily depth
totals. The format and structure of the scaling parameters in the daily model are
identical to their pluviograph counterparts (ie. for inter-event times and storm
durations a single linear scaling parameter is used while a 3 parameter model
conditional on storm depth is used as the basis of storm depth scaling (refer to

section 6.4.1)).

The end result was a set of model parameters at the target site which were a
combination of the otiginal master patameter set, and any scaling due to the
variations between the two sites. However, as was the case for the work with
pluviogtaph tegionalisation, variations between the sites were not only a result of
climatic differences but also due to differences in data length and non concurrency.
This issue required further attention prior to developing the final daily regionalisation

model.

7.2.2 Treatment of Sampling Variability between
Rainfall Record Time Periods

Sampling variability between rainfall time periods was first identified as an issue
during the wotk on the tegionalisation model for use with shott pluviograph tecords.
Instances where rainfall records were not concurtent resulted in inaccurate
comparisons between the two rainfall sites because one site generally observed a

significantly different rainfall period than the other. (As discussed previously, this
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may relate to extended wet or dry/drought petiods present in one record and not in
the other). As a result any statistical comparison was problematic and influenced by
not only the differences between the sites (which is what the model was trying to
describe), but also the different data petriods across each record. To circumvent the
issue, the pluviograph regionalisation model used an intermediate “pre-scaling” step

to ensure the model was able to compare concurrent data sets between two sites.

The issue of sampling variability and non-concutrtent data petiods remains a problem
when regionalising with daily data. In this case, the pluviogtaph tecord at the master
site (used for the initial calibration) is usually different in length to that of the target
daily record. Introducing an intermediate calibration into the daily regionalisation
process again ensures the model compares differences between sites because of local

variations only and not the tesiduals from non-concurrent data petiods.

The intermediate calibration step introduced into the daily model is similar in
sttucture to that developed in the previous chapter. The pluviograph model
calibrated an intermediate parameter Kp, which, when used as a pre-multiplication
factor on the target pluviograph data, ensured the final regionalisation model was

able to determine the ‘true’ relationship between the master and target sites. Using

the intermediate parameter kp as the basis for daily data and introducing this into the

likelihood equations gives

Fx(x)= P(dry) =P(Y =0 4., 4,6,) forx=0 (7.7
and

x—A,4,
h

](P(wer»

for x> (7.8)

where A is the set (inter-event time, storm duration and storm depth) of intermediate

scaling factors.
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This new daily intermediate step compares a subset of the observed daily record at
the master site (equivalent in length to the target daily record) to the simulated
master daily record. By extracting a subset of observed daily data at the master site
equivalent in length to the observed target daily record and calculating the
intermediate scaling factor, subsequent simulations from the model are pre-adjusted
allowing direct compatison between model simulations and the target daily record.
The intermediate parameter has desctibed any discrepancies that result from the
different time-periods observed between the original pluviograph calibration data

and the daily data at the target site.

Once the intermediate factor has been determined, it is applied as a pre-
multiplication to the target daily data set. The regionalisation procedure is then
applied a second time to compate the master simulated daily record and the ‘new’
adjusted tatget data set to determine the ‘real’ regionalisation scaling factor A. As the
intermediate step takes into account the differences in data petiods and therefore any
potential changes in the daily rainfall distributions, the influence on the resultant
‘real’ scaling factor is purely any differences between the master and target sites.
Once again the scaling parameters are calculated on a monthly basis therefore
requiting the determination of an intet-event, storm duration and storm depth

scaling factor for each month.

7.3 Model Calibration Using Daily Data Results

7.3.1 Introduction

Validation of the daily regionalisation model required careful selection of target sites.
Not only did it need to be shown that the model could be calibrated to daily data, the
model must also be able to reproduce the requited sub-daily statistics at the tatget
site. As a result, identical test sites to those used pteviously to validate the
pluviograph regionalisation work in Chapter 6 have been chosen to validate these

models (with the exception of Williamstown, South Australia which did not have an
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associated long daily record and has been replaced by Rosedale in South Australia).
These sites contain both a long daily and a significant pluviogtaph record providing
the required observed statistics and master-tatget scaling parameters can be
compared directly between the pluviograph and daily models. The table of test sites

is provided below.
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Table 7.1: Master and Target Rainfall Record Details (Daily Model)

Distance
Name BOM # Start Year | Finish Year
(tem)
Mastetr Melbourne 86071 1900 1995 0
Targets East Sale 85072 1953 1992 190
Ellinbank 85240 1961 1992 95
Lavetrton 87031 1965 1992 20
Distance
Name BOM # Start Year | Finish Year
(k)
Mastetr Sydney 66062 1913 1991 0
Targets Richmond 67033 1953 1993 45
Chichestet 61151 1960 1980 185
Distance
Name BOM # Start Year | Finish Yeat
(km)
Master Adelaide 23034 1967 1997 0
Targets | Williamstown 23763 1971 1997 40
Stitling 23785 1964 1981 15
Distance
Name BOM # Start Year | Finish Year
(km)
Mastet Perth 9034 1946 1992 0
Targets Esperance 9631 1963 1991 580
Start Distance
Name BOM # Finish Year
Year (km)
Mastet Brisbane RO 40214 1908 1991 0
Targets | Brisbane AMO 40223 1949 1992 10
Kirkleagh 40318 1959 1990 70
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A number of statistical indicators and distributions were chosen to verify the
performance of the model. Calibrated statistics such as the daily dry probability and
mean daily rainfall are checked to test whether the regionalisation calibration was
completed successfully. Compatisons between obsetved and simulated bulk stotm
event distributions (inter-event times, storm duration and storm depths) provide an
indication that the model was able to successfully simulate storm events and
reproduce sub-daily non-calibrated statistics. Further verification that the model has
captured the bulk rainfall processes is achieved by comparing annual and monthly
rainfall distributions, while IFD cutves are compated between the simulated values
and the target site, testing the assumed similarity between disaggregation patameters
at the two sites of interest. The calculation of observed statistics for annual and
monthly rainfall comparisons used the daily rainfall records at the target site as they
provide the most accurate monthly and annual statistics. (This is because most
pluviograph records have sections of missing data, cotrupting the monthly and
annual rainfall totals). All other statistics were calculated from the observed target
pluviograph. The results from 3 pairs of test sites (Sydney — Richmond, Btisbane —
Kirkleigh and Adelaide — Williamstown) have been presented within this Chapter to
demonstrate the performance of the model with all other site results presented in

Appendix D.

Successful reproduction of statistics and distributions across the different time scales
provided evidence that the model was able to be calibrated with daily data and that
the assumptions and structure of the regionalisation process was sufficient to captute
the required local variations between sites ensuring an accurate synthetic pluviograph

record.

7.3.2 Calibrated Daily Statistics

The original rainfall model and the pluviograph-regionalised model were both

capable of successfully replicating the probability of observing a dry day and the
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mean daily rainfall disttibution even when these models did not use this information
during the calibration process. Successful calibration of the rainfall model with target
daily data should again ensure the reproduction of these daily statistics at all sites.
Previously (for the original and pluviograph-regionalised model) this successful
reproduction provided confidence in the structure and assumptions within the
model, in this case it is a good indication of the success or otherwise of the model

calibration.

Figure 7.5 compates simulated and observed daily dry probabilities for data from
Richmond (with Sydney as the master and shown for reference). It is evident from
this result that the completed calibration was successful and that the model is capable
of reproducing this daily statistic even with a significant shift when compating the
master and target statistics. Figure 7.6 reinforces this result with similar results fot

Kirkleigh (Brisbane master).
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Figure 7.5: Comparison between Observed and Target Simulated Daily Dry Probabilities.
(Master — Sydney; Target — Richmond (Daily))
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Figure 7.6: Comparison between Observed and Target Simulated Daily Dry Probabilities.
(Master — Brisbane; Target — Kirkleagh (Daily))

Figure 7.7 presents data from Williamstown (Adelaide Master).

In contrast to the Richmond and Kirkleigh sites, there was very little difference
between the daily dry probabilities at Adelaide (master) and Williamstown (target).
As can be seen in Figure 7.7, the obsetved data still lies within ot vety close to the
simulation limits. These results when coupled with the compatison between daily
and pluviograph scaling parameters for inter event times, indicate that the model has
been successful in calibrating to daily data and captuting the required variations

between master and target sites.
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Figure 7.7: Comparison between Observed and Target Simulated Daily Dry Probabilities.
(Master — Adelaide; Target — Williamstown (Daily))

The second statistic used during the calibration process was the mean daily rainfall.
Both the storm duration and stotm depth patameters have a significant influence on
this daily statistic. Figute 7.8 presents this result for Williamstown (with Adelaide
master as reference). Again, the model has been able to capture the differences
between the two sites and reproduce this calibrated statistic. Most months required

significant adjustment and only April sits slightly outside the simulation bounds.
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Figure 7.8: Comparison between Observed and Target Simulated Daily Mean Depth.
(Master — Adelaide; Target — Williamstown (Daily))
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Figure 7.9 & Figure 7.10 present additional results for Richmond and Kirkleigh with
all results falling within the simulation bounds. These results reinforce the model’s
ability to calibrate to the mean daily depth disttibution and successfully reproduce

this statistic during simulation.
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Figure 7.9: Comparison between Observed and Target Simulated Daily Mean Depth.
(Master — Sydney; Target — Richmond (Daily))
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Figure 7.10: Comparison between Observed and Target Simulated Daily Mean Depth.
(Master — Brisbane; Target — Kirkleagh (Daily))
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Appendix D provides additional plots across numerous sites with similar tesults.
These results confirm the ability of the model to successfully use daily data for
regional calibration (and reproduce these calibrated statistics during simulation).
However, the ability of the model to replicate non-calibrated statistics at time scales
greater than or less than the daily scale still requires validation. Prior to presenting
these results however, it is also important to investigate the accuracy of the model in
replicating the storm event distributions of inter-event time, storm dutation and
storm depth as these are the building blocks of the original model. Successful
reproduction of these bulk storm distributions would provide evidence that not only
was the calibration process a success, but that the model structure itself is sufficient

to use daily data and describe the differences between two sites.

7.3.3 Comparison of Observed and Simulated Annual
and Monthly Rainfall Distributions

It is important that any storm event rainfall model is capable of reproducing non-
calibrated statistics such as the monthly and annual rainfall, not only as it is a
representation of the characteristics of the rainfall site in question, but also
specifically in this case as it provides further indication that fitting to the distribution
of daily depths has worked successfully.

Compatison to annual rainfall is an effective test of the model structure. Calibration
of the model with daily data has introduced a scale shift during calibration in the
model from data at a 24 hour time scale down to effectively 6 minute data. If the
aggregation back up to annual rainfall (and monthly rainfall) is accurate, then this is
further evidence that the model structure and assumptions have merit. In any case,
for the model to be accepted as a tool for engineering applications, aggregated

statistics must be well reproduced at numerous time scales.
Annual rainfall plots are presented below for Richmond (Master — Sydney) Figute

7.11, Kirkleigh (Brisbane) Figure 7.12 and Williamstown (Adelaide) Figure 7.13. As

mentioned previously plots for all other sites can be found in the Appendix D.
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These plots demonstrate the ability of the model to successfully teproduce the annual
rainfall and provide confidence that the model has been successfully applied to the
target site with only daily data for calibration. Thete is a significant shift from the
distributions at the master and tatget sites for both the Richmond and Williamstown
results with Richmond in particular very successful at replicating the observed annual
rainfall values. Williamstown annual rainfall has been slightly overestimated by the
simulation however the majority of observed data points sit within ot just outside the
simulation limits. There is a smaller difference between annual rainfall at Brisbane
and Kirkleigh, however the model has once again been successful in shifting to the
target site as evidenced by the observed points sitting within or on the edge of the

simulation bounds.
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Figure 7.11: Comparison between Observed and Target Simulated Annual Rainfall.

(Master — Sydney; Target — Richmond (Daily))
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Figure 7.12: Comparison between Observed and Target Simulated Annual Rainfall.
(Master — Brisbane; Target — Kirkleagh (Daily))
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Figure 7.13: Comparison between Observed and Target Simulated Annual Rainfall.
(Master — Adelaide; Target — Williamstown (Daily))

The reproduction of monthly rainfall in April is presented in Figure 7.14 for data
from Richmond (Sydney). All obsetved rainfall totals fall within the simulation limits

suggesting the model has reproduced the monthly rainfall pattern.
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Figure 7.14: Comparison between Observed and Target Simulated April Rainfall. (Master

— Sydney; Daily Target —~ Richmond (Daily))

Additional results for Willilamstown (Adelaide) and Kirkleigh (Brisbane) are

presented below. With the exception of a select numbet of points, all observed

monthly rainfall totals fall within the simulation limits. Additional monthly rainfall

results can be found in Appendix D.
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Figure 7.15: Comparison between Observed and Target Simulated Novemner Rainfall.

(Master — Adelaide; Daily Target — Williamstown (Daily))
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Figure 7.16: Comparison between Observed and Target Simulated August Rainfall.
(Master — Brisbane Regional Office; Daily Target — Kirkleigh (Daily))

The ability of the model to capture the aggregated monthly and annual rainfall
disttibutions along with the aforementioned ability to reproduce the bulk storm
chatactetistics suggest the rainfall amounts and dry periods are well represented in
the regionalisation model. The final test is to compare the observed and simulated
Intensity Frequency Duration results to ensure the model has been able to capture

the temporal pattern within storm events.

7.3.4 Comparison of Observed and Simulated Bulk
Storm Event Distributions - Inter-Event Times

The ability of the model to reproduce the bulk storm distributions when calibrated to
a site with only daily data is a significant step forward for the application of this
model and event based models in general as the theotry behind this work can be
adapted for use with other event models. Successful reproduction of these
distributions would allow model application at sites that have only a daily rainfall
trecotd available for calibration. While it is unrealistic to expect the reproduction of

bulk storm tesults to be as accurate as similar results obtained when the model is
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calibrated directly with pluviograph data, results presented below indicate that
calibration using the regionalisation process with daily rainfall data does provide a
workable solution to model calibration in instances when pluviograph calibration
data is not available. As with all stochastic models, it is reasonable to expect the user
to know and understand the expected difficulties and deficiencies of the model when

calibrated to daily data.

The selection of specific sites containing both a historical pluviograph and a
historical daily record provides the best comparison between obsetved and simulated
bulk storm distributions. The model was calibrated at the target site using the daily
regionalisation model with resultant simulated outputs compared to the observed

pluviograph data at the target site.

The comparison between simulated and observed inter-event times is presented in
Figure 7.17 for data at Richmond shifted from a Sydney master calibration. As can
be seen from this plot, the inter-event times are well reproduced by the daily
regionalisation calibration model with the majority of storm events within the
simulation limits. There is a slight deviation away from these simulation limits as the
inter-event time decteases. This is a result of the lack of inter-event times available at

a time scale less than 24 hours when using daily rainfall information.
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Figure 7.17: Comparison between Observed and Target Simulated March Inter Event
Distribution for Richmond. (Master — Sydney; Daily Target — Richmond (Daily})
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Figure 7.18 & Figure 7.19 provide further results from Kirkleigh (from Btisbane) and
Williamstown (from Adelaide) respectively. Again the large inter-event times are well

teproduced with a slight deviation observed for inter-event times less than 24 houts.
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Figure 7.18: Comparison between Observed and Target Simulated September Inter
Event Distribution. (Master — Brisbane; Daily Target — Kirkleigh (Daily))

W e T T T T T T T T 3
——— 90% Sim Limits 1
Simulated Median
o  QObs
1000 -
m ]
E
= : ; - :
€ 100 S e s e (DT T ST T -
[1)] £
o -
b
g
=
10 | o
. i T T S T S N N N S I
.01 A 1 5 10 2030 50 7080 90 95 99 99.9 99.99

Percent

Figure 7.19: Comparison between Observed and Target Simulated December Inter Event
Distribution. (Master — Adelaide; Target — Williamstown (Daily))
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Additional plots for all sites are displayed in Appendix D. The ability of the model
to replicate the storm inter-event is an important tesult in the context of the overall
model performance for two major reasons. First, this result indicates that adjusting
the inter-event time regional scaling parameter based on changes to the probability of
observing a dry day is justifiable. With the exception of a slight decrease in accutacy
for inter-event times less than 24 houts, the distributions are well reproduced.
Secondly, (and probably more important for the overall success of the model) this
result ensures the model can successfully replicate the storm event time seties and as
a result the number of storms simulated in a given time period. This is ctitical for
the model if it 1s aiming to reproduce obsetved storm depth statistics and aggregated

monthly and annual rainfall.

7.3.5 Comparison of Observed and Simulated Bulk
Storm Event Distributions — Storm Duration

For the model to capture aggregated rainfall totals such as monthly and annual
rainfall, it must be capable of reproducing the monthly storm duration distributions
at an event level. With less information in the daily record available for calibration in
comparison to inter-event times, it was expected that thete would be a less accurate
agreement between observed and simulated storm duration disttibutions. Again, the
pluviograph data at the target daily site has provided the information for compatison.

Figure 7.20 presents simulated and observed comparisons for data from Richmond

(Sydney).

250



Chapter 7: Regionalisation with a Daily Rainfall Record

100 E I I  — 1 . 1 I— 1 3
F| — 90% Sim Limits i p b ¢ B :
-| == Simulated Median b ! o s
10 | o  Obs S e £ frencd B s s
E
§ 1k E
‘.(-U‘ 3|
5
a ; §
E 01 poog e
-09 E . v - i [+ . . . . ! ] . i &
2 . - T T O T A :
001 bl ool fons i
0.001 I— A T (N (N (N O S S S i
.01 A 1 5 10 2030 50 7080 90 95 99 99.9 99.99

Percent

Figure 7.20: Comparison between Observed and Target Simulated March Storm Duration
Distribution. (Master — Sydney; Daily Target — Richmond (Daily))

This result suggests an adequate reproduction of the storm event distribution,
however there is a slight deviation outside the simulation limits for storms between 4
and 15 houts. Similar results for Williamstown (Adelaide) and Kirkleigh (Brisbane)
are seen below in Figure 7.21 & Figure 7.22.
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Figure 7.21: Comparison between Observed and Target Simulated June Storm Duration
Distribution. (Master — Adelaide; Target — Williamstown (Daily))
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Figure 7.22: Comparison between Observed and Target Simulated December Storm
Duration Distribution. (Master — Brisbane; Daily Target — Kirkleagh (Daily))

Results indicate that the reproduction of storm durations is less accurate than the
reproduction of inter-event times. This is a result of there being very little
information available regarding the length of individual storm events within a daily
data record. While the average inter-event time was greater than 24 houts which
ensures there is limited information regarding its distribution from a daily record, the
average storm duration is less than 24 hours and subsequently only minimal
information can be obtained from the daily record. This results in a less accurate re-
production of the storm duration characteristics. Howevet, the majority of observed
storm events ate still contained within or within close proximity to the simulation
limits which suggest the regionalisation model is still capable of using daily data for

calibration.

One result evident from the figures presented above is the loss in accuracy as the
storm duration times approach zero. This is consistent across all sites and is also
evident when the model is calibrated at the master site with an extensive pluviograph

record as displayed in Figure 7.23 for data from Adelaide.
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Figure 7.23: Comparison between Full Length Master Observed and Master Simulated
March Storm Duration Distribution for Adelaide

As evidenced in this plot the agreement between observed and simulated storm
durations decteases as the stotm duration approaches zero. This is a result of the
rainfall model being free to simulate any storm duration value and consequently
ptoduce any storm depth value (in mm). In contrast, rounding occurs in the
obsetved pluviograph data into 0.1mm depth increments. (This is a function of the
device). This inttoduces a slight error between all observed and simulated storm
values, which is most evident when comparing small storm depths or very short
storm durations. (The majotity of small depth rainfall storms are also short duration
events). In the case of very small simulated storm depths, the cotresponding
obsetved rainfall is either too small to register on the scale (and is therefore excluded
from the histotical recotd) ot the value is simply recorded with a storm depth of
0.1mm. Consequently, with the majority of small depth rainfall storms also being
short duration events, this bias is evident in the comparison of short storm durations
with fewer obsetved short durations in comparison to the model output. This is not
a majot issue and can be solved by including an appropriate rounding routine on the
output data file. However, for the purposes of model validation it is best to compare

the raw simulation data.

The othet factor influencing the accuracy of these comparisons relates to the scale

issues between daily and pluviograph data. As an observed storm event shifts further
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and further away from a length equivalent to the daily time step of 24 hours, an
individual storm exerts less and less influence on the make up of the daily record.
This ensures shorter duration storms have only a minimal influence on the daily data
record, making these events very difficult to distinguish and adjust from site to site
based on daily data alone. As a result, the reproduction of these smaller storm
durations decreases as the storm duration decreases. Nevertheless, and
understanding these minor shortcomings, the model has been shown to successfully
reproduce the majority of inter-event times and storm durations from only daily data

information.

7.3.6 Comparison of Observed and Simulated Bulk
Storm Event Distributions — Storm Depth

In a similar manner to the distribution of storm durations, compatisons of the storm
depth distributions were expected to be less accurate than those results presented for
inter-event times. Figure 7.24 presents results for Kirkleigh (Btisbane) confirming
this prediction. Countering the successful reproduction of the majority of the
distribution is the small errors evident as the storm depth approaches Omm. As
described eatlier this is a result of the available information within a daily record for

calibration and the accuracy of the measuring apparatus.
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Figure 7.24: Comparison between Observed and Target Simulated September Storm
Depth Distribution. (Master — Brisbane; Daily Target — Kirkleigh (Daily))

Similar results are presented below for Richmond (Sydney) and Williamstown
(Adelaide) respectively.
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Figure 7.25: Comparison between Observed and Target Simulated December Storm
Depth Distribution. (Master — Sydney; Target — Richmond (Daily))
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Figure 7.26: Comparison between Observed and Target Simulated March Storm Depth
Distribution. (Master — Adelaide; Daily Target — Williamstown (Daily))

The daily regionalisation model is not capable of replicating the bulk storm
distributions to the same level of accuracy as the model when calibrated directly to
pluviograph data. This was an expected result due to the level of storm information
available from a daily rainfall record. Analysis of the depth distribution results
indicate that the dectrease in accuracy only occuts for depths less than 1mm. For a

model calibtated to daily data, this is an exceptional result.

The results presented for the bulk storm characteristics provide evidence that the
regional model assumptions were valid and that the model has been well calibrated.
A majot test of the daily regional model is its ability to reproduce non calibrated

monthly and annual rainfall with these results presented in the next section.

7.3.7 Comparison of Observed and Simulated Intensity
Frequency Duration Curves

The final compatison between obsetved and simulated data is the Intensity —

Frequency Dutation results for each simulated site. Given the results presented for
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the pluviograph regionalisation model and the use of the same model assumption
(ie. that the temporal pattern parameters are consistent between master and target
sites), it was expected that the IFD results at sites compared in Chapter 5 would
again be well reproduced. In almost all cases the IFD results are as good as the
pluviograph regionalisation simulations. Figure 7.27 presents the obsetrved and
simulated IFD cutves for 1 hout, 24 hour and 72 hour for data from Williamstown

(Adelaide). Similar results are presented for Kirkleigh (Brisbane) and Richmond
(Sydney).
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Figure 7.27: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship. (Master — Adelaide; Target — Williamstown (Daily))
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Figure 7.28: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship. (Master — Brisbane; Target — Kirkleigh (Daily))
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Figure 7.29: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship. (Master — Sydney; Target — Richmond (Daily))

These results suggest that the internal storm characteristics have been well
teproduced when simulating using the model calibrated to daily data. Given the
parameters at each site were the same as duting the pluviogtraph regionalisation
model work and coupled to the success of the daily model in replicating the bulk

storm characteristics, this was an expected tesult.
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7.4 Summary

Adapting the master - tatget linear scaling relationship introduced into the Heneker ¢z
al. (2001) rainfall model in Chapter 6 for use with Daily data has produced a model
capable of simulating long-term synthetic pluviograph records at numetous daily sites

around Australia.

The daily regionalisation model uses a master — target relationship coupled with a
linear updating factor between sites. The development of a simulated likelihood
approach using a non-paramettic kernel smoothing technique to estimate the
probability distributions provided the basis for calibrating the updating factor when
shifting between the master and target sites. As was the case in Chapter 6 for
regionalisation with a shott pluviograph record, the introduction of an intermediate
calibration tremoves the issues associated with sampling vatiability between the
rainfall records at the master and target sites due to their differing lengths and/or
petiods of record. The use of this intermediate step and the new tegionalisation-
scaling factor enabled a successful translation from simulated daily rainfall records at

a master calibration site to a tatget site with only daily data available.

The regionalisation model used two main statistics easily calculated from a daily
tecord to drive the calibration process. The selection of the probability of observing
a dry day and the mean daily depth was based on the proven ability of the model to
reproduce these non-calibrated statistics during simulation and the ease at which they
can be calculated from observed data. Successful reproduction of these calibrated

statistics verifies the selection of these values for use in calibration.

Comparisons between the observed and simulated data at various pairs of sites
indicate the model’s ability to successfully capture the shift in mean and standard
deviations of the bulk storm charactetistics in order to teproduce various calibrated
and non-calibrated statistics within acceptable degtees of accuracy. These results

give validity to the underlying structute of the model and the calibration process.
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Coupled with the ability to successfully simulate rainfall amounts at vatious time
scales and applying the existing disaggregation process to generate synthetic
pluviograph data, this model is now a useful tool capable of being applied to a large
number of sites. Coupled with the application to sites with short historical
pluviograph records, the new regionalised rainfall model has the potential to be a

powerful tool for application in hydrological risk analysis actoss Australia.
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CHAPTER 8

CONCLUSION AND
RECOMMENDATIONS

8.1 Overview

The estimation of flood risk relies on joint probability theory where the combination
of stochastic inputs such as rainfall and a description of the hydrological/hydraulic
runoff process determine the probability disttibution of flooding events. To date
continuous simulation through a Monte Catlo approach has provided a workable
method for deriving flood probability distributions. The Monte Catlo apptoach uses
the idea that a long model simulation will eventually sample almost all possible joint
probability interactions (ie. all combinations of rainfall input and runoff model
conditions etc). If this is the case, the detived flood distribution can be viewed as an

accurate inference of the true flood distribution.

Despite the theoretical superiority of continuous simulation, in practice designers use
a far simpler approach within Australia. The Australian procedure for risk-based
hydraulic design is typically desctibed in Australian Rainfall and Runoff (referred to
as ARR) (Institution of Engineers Australia, 1987) and is known as the design storm
approach. The method for evaluating flood risk probabilities is based on this design
storm for which “the intention is to detive a flood of selected probability of
exceedance from a design rainfall of the same probability” [ARR, p6]. This approach
telies on the assumption that median values of all other vatiables other than rainfall
(such as losses, base flow, temporal patterns and hydrograph model parameters) can
be used and still provides an accurate runoff representation. When using this
method there is no indication that the design storm approach produces floods with
the same exceedance probability as the rainfall. Indeed ARR admits that “there is a

need for research to test this approach”. Meanwhile designers across Australia
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continue to adopt the design rainfall method as the design technique of choice.
Without an appropriate working continuous simulation alternative, designers will

continue with this approach.

Continuous simulation also relies on the availability and length of historical rainfall
recotds. This is particularly important if we consider the tails of the flood probability
distribution where it is unlikely that a 15-year histotical record can provide accurate
estimates of a 100 year flood event. While the advent of numerous rainfall models
provides a method of extending historical rainfall records, without significant

historical rainfall data available for calibration, theit accuracy is often questionable.

This study was initiated by the desire to provide a rainfall simulation model which
could successfully simulate accurate synthetic pluviograph records at sites across
Australia with minimal or no histotical pluviograph data. This would provide a
workable rainfall model solution for application within a continuous simulation flood
estimation framework or for use in situations whete water volumes are important i.c.
Water Sensitive Urban Design approaches to stormwatet treatment and disposal,

stormwater detention etc. To achieve this objective five aims were developed:

(1) To develop or select a rainfall model capable of simulating synthetic

pluviograph data;

(2) To refine and improve the rainfall model by including uncertainty and a
Monte Carlo simulation structure ensuting the calibration process is robust

and comparison to observed data is accurate.
(3) To verify the accuracy of the rainfall model by analysing its performance and
structure at sites with significant pluviograph tecords fot calibration and

compatison;

(4) To extend the application of the model to sitcs with minimal historical

pluviograph data available fot calibration and finally;
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(5) To extend the application of the model to sites with only historical daily data

and no pluviograph data available for calibration.

8.2 Stochastic Rainfall Simulation Model

8.2.1 Summary

The review of potential models for continuous simulation of short tie increment
rainfall focussed on pteviously reported results, data requirements, structute,
parameter estimation and calibration techniques. The objective was to determine
which model (if any) was capable of accurately simulating short time increment
rainfall and whether such a model could be further developed for application at sites

with little or no historical records available for calibration.

The model presented by Heneker e 4/ (2001) had been previously shown to be
capable of generating synthetic rainfall data down to time resolutions in the order of
minutes. The reproduction of short duration IFD values at most sites validated the
effectiveness of the disaggregation procedure, while the overall model structure was
validated through comparisons between observed and simulated intetr-event times,
storm durations and mean annual rainfall. As a result this model was selected for

further investigation/development in this study.

A number of shortcomings in the otiginal model presented by Heneker ¢ 4/ (2001)
were investigated and improved as part of this study. The resultant model is based

on this original work with the following enhancements:

» the incorporation of the Metropolis Algorithm which enables the
identification of calibrated parameter distributions and potential parametet
cotrelations. This lead to the discovery of significant correlations within the
distribution descriptions for intet-event times and storm durations.

e the inter-event time and storm duration disttibutions still modelled using a
generalised exponential distribution (with the kernel defined using a

combination of the generalised Pareto and power law distributions), but with
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the exponential parameter value now set to a constant. This has removed the
issues associated with the aforementioned parameter correlations and also
reduced the number of monthly parameter values tequiring calibration for

each distribution from four (4) to three (3).

¢ the average inter-event intensity conditional model now being described by a
piece wise linear model with a constant set of break points across all sites.
This removes the need for the manual selection of breakpoints and the
automatic calibration process has been completed by using a hybrid
continuous function to describe the conditional relationship and provide

initial parameter values at set breakpoint positions.

o the incorporation of Monte Catlo simulation and parameter sampling
uncertainty. A Monte Carlo framewotk has been included into the
simulation model which enables multiple realisations of the model to be
generated with minimal effort. Coupled with the addition of parameter
sampling uncertainty which describes the accuracy of calibration given the
available data set, the simulation model is now able to ptovide simulation
limits providing an improved ability to compare observed and simulated

results.

8.2.2 Conclusions and Recommendations

The synthetic rainfall generated by the otiginal model had previously been shown to
provide a good representation of observed rainfall over a range of climatic regions.
Improvements to the model have further refined its structure and calibration
processes to provide a robust and efficient rainfall simulation model. Model
validation presented in Chapter 5 showed that with the exception of select
aggtegation statistics at long time frames (annual variability for example) the

synthetic rainfall data produced for all sites was consideted satisfactory. In particular:

o the calibrated distributions of inter-event times and storm duration were
teproduced satisfactorily with the three (3) parameter disttibution model.
Monthly parameters were used to account for seasonal variability.

® the conditional average event intensity and stotm duration was successfully

modelled using the piece wise linear model with set breakpoints. The
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simulated rainfall adequately teplicated the observed marginal distribution
and aggregated statistics across a number of sites.

e the model continued to successfully reproduce non-calibrated statistics such
as the Intensity-Frequency-Duration (IFD) curves and aggregated rainfall
statistics at a range of time scales. In particular the ability to reproduce the
mean daily rainfall and daily dry probability was instrumental in the later
development of a calibration routine with daily data.

e it was again obsetved that similarity in the model parameters within the
temporal pattern generator offered an ability to use this model for

regionalisation to sites with little or no historical data available for calibration.

8.3 Regionalisation with a Short Pluviograph
Record

8.3.1 Summary

Chapter 6 presented a significant leap forward in the application of rainfall models
calibrated to pluviograph data. A new regional calibration process was introduced
which enabled the model storm event parametets to be calibrated at sites with only a

shott histotical pluviograph data set. The resultant model uses:

® 2 master - target relationship coupled with a linear updating factor between
sites for the tegionalisation of inter-event times and storm durations. The
master calibration requites a regular calibration with a long (estimated at >30
year) pluviograph record.

e 2 similar master - target relationship coupled with a linear ‘triangle’ model for
updating the factor between sites for the regionalisation of storm event
depths. Event depths were chosen instead of using event intensities directly
due to the need to consider the conditional intensity-duration relationship
when regionalising. By developing the storm duration relationship between
sites first and then considering the event depth relationship, the conditional

relationship requirements are taken into account.

e an intermediate calibration step which enabled the developed model to

capture any data vatiations that exist between two pluviogtaph records as a
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result of their different record lengths. This in turn enabled any sampling
variability issues between the rainfall records at the master and target sites
due to their differing lengths and/ot petiods of record to be removed during

the final calibration of the linear updating factots.

® consistent temporal pattern parameters between sites within a climatic region.
This expected outcome enabled the regionalisation process to continue
without adjustment to the temporal pattern parametets between master and

target sites.

8.3.2 Conclusions and Recommendations

The regionalisation model for inter-event times and storm dutations employed a
mastet — target relationship coupled with a linear updating factor between sites. The
use of this intermediate step and the new regionalisation scaling factor enabled a
successful translation from simulated inter-event time and storm durations at a
master calibration site to a target site with only a shott pluviogtaph record available
for updating. Test sites were chosen with long histotical tecotds to enable thorough
examination of simulated statistics while a short sub-set (10 yeats) was used for
calibration purposes. Compatison of calibrated and non-calibrated statistics

(observed and simulated) has verified the adopted approach. In patticular the model:

e captured IFD statistics at the target site using only the shott sub-set of the
overall target record during testing. This verifies the adoption of consistent

temporal pattern parameters between sites.

e reproduced observed inter-event time and storm duration distributions at the
target site. While these were used during the calibration process, the model
was only calibrated to 10 years of record and then compated to the statistics
obtained from the entire target pluviograph.

® successfully captured the mean annual rainfall totals, while slightly
underestimating the annual rainfall vatiance. This is typical of event based
models which use independence criteria to define storm events. Further

work in this area is suggested and may be based on recently finished work by

Frost (2002).
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e satisfactorily reproduced both the observed daily rainfall distribution and the
probability of obsetving zero rain on a given day. These statistics wete vety
important to the further development of the model for calibration at sites

with daily data only as presented in Chapter 7.

8.4 Regionalisation with a Daily Record

8.4.1 Summary

Adapting the master - target linear scaling relationship introduced into the Heneker ez
al. (2001) rainfall model in Chapter 7 for use with Daily data has produced a model
capable of simulating long-term synthetic pluviograph records at numerous daily sites

around Australia. In particular the daily model uses:

® a master — target relationship coupled with a linear updating factor between
sites to adjust all storm event vatiables (inter-event times, storm duration and
storm depth). This is based on the same model structure as that for
calibrating with short pluviograph records.

e 2 simulated likelilhood approach which uses a non-parametric kernel
smoothing technique to estimate the probability distributions of importtant
simulated daily statistics. For calibration putposes the mean daily depth and
probability of obsetving zeto rain were chosen due to the models ability to
accurately reproduce these values when successfully calibrated with a long
term pluviograph. Obsetved daily values ate compared against the estimated
density for each iterative simulation providing a method to calibrate the bulk
event linear updating factors.

e an intermediate calibration step which enabled the developed model to
capture any data vatiations that exist between the master pluviograph and
target daily recotd as a result of their different record lengths. This in turn
enabled any sampling variability issues between the rainfall records at the
master and target sites due to their differing lengths and/or periods of record
to be removed during the final calibration of the linear updating factoss.

e the structure of the pluviograph regionalisation model keeping consistent

temporal pattern parameters between sites within a climatic region.
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8.4.2 Conclusions and Recommendations

The regionalisation model compared two main statistics easily calculated from a daily
tecord to drive the calibration process. The selection of the probability of obsetving
a dry day and the mean daily depth were based on the proven ability of the model to
teproduce these non-calibrated statistics during simulation and the ease at which they
can be calculated from observed data. Successful reproduction of these calibrated

statistics verifies the selection of these values for use in calibration.

Compatisons between the observed and simulated data at various paits of sites
indicate the model’s ability to significantly shift the mean and standard deviation of
the bulk storm charactetistics in otdet to reproduce vatious calibrated and non-
calibrated statistics within acceptable degrees of accutacy. These tesults give validity
to the underlying structure of the model and the calibration process. Coupled with
the ability to successfully simulate rainfall amounts at various time scales and apply
the existing disaggregation process to generate synthetic pluviogtaph data, this model
is now a useful tool capable of being applied to a large number of sites. In patticular

the model

e satisfactorily reproduced both the obsetved daily rainfall distribution and the
probability of observing zero rain on a given day. These statistics were used
during the calibration and their subsequent reproduction duting simulation
verifies the structure and success of the calibration process.

¢ adequately captured IFD statistics at the target site. This again verifies the
adoption of consistent temporal pattern parameters between sites.

® successfully reproduced observed inter-event times and adequately
reproduced storm duration distributions at the target site. These statistics
were not used during the calibration process and validated the use of the
simulated likelihood approach and adoption of the daily mean rainfall and dry
probability as indicators of a good calibration.

¢ successfully captured the mean annual tainfall totals, while again slightly

underestimating the annual rainfall variance.

268



Chapter 8: Conclusion and Recommendations

Coupled with the application to sites with short historical pluviograph records, the
new regionalised rainfall model has the potential to be a powerful tool for application
in hydrological risk analysis across Australia. It is recommended that future work

with this model focus on:

1) Applying the model to the majotity of pluviograph and daily rainfall
sites across Australia with a view to possibly developing a parametet
contour map or similat which would enable application of the model
via interpolation between data recording stations.

2) Incorporating an inter-annual petsistence model to capture the effects
of El Nino and other long tetm climatic influences within the

Australian climate.

269



CHAPTER 9

REFERENCES

Acteman, M. C. & Wiltshire, S. E. (1989) “The Regions are Dead: Long Live the
Regions. Methods of identifying and Dispensing with Regions for Flood Frequency
Analysis”, TAHS Publ.187: 175-188

Acteman, M. C. (1990) “A simple stochastic model of houtly rainfall for
Farnborough, England”, Hydrological Sciences Journal 35(2) 119-148.

Adamowski, K (1985) “Nonparamettic Kernel Estimation of Flood Frequencies”
Water Resources Research 21(11): 1585-1590

Adamowski, K (1996) “Nonparamettic Estimation of Low-Flow Frequencies”,

J[ournal of Hydrologic Engineering 122:46-49

Adamowski, K (1989) “A Monte Catlo Comparison of Parametric and
Nonparametric Esttmation of Flood Frequencies”, Journal of Hydrology 108: 295-
308

Adamowski, K (2000) “Regional Analysis of Annual Maximum and Partial Duration
Flood Data by Nonparametric and L-Moment Methods”, Journal of Hydrology 229:
219-231

Atrnbjerg-Nielsen, K., Hatremoes, P. & Spliid, H. (1996) “Interpretaion of Regional

Vatiation of Extreme Valucs of Point Precipitation in Denmark”, Atmospheric
Research 42: 99-111

270



Chapter 9: References

Benson, M. A. (1962) “Factors Influencing the Occurrence of Floods in 2 Humid
Region of Diverse Tetrain”, U.S. Geological Survey Water Supply Papet 1580B: 61

pp-

Beven, K.J. & Binley, A.M. (1992) “The Future of Distributed Models: Model
Calibtation and Predictive Uncertainty”, Hydrological Processes 6: 279-298

Birikundavyi, S. & Rouselle, J. (1997) “Use of Partial Duration Seties for Single-
Station and Regional Analysis of Floods”, Joutnal of Hydrologic Engineering Aptil:
68-75

Boughton, W. C. (1984) “A Simple Model for Estimating the Water Yield of
Unguaged Catchments”, Civil Engineering Transactions Institution of Engineets

Australia

Box, G. E. P., & Cox, D. R. (1964) “An Analysis of Transformations (with
Discussion)”, Journal of the Royal Statistical Society Series B 26: 211-252

Boyd, M. J. (1978) “Regional Flood Frequency Data for N.S.W. Streams”, Civil

Engineering Transactions Institution of Engineers Australia

Burlando, P. & Rosso, R. (1991) “Comment on “Parameter Estimaion and Sensitivity
Apnalysis for the Modjfied Bartlett-Lewis Recangular Pulses Model of Rainfall” by S. Islam et al”,
Journal of Geophysical Research 96(D5): 9391-9395

Butlando, P. & Rosso, R. (1993) “Stochastic Models of Temporal Rainfall:
Reproducibility, Estimation and Prediction of Extreme Events™ in Stochastic
Hydrology and its Use in Water Resources Systems Simulation and Optimization, eds

J.B. Marco, R. Hatboe and J.D. Salas. Kluwer Academic Publishets pp 137-173

Butn, D. H. & Boorman, D. B. (1993) “Estimation of Hydrological Parametets at
Unguaged Catchments”, Journal of Hydrology 143: 429-454

271



Chapter 9: References

Burn, D. H. (1990) “Evaluation of Regional Flood Frequency Analysis with a Region
of Influence Approach”, Water Resources Research 26(10): 2257-2265

Burn, D. H., Zrinji, Z. & Kowalchuk, M. (1997) “Regionalization of Catchments for

Regional Flood Frequency Analysis”, Journal of Hydrologic Engineering, April: 76-

32

Butroughs, W.J. (1999) “The Climate Revealed”, Cambridge Univetsity Press, New
York

Calenda, G. & Napolitano, F. (1999) “Parameter Estiation of Neyman-Scott
Processes fot Temporal Point Rainfall Simulation”, Journal of Hydrology 225: 45-66

Cameron, D., Beven, K. & Tawn, J. (2000) “An Evaluation of Three Stochastic

Rainfall Models”, Journal of Hydrology 228: 130-149

Cameron, D., Beven, K. & Tawn, J. (2001) “Modelling Extteme Rainfalls Using a
Modified Random Pulse Bartlett-Lewis Stochastic Rainfall Model (with
Uncertainty)”, Advances in Watet Resources 24: 203-211

Cameron, D., Beven, K., Tawn, J., Blazkova, S. & Naden, P. (1999) “Flood
Frequency Estimation for a Guaged Upland Catchment (with Uncettainty)”, Journal
of Hydrology 219: 169-187

Cao, C. (1974) “A Contribution to Statistical Depth-Duration-Frequency Analysis”,

Journal of Hydrology 22: 109-129

Caskey, J.E. (1963) “A Markov Chain Model for the Probability of Precipitation
Occutrence in Intervals of Various Lengths”, Monthly Weathet Review 91(6): 298-
301

Chiew, F.H.S., Piechota, T.C., Dracup, J.A. & McMahon, T.A. (1998) “El
Nino/Southern Oscillation and Australian Rainfall, Streamflow and Drought: Links
and Potential for Forecasting”, Journal of Hydrology 204: 138-149

272



Chapter 9: References

Cho, H. & Chan, D.S.T. (1987) “Mesoscale Atmosphetic Dynamics and Modeling of
Rainfall Fields”, Journal of Geophysical Research 92(D8): 9687-9692

Cho, H. (1985) “Stochastic Dynamics of Precipitation: An Example”, Watet
Resources Research 21(8): 1225-1232

Cong, S., Li, Y., Vogel, J. L. & Schaake, J. C. (1993) “Identification of the Underlying
Distribution Form of Precipitation by Using Regional Data”, Watetr Resources
Research 29(4): 1103-1111

Cooley, H.W. & Lohnes, P. R., (1971). “Multivariate Data Analysis” Wiley, New
York, N.Y.

Cowpertwait, P. S. P., O’Connell, P. E., Metcalfe, A. V. & Mawdsley, J. A. (1996a)
“Stochastic Point Process Modelling of Rainfall. I Single-site Fitting and Validation”,

[outnal of Hydrology 175: 17-46

Cowpettwait, P. S. P., O’Connell, P. E., Metcalfe, A. V. & Mawdsley, J. A. (1996b)
“Stochastic Point Process Modelling of Rainfall. II Regionalisation and

Disaggregation”, Journal of Hydrology 175: 47-65

Cowpertwait, P.S.P (1991a) “The Stochastic Generation of Rainfall Time Series”,
PhD Thesis, Univetsity of Newcastle upon Tyne

Cowpertwait, P.S.P (1991b) “Furthet Developments of the Neyman-Scott Clustered
Point Process for Modeling Rainfall”, Water Resources Research 27(7): 1431-1438

Cowpettwait, P.S.P., O'Connell, P.E., Metcalfe, A.V. & Mawdsley, J.A. (1996)
“Stochastic Point Process Modelling of Rainfall I. Single-Site Fitting and Validation”,

Journal of Hydrology 175: 17-46

Cox, D. R. & Isham, V. (1980) “Point Processes” Chapman and Hall, London

273



Chapter 9: References

Dalrymple, T. (1960) “Flood Frequency Analyses”, U.S. Geological Survey Water
Supply Paper 1543A: 11-51

DeCoutsey, D.G. & Deal, R.B., (1974) “General Aspects of Multi-Vatiate Analysis
with Applications to Some Problems in Hydrology”, Proceedings Symposium on
Statistical Hydrology. Misc. Pub. No. 1275, USDA-ARS, pp. 47-68

DeCoutsey, D.G., (1973) “Objective Regionalisation of Peak Flow Rates” in: Floods

and Droughts. Proceedings of the Second International Symposium in Hydrolog

September 11-13, 1972, Fort Collins, Colorado. Water Resources Publications, Fort
Collins, Colotado, pp. 395-405.

DeGaetano, A. T. (1998) “A Smirnov Test-Based Clusteting Algorithm with
Application to Extreme Precipitation Data”, Water Resources Research 34(2): 169-
176

Duan, Q., Sorooshian, S. & Gupta, V. (1992) “Effective and Efficient Global
Optimization for Conceptual Rainfall-Runoff Models”, Water Resources Research
28(4): 1015-1031

Eagleson, P. (1972) “Dynamics of Flood Frequency”, Water Resources Research 8:
878-898

Eagleson, P.S.(1978) “Climate, Soil and Vegetation : 2. The Distribution of Annual
Precipitation Derived From Obsetved Storm Sequences”, Water Resources Research

14(5) : 713-721

El-Jabi, N., Ashkar, F. & Hebabi, S. (1998) “Regionalisation of floods in New
Brunswick (Canada)”, Stochastic Hydrology and Hydraulics 12: 65-82

Entekhabi, D., Rodriguez-Itutbe, I. & Eaglcson, . (1989) “Probabilistic
Representation of Temporal Rainfall Processes by a Modified Neyman-Scott
Rectangular Pulses Model: Patameter Estimation and Validation”, Water Resoutces
Research 25(2): 295-302

274



Chapter 9: References

Feyerherm, A.M. & Bark, L.D. (1967) “Goodness of Fit of a Markov Chain Model
for Sequences of Wet and Dry Days”, Journal of Applied Meteotology 6: 770-773

Foufoula-Geotgiou, E. & Guttorp, P. (1986) “Compatibility of Continuous Rainfall
Occurrence Models with Discrete Rainfall Observations”, Water Resources Research

22(8):1316-1322

Foufoula-Georgiou, E. & Lettenmaier, D.P. (1987) “A Markov Renewal Model for
Rainfall Occurrences”, Water Resources Research 23(5): 875-884

Frost, A. (2004) “Spatio-Temporal Hidden Markov Models for Incorporating
Interannual Variability in Rainfall” PhD University of Newcastle, Austtalia

Frost, A., Jennings, S., Thyet, M., Lambert, M. & Kuczera, G. (2000) “Floods,
Droughts and Everything Else In Between”, Proceedings from the 3" International

Hydrology and Water Resources Symposium of the Institute of Engineers, Australia,
Perth

Gabrtiel, K.R. & Neumann, J. (1957) “On a Distribution of Weather Cycles by
Lengths”, Quarterly Journal of the Royal Meteorological Society 83: 375-380

Gabtiel, K.R. & Neumann, J. (1962) “A Matkov Chain Model for Daily Rainfall

Occutrences at Tel Aviv”’, Quarterly Journal of the Royal Meteorological Society 88:
90-95

Gelman, A., Carlin, J. B., Stren, H. S. & Rubin, D. B. (1997) “Bayesian Data
Analysis”, Chapman and Hall, London, Ch 11

Gilman C.S. 1964. “Handbook of Applied Hydrology”, Section 9 Rainfall, V.T.
Chow, ed. New York, NY: McGraw-Hill Book Co.

275



Chapter 9: References

Grace, R.A. & Eagleson, P.S. (1966) “The Synthesis of Short-Time-Increment
Rainfall Sequences” Hydrodynamics Lab. Report 91, Dept. of Civil Engineering,
Massachusetts Institute of Technology, Cambridge, MA.

Gtace, R.A. & Eagleson, P.S. (1967) “A Model for Generating Synthetic Sequences
of Shott-Time-Interval Rainfall Depths” Proceedings International Hydrology
Symposium, Fort Collins, Colotado: pp. 268-276

Grayman, W.M. & Eagleson, P.S. (1969) “Streamflow record length for modelling
catchment dynamics” Hydrodynamics Lab. Report 114, Dept. of Civil Engineering,
Massachusetts Institute of Technology, Cambridge, MA.

Grteen, J.R. (1964) “A Model for Rainfall Occurrence” Journal Royal Statistics
Society B 26: pp.354-353

Green, J. R. (1965) “Two Probability Models for Sequences of Wet or Dty Days”
Monthly Weather Review 93: 155-156

Guame, E., Villeneuve, ]-P. & Desbordes, M. “Uncettainty Assessment and Analysis
of the Calibrated Parameter Values of an Urban Storm Water Quality Model”,

[ournal of Hydrology 210: 38-50

Guetzkow, L. C. (1977) “Techniques for Estimating Magnitude and Frequency of

Floods in Minnesota” U.S. Geological Sutvey Water Resources Invsestigations 77-31

33 pp

b

Guo, S.L. (1991) “Nonpatametric Vatiable Kernel Estimation with Historical Floods

and Paleoflood Information”, Water Resoutces Research 27(1): 91-98

Gyasi-Agyei, Y. & Willgoose, G. R. (1997) “A Hybrid Model for Point Rainfall
Modeling” Water Resources Rescarch 33(7): 1699-1706

Gyasi-Agyei, Y. & Willgoose, G. R. (1999) “Generalisation of a Hybrid Model for
Point Rainfall” Journal of Hydrology 219: 218-224

276



Chapter 9: References

Gyasi-Agyei, Y. (1999) “Identification of regional parameters of a stochastic model
for rainfall disaggregation” Journal of Hydrology 223: 148-163

Haan, C. T., Allen, D. M. & Stteet, J. O. (1976) “A Matkov Chain Model of Daily
Rainfall” Water Resources Research 12(3): 443-449

Hanson, K. M. (1999) “A Framework for Assessing Uncertainties in Simulation

Predictions”, Physica D 133: 179-188

Hastings, W. K. (1970) “Monte Catlo Sampling Methods Using Markov Chains and
Their Applications”, Biometrika 57: 97-109

Hay, L., McCabe, G.J., Wolock, D.M. & Ayers, M.A. (1991) “Simulation of
ptecipitation by weather type analysis”, Water Resources Research 27: 493-501

Heneker, T (2002) “An Improved Engineering Design Flood Estimation Technique:
Removing the Need to Estimate Initial Loss” PhD Adelaide University, Australia

Heneker, T., Lambett, M.F. & Kuczera, G. (2001) “A point rainfall model for risk-
based design”, Journal of Hydrology 247 : 54-71

Hopkins, ].W. & Robillatd, P. (1964) “Some Statistics from the Canadian Prairie
Provinces”, Journal of Applied Meteorology 3: 600-602

Hosking, J. R. M. (1986) “The Theory of Probability Weighted Moments”, Research
Report RC12210, IBM Research Division, Yorktown Heights, N.Y.

Hosking, J. R. M. (1990) L-Moments: Analysis and Estimation of Distributions using
Linear Combinations of Order Statistics”, Journal of the Royal Statistical Society,
Series B, 52: 105-124

Hosking, J. R. M. & Wallis, J. R. (1988) “The Effect of Intersite Depedence on
Regional Flood Frequency Analysis”, Water Resources Research 24(4): 5838-600

277



Chapter 9: References

Hosking, J. R. M. & Wallis, J. R. (1993) “ Some Statistics Useful in Regional
Frequency Analysis”, Watet Resources Research 29(2): 271-281

Hosking, J. R., Wallis, J. R. & Wood, E. F. (1985) “An Appraisal of the Regional

Flood Frequency Procedure in the UK Flood Studies Report”, Hydrological Science
Journal 30(1): 85-109

Hughes, J. P. & Guttorp, P. (1994) “A Class of Stochastic Models for Relating
Synoptic Atmospheric Patterns to Regional Hyrologic Phenomena”, Water
Resources Research 30(5): 1535-1546

Hughes, J.P. & Guttorp, P. (1994) “A class of stochastic models for relating synoptic

atmospheric patterns to regional hydrologic phenomena”, Water Resoutces Research

30(5): 1535-1546

Hutchinson, M. F. (1990) “A Point Rainfall Model Based on a Three-State
Continuous Markov Occurrence Process”, Journal of Hydrology 114: 125-148

Institute of Engineers Australia (1987) “Australian Rainfall and Runoff Volume 1 &

27, Institute of Engineets Australia.

Islam, S., Entekhabi, D., Bras, R.L. & Rodriguez-Itutbe, 1. (1990) “Parameter

Estimation and Sensitivity Analysis for the Modified Battlett-Lewis Rectangular

Pulses Model of Rainfall”, Journal of Geophysical Reseatch 95(D3): 2093-2100

Jin, M. & Stedinger, J. R. (1989) “Flood Frequency Analysis with Regional and

Historical Information”, Water Resources Research 25: 925-936

Jimoh, O. D. & Webster, P. (1999) “Stochastic Modelling of Daily Rainfall in
Nigeria: Intra-Annual Variation of Model Parameters”, Journal of Hydrology 222: 1-
17

Johnson, S. C. (1967) “ Hierarchical Clustering Schemes”, Psychometrika 32:241-254

278



Chapter 9: References

Jones, P.G. & Thornton, P.K. (1999) “Fitting a third-order Markov rainfall model to

interpolated climate sutfaces”, Agricultural and Forest Meteorology 97:213-231

Kavvas, M.L. & Delleur, J.W. (1981) “A Stochastic Cluster Model of Daily Rainfall
Sequences”, Water Resources Research 17(4) : 1151-1160

Koutsoyiannis, D. and Foufoula-Geotgiou, E. (1993), “A scaling model of a storm
hyetograph”, Water Resources Research, 29(7), 2345-2361.

Koutsoyiannis, D. and Onof, C. (2001), “Rainfall Disaggtegation using Adjusted
Procedures on a Poisson Cluster Model”, Joutnal of Hydrology 246: 109-122

Koutsoyiannis, D., C. Onof, & H. S. Wheater (2003), “Multivariate Rainfall

Disaggtegation at a Fine Time Scale”, Water Resources Research 39(7): 1-18

Koutsoyiannis, D. & Pachakis, D. (1996) “Deterministic chaos vetsus stochasticity in

analysis and modeling of point rainfall seties”, Journal of Geophysical Research

101(D21) 26441-26451.

Koutsoyiannis, D. and Xanthopoulos, T. (1990) “A dynamic model for short-scale
rainfall disaggregation”, Hydrological Sciences Journal 35(3) 303-322.

Kroll, C. N. & Stedinger, J. M. (1998) “Regional Hydrologuc Analysis: Otdinary and
Generalized Least Squates Revisited”, Water Resources Research 34: 121-128

Kroll, C. N. & Stedinger, J. M. (1999) “Development of Ragional Regression
Relationships with Censored Data”, Watet Resources Research 35(3): 775-784

Kroll, C.N. & Stedinget, J.R. (1998) “Regional hydrologic analysis: Otdinaty and

generalized least squates revisited”, Water Resources Research 34(1) : 121-128

Kroll, C.N. & Stedinger, J.R. (1999) “Development of regional regtession
relationships with censored data”, Water Resources Research 33(3) : 775-784

279



Chapter 9: References

Kuczera, G. (1983) “Improved Parameter Inference in Catchment Models 1.

Evaluating Parameter Uncertainty”, Water Resources Research 19(5): 1151-1162

Kuczera, G. & Parent, E. (1998) “Monte Carlo Assessment of Patameter Uncertainty
in Conceptual Catchment Models: The Metropolis Algotithm™, Journal of Hydrology
211: 69-85

Lall, U., Rajagopalan, B. & Tarboton, D. G. (1996) “A Nonparametric Wet/Dry
Model for Resampling Daily Precipitation”, Water Resources Research 9: 2803-2823

Lambert, M & Kuczera, G. (1996) “A statistical model of rainfall and temporal

patterns”, Stochastic Hydraulics '96, Proceedings of the 7" TAHR International
Symposium, pp 317-324, A.A. Balkema, Roterdam, Netherlands.

Lambert, M. & Kuczera, G. (1998) “Seasonal genetalized exponential probability

models with application to intetstorm and storm durations”, Water Resources

Research 34(1) : 143-148

Lance, G. N. & Williams, W. T. (1967) “ A General Theory of Classificatory Sorting
Strategies, I. Hierarchical Systems”, Computer Journal 9: 373-380

Lawrance, A. J. (1972) “Some Models for Stationary Series of univariate Events”, in
Stochastic Point Process: Statistical Analysis Theoty and Applications, 1* Edition,

edited by P.A.W. Lewis, Wiley-Interscience, New York

Lee, P. M. (1989) “Bayesian Statistics — An Introduction” J. Wiley & Sons,
Chichester

Lettenmaier, D. P., Wallis, J. R. & Wood, E. F. (1987) “Effect of Regional

Heterogeneity on I'lood I'requency Estimation”, Water Resoutces Research 23(2):
313-323

280



Chapter 9: References

Madsen, H., Pearson, C. P. & Rosjberg, D. (1997) “Comparison of Annual
Maximum Series and Partial Duration Seties Methods for Modeling Extreme

Hydrologic Events 2. Regional Modeling”, Water Resources Research 33(4): 759-769

Matalas, N. C. & Gilroy, E. J. (1968) “Some Comments on Regionalisation in
Hydrologic Studies”, Water Resources Research 4(6): 1361-1369

Metcalfe, A.V. (1997) “Statistics in Civil Engineering”, Arnold, L.ondon

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E.
(1953) “Equation state calculations by fast computing machine”, Journal of Chemical
Physics 21 : 1087-1091

Moon, Y., Lall, U. & Bosworth K. (1993) “A Comparison of Tail Probability
Estimators for Flood Frequency Analysis” Journal of Hydrology 151: 343-363

Mosley, M. P., (1981) “Delimitation of New Zealand Hydrologic Regions”, lournal
of Hydrology 49: 173-192

Nathan, R. J. & McMahon, T. A. (1990) “Identification of Homogeneous Regions
for the Purposes of Regionalisation”, Journal of Hydrology 121: 217-238

Nelder, J.A. & Mead, R. (1965) “A simplex method for function minimization”,
Journal of Computing 7(4) : 308-313

Neyman, J.E. & Scott, E.L. (1958) “A Statistical Approach to Problems of
Cosmology”, Joutnal Royal Statistics Society B(20) : 1-43

Onof, C. & Wheater, H. S. (1993) “Modelling of British Rainfall Using a Random
Parameter Bartlett-Lewis Rectangular Pulse Model”, Journal of Hydrology 149: 67-95

Onof, C. & Wheater, H. S. (1994) “Imptovements to the Modelling of British

Rainfall using a Modified Random Pulse Parameter Bartlett-Lewis Rectangular Pulse
Model”, Joutnal of Hydrology 157: 177-195

281



Chapter 9: References

Park, E. S., Oh, M. & Guttorp, P. (2002) “Multivatiate Receptor Models and Model

Uncertainty”, Chemommetrics and Intelligent Laboratory Systems 60: 49-67

Pattison, A. (1965) “Synthesis of Daily Houtly Rainfall Data”, Water Resources
Research 1(4): 489-498

Pilgrim, D.H. (1987) “Australian Rainfall and Runoff : A guide to flood estimation”,

The Institution of Engineers, Australia

Rajagopalan, B., Lall, U. & Tarboton, D.G. (1996) “Nonhomogeneous Matkov
Model for Daily Precipitation”, Journal of Hydrologic Engineering, Januaty: 33-40

Raudkivi, A.J. & Lawgun, N. (1974) “Simulation of Rainfall Sequences”, Journal of
Hydrology 22: 271-294

Restrepo-Posada, P.J. & Eagleson, P.S. (1982) “Identification of Independent
Rainstorms”, Journal of Hydrology 55: 303-319

Ribeiro-Correa, J., Cavadias, G. S., Clement, B. & Rouselle, J. (1995) “Identification
of Hydrological Neighborhoods using Canonical Cottelation Analysis”, Journal of
Hydrology 173: 71-89

Riggs, H. C. (1973) “Regional Analyses of Streamflow Chatactetistics”, Techniques
of Water Resources Investigations, Book 4, Ch. B3, US Geological Sutvey,
Washington, D.C.

Rodriguez-Iturbe, I., Cox, D.R. & Isham, V. (1987a) “Some models for rainfall based

on stochastic point processes”, Proceedings of the Royal Society, London A410 : pp.
269-288

Rodriguez-Iturbe, L., Cox, D.R. & Isham, V. (1988) “A Point Process Model for

Rainfall: Further Developments”, Proceedings of the Royal Society, London A447 :
pp- 283-298

282



Chapter 9: References

Rodriguez-Itutbe, I., Febres de Power, B. & Valdes, J.B. (1987b) “Rectangular Pulses
Point Process Models for Rainfall: Analysis of Empirical Data”, Journal of

Geophysical Research 92(D8): 9645-9656

Rodriguez-Iturbe, 1., Gupta, V.K. & Waymire, E. (1984) “Scale considerations in the
modelling of temporal rainfall”, Water Resources Research 20(11) : 1611-1619

Roldan, J. & Woolhiser, D.A. (1982) “Stochastic Daily Precipitation Models : 1. A

Compatison of Occuttence Processes”, Water Resources Research 18(5) : 1451-1459

Rosjberg, D., Madsen, H. & Rasmussen, P. F. (1992) “Prediction in Partial Duration
Series with Generalized Pareto-Distitbuted Exceedences”, Watetr Resources Research

28(11): 3001-3010

Rosenblatt, M. (1956) “Rematks on some nonparametric estimates of a density
function” Annals of Mathematical Statistics 27(3):832-837

Sariahmed, A. & Kisiel, C.C. (1968) “ Synthesis of sequences of summer
thunderstorm volumes fot the Atterbury watershed in the Tucson atea.”,

Proceedings International Association Hydrologic Sciences Symposium on Use of

Analog and Digital Computets in Hydrology, 2: 439-447

Sefton, C. E. M. & Howarth S. M. (1998) “Relationships Between Dynamic

Response Characteristics and Physical Desctiptors of Catchments in England and

Wales”, Journal of Hydrology 211: 1-16

Seibett, ] (1999) “Regionalisation of parameters for a conceptual rainfall-runoff

model”, Agricultural and Forest Meteorology 98-99 : 279-293

Shamir, U. (1965) “Probability Disttibutions for Some Precipitation Variables”,
M.LT. Coutse 1.71 Term Paper, January, 1965

283



Chapter 9: References

Sharma, A., Lall, U. & Tarboton, D.G. (1998) “Ketnel bandwidth selection for a first

order nonparametric streamflow simulation model”, Statistic Hydrology and

Hydraulics 12 : 33-52

Silverman, B.W. (1986) “Density Estimation”, Chapman and Hall, London

Slade, J.J., Jr. (1936) “The Reliability of Statistical Methods in the Determination of
Flood Frequencies”, U.S. Geological Survey, Water Supply Paper 771,: pp 421-432

Small, M.J. & Morgan, D.J. (1986) “The Relationship Between a Continuous-Time
Renewal Model and a Discrete Markov Chain Model of Precipitation Occurrence”,

Water Resources Research 22(10) : 1422-1430

Smith, E.R. & Schreiber, H.A. (1973) “Point Processes of Seasonal Thunderstorm
Rainfall, Part 1, Distribution of Rainfall Events”, Water Resources Research 9(4):
871-884

Smithers, J. C. & Schulze, R. E. (2001) “A Methodology fot the Estimation of Shott
Duration Design Storms in South Aftica using a Regional Apptroach based on L-

Moments”, Journal of Hydrology 241: 42-52

Sokal, R. R. & Sneath, P. H. A. (1963) “Principles of Numetical Taxonomy”, W. H.

Freeman and Co., San Francisco, California

Srikanthan, R. & McMahon, T.A. (1985) “Stochastic Generation of Rainfall and
Evaporation Data”, Australian Water Resoutces Council Technical Paper No.84,

Department of Resources and Energy, Australian Water Resources Council.

Tasker, G. D., (1982) “Comparing Methods of Hydrologic Regionalisation”, Water
Resources Bulletin 18(6): 965-970

Tasker, G. D., Hodge, S. A. & Barks, C. S. (1996) “Region of Influence Regtession
for Estiating the 50-Year Flood at Ungaged Sites”, Water Resources Bulletin 32(1):
163-170

284



Chapter 9: References

Thom, H.G. (1975) “A Note on the Gamma Distribution”, Monthly Weather
Review 86(4): 117-122

Thomas, D. M. & Benson, M. A. (1970) “Genetalisation of Streamfow

Characteristics from Drainage-Basin Characteristics”, U.S. Geological Survey Watet

Supply Paper 1975

Thomas, D. M. & Cervione, M. A. (1970) “A Proposed Streamflow Data Program

for Connecticut”, Conn. Water Resources Bulletin 23
b

Thyer, M. & Kuczera, G. (1999) “Modelling Long Term Persistence in Rainfall Time
Series : Sydney Rainfall Case Study”, Proceedings 25" Hydrology and Water
Resources Symposium, July 1999 Queensland Australia

Todorovic, P. & Yevjevich, V. (1967) “A Patticular Stochastic Process as Applied to

Hydrology”, The Intetnational Hydrology Symposium, Colorado State Univetsity,
Fort Collins, Colorado

Todotovic, P. & Yevjevich, V. (1969) “Stochastic processes of precipitation”,

Colorado State University Hydrology Paper 35: 1-61

Todorovic, P. (1968) “A Mathematical Study of Precipitation Phenomena”, Report
CER 67-68 PT65, Engineeting Research Centre, Colorado State Univetsity, Fort
Collins, Colorado

Valdés, ].B., Rodriguez-Itutbe, I. & Gupta, V.K. (1985) “Approximations of
Temporal Rainfall from a Multidimensional Model”, Water Resources Research
21(8): 1259-1270

Valdés, ].B., Vicéns, G.J. & Rodtiguez-Itutbe, 1. (1979) “Choosing Among
Alternative Hydrologic Regression Models”, Water Resources Research 15(2): 347-
358

285



Chapter 9: References

Van Straten, G. & Keesman, K.J. (1991) “Uncertainty Propogation and Speculation

in Projective Forecasts of Envitonmental Change: a Lake-Eutrophication Example”,

[ournal of Forecasting 10: 163-190

Velghe, T., Troch, P.A., De Troch, F.P. & Van de Velde, J. (1994) “Evaluation of
Cluster-Based Rectangular Pulses Point Process Models For Rainfall”, Water
Resources Research 30(10): 2847-2857

Vere-Jones, D. (1970) “Stochastic Models for Earthquake Occuttence”, Journal of
the Royal Statistical Society, Seties A 32(1): 1-62

Vogel, R. M. & Kroll, C. N. (1992) “Regional Geohydrologic-Geomothpic

Relationships for the Estimation of Low-Flow Statistics”, Water Resoures Research
28: 2451-2458

Wand, M.P. & Jones, M.C. (1995) “Kernel Smoothing”, Chapman & Hall, London
Wandle, S. W. (1977) “Estimating the Magnitude and Frequency of Floods on
Natural-Flow Streams in Massachusetts”, U.S. Geological Survey Water Resources

Investigations 77-39, 27 pp

Waymire, E. & Gupta, V. K., (19812) “The Mathematical Structure of Rainfall

Representations 1. A Review of the Stochastic Rainfall Models”, Water Resources
Research 17(5): 1261-1272

Waymire, E. & Gupta, V. K., (1981b) “The Mathematical Structure of Rainfall
Representations 2. A Review of the Theoty of Point Processes”, Water Resources

Research 17(5): 1273-1285

Waymire, E. & Gupta, V. K., (1981c) “The Mathematical Structure of Rainfall
Reptesentations 3. Some Applications of the Point Process Theoty (o Rainfall
Processes”, Water Resources Research 17(5): 1287-1294

286



Chapter 9: References

Weiss, L.I. (1964) “Sequences of Wet and Dry Days Described by a Markov Chain
Model”, Monthly Weather Review 93: 511-516

Wigley, T.M.L., Lough, ].M. & Jones, P.D. (1984) “Spatial Patterns of Precipitation
in England and Wales and a Revised Homogeneous England and Wales Precipitation

Seties”, Climatology 4: 1-25

Wong, T. H. F. (1996) “Synthetic Generation of Stotm Sequence using a Mult-
Module Data Generation Technique”, 23rd Hydrology and Water Resoutces
Symposium, Hobatt, Tasmania 21-24 May.

Woolhiset, D. A. & Osborn, H. B. (1985), “A Stochastic Model of Dimensionless
Thunderstorm Rainfall”. Water Resources Research, 21(4), 511-522.

Wotling, G., Bouviet, Ch., Danloux, J. & Fritsch, J. M. (2000) “Regionalization of
Extreme Precipitation Distribution unsing the Principal Components of the

Topographical Envitonment”, Journal of Hydrology 223: 86-101

Yevjevich, V. (1974). “Determinism and Stochasticity in Hydrology”, Journal of
Hydrology 22: 225-238

287



k)




A High Resolution Point Rainfall Model

Calibrated to Short Pluviograph or Daily
Rainfall Data

Appendices

Shane Anthony Jennings

December 2006

Ph.D. Thesis

Department of Civil and Environmental Engineering
Adelaide University

Australia






TABLE OF APPENDICES

TABLE OF APPENDICES

APPENDIX A RAINFALL DATA SITE DETAILS AND RECORDING

STATION INFORMATION
Al South Australia
A2 Queensland
A3 Victoria
A4 Western Australia
A5 New South Wales

A2
A6
A9
A3
A5

APPENDIX B IMPROVED RAINFALL MODEL VALIDATION

(Master Sites)
B.1 Adelaide, South Australia (BOM# 23034)

B.1.1 Simulated and Observed Storm Event Characteristics

B.1.2 Simulated and Obsetved Daily Statistics

B.1.3 Simulated and Obsetved Daily and Monthly Rainfall

B.14 Simulated and Observed Annual Intensity Frequency Duration
Curves

B.2 Brisbane, Queensland (BOM# 40214)

B.2.1 Simulated and Observed Storm Event Characteristics

B.2.2 Simulated and Observed Daily Statistics

B.2.3 Simulated and Obsetved Daily and Monthly Rainfall

B.24 Simulated and Obsetved Annual Intensity Frequency Duration
Cutves

B3  Melbourne, Victotia (BOM# 86071)

B.3.1 Simulated and Obsetved Storm Event Characteristics

B.3.2 Simulated and Obsetved Daily Statistics

B.3.3 Simulated and Obsetved Daily and Monthly Rainfall

B.34 Simulated and Observed Annual Intensity Frequency Duration
Cutves

B.4 Perth, Western Australia (BOM# 9034)

B.1
B.1
B.4
B.5

B.11
B.12
B.12
B.15
B.16

B.22
B.23
B.23
B.26
B.27

B.33
B.34



B.4.1 Simulated and Observed Storm Event Characteristics B.34

B4.2 Simulated and Obsetved Daily Statistics B.37
B.4.3 Simulated and Observed Daily and Monthly Rainfall B.38
B.4.4 Simulated and Observed Annual Intensity Frequency Duration

Cutves B.44
B.5 Sydney, New South Wales (BOM# 66062) B.45
B.5.1 Simulated and Obsetved Stotm Event Characteristics B.45
B.5.2 Simulated and Obsetved Daily Statistics B.48
B.5.3 Simulated and Observed Daily and Monthly Rainfall B.49
B.54 Simulated and Observed Annual Intensity Frequency Duration

Curves B.55

APPENDIX C REGIONALISATION WITH A SHORT
PLUVIOGRAPH RECORD - RESULTS

Ci1 Master — Adelaide, South Australia (BOM# 23034) C1
C.11 Target — Williamstown, South Australia (BOM# 23763) C.1
C.1.1.1 Simulated and Obsetved Storm Event Characteristics C1
C.1.1.2 Simulated and Observed Daily Statistics C4
C1.13 Simulated and Observed Annual and Monthly Rainfall C5
Cl14 Simulated and Obsetved Annual IFD Cutves c.1
Ci12 Target — Stirling, South Australia (BOM# 23785) C.12
C.1.21 Simulated and Obsetved Storm Event Characteristics C.12
C.1.2.2 Simulated and Obsetved Daily Statistics C.15
C.1.23 Simulated and Observed Annual and Monthly Rainfall C.16
C1.24 Simulated and Obsetved Annual

Intensity — Frequency — Duration C.22
C.2 Master — Brisbane (RO), Queensland (BOM# 40214) C.23
C.21 Target — Brisbane (AMO), Queensland (BOM# 40223) C.23
C.2.1.1 Simulated and Obsetved Stotm Event Characteristics C.23
C21.2 Simulated and Observed Daily Statistics C.26
C213 Simulated and Obsetved Annual and Monthly Rainfall C.27
C214 Simulated and Obsetved Annual

Intensity — Frequency — Duration C.33

C22 Target — Kirkleigh, Queensland (BOM# 40318) C.34



C.221
C222
C223
C224

CJ3
C.3.1
C3.1.1
C3.1.2
C3.13
C3.14

C32

C3.21
C3.22
C3.23
C324

C3.3

C.3.3.1
C3.3.2
C.3.33
C.3.34

C4
C4.1
C41.1
C4.1.2
C4.1.3
C414

C.5
C.5.1
C5.1.1

Simulated and Observed Storm Event Characteristics
Simulated and Obsetved Daily Statistics
Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual
Intensity — Frequency — Duration

Master — Melbourne, Victotia (BOM# 86071)

Target — East Sale, Victoria (BOM# 85072)

Simulated and Observed Storm Event Characteristics
Simulated and Observed Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Target — Ellinbank, Victoria (BOM# 85240)

Simulated and Observed Storm Event Characteristics
Simulated and Obsetved Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Observed Annual

Intensity — Frequency — Duration

Target — Laverton, Victoria (BOM# 87031)

Simulated and Observed Storm Event Characteristics
Simulated and Obsetved Daily Statistics
Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetrved Annual
Intensity — Frequency — Duration

Master — Perth, Western Australia (BOM# 9034)

Target — Esperance, Western Australia (BOM# 9631)
Simulated and Observed Storm Event Characteristics
Simulated and Obsetrved Daily Statistics
Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual
Intensity — Frequency — Duration

Master — Sydney, New South Wales (BOM# 66062)

Target — Richmond, New South Wales (BOM# 67033)

Simulated and Obsetved Storm Event Charactetistics

i

C.34
C.37
C.38

CA4
C.45
C.45
C.45
C.48
C.49

C.55
C.56
C.56
C.59
C.60

C.66
C.67
C.67
C.70
c7

C.77
C.78
C.78
C.78
C.81
C.82

C.88
C.89
C.89
C.89



C5.1.2 Simulated and Obsetved Daily Statistics
C5.1.3 Simulated and Observed Annual and Monthly Rainfall
C5.14 Simulated and Observed Annual

Intensity — Frequency — Duration

C.5.2 Target — Chichester, New South Wales BOM# 61151)
C.5.21 Simulated and Obsetved Storm Event Characteristics
C522 Simulated and Obsetved Daily Statistics

C5.23 Simulated and Observed Annual and Monthly Rainfall
C524 Simulated and Observed Annual

Intensity — Frequency — Duration
q y

C.92
C.93

C.99
C.100
C.100
C.103
C.104

C.110

APPENDIX D REGIONALISATION WITH A DAILY RECORD -

RESULTS
D.1 Master — Adelaide, South Australia (BOM# 23034)
D.1.1 Tatget — Williamstown, South Australia (BOM# 23763)
D.1.1.1 Simulated and Observed Daily Statistics
D.1.1.2 Simulated and Observed Annual and Monthly Rainfall
D.1.13 Simulated and Obsetved Annual

Intensity — Frequency — Duration

D.1.1.4 Simulated and Obsetved Inter — Event Distributions
D.1.1.5 Simulated and Obsetved Storm Duration Distributions
D.1.1.6 Simulated and Observed Storm Depth Distributions
D.1.2 Target — Rosedale, South Austtralia (BOM# 23343)

D.1.2.1 Simulated and Obsetved Daily Statistics

D.1.2.2 Simulated and Observed Annual and Monthly Rainfall
D.1.2.3 Simulated and Observed Annual

Intensity — Frequency — Duration

D.1.2.4 Simulated and Obsetved Inter — Event Distributions
D.1.25 Simulated and Obsetved Storm Duration Distributions
D.1.2.6 Simulated and Obsetved Storm Depth Distributions
D.2 Master — Brisbane (RO), Queensland (BOM# 40214)
D.21 Target — Brisbane (AMO), Queensland (BOM# 40223)
D.2.11 Simulated and Obsetved Daily Statistics

D.21.2 Simulated and Observed Annual and Monthly Rainfall

v

D1
D.1
D.1
D.2

D.8

D.9
D.11
D.13
D.15
D.15
D.16

D.22
D.23
D.25
D.27
D.29
D.29
D.29
D.30



D.2.1.3

D.2.14
D.2.1.5
D.2.1.6
D.2.2

D.2.21
D.222
D.2.23

D.224
D.2.25
D.2.2.6
D3
D31
D.J3.11
D.3.1.2
D.3.1.3

D.3.1.4
D.3.1.5
D.3.1.6
D.3.2

D.3.21
D.3.2.2
D.3.23

D324
D.3.2.5
D.3.2.6
D33

D.3.3.1
D.3.3.2

Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Observed Inter — Event Distributions
Simulated and Observed Stotm Duration Distributions

Simulated and Obsetved Storm Depth Distributions

Target — Kitkleigh, Queensland (BOM# 40318)

Simulated and Obsetved Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Observed Intet — Event Distributions
Simulated and Observed Storm Duration Disttibutions

Simulated and Observed Storm Depth Distributions

Mastet — Melbourne, Victoria (BOM# 86071)
Target — East Sale, Victotia (BOM# 85072)

Simulated and Obsetved Daily Statistics

Simulated and Obsetved Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Obsetved Intet — Event Distributions
Simulated and Observed Stotm Duration Distributions

Simulated and Obsetved Storm Depth Distributions

Tatget — Ellinbank, Victoria (BOM# 85240)

Simulated and Obsetved Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Obsetved Inter — Event Distributions
Simulated and Observed Stortm Dutation Distributions

Simulated and Obsetved Storm Depth Distributions

Tatget — Laverton, Victoria (BOM# 87031)

Simulated and Obsetved Daily Statistics
Simulated and Obsetved Annual and Monthly Rainfall

D.36
D.37
D.39
D41
D.43
D43
D.44

D.50
D.51
D.53
D.55
D.57
D.57
D.57
D.58

D.o4
D.65
D.67
D.69
D.71
D.71
D.72

D.78
D.79
D.81
D.83
D.85
D.85
D.86



D.3.3.3

D.3.34
D.3.3.5
D.3.3.6
D4
D.4.1
D.41.1
D.4.1.2
D.4.1.3

D414
D.4.1.5
D.4.1.6
D.5
D.5.1
D.5.11
D.5.1.2
D.5.1.3

D.5.1.4
D.5.1.5
D.5.1.6
D.5.2

D.5.2.1
D522
D.5.23

D.5.24
D.5.2.5
D.5.2.6

Simulated and Observed Annual

Intensity — Frequency — Duration

Simulated and Obsetved Inter — Event Distributions
Simulated and Obsetved Storm Duration Distributions

Simulated and Obsetved Stotm Depth Distributions

Master — Petth, Western Australia (BOM# 9034)
Target — Esperance, Western Australia BOM# 9631)

Simulated and Observed Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Obsetved Inter — Event Distributions
Simulated and Obsetved Storm Duration Distributions

Simulated and Observed Storm Depth Disttibutions

Master — Sydney, New South Wales (BOM# 66062)
Target — Richmond, New South Wales (BOM# 67033)

Simulated and Observed Daily Statistics

Simulated and Observed Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Duration

Simulated and Obsetved Inter — Event Distributions
Simulated and Obsetved Storm Duration Distributions

Simulated and Obsetved Storm Depth Disttibutions

Target — Chichester, New South Wales (BOM# 61151)

Simulated and Observed Daily Statistics

Simulated and Obsetved Annual and Monthly Rainfall
Simulated and Obsetved Annual

Intensity — Frequency — Dutation

Simulated and Obsetved Inter — Event Distributions
Simulated and Obsetved Storm Duration Distributions

Simulated and Obsetved Stotm Depth Distributions

vi

D.92
D.93
D.95
D.97
D.99
D.99
D.100
D.107

D.107
D.109
D.111
D.114
D.114
D.114
D.114
D.115

D.121
D.122
D.124
D.126
D.128
D.128
D.129

D.135
D.136
D.138
D.140



APPENDIX A

Rainfall Data Site Details and
Recording Station Information




Appendix A: Rainfall Data Site Details and Recording Station Information

A.1 South Australia

Station name: Adelaide Aero (23034)
State: South Australia

Elevation: 6 metres

Latitude: 34.96° South

Longitude: 138.53° East

Annual Rainfall: 453.4mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep
0.60 0.65 0.69 1.21 1.79 1.82 2.03 1.63 1.55

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug Sep
0.84 0.87 0.82 0.70 0.57 0.54 0.47 0.48 0.55

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug Sep
4.73 3.71 5.69 9.02 1347 1396 16.36 16.07 13.38

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul Aug Sep
1811 17.88 2153 3614 5561 5470 63.03 50.48 46.53

A.2

Oct
1.27

Oct
0.64

Oct
11.02

Oct
39.28

Nov
0.83

Nov
0.74

Nov
7.71

Nov
24.46

Dec
0.79

Dec
0.78

Dec
6.82

Dec
23.83



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Rosedale (23343)
State: South Australia
Elevation: 115 metres
Latitude: 34.56° South
Longitude: 138.83° East

Annual Rainfall: 468.0mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul
0.59 0.56 0.69 1.19 1.71 1.86 2.05

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul
0.87 0.89 0.84 0.75 0.61 0.55 0.48

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul
3.26 2.35 3.67 5.31 8.46 9.11 10.80

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul
1416 1169 1599 2522 36.64 3733 4255

A3

Aug
1.90

Aug
0.48

Aug
10.91

Aug
39.51

Sep
1.90

Sep
0.57

Sep
8.73

Sep
38.08

Oct
1.51

Oct
0.66

Oct
7.06

Oct
31.36

Nov
0.99

Nov
0.77

Nov
4.73

Nov
19.84

Dec
0.74

Dec
0.81

Dec
4.1

Dec
16.16



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Stirling (23785)
State: South Australia
Elevation: 496 metres
Latitude: 35.00° South
Longitude: 138.72° East

Annual Rainfall: 1118.2mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL({mm)
Jan Feb Mar Apr May Jun Jul Aug
1.19 1.33 1.75 3.24 4.26 3.96 5.66 478

DAILY_DRY_PROBABILITIES (%)
Jan Feb Mar Apr May Jun Jul Aug
0.76 0.81 0.69 0.58 0.47 0.47 0.36 0.37

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug
7.14 5.23 9.27 11.91 15.27 14.41 18.91 18.64

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul Aug
3516 35.82 51.81 9232 121.66 107.29 167.10 140.47

A4

Sep
4.00

Sep
0.45

Sep
15.59

Sep
114.23

Oct
2.98

Oct
0.55

Oct
13.18

Oct
87.71

Nov
2.06

Nov
0.65

Nov
9.96

Nov
58.86

Dec
1.52

Dec
0.71

Dec
8.64

Dec
44.87



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Williamstown (23763)

State: South Australia
Elevation: 395 metres
Latitude: 34.71° South
Longitude: 138.94° East

Annual Rainfall: 755.7mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May
087 081 094 172 270

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May
081 084 078 067 0.54

MEAN_WET_DAYS
Jan Feb Mar Apr May

597 467 6838 9.79 13.67

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr May

26.96 22.83 29.06 5052 80.16

Jun Jul
3.31 4.09
Jun Jul
0.45 0.38
Jun Jul
1567 17.79

Jun Jul
94.00 117.78

A5

Aug
3.37

Aug
0.38

Aug
18.06

Aug
97.32

Sep
293

Sep
0.49

Sep
14.39

Sep
82.59

Oct
2.21

Oct
0.60

Oct
11.52

Oct
63.53

Nov
1.31

Nov
0.71

Nov
8.33

Nov
37.67

Dec
1.23

Dec
0.74

Dec
7.94

Dec
36.95



Appendix A: Rainfall Data Site Details and Recording Station Information

A.2 Queensliand

Station name: Brisbane RO (40214)

State: Queensland
Elevation: 38.0 metres
Latitude: 27.48° South
Longitude: 153.03° East

Annual Rainfall: 1146.4mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr  May
5.11 5.79 479 318 242

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr  May
0.58 0.52 052 062 0.68

MEAN_WET_DAYS
Jan Feb Mar Apr  May
1260 13.13 1424 1097 943

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr  May
15257 15741 141.94 9173 7218

Jun
2.26

Jun
0.74

Jun
7.60

Jun
65.24

A.6

Jul
1.82

Jul
0.76

Jul
6.99

Jul
53.92

Aug
1.42

Aug
0.78

Aug
6.52

Aug
42.45

Sep
1.47

Sep
0.75

Sep
7.16

Sep
42.40

Oct
2.49

Oct
0.70

Oct
9.12

Oct
74.21

Nov
3.26

Nov
0.66

Nov
9.78

Nov
94.27

Dec
417

Dec
0.62

Dec
11.17

Dec
123.56



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Brisbane AMO (40223)

State: Queensland

Elevation: 4.0 metres
Latitude: 27.42° South
Longitude: 153.11° East

Annual Rainfall: 1185.4mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)

Jan
5.16

Feb
6.18

Mar Apr
4.47 3.01

DAILY_DRY_PROBABILITIES(%)

Jan
0.58

MEAN_WET_DAYS

Jan
12.77

Feb
0.49

Feb
14.12

Mar Apr
0.54 0.63
Mar Apr
13.88 10.88

MEAN_MONTHLY_RAIN(mm)

Jan
156.80

Feb
171.19

Mar Apr
135.75 88.62

May
3.19

May
0.66

May
10.49

May
96.82

Jun Jul
2.37 2.02
Jun Jul
0.74 0.76
Jun Jul
7.67 7.35
Jun Jul
71.19 62.56

A7

Aug Sep
138 1.16
Aug Sep
078 077
Aug Sep
6.77 6.98
Aug Sep
42.68 34.92

Oct
3.05

Oct
0.68

Oct
10.06

Oct
94.46

Nov
3.24

Nov
0.67

Nov
9.90

Nov
95.70

Dec
4.04

Dec
0.63

Dec
11.18

Dec
122.71



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Kirkleigh (40318)

State: Queensland
Elevation: 103.6 metres
Latitude: 27.03° South
Longitude: 152.56° East

Annual Rainfall; 912.6mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4.70 4.02 2.83 2,61 2.18 1.60 1.79 1.20 1.22 2.54 2.93 4.33

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.67 0.56 0.66 0.73 0.71 0.79 0.79 0.81 0.83 0.74 0.71 0.69

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
7.46 8.94 7.74 6.20 6.31 4.89 5.00 4.40 3.54 5.91 6.40 6.77

MEAN_MONTHLY_RAIN(mm)})

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
106.18 81.78 6434 59.75 4764 36.93 4188 2756 2587 57.65 6420 93.52
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Appendix A: Rainfall Data Site Details and Recording Station Information

A.3 Victoria

Station name: Melbourne (86071)
State: Victoria

Elevation: 31.2 metres

Latitude: 37.80° South
Longitude: 144.97° East

Annual Rainfall: 653.2mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1.57 1.69 1.65 1.93 1.85 1.67 1.56 1.63 1.97 217 2.00 1.91

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.73 0.74 0.70 0.60 0.52 0.48 0.47 0.48 0.50 0.54 0.61 0.66

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
8.26 7.38 936 1190 1495 1572 16.39 16.26 15.04 1426 11.77 10.46

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
48.39 47.26 5086 57.89 57.25 50.08 4822 5047 59.04 6737 59.74 5892
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Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: East Sale (85072)
State: Victoria

Elevation: 4.6 metres

Latitude: 38.11° South
Longitude: 147.13° East

Annual Rainfall;: 611.1mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul
1.56 1.45 1.71 1.59 1.80 1.61 1.35

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul
0.72 0.71 0.67 0.57 0.51 0.44 0.49

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul
8.65 793 1002 1263 1525 16.75 15.95

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul
47.54 4017 52.01 4711 5572 4841 4176

A.10

Aug
1.54

Aug
0.47

Aug
16.32

Aug
46.96

Sep
1.83

Sep
0.48

Sep
15.35

Sep
53.85

Oct
1.97

Oct
0.52

Oct
14.54

Oct
60.07

Nov
212

Nov
0.58

Nov
12.42

Nov
62.35

Dec
1.82

Dec
0.66

Dec
10.51

Dec
55.40



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Ellinbank (85240)

State: Victoria
Elevation: 167.0 metres
Latitude: 38.25° South
Longitude: 145.93° East

Annual Rainfall: 1092.9mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug
2.06 1.64 2.21 2.88 3.48 3.51 3.7 3.69

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug
0.69 0.74 0.63 0.56 0.44 0.40 0.36 0.38

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug
9.58 723 1133 13.10 17.03 17.33 19.30 18.68

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr May Jun Jul Aug
63.04 4553 68.23 8596 106.37 101.21 112,29 110.82

A1l

Sep
3.91

Sep
0.40

Sep
17.38

Sep
113.76

Oct
3.47

Oct
0.48

Oct
15.63

Oct
104.46

Nov
3.09

Nov
0.53

Nov
13.65

Nov
90.02

Dec
2.75

Dec
0.61

Dec
11.75

Dec
82.44



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Laverton (87031)
State: Victoria

Elevation: 16.0 metres
Latitude: 37.86° South
Longitude: 144.76° East

Annual Rainfall: 557.3mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep
1.36 1.67 1.14 1.57 1.62 1.31 1.30 1.49 1.75

DAILY_DRY_PROBABILITIES (%)
Jan Feb Mar Apr May Jun Jul Aug Sep
0.76 0.75 0.72 0.62 0.53 0.48 0.47 0.49 0.50

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug Sep
7.25 6.92 8.70 11.09 1434 1548 16,12 1571 14.68

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul Aug Sep
4133 4642 3468 4636 4930 39.17 39.83 4538 51.48

A.12

Oct
1.91

Oct
0.54

Oct
13.93

Oct
58.27

Nov
1.73

Nov
0.60

Nov
11.86

Nov
50.94

Dec
1.51

Dec
0.68

Dec
9.81

Dec
46.12



Appendix A: Rainfall Data Site Details and Recording Station Information

A.4 Western Australia

Station name: Perth (9034)

State: Western Australia
Elevation: 19.0 metres
Latitude: 31.95° South
Longitude: 115.87° East

Annual Rainfall: 869.4mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)

Jan Feb Mar Apr
0.27 0.48 0.62 1.52

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr
0.91 0.90 0.86 0.74

MEAN_WET_DAYS
Jan Feb Mar Apr
285 268 434 7.49

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr
8.04 1321 18.73 44.51

May
3.91

May
0.55

May
13.51

May
116.96

Jun Jul
6.13 5.60
Jun Jul
0.42 0.41
Jun Jul
16.81 17.74
Jun Jul

177.45 167.65

A13

Aug
4.36

Aug
0.44

Aug
16.73

Aug
130.35

Sep
2.68

Sep
0.53

Sep
13.61

Sep
77.63

Oct
1.76

Oct
0.64

Oct
10.76

Oct
52.78

Nov
0.72

Nov
0.78

Nov
6.26

Nov
20.87

Dec
0.45

Dec
0.86

Dec
4.08

Dec
13.43



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Esperance (9631)
State: Western Australia
Elevation: 158.0 metres
Latitude: 33.61° South
Longitude: 121.78° East

Annual Rainfall: 497.5mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug Sep
0.73 0.89 0.78 1.24 1.80 2.04 213 1.98 1.76

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug Sep
0.85 0.80 0.80 0.68 0.61 0.55 0.52 0.53 0.57

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug Sep
4.45 5.51 6.20 9.33 11.80 1318 14.14 1390 1249

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul Aug Sep
2198 2446 23.70 36.08 5457 59.46 6260 5890 5061

A.14

Oct
1.36

Oct
0.67

Oct
10.14

Oct
41.12

Nov
1.03

Nov
0.75

Nov
7.22

Nov
30.15

Dec
0.60

Dec
0.83

Dec
5.29

Dec
18.29



Appendix A: Rainfall Data Site Details and Recording Station Information

A.5 New South Wales

Station name: Sydney (66062)

State: New South Wales
Elevation: 39.0 metres
Latitude: 33.86° South
Longitude: 151.20° East

Annual Rainfall: 1217.0mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr May Jun Jul Aug
3.36 4.14 4.24 4.27 3.92 4.37 3.20 2.67

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr May Jun Jul Aug
0.61 0.56 0.56 0.57 0.56 0.57 0.64 0.66

MEAN_WET_DAYS
Jan Feb Mar Apr May Jun Jul Aug
1212  12.34 1348 1289 1349 1277 1131 1066

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May Jun Jul Aug
103.34 116.02 130.46 127.08 120.63 130.27 99.24 82.68

A.15

Sep
2.34

Sep
0.64

Sep
10.81

Sep
70.09

Oct
2.50

Oct
0.62

Oct
11.69

Oct
77.51

Nov
2.76

Nov
0.62

Nov
11.46

Nov
82.30

Dec
2.54

Dec
0.63

Dec
11.51

Dec
78.21



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Richmond (67033)

State: New South Wales
Elevation: 19.0 metres
Latitude: 33.6° South
Longitude: 150.78° East

Annual Rainfall: 810.3mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)
Jan Feb Mar Apr
3.01 3.74 2,97 2.38

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr
0.65 0.61 0.64 0.68

MEAN_WET_DAYS
Jan Feb Mar Apr
9.69 9.78 9.79 8.60

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr
8217 9296 79.76 62.98

May
1.90

May
0.68

May
8.85

May
52.62

Jun
1.88

Jun
0.68

Jun
8.43

Jun
48.79

Jul
1.16

Jul
0.75

Jul
6.72

Jul
31.61

A.16

Aug
1.48

Aug
0.74

Aug
7.05

Aug
40.30

Sep
1.33

Sep
0.74

Sep
6.76

Sep
34.77

Oct
2.07

Oct
0.69

Oct
8.60

Oct
56.45

Nov
2.54

Nov
0.65

Nov
9.16

Nov
67.06

Dec
2.22

Dec
0.68

Dec
8.61

Dec
59.66



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Chichester (61151)

State: New South Wales
Elevation: 194.0 metres
Latitude: 32.24° South
Longitude: 151.68° East

Annual Rainfall: 1313.5mm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAINFALL(mm)

Jan Feb Mar Apr
5.84 6.38 5.40 3.26

DAILY_DRY_PROBABILITIES(%)
Jan Feb Mar Apr
0.60 0.54 0.58 0.67

MEAN_WET_DAYS
Jan Feb Mar Apr
1217 12.81 12.81 9.62

MEAN_MONTHLY_RAIN(mm)
Jan Feb Mar Apr

177.98 177.02 164.62 96.18

May
3.09

May
0.66

May
10.48

May
94.07

Jun
3.54

Jun
0.63

Jun
10.59

Jun
102.35

A4.17

Jul
1.66

Jul
0.71

Jul
8.90

Jul
50.49

Aug
2.01

Aug
0.73

Aug
8.26

Aug
61.18

Sep
2.13

Sep
0.71

Sep
8.47

Sep
62.75

Oct
3.01

Oct
0.67

Oct
10.09

Oct
91.56

Nov
3.19

Nov
0.65

Nov
10.26

Nov
93.66

Dec
4.06

Dec
0.65

Dec
10.81

Dec
123.52
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Appendix B: Improved Rainfall Model Validation (Master Sites)

B.1 Adelaide, South Australia (BOM# 23034)

B.1.1 Simulated and Observed Storm Event
Characteristics
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Figure B.1.1: Comparison between Observed and Simulated Mean Inter-Event Times
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Figure B.1.2: Comparison between Observed and Simulated Standard Deviation of Inter-

Event Times (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.3: Comparison between Observed and Simulated Mean of Event Storm
Durations (Adelaide)
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Figure B.1.4: Comparison between Observed and Simulated Standard Deviation of Event
Storm Durations (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.5: Comparison between Observed and Simulated Average of Event Depths

(Adelaide)
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Figure B.1.6: Comparison between Observed and Simulated Standard Deviation of Event

Depths (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)

B.1.2 Simulated and Observed Daily Statistics
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Figure B.1.7: Comparison between Observed and Simulated Daily Dry Probabilities

(Adelaide)
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Figure B.1.8: Comparison between Observed and Simulated Daily Mean Depth
(Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)

B.1.3 Simulated and Observed Annual and Monthly
Rainfall
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Figure B.1.9: Comparison between Observed and Simulated Annual Rainfall (Adelaide)
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Figure B.1.10: Comparison between Observed and Simulated January Rainfall (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.11: Comparison between Observed and Simulated February Rainfall
(Adelaide)
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Figure B.1.12: Comparison between Observed and Simulated March Rainfall (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.13: Comparison between Observed and Simulated April Rainfall (Adelaide)
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Figure B.1.14: Comparison between Observed and Simulated May Rainfall (Adelaide)

B.7



Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.15: Comparison between Observed and Simulated June Rainfall (Adelaide)
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Figure B.1.16: Comparison between Observed and Simulated July Rainfall (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)
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Figure B.1.17: Comparison between Observed and Simulated August Rainfall (Adelaide)
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Figure B.1.18: Comparison between Observed and Simulated September Rainfall
(Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)

200

| —— 90% Sim Limits EEE AL e :; :
| == Simulated Median P : T (R i : 1
°© Obs

150 |— e ". ....... ....... , ...... ‘ ......... , ________ By

) - ]
E F ]
g F SR IR B3
- 100 s S : ___________ E .......... :. ..... : ....... ‘: ....... E'_“'; ...... : .'. ........ : ............ ‘ ........ -
44 5 : : ' ' oo i . ! : o : .
= . ;

= -

€ - ]
[¢] 1 B
= 210 NN UROUE: NN SR P (ISST ool RSP Y s SRR, S SRR SRS SR ]

o b i o T T TN N (N N A |
.0 A 1 5 10 2030 50 7080 90 95 99 99.9 99.99

Percent

Figure B.1.19: Comparison between Observed and Simulated October Rainfall (Adelaide)
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Figure B.1.20: Comparison between Observed and Simulated November Rainfall
(Adelaide)
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Figure B.1.21: Comparison between Observed and Simulated December Rainfall
(Adelaide)
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Figure B.1.22: Comparison between Observed and Simulated Annual Intensity

Frequency Duration Relationship (Adelaide)
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Appendix B: Improved Rainfall Model Validation (Master Sites)

B.2 Brisbane, Queensland (BOM# 40214)

B.2.1 Simulated and Observed Storm Event
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Figure B.2.1: Comparison between Observed and Simulated Mean Inter-Event Times
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Figure B.2.2: Comparison between Observed and Simulated Standard Deviation of Inter-

Event Times (Brisbane)
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Figure B.2.3: Comparison between Observed and Simulated Mean of Event Storm
Durations (Brisbane)
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Figure B.2.4: Comparison between Observed and Simulated Standard Deviation of Event
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Figure B.2.5: Comparison between Observed and Simulated Average of Event Depths
(Brishane)
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Figure B.2.6: Comparison between Observed and Simulated Standard Deviation of Event
Depths (Brisbane)
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Appendix B: Improved Rainfall Model Validation (Master Sites)

B.2.2 Simulated and Observed Daily Statistics
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Figure B.2.7: Comparison between Observed and Simulated Daily Dry Probabilities
(Brisbane)
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Figure B.2.8: Comparison between Observed and Simulated Daily Mean Depth

(Brisbane)
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Appendix B:

Improved Rainfall Model Validation (Master Sites)

B.2.3 Simulated and Observed Annual and Monthly

Rainfall

2500

2000 L .......... ...... , ....... ....... ..... .......... ,,,,,,, _

Annual Rainfall (mm)

500 |

1500 beeoee- ........... .......... ..... ....... ....... .. = ________ ]

1000 |------- ........... ......... .....

-------- R s Khoim e i feesieeel ———90% Sim Limits

; : Lo P : P Simulated Median
y ; ' : ¢ ¥ : ) 3 ° Obs
I i | I [ | Lo 1 1 ! !

Figure B.2.9

1000

A 1 5 10 2030 50 7080 90 95 99 99.9 ©99.99

Percent

: Comparison between Observed and Simulated Annual Rainfall (Brisbane)

F| —— 90% Sim Limits S T O B i L
-| = Simulated Median i o 1

°© Obs

750 PrmTTIIIT ....... T T S e e >

€ ; ¢

E b :

g E TR IR e ]
ﬁ 500 :..........: ........... , ......... . ..... A::.::,.: ...... E......: ......... f ........... : ........ ]
[0 - ; : HI N : oo i 4 : :

> o

< - ]
z : ]
) - ]
b= Y.Y N UUU SO SO U SO SOTS SRR SR A e L =

'i | | ' - i i

Figure B.2.10

A 1 5 10 2030 50 7080 90 95 99 99.9 99.99

Percent

: Comparison between Observed and Simulated January Rainfall (Brisbane)

B.l6



Appendix B: Improved Rainfall Model Validation (Master Sites)

1000 I I 1 1 I 1 T 1 T ! ]
-| —— 90% Sim Limits R I B S : ; ]
- Simulated Median i A : ]
| © Obs BB 8 By o | ; ;
750 ‘ e, SIS e S e
E
E
=
£ 500
4
>
S
c
[=]
= 250
0
.01 1 1 5 10 2030 50 7080 90 95 99 99.9 99.99
Percent

Figure B.2.11: Comparison between Observed and Simulated February Rainfall

(Brisbane)
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Figure B.2.12: Comparison between Observed and Simulated March Rainfall (Brisbane)
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Figure B.2.13: Comparison between Observed and Simulated April Rainfall (Brisbane)
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Figure B.2.14: Comparison between Observed and Simulated May Rainfall (Brisbane)
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Figure B.2.15: Comparison between Observed and Simulated June Rainfall (Brisbane)
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Figure B.2.16: Comparison between Observed and Simulated July Rainfall (Brisbane)
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Figure B.2.17: Comparison between Observed and Simulated August Rainfall (Brisbane)
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Figure B.2.18: Comparison between Observed and Simulated September Rainfall
(Brisbane)
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Figure B.2.19: Comparison between Observed and Simulated October Rainfall (Brisbane)
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Figure B.2.20: Comparison between Observed and Simulated November Rainfall

(Brisbane)

B.21
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Figure B.2.21: Comparison between Observed and Simulated December Rainfall
(Brisbane)
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Figure B.2.22: Comparison between Observed and Simulated Annual Intensity

Frequency Duration Relationship (Brisbane)

B.22



Appendix B: Improved Rainfall Model Validation (Master Sites)

B.3 Melbourne, Victoria (BOM# 86071)

B.3.1 Simulated and Observed Storm Event
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Figure B.3.1: Comparison between Observed and Simulated Mean Inter-Event Times

(Melbourne)
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Figure B.3.2: Comparison between Observed and Simulated Standard Deviation of Inter-

Event Times (Melbourne)
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Figure B.3.3: Comparison between Observed and Simulated Mean of Event Storm
Durations (Melbourne)
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Figure B.3.4: Comparison between Observed and Simulated Standard Deviation of Event
Storm Durations (Melbourne)
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Figure B.3.5: Comparison between Observed and Simulated Average of Event Depths

(Melbourne)
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Figure B.3.6: Comparison between Observed and Simulated Standard Deviation of Event
Depths (Melbourne)
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B.3.2 Simulated and Observed Daily Statistics
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Figure B.3.7: Comparison between Observed and Simulated Daily Dry Probabilities

(Melbourne)
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Figure B.3.8: Comparison between Observed and Simulated Daily Mean Depth
(Melbourne)
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B.3.3 Simulated and Observed Annual and Monthly

Rainfall
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Figure B.3.9: Comparison between Observed and Simulated Annual Rainfall (Melbourne)
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Figure B.3.10: Comparison between Observed and Simulated January Rainfall

(Melbourne)
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Figure B.3.13: Comparison between Observed and Simulated April Rainfall (Melbourne)
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Figure B.3.14: Comparison between Observed and Simulated May Rainfall (Melbourne)
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Figure B.3.15: Comparison between Observed and Simulated June Rainfall (Melbourne)
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Figure B.3.16: Comparison between Observed and Simulated July Rainfall (Melbourne)
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Figure B.3.17: Comparison between Observed and Simulated August Rainfall
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Figure B.3.18: Comparison between Observed and Simulated September Rainfall

(Melbourne)
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Figure B.3.19: Comparison between Observed and Simulated October Rainfalll
(Melbourne)
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Figure B.3.20: Comparison between Observed and Simulated November Rainfall

(Melbourne)
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Figure B.3.21: Comparison between Observed and Simulated December Rainfall

{Melbourne)
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Figure B.3.22: Comparison between Observed and Simulated Annual Intensity

Frequency Duration Relationship (Melbourne)
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B.4 Perth, Western Australia (BOM# 9034)

B.4.1 Simulated and Observed Storm Event
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Figure B.4.1: Comparison between Observed and Simulated Mean of Inter-Event Times

(Perth)
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Figure B.4.2: Comparison between Observed and Simulated Standard Deviation of Inter-
Event Times (Perth)
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Figure B.4.4: Comparison between Observed and Simulated Standard Deviation of Event
Storm Durations (Perth)
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Figure B.4.6: Comparison between Observed and Simulated Standard Deviation of Event
Depths (Perth)
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B.4.2 Simulated and Observed Daily Statistics
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Figure B.4.7: Comparison between Observed and Simulated Daily Dry Probabilities
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Figure B.4.8: Comparison between Observed and Simulated Daily Mean Depth (Perth)
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B.4.3 Simulated and Observed Annual and Monthly
Rainfall
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Figure B.4.9: Comparison between Observed and Simulated Annual Rainfall (Perth)
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Figure B.4.10: Comparison between Observed and Simulated January Rainfall (Perth)
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Figure B.4.11. Comparison between Observed and Simulated February Rainfall (Perth)
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Figure B.4.12: Comparison between Observed and Simulated March Rainfall (Perth)
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Figure B.4.13: Comparison between Observed and Simulated April Rainfall (Perth)
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Figure B.4.14: Comparison between Observed and Simulated May Rainfall (Perth)
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Figure B.4.15: Comparison between Observed and Simulated June Rainfall (Perth)
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Figure B.4.16: Comparison between Observed and Simulated July Rainfall (Perth)
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Figure B.4.17: Comparison between Observed and Simulated August Rainfall (Perth)
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Figure B.4.19: Comparison between Observed and Simulated October Rainfall (Perth)
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Figure B.4.20 Comparison between Observed and Simulated November Rainfall (Perth)
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Figure B.4.21 Comparison between Observed and Simulated December Rainfall (Perth)
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Figure B.4.22: Comparison between Observed and Simulated Annual Intensity
Frequency Duration Relationship Perth)
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B.5 Sydney, New South Wales (BOM# 66062)

B.5.1 Simulated and Observed Storm Event
Characteristics
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Figure B.5.1: Comparison between Observed and Simulated Mean of Inter-Event Times
(Sydney)
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Figure B.5.2: Comparison between Observed and Simulated Standard Deviation of Inter-
Event Times (Sydney)
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Figure B.5.3: Comparison between Observed and Simulated Mean of Event Storm

Durations (Sydney)
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Figure B.5.4: Comparison between Observed and Simulated Standard Deviation of Event
Storm Durations (Sydney)
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Figure B.5.5: Comparison between Observed and Simulated Average of Event Depths

(Sydney)
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Figure B.5.6: Comparison between Observed and Simulated Standard Deviation of Event

Depths (Sydney)
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B.5.2 Simulated and Observed Daily Statistics

75 ! T T I ! : I I
[ : : - i ) i | ——— 90% Sim Limits
——— Simulated Median

Daily Dry Probabilities (%)

- '- i | i i i i | | |

1 2 3 4 5 6 7 8 9 10 1 12
Month

Figure B.5.7: Comparison between Observed and Simulated Daily Dry Probabilities
(Sydney)
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Figure B.5.8: Comparison between Observed and Simulated Daily Mean Depth (Sydney)
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B.5.3 Simulated and Observed Annual and Monthly
Rainfall
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Figure B.5.9: Comparison between Observed and Simulated Annual Rainfall (Sydney)
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Figure B.5.10: Comparison between Observed and Simulated January Rainfall (Sydney)
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Figure B.5.12: Comparison between Observed and Simulated March Rainfall (Sydney)
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Figure B.5.13: Comparison between Observed and Simulated April Rainfall (Sydney)
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Figure B.5.14: Comparison between Observed and Simulated May Rainfall (Sydney)
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Figure B.5.15. Comparison between Observed and Simulated June Rainfall (Sydney)
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Figure B.5.16: Comparison between Observed and Simulated July Rainfall (Sydney)

B.52



Appendix B: Improved Rainfall Model Validation (Master Sites)

600 I  S—— S R I R F R I R 1

— 90% Sim Limits
——= Simulated Median
o Obs

525

TTTTTTTT

450

375 :_ ....... ; ........... ...... ..... ______ _____ ________ ________ ..... ,,,,,,
300 '_ ........ ........... ‘. .......... ..... \ ...... ........ . ....... ..... ..... o S

225 :_ ........ ', ........... .......... ,,.. ....... ' ....... . ,,,,, i s , ,,,,,,,, _:

Monthly Rainfall (mm)

150 ’_ ........... _ _____ . ______

75 '_.' ........... ,. _____ , ______ & _______ £

o1 1 510 2030 50 7080 90 95 99 999 99.99

Percent

)

Figure B.5.17: Comparison between Observed and Simulated August Rainfall (Sydney)
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Figure B.5.18: Comparison between Observed and Simulated September Rainfall
(Sydney)
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Figure B.5.19: Comparison between Observed and Simulated October Rainfall (Sydney)
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Figure B.5.20: Comparison between Observed and Simulated November Rainfall

(Sydney)
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Figure B.5.21: Comparison between Observed and Simulated December Rainfall

(Sydney)
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Figure B.5.22: Comparison between Observed and Simulated Annual Intensity

Frequency Duration Relationship (Sydney)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results

C.1 Master - Adelaide, South Australia (BOM#

C.1.1 Target — Williamstown, South Australia (BOM#

23763)

C.1.1.1 Simulated and Observed Storm Event Characteristics
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Figure C.1.2: Comparison between Observed and Target Simulated Standard Deviation

of Inter-Event Times (Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.3: Comparison between Observed and Target Simulated Mean of Event Storm
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Figure C.1.4: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.5: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.6: Comparison between Observed and Target Simulated Standard Deviation
of Event Depths (Master — Adelaide Airport; Target — Williamstown)
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C.1.1.2 Simulated and Observed Daily Statistics
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Figure C.1.7: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master — Adelaide Airport; Target — Williamstown)
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C.1.1.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.1.9: Comparison between Observed and Target Simulated Annual Rainfall
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Figure C.1.10: Comparison between Observed and Target Simulated January Rainfall

(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.11: Comparison between Observed and Target Simulated February Rainfall

(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.12: Comparison between Observed and Target Simulated March Rainfall

(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.13: Comparison between Observed and Target Simulated April Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.14: Comparison between Observed and Target Simulated May Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.15: Comparison between Observed and Target Simulated June Rainfall
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Figure C.1.16: Comparison between Observed and Target Simulated July Rainfall

(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.17: Comparison between Observed and Target Simulated August Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.18: Comparison between Observed and Target Simulated September Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.19: Comparison between Observed and Target Simulated October Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.20: Comparison between Observed and Target Simulated November Rainfall
(Master — Adelaide Airport; Target — Williamstown)
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Figure C.1.21: Comparison between Observed and Target Simulated December Rainfall

(Master — Adelaide Airport; Target — Williamstown)

C.1.1.4 Simulated and Observed Annual IFD Curves
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Figure C.1.22; Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Reiationship (Master — Adelaide Airport; Target — Williamstown)
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C.1.2 Target — Stirling, South Australia (BOM#
23785)

C.1.2.1 Simulated and Observed Storm Event Characteristics
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Figure C.1.23: Comparison between Observed and Target Simulated Mean of Inter-Event
Times (Master — Adelaide Airport; Target — Stirling)
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Figure C.1.24: Comparison between Observed and Target Simulated Standard Deviation
of Inter-Event Times (Master — Adelaide Airport; Target — Stirling)
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Figure C.1.25: Comparison between Observed and Target Simulated Mean of Event
Storm Durations (Master — Adelaide Airport; Target — Stirling)
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Figure C.1.26: Comparison between Observed and Target Simulated Standard Deviation
of Event Storm Durations (Master — Adelaide Airport; Target — Stirling)
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Figure C.1.27: Comparison between Observed and Target Simulated Average of Event
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Figure C.1.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master — Adelaide Airport; Target — Stirling)
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C.1.2.2 Simulated and Observed Daily Statistics
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Figure C.1.29: Comparison between Observed and Target Simulated Daily Dry
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babilities (Master — Adelaide Airport; Target — Stirling)
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Figure C.1.30: Comparison between Observed and Target Simulated Daily Mean Depth

(Master — Adelaide Airport; Target — Stirling)
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C.1.2.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.1.31: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.32: Comparison between Observed and Target Simulated January Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.33: Comparison between Observed and Target Simulated February Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.34: Comparison between Observed and Target Simulated March Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.35: Comparison between Observed and Target Simulated April Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.36: Comparison between Observed and Target Simulated May Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.37: Comparison between Observed and Target Simulated June Rainfall
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Figure C.1.38: Comparison between Observed and Target Simulated July Rainfall

(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.39: Comparison between Observed and Target Simulated August Rainfall

(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.40: Comparison between Observed and Target Simulated September Rainfall

(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.41: Comparison between Observed and Target Simulated October Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.42: Comparison between Observed and Target Simulated November Rainfall
(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.43: Comparison between Observed and Target Simulated December Rainfall

(Master — Adelaide Airport; Target — Stirling)
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Figure C.1.44: Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Relationship (Master — Adelaide Airport; Target — Stirling)
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C.2 Master — Brisbane (RO), Queensland (BOM#

40214)

C.2.1 Target — Brisbane (AMO), Queensland (BOM#

40223)

C.2.1.1 Simulated and Observed Storm Event Characteristics
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Figure C.2.1: Comparison between Observed and Target Simulated Mean of Inter-Event
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Figure C.2.2: Comparison between Observed and Target Simulated Standard Deviation

of Inter-Event Times (Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.3: Comparison between Observed and Target Simulated Mean of Event Storm
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Figure C.2.4: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.5: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.6: Comparison between Observed and Target Simulated Standard Deviation
of Event Depths (Master — Brisbane Regional Office; Target — Brisbane AMO)
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C.2.1.2 Simulated and Observed Daily Statistics
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Figure C.2.7: Comparison between Observed and Target Simulated Daily Dry
Probabilities (Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.8: Comparison between Observed and Target Simulated Daily Mean Depth
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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C.2.1.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.2.9: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.10: Comparison between Observed and Target Simulated January Rainfall
(Master ~ Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.11: Comparison between Observed and Target Simulated February Rainfall
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Figure C.2.12: Comparison between Observed and Target Simulated March Rainfall

(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.13: Comparison between Observed and Target Simulated April Rainfall
(Master — Brisbane Regional Office; Target ~ Brisbane AMO)
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Figure C.2.14: Comparison between Observed and Target Simulated May Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.15: Comparison between Observed and Target Simulated June Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)

500 I ! Tt 1 I T T T ! !
| —— 90% Sim Limits : : ' ‘ ‘ ;
. Simulated Median Pl : B Pl : ' |
400 H o) Obs ,~ ....... Fesneaes ;. ..... T & 0, ........... , ....... __
B L R . o g b .
£ { : B co : b B : : R
; 300 feeo-esee Teamnennaand fressesenes R 2 ....... e ...... feens I : e T FT T -
8 L : : N Lo : oo I ] ; ]
£
(] - . \ H ' ' ' - s
g i s | A N T . Y ': ; ]
i 200 :.. ....... ........... _.. AAAAA , ...... ,.\ ...... ; , ........ , ........... ........ .:
[ L : : : : : { : :
5]
= C : : A i L : E ]
100 ._ ........... .......... ..... ...... ........ ....... Teeesenees ........... ........ 5
0 [ | 1 I | i

.01 A 1 10 2030 50 7080 90 95 99 99.9 99.99

Percent

Figure C.2.16: Comparison between Observed and Target Simulated July Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.17: Comparison between Observed and Target Simulated August Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.18: Comparison between Observed and Target Simulated September Rainfall
(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.19: Comparison between Observed and Target Simulated October Rainfall

(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.20: Comparison between Observed and Target Simulated November Rainfall

(Master — Brisbane Regional Office; Target — Brisbane AMO)
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Figure C.2.21: Comparison between Observed and Target Simulated December Rainfall

(Master — Brisbane Regional Office; Target — Brisbane AMO)

C.2.1.4 Simulated and Observed Annual Intensity — Frequency —

Duration
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Figure C.2.22: Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Relationship (Master — Brisbane Regional Office; Target — Brisbane

AMO)
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C.2.2 Target — Kirkleigh,

Queensland (BOM# 40318)

C.2.2.1 Simulated and Observed Storm Event Characteristics
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Figure C.2.23: Comparison between Observed and Target Simulated Mean of Inter-Event

Times (Master — Brisbane Regional Office; Target — Kirkleagh)
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C.34



Appendix C: Regionalisation with a Short Pluviograph Record - Results

6 n =I I I 1= T T T T

90% Sim Limits

55 H Simulated Median
°©  Obs

5 H=m==- Master Mean Duration

Mean Storm Duration (hours)

Month

Figure C.2.25: Comparison between Observed and Target Simulated Mean of Event
Storm Durations Master ~ Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.26: Comparison between Observed and Target Simulated Standard Deviation
of Event Storm Durations Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.27: Comparison between Observed and Target Simulated Average of Event
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Figure C.2.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths Master — Brisbane Regional Office; Target — Kirkleagh)
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C.2.2.2 Simulated and Observed Daily Statistics
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Figure C.2.29: Comparison between Observed and Target Simulated Daily Dry
Probabilities Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.30: Comparison between Observed and Target Simulated Daily Mean Depth
Master — Brisbane Regional Office; Target — Kirkleagh)
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C.2.2.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.2.31: Comparison between Observed and Target Simulated Annual Rainfall
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Figure C.2.32: Comparison between Observed and Target Simulated January Rainfall

Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.33: Comparison between Observed and Target Simulated February Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.34: Comparison between Observed and Target Simulated March Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.35: Comparison between Observed and Target Simulated April Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.36: Comparison between Observed and Target Simulated May Rainfall Master

— Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.37: Comparison between Observed and Target Simulated June Rainfall

Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.38: Comparison between Observed and Target Simulated July Rainfall Master

— Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.39: Comparison between Observed and Target Simulated August Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.40: Comparison between Observed and Target Simulated September Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.41: Comparison between Observed and Target Simulated October Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.42: Comparison between Observed and Target Simulated November Rainfall
Master ~ Brisbane Regional Office; Target — Kirkleagh)
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Figure C.2.43: Comparison between Observed and Target Simulated December Rainfall
Master — Brisbane Regional Office; Target — Kirkleagh)

C.2.2.4 Simulated and Observed Annual Intensity — Frequency —
Duration
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Figure C.2.44: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship Master — Brisbane Regional Office; Target — Kirkleagh)
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C.3 Master — Melbourne, Victoria (BOM# 86071)

C.3.1 Target — East Sale, Victoria (BOM# 85072)

C.3.1.1 Simulated and Observed Storm Event Characteristics
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Figure C.3.1: Comparison between Observed and Target Simulated Mean of Inter-Event

Std Dev Inter-Event Time (hours)

Times (Master — Melbourne; Target — East Sale)
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Figure C.3.2: Comparison between Observed and Target Simulated Standard Deviation

of Inter-Event Times (Master — Melbourne; Target — East Sale)
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Figure C.3.3: Comparison between Observed and Target Simulated Mean of Event Storm
Durations (Master — Melbourne; Target — East Sale)
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Figure C.3.4: Comparison between Observed and Target Simulated Standard Deviation
of Event Storm Durations (Master — Melbourne; Target — East Sale)
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Figure C.3.5: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Melbourne; Target — East Sale)
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Figure C.3.6: Comparison between Observed and Target Simulated Standard Deviation
of Event Depths (Master — Melbourne; Target — East Sale)
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C.3.1.2 Simulated and Observed Daily Statistics
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Figure C.3.7: Comparison between Observed and Target Simulated Daily Dry
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Figure C.3.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master — Melbourne; Target — East Sale)
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C.3.1.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.9: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.10: Comparison between Observed and Target Simulated January Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.11: Comparison between Observed and Target Simulated February Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.12: Comparison between Observed and Target Simulated March Rainfall

(Master — Melbourne; Target — East Sale)
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Figure C.3.13: Comparison between Observed and Target Simulated April Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.14: Comparison between Observed and Target Simulated May Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.15; Comparison between Observed and Target Simulated June Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.16: Comparison between Observed and Target Simulated July Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.17: Comparison between Observed and Target Simulated August Rainfall

Monthly Rainfall (mm)

250

200

150

100

50

(Master — Melbourne; Target — East Sale)

I 1 | I
| —— 90% Sim Limits
—— Simulated Median
& o  QObs

5 10 2030 50

Percent

70 80 90 95

99

99.9 99.99

Figure C.3.18: Comparison between Observed and Target Simulated September Rainfall

(Master — Melbourne; Target — East Sale)
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Figure C.3.19: Comparison between Observed and Target Simulated October Rainfall
(Master — Melbourne; Target — East Sale)

250' I 1 ——— 1 1 T 1 I

— 90% Sim Limits
| | = Simulated Median P : b ool : :
200 |- o Obs ,. ....... Brveeeas \ ..... R T froneee -

150 b—veenens ........... .......... ..... ....... ....... . ...... s vreagiia ........ ]

Monthly Rainfall (mm)

TR ; e B T —
50 R - - R beossser i

L
.01 A 1 5 10 2030 50 7080 90 95 99 99.9 99.99

Percent

Figure C.3.20: Comparison between Observed and Target Simulated November Rainfall
(Master — Melbourne; Target — East Sale)
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Figure C.3.21: Comparison between Observed and Target Simulated December Rainfall
(Master — Melbourne; Target — East Sale)

C.3.1.4 Simulated and Observed Annual Intensity — Frequency —
Duration
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Figure C.3.22: Comparison between Observed and Target Simulated Annual Intensity
Frequency Duration Relationship (Master — Melbourne; Target — East Sale)
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C.3.2 Target — Ellinbank, Victoria (BOM# 85240)

C.3.2.1 Simulated and Observed Storm Event Characteristics
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Figure C.3.23: Comparison between Observed and Target Simulated Mean of Inter-Event
Times (Master — Melbourne; Target — Ellinbank)
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Figure C.3.24: Comparison between Observed and Target Simulated Standard Deviation
of Inter-Event Times (Master — Melbourne; Target — Ellinbank)
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3.25: Comparison between Observed and Target Simulated Mean of Event

Storm Durations (Master — Melbourne; Target — Ellinbank)
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Figure C.3.26: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master — Melbourne; Target — Ellinbank)

C.57



Appendix C: Regionalisation with a Short Pluviograph Record - Results

9
8
T 7
13
£ 6
[
[a]
£
E s
[/s]
c
§ 4
2
3
2

Obs

i ] [ ! I | I 1 I I
B : g : '; ; : )| —— 90% Sim Limits
. ......... avcsasannt .......... Simulated Median

i

Month

Figure C.3.27: Comparison between Observed and Target Simulated Average of Event
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Figure C.3.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master — Melbourne; Target — Ellinbank)

C.58



Appendix C: Regionalisation with a Short Pluviograph Record - Results

C.3.2.2 Simulated and Observed Daily Statistics
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Figure C.3.29: Comparison between Observed and Target Simulated Daily Dry
Probabilities (Master — Melbourne; Target — Ellinbank)
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Figure C.3.30: Comparison between Observed and Target Simulated Daily Mean Depth
(Master — Melbourne; Target — Ellinbank)
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C.3.2.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.31: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.32: Comparison between Observed and Target Simulated January Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.33: Comparison between Observed and Target Simulated February Rainfall
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: Comparison between Observed and Target Simulated March Rainfall
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Figure C.3.35: Comparison between Observed and Target Simulated April Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.36: Comparison between Observed and Target Simulated May Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.37: Comparison between Observed and Target Simulated June Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.38: Comparison between Observed and Target Simulated July Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.39: Comparison between Observed and Target Simulated August Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.40: Comparison between Observed and Target Simulated September Rainfall
(Master — Melbourne; Target — Ellinbank)
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Figure C.3.41: Comparison between Observed and Target Simulated October Rainfall

(Master — Melbourne; Target — Ellinbank)
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: Comparison between Observed and Target Simulated November Rainfall

(Master — Melbourne; Target — Ellinbank)
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Figure C.3.43: Comparison between Observed and Target Simulated December Rainfall

(Master — Melbourne; Target — Ellinbank)

C.3.2.4 Simulated and Observed Annual Intensity — Frequency -

Duration
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Figure C.3.44: Comparison between Observed and Target Simulated Annual Intensity

Frequency Duration Relationship (Master — Melbourne; Target — Ellinbank)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results

C.3.3 Target — Laverton, Victoria (BOM# 87031)

C.3.3.1 Simulated and Observed Storm Event Characteristics
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Figure C.3.45: Comparison between Observed and Target Simulated Mean of Inter-Event
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Figure C.3.46: Comparison between Observed and Target Simulated Standard Deviation

of Inter-Event Times (Master — Melbourne; Target ~ Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results
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Figure C.3.47: Comparison between Observed and Target Simulated Mean of Event
Storm Durations (Master — Melbourne; Target — Laverton RAAF)
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Figure C.3.48: Comparison between Observed and Target Simulated Standard Deviation
of Event Storm Durations (Master — Melbourne; Target — Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results
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Figure C.3.49: Comparison between Observed and Target Simulated Average of Event
Depths (Master — Melbourne; Target — Laverton RAAF)
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Figure C.3.50: Comparison between Observed and Target Simulated Standard Deviation
of Event Depths (Master — Melbourne; Target — Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results

C.3.3.2 Simulated and Observed Daily Statistics
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Figure C.3.51: Comparison between Observed and Target Simulated Daily Dry
Probabilities (Master — Melbourne; Target — Laverton RAAF)
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Figure C.3.52: Comparison between Observed and Target Simulated Daily Mean Depth
(Master — Melbourne; Target — Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Results

C.3.3.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.53: Comparison between Observed and Target Simulated Annual Rainfall
(Master — Melbourne; Target — Laverton RAAF)
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Figure C.3.54: Comparison between Observed and Target Simulated January Rainfall
(Master — Melbourne; Target — Laverton RAAF)
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