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ABSTRACT

The desþ of hydraulic systems that have to cope with natutal flows of flood

magnitude is risk-based The estimation of flood risk telies on joint probability

theory where the combination of stochastic inputs such as rainfall. and a descrþtion

of the hydrological /hy&auhc runoff process determine the ptobabiJity distribution

of flooding events. To date both the desþ storm apptoach presented in A,ustralian

Rainfall and Runoff (Institution of Engineets ,{.usúalia, 1.987) and continuous

simulation through a Monte Cado approach have ptovided workable methods for

dedving empirical flood probabiJity distributions as an estimate of this flood dsk.

Wbile the continuous simulation approâch has long been viewed as the best way to

evaluate the probabilistic behavior of sutface water systems, the desþ storm

approach has temained the preferred choice due to its simplicity and ease of use.

However with the onset of powedul petsonal computers ptoviding the ability for

increasingly complex anaþsis within the tequired timeftames, the tendency towatds

using a continuous simulation apptoach will continue to gtow.

The idea behind the Monte Cado continuous simulation apptoach is that a long

model simulation will eventually sample all possible joint ptobability intetactions (i.e.

all combinations of tatnfall. input and runoff model conditions etc) within a system.

If this is the case, the dedved flood disttibution from these simulations can be

rriewed 
^s ^rr ^ccvrate 

inference of the tue flood distribution and therefore can be

used for engineedng analysis and evaluation of flood dsk. A drawback of the Monte

Carlo approach is the tequired input of a long ninfall. tecotd. In the absence of a

signi{ìcant historical record, ntnfall.models can be used to ptovide the tequited data

but ate in tum reliant on adequate historical daø for calibtation. Accurate calibtation

of lztnfall. models is particularþ impottant in Australia where the vadability of ntnfal'

at shott and long term time scales is large.

Australia does have an extensive netwotk of :ainfzll tecording stations. These sites

record tatnfall data ln various forms tanging from a daily time step down to six-

minute resolution. While the size of historical daily records is often large, thete ate

very few six-minute @luviograph) recotds available of significant length. Indeed,
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analysis of Australia's pluviogtaph tecotds indicates that the 
^veraLge 

length of the

more than 900 pluviogtaph data sets available ftom the Buteau of Meteorology is

approximately 15 yeats. Only a small numbet of sites have a record length exceeding

40 years and of these only 40 ot so remain active. Even with the high quality of
latnfalT data in Ausftalia, periods of missing or corrupt data are often ptesent. Not

only does this lack of significant shott time scale data ptovide a majot obstacle in the

application of a Monte Catlo approach to dsk estimation, it also inhibits the

application of ratnfall. simulation models that use this data for direct calibration. This

lack of data is particulatly impotant if we consider the tails of the flood probabiliry

distribution whete it is unlikely that a 7í-yeat historical record can provide accurate

estimates of a 100 year flood event. Whfe the advent of numerous stochastic :l.lltnfall

models ptovide methods fot extending historical tatnfall. records, without adequate

historical ratnfall data avatfable fot calibtation their 
^ccrrràcy 

is questionable.

This thesis descdbes the development of a flew technique which significantly extends

the applicability of stochastic potnt ratnfall models that require historical data for

calibtation. The technique is demonstrated using a high-tesolution poìnt rainfall

model based on wet-dry altemating storm events. The odginal model presented by

Heneker et a/. Q001) uses stotm events which are defined by the observed event

distributions of dry petiods, storm event durations and stotm intensity conditioned

on storm duration and replicates this event structure dudng simulation.

Significant imptovements to the odginal model are presented as the first part of this

thesis. The parametedsation used to describe the event distributions has been

simplifred and the numbet of parameters reduced resulting in a model that is more

robust and easiet to calibtate. In addition, the Mettopolis algorithm Qyletropohs et al.

(1953) was incorpotated into the model ptoviding a descdption of the posterior

distribution of model parameters and as a result enables a descrþtion of parameter

uncettainty within the model stnlcture. These improvements have produced a model

that is well defined and can be vigorously compared against numerous observed

statistics in a quantitative manner. Simulation results indicate that thc modcl is ablc

to replicate both calibrated and non-calibtated statistics at various time scales.
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The original model required the use of a long pluviogtaph tecotd at the site of

interest to ensure an accarate calibtation of model pafameters. To circumvent this

restriction in the application of the model â new 'mastet'- 'tatget' scaling relationship

has been developed and incorporated into the model. A model calibtation is

undertaken at a'lcrraster' site with a long pluviogtaph tecord which is then updated

and scaled to the 'target' site of interest using the infotmation from eithet a shott

pluviograph or daüy ntnfal, recotd. This structure has temoved the need for

significant pluviogaph data at the 'tatget' site and enables the tainfall model to be

applied at sites with shot pluviogtaph ot daily tainfall'tecotds.

The approach has been tested at numetous paits of sites ptoviding evidence of its

success in generating 
^ccuïeLte 

synthetic pluviogtaph data actoss the country and

within vadous climatic regions. Model tesults âre presented and compated for both

the observed pluviograph data (fot individual stotm and sub-daily statistics) and daily

data (for longer aggtegated statistics) available at the t^rget sites and compares well to

,\usttalian data. The rainfall model presented in this thesis can be used to ptovide

accwrate synthetic ratnfall. dúa at sites with minimal histodcal tainfall data ptoviding a

powetful tool for application in hydtological risk anaþsis acfoss Australia.
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CHAPTER 1

INTRODUCTION

1 .1 lntrod uction

The desþ and anaþsis of complex hydtaulic engineering systems is typicaþ dsk-

based. Underground urban pipe net'works, bridges, culverts, channels and wetlands

are alL desþed to cope with natutal stotmwatet flows of a cettain flood magnitude.

The estimation of how often these systems will fail (ot the ptobability of observing

an everì.t that exceeds an assumed design level - flood risk) is fundamental to the risk

analysis process.

The estimation of flood risks relies on joint probability theory where the

combination of inputs such as rainfal.J and a description of the hydrological/hydraulic

nrnoff process determine the probability distribution of flooding events. Within

Ausftalia engineers often use the apptoach presented in Austtalian Rainfall and

Runoff (refered to as ÂRR) (Institution of Engineets ,{.usttalia, 1,987) which is

known as the desþ storm apptoach. The method for evaluating flood dsk

ptobabilities is based on a desþ ratnfall, stotm for which "the intention is to derive a

flood of selected ptobability of exceedance from a desþ rztnfall, of the same

probability" þ\RR, p6]. This apptoach relies on the assumption that median values

of all other variables other than ratnfaü, (such as losses, base flow, tempotal patterns

and hydrograph model parameters) can be used and still estimate alt 
^ccrrtate 

runoff

representation providing a flood of the same exceedance probability as the input

desþ storm. Unforhrnately, ARR does not demonstrate that this objective is

achieved and indeed admits that "thete is a need fot teseatch to test this apptoach".
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Chapter 1 : lntroduction

The ptoblem of estimating flood dsk can also be solved empfuically using a Monte

Cado continuous simulation model which tequites simulating the flood response due

to a long ratnfall. tecord and empirically deriving th. tesultant flood probabitity

distributions. This technique works on the basis that a sufficiently long simulation

will eventually sample almost all possible joint probability interactions (i.e. all

combinations of rainfall. input and possible nrnoff conditions etc). If this can be

achieved successfully, the derived flood probabiJity disttibution can be viewed as an

accurate inference of the ttue flood probability distribution.

Despite the theoretical supedority of the continuous simulation apptoach, desþers

across A.ustralia continue to adopt the desþ ratnfall method as the method of

choice not only due to its simplicity, but also due to the problems associated witll

using continuous simulation models in the past. These models tely on a large

number of Monte Cado simulations, which in turn requires significant computational

effott and stotage space. Previously this could be seen as ptohibitive, however with

the continual inctease in the powet and avatlability of personal computers, this issue

has become less relevant.

,{. more signifìcant issue is the availability and length of histodcal rainfall records

available fot use in Monte Cado applications. This is patticularþ important if we

consider the tails of the flood probabiìity distdbution where it is unlikely that a 15-

yeat histotical tecotd can provide accurate estimates of a 100 yeat flood event. \7hjle

the advent of numerous rainfall models can provide a method for extending

histotical ntnfall. recolds, without adequate historical rz;tnfall. data available for

calibration their accutacy is questionable. In paticular, models which attempt to

ptoduce synthetic ratnfall. at the sub-hourþ time ftame ate often susceptlble to

insuffrcient calibration data for the complex processes that these models 
^re

attempting to teproduce. This is patticularþ televant for analysis of systems where

initial catchment conditions or storage volume is impottant (i.e. flood analysis ot

when investigating Water Sensitive Utban Desþ components in new ot existing

stormwater systems), Without the local availability of signifrcant high resolution data

fot caübration or â technique to use alternate additional data sources (i.e. daily), these

models will continue to remain resuicted in their application and usefulness as an

engineering tool.
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The Australian Govetnment's Buteau of Meteotology is tesponsible for the rnajority

of climate stations across the country recotding vatious climatic vadables including

wind, solar radiation, cloud cover and ninfall,. If we consider lzLtnfal, recording

stations to undetstand the calibration data avalfable for high tesolution rainfall

models, then these stations are defined as belonging to one of two types, eithet the

observed rainfall depth is tecotded over a given day @^ily gauge) ot continuously on

a chart (Dines pluviogtaph) while the tippitg bucket tain gauges tecotd the time of

tipr. The distdbution and length of these tainfall stations âcross the country

provides a snapshot into the potential availability of calibration rainfall data within

Australia.

'\t the time of writing the Buteau of Meteotology administered apptoximately 942

pluviograph tainfall sites in total actoss the country (see Figute 1.1).

- -u_lçrd# oth\ 
n

ta\
tr

0

Figure 1.1: Australian Bureau of Meteorology: Pluviograph Recording Stations

A ftst glance gives the imptession that this number of gauges could be considered an

excellent basis fot :ø;tnfall. model calibration and ptovides a useful data tool for

engineers in genetal. Howevet, futthet analysis into the extent of this data teveals
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significant inadequacies. Of the 942 pluvrograph sites in Australia, the combined

avera,ge length is only approximately 15 years. Even if this value is slightly biased by

a numbet of sites that are relatively new (ot were recorded fot a specifrc purpose and

contain only a few yeats of tecotd), more alarming is the fact that of all sites that ate

s :ll active, only 36 have a record length greater than 40 years.

Assuming 40 years of historical record is adequate fot model calibration, Figure 1.2

displays the sparse nâture of these pluviogaph calibtation sites available in Austalia.

Complicating issues futthet is that these historical tecords often contain sections of

missing or erroneous data (faulty gauges, time aggtegated ninfall totals), which

present another obstacle (and a potential reduction tn data length) in using this data

to successfully calibtate high tesolution rainfall models.

\..* ^ À-\-+Y rh\ r
tt\ \

Aí}

0

Figure 1.2: Australian Bureau of Meteorology: Pluviograph Recording Stations with a

Historical Record Greater than 40 Years

Further analysis of Figure 1.2 shows that while sparse in number, the long tetm

pluviogtaph tecotds across Austtalia ate located at the major 'A.ustralian centtes and

are distdbuted throughout the major climatic regions. These climatic regions are
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shown in Fþre 1.3 (i.e. Temperate climate of Adelaide/Melbourne/Sydney, Sub-

Ttopics of Brisbane, the Desett of Älice Springs etc). The distdbution of long term

sites across majot climatic tegions enables these sites to be used as a basis fot

potential tegionalisation work.
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Climate Classification of Australia
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Figure 1.3: Climate Classification of Australia (Australian Bureau of Meteorology website)

In addition to the network of pluviogtaph stations, the Buteau of Meteotology

administets approximately 18,000 daily tecotding stations (See Figure 1.4). These

rainfall. stations ptovide daily tecords not only across mainland '\ustralia but also on

islands off shote and even âcross Antatctica (not shown).

ãnó
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Figure 1.4: Australian Bureau of Meteorology: Daily Recording Stations

If the assumption of a 40 yeat caltbntion tecord is continued, then thete ate tn

excess of 7,300 daily sites which contain a sufficient data tecotd and just ovet 4,400

of these ate still active. Fot models that are able to utilise datly data for calibration,

the Australian data set provides a comprehensive number of sites to choose ftom

with a distdbution across the nation that almost guatantees an adequate calibtation

site can be found within close ptoximity. In locations where no data is available,

techniques also exist which ptovide interpolated datly data recotds at the site of

intetest based on neighboudng data sites. These in turn can be used fot model

calibtation.

The compadson between potential pluviograph and daily calibration sites presents a

statk conttast. Not only ate there mote active daily stations with long historical

tecords (4,400) than the total number of pluviogtaph stations (932) within Austtalia,

pluviograph stations in genetal have been focused on majot centres along the coast.

Þigure 1.5 displays the extensive coverage of daily sites in direct compadson to their

pluviograph counterparts when considering only those sites with more than 40 yeats

ofrecotd.
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Figure 1.5: Australian Bureau of Meteorology: Pluviograph and Daily Recording Stations

with a Historical Record Greater than 40 Years

It is clear that any model teþing completely on significant historical pluviogtaph data

for calibration is severely limited in its application in Austalia in contrast to models

capable of using daiTy data recotds. If a continuous rainfall simulation model was

developed with adequate complexity to captute the sub-daiþ :izrinfall chatactetistics

but also structured in a manner to urilise the limited infotmation avatlable from a

daily calibration site, it is also clear that such a model would provide a valuable

hy&ological tool capable of wide sptead application across Australia.

1.2 Aims

Continuous simulation models can provide signifrcant advantages over the desþ

storm approach to engineeting analysis and desþ, howevet these models tequire a

description of the stochastic rainfall input. In the absence of a signifrcant historical

record, :øiinfall models can supplement the historical information, howevet high

resolution :ainfalf models in particular are limited in thefu appJication due to the

sparse riature of caltbtatton records and pedods of time within these tecotds which
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are missing ot have been influenced by malfunctions or erÍors with the recording

appafatus.

The ultimate goal of this reseatch was to provide a rainfalL simulation model which

could successfuþ simulate accutate synthetic pluviogtaph records at sites across

Australia with minimal or no histotical pluviogtaph data. To achieve this objective

five aims wete developed:

(1) To develop or select a rainfall model capable of simulating synthetic

pluviogtaph data;

Q) T" tefine and improve the rainfali model by including uncettainty and a

Monte Carlo simulation structute ensudng the calibration process is robust

and compadson to observed data is accurate.

(3) To veti$' the accutacy of the ratnfall, model by anaþsing its petfotmance and

structure at sites with significant pluviogtaph tecords fot calibtation and

comparison;

(a) To extend the application of the model to sites with minimal historical

pluviogtaph data avatlable for calibration and ftnally;

(5) To extend the application of the model to sites with only histotical datly data

and no pluviogaph data avaifable fot calibration.

1.3 Research Outline

The outline of this reseatch can be ptesented with a descrþtion of each chaptet.

Chaptet 2 contains a teview of curtent methods or approaches available fot ratnfalT

simulation and describes the tatnfall. model selected fot re-development. After a

teview of point ratnfalT models (including Poisson, Clustet, Matkov and Alternating

Renewal Models), an alternating tenewal model introduced by Heneker et al. (2001)

was selected for futhet development and use. The selected point rz;tnfall model

8
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introduced by Heneker et al. (2001) calibrates to stotm event data exúacted ftom

histodcal pluviograph records and as such is not vulnetable to missing or corrupt

data periods in the historical recotd. The model was also able to teptoduce both

calibtated and non-calibrated statistics when applied to sites across vatious climatic

regimes in Australia making it an ideal choice fot futthet investigation. Chapter 3

considers the Heneker el a/. (2001) model frrrthet and presents enhancements to the

model structure arrd cahbntion process which imptove the tobustness and 
^ccuracy

of the model calibtation. This is patticulatþ important if the model was to be

calibrated successfully at sites with little or no pluviogaph data. Cbapter 4 considers

p^t^rr'eter uncettainty and how including a description of uncettainty within the

model can be used to improve statistical compadsons to observed data sets. Chaptet

5 presents a validation of the improved model against numerous Australian data sites

across ^ r^rLge of climatic conditions. This ptovides evidence of the models

performance with adequate calibtation data and its abiJity to replicate tequired

observed statistics.

Chaptet 6 develops â new calibration process which enables the tainfall model

parameters to be calibrateda;t site locations with only a shot histotical pluviogaph

data record. In its original form, the adopted rainfall. model (as is the case with most

:ratnfall models that descdbe the tainfall process at a sub-hourly scaþ tequited a

significant length of historic data for 
^cclrr^te 

calibtation. To provide a method for

calibrating to a short historical recotd, a master-tatget relationship is introduced.

This relationship is developed to exploit the similarities in the model parameters

between two sites which reside in a similat tegion. This master - target framewotk

uses the selecd.on of a mastet site containing a long pluviogtaph tecotd as a basis

with which the model can be accurately calibrated initially. This initial calibtation is

then updated by the limited pluviograph infotmation available at the t^rget site of

interest. This master-target calibtation apptoach ensures the model is able to

describe the rainfall process at the target site with minimal calibtation data.

In addition to developing a process for shifting each model patametet, a technique

was tequired to deal with the major issue of the different lengths and time periods

over which the master ar'd tatget data sets wete observed. In otder for the Process

to be successful, concutent data pedods wete tequired for comparison at the master

9



Chapter 1 : lntroduction

and target site to ensure any caltbratton of the model when shifting from the master

to the target site was a teflection of the requirements of the model parameters and

not a reflection of the differences in data time periods. To circumvent this issue a

pivotal intermediate calibtation step is also inttoduced which enables the model to

capture variations that exist between the two sites as a result of theit different record

lengths and non-concurrent data periods, which are then taken into accourì.t prior to

a fnal compadson between the sites to shift the model parameters from the master

to tatget sites. The ovetall apptoach is then tested by selecting târget sites with

sufficient data for compadson þut only using a sub-set of this data fot calibration),

providing evidence of its success in generating accurate synthetic pluviograph data at

sites actoss the country and across vatious climatic conditions. Model results are

ptesented and compared for both the observed pluviograph data (for individual

storm and sub-daily statistics) and datly data (fot longet aggregated statistics)

avatlable at the tatget sites.

Chapter 7 develops a process fot calibtating the pluviograph lø;infall. model at sites

with no historical pluviogtaph data. A. mâster-target relationship similar in structute

to Chaptet 6 is developed with the mastet site consisting of a long pluviograph

tecord while the tzlrget site contains only darly data. Initial calibration is completed at

the mastet site, forming the basis for furthet calibtation to the daily record at the

tatget site. This apptoach erisures the model can successfully capture the undetþing

strncture of the sub-daily tatnfalf (through the calibration at the master site) while

having the ability to captute the required rz;tnfzll differences (through the use of daily

data) that occur at the target site. '\ simulated likelihood frtting apptoach is

developed to facilitate this ptocess and enable direct comparison between aggtegated

master simulation data and the observed daily datz- at the target site. Model results

are presented fot the same pluviograph sites as used in Chaptet 6 which enables a

compadson of the acctrta.cy of the two approaches (with and without pluviograph

data) and ensures sub-daily statistics are successfully reptoduced when calibrating

with daily data at the target site.

Finally conclusions and recommendations of the teseatch ptesented in this thesis ate

made in Chapter B.
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CHAPTER 2

LITERATURE REVIEW

2.1 lntroduction

The modelling of hydrological engineering systems often tequires the input of a long-

term historical ratnfall, record. Fot example, volume based design of a stormwatet

detention or wetland system involves the interaction between existing system levels

and incoming flow. Similarþ the runoff response ftom the catchment itself which

determines the incoming flow is dependent on the initial conditions of the catchment

and whether it has been a relatively wet or dry period. These problems can only be

accurately modelled tlrrough the use of a continuous water balance simulation. In

the absence of a signifrcant historical tecotd or to ptovide futhet engineeting system

evaluation through continuous simulation, :l-z;tnfald models can be used to provide

synthetic records as inputs into such system simulations. A majot issue which

confronts the users of rainfall, models, patticulady those which attempt to reptoduce

ntnfall. at the sub daiþ time step, is the lack of quantity and quality within historical

tainfalT records avatlable for model calibration. With this in mind this chaptet

reviews the developments of stochastic point :øLinfall. models at vatious time scales

and current regionalisation techniques. This review has identified a patticulat point

ratnfall. model that is suitable for fufther development and the key features of a new

regionalised framewotk that will enable the model to be applied at numetous sites

across the country.

11
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2.2 Physical Process of Prec¡pitation

Precipitation is the pÀmary source of the Eatth's water supplies and is the blanket

tetm used to describe rain, snow, hail and all other fotms of moisture that fall from

clouds in the atmosphete. The physical genetation of ptecipitation can only proceed

when fout ptocesses occur in sequence. Initially there must be a cooling of moist air

to the dew point tempetature. This is usually a ptoduct of warrn moist air cooling as

it tises through the atmosphete. Once this occurs, condensation follows fotming

cloud droplets ot ice crystals. This is a complex process and relies on the presence of

dust and aetosols in the atmosphete to ptovide a surface for condensation to occur.

The efficiency of the condensation ptocess is influenced by the size and number of

these rnicroscopic patticles that ate available (Burroughs,1999). If these particles are

not preseflt in the atmosphere, the condensation process and therefore ptecipitation

cânrìot begrn. As time progtesses, crystals fotmed dudng the condensation process

continue to develop and gtow fotming taindtops. Finally a constant supply of water

vâpour ptovides the fuel tequited to ensute these ptocesses contjnue to produce

ptecipitation in one of its many forms (Gilman, 1964).

The three dimensional intetaction between these processes and the sunounding

atmosphete due to local and global circulation pattems ensures the precipitation

process can be consideted pseudo-chaotic. Due to the complexity involved and our

Iack of complete undetstanding, physical based models which attempt to

mathematically describe these undetþing physical processes can only have limited

application both in the tempotaland spatial scale (Cho 1985, Cho and Chan 1,987).

The difficulty itt ptoducing such deterministic physical models that adequately

describe this complex and evolving process of ratnfall have lead researchers to

concenttate on modelling ratnfall. stochastically to reproduce certain statistical

atüibutes of the obsewed data.

12
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2.3 Stochastic Rainfall Modelling

The stochastic modellin g of ratnfal.is an invaluable tool for describing and ptoviding

lzLinfall. information to desþers and engineets. Unlike detetministic models, which

attempt to model and reproduce the exact physical processes involved during the

precþitation process, stochasdc ninfallmodels aïe a generalised mathemad.cai model

of the system used to reproduce observable quantities and statistics. In the

stochasdc model, the actual physical process of :ainfall. plays no patt. Stochastic

models with a good theoretical structure will have model parameters that ate based

on a physical characteristic (such as storm dutation); however this is not a pte-

requisite in models of this q,?e. Yevjevich (1974) provided an intetesting

comparison between determinism and stochasticity in hydtology and noted that the

best form of hydrological model is likely to be a combination of detetministic

measurable parameters with a stochastic model structure. This would seem to

provide a model that had reliable and undetstandable inputs but also enabled the

model to capture the vadability and randomness often observed in natural processes

and systems. Raudkivi and Lawgut (1974) also discussed the use of detetministic

and stochastic models and concluded that it is unlikely deterministic models could be

applied in desþ situations due to the complexity and numbet of variables involved.

Continuing in this vein, Cho (1985) argued that it is mote pncttcal and iustifiable to

assume a stochastic process for njnfall. tathet than try to develop a deterministic

model.

Typically stochastic rainfall. models can be classified into t'wo types. Stochastic

lzrtnfall. models that try to capture the chatacteristics of ratnfalL through tjme at a

single point are commonly refered to as point :l-zrnfù1. models. Models that also

include the development and decay of rat¡fa1l, over space as well as time and are

interested in how the rainfall fluxes across a catchment are teferted to as spatial

ninfa[.models. As the pulpose of this study was to ptovide accatate teptesentation

of rainfall at a single point given limited calibtation data, spalal rainfall models were

not consideted.
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2.4 Point Rainfall Models

The history of stochastic point tatnfall modelling extends back to the 1930's. A

paper wtitten by Shamir (1965) tefers to earliet work by Slade (1936) whete a

ptobability distribution was fitted to annual rainfall. data. Since this beginning,

numerous techniques and methods of rainfall modelling have been developed. While

the number of tziinfall models is latge, genetally they can be classified as one of three

main types. The fitst and possibly the best known latnfall models are those which

are based on the Point Process. The genetal theory behind point processes is

outlined by Cox and Isham (1980) while the use of these processes and rhe

mathematical structute of various ratnfalf modelling approaches can be found in

\)Taymire and Gupta (7981a,1981b, 1981c). Poisson models belong to the gtoup of
Point Ptocess models, as do clustet models which 

^re 
afl extension to the Poisson

assumption. The second gtoup of models are refetted to as Markov models.

Matkov models employ a disctete time step and inherit theit name through the use of
a Matkov conditional structute between subsequent time steps. As they are based in

disctete time, genetally they have not been applied to a sub-daily scale. The final

group of ntnfalT models are based on the assumption of independent storm events

which arc typtcalTy defined as 'wet' or 'dry'. As the model generates a synthetic

1.z;tnfall tecord tfuough the alternate simulation of these stotïn events, the models are

often refered to as lMet-Dry Spell' or Altemating Renewal models.

The development of tainfall models has been dominated by Poisson, Markov or

,{ltemating Renewal models, allowing the selection of an appropriate model for this

study to focus in these areas. The development and propetties of each type of model

is ptesented in futther detail below. In selecting a model to extend through a new

tegionalisation technique, attention was paid to the abiJity of the model to reproduce

statistics not used dudng its calibration process, which provide a valuable check of
the validity of the model. Attention was also paid to statistics which are cdtical for

engineering design purposes such as Intensity-Frequency-Dutation curves. Finally if
a model is to be used as an engineering tool, thc modcl parameters should be

identifiable and easy to calibrate at any site. The parameter structure was also taken

into account when selecting the appropriate rainfallmodel.
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2.4.1 Poisson Models

A number of well known rainfall models in existence today are based on the Poisson

model structure which u :lises the basic point process approach. The point ptocess

approach descdbes the occurrence þosition) of independent events in the modelling

space. For rainfall models the occurrence process defines the position of tainfall

occurrences in time or the tempotal position. Genetally these models can âssume a

continuous time process where events can occur at any point on the time axis, ot a

discrete time process where events must occur at cettain fxed intervals i.e. matks

located at da/ry intervals.

The simplest continuous-time point ptocess is the Poisson process in which the

events can occur randomly zt any point in continuous time. The Poisson process

assumes that the time between events is independent and exponentially distributed.

In addition, the number of events over a time interval is also independent and

Poisson distributed.

In a Poisson model if a magnitude or ninfall intensity is attached to each occurrence,

the process is known as a marked point ptocess, i.e. a mark or magnitude of intensity

for each :ir.rinfal| event. If in tum these magnitudes do not have an associated

duration, i.e. the endre magnitude/depth occurs instantaneously at each matk in the

Poisson process then this can be teferred to as a Marked Poisson ot White Noise

model. Earþ work on models of this type includes tlat of Todotovich and

Yevjevich (1,967) (see Figure 2.1) who consideted the individual stotm depths p)

associated with a Poisson aríval process to be gamma distributed. Todotovic (1968)

and Todorovic and Yevjevich (1969) continued with this model sttuctute but

abandoned the gamma distribution for tzrinfall âmounts in favout of an exponential

distribution fot seasonal ptecipitation.
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Depth
U2

U5

u4

Time
(r)

Figure 2.1: Marked Single Poisson Arrival Model/ Poisson White Noise Model

Poisson \X/hite Noise models require the determination of independent' stom

events to ptovide calibration stolm data. h the latter work of Todorovic and

Yevjevic (1969) they used the assumption that a consecutive sequence of :øLin

obsewations was considered an event. Fot the case of houly data,if an hour of tain

was sulrounded by t-o dty houts, then a storm of dutation t hour is recorded.

Similarþ the daily tecotd can be distinguished into independent storms by grouping

consecutive nrns of wet days located between dry days. In this way the number of

stoms and tainfall amounts over a cettain time interval could be calculated and the

model parameters calibrated.

Eagleson (1978) extended the basic Poisson atrtval model by including rectangular

ratnfall pulses, tathet than instantaneous ninfall bursts. He explicitly defined the

time between storms or intet-event time (tJ and the storm duration (tJ as

exponential distdbutions and used the ptevious two-parameter gammâ distdbution

flodotovic and Yevjevic, 7967) to model individual stoffi depths (see Fþre 2.2).

His model was calibtated using independent storm events from a 1O-minute time

tesolution tecotd and was successfully applied to estimate the disttibution of annual

ninfall, given limited calibtation data.
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lntensity
(t)

Time
(t)

Figure 2.2: lndependent Poisson Marks (lPM) Model/ Rectangular Pulse Model

(adapted from Eagleson, 1978b).

A further improvement to models of this g4)e v/as ptoposed by Rodtþez-Iturbe et

at. (1984). The Poisson Rectangular Pulse model developed by Ro&þez-Itsrbe et

a/. (1954) was s'ill charactedsed by an intensity (I) and associated dutation (t) that

were independent and identically distributed. The major advantage of their model

ovet previous rectangulat pulse models was the ability of tz;infal' pulses from

diffetent stoms to overlap (see Fþre 2.3).

lntensity
(t)

D5

D1 D2

ta

D3

D6Da

4

ls

l6

f2 Ts T6

Time

Figure 2.3 Poisson Rectangular Pulses Model

(adapted from Rodriguez-lturbe et a|.,1984).

This is in contrast to the eadiet wotk of Eagleson (1978) where storm events were

considered independent and did not overlap. The simulated intensþ at a point in

time is determined by the sum of intensities from each individual active storm event.

The resultant simulation had a more realistic variatton of stotm intensity ovet time

and ensure d. aggregated statistics over numerous time scales could be calculated.

Rodrþez-Itwbe et at. (1.984) exploited this result by deriving aggregated ninfalT

gT¿

(t)
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moments at a gíven time scale and then used these parameters to fit to observed data.

In a similar tesult to Todotovic and Yevjevich (1969), they noted rhat the nature of
this process lends models of this type to be scale dependent given that parameteï

estimates and accutacy in results ate diffetent when using data at different scales (i.e.

daily rathet than houdy time scales). They also suggested Poisson \X/hite Noise

models could not teproduce ntnfalf statistics for the houtly ot daily scale due to the

corelation present at these time scales and the underlying independence assumption

used to fotm the Poisson model. Poisson White Noise models were also shown by

Foufoula-Georgiou and Guttorp (1986) to be inadequate for representing short-time

inctement tainfall. Butlando and Rosso (1993) were also able to show that there was

no significant improvement in extreme event estimation when shifting from a

Poisson rù(/hite Noise to a Poisson Rectangular Pulse model. They also suggested

that these models did not ptovide an adequate descrþtion of the tempotal vatiatton

of intensity evident in teal ratnfalT events. In otder to improve the reproduction of
the important internal storm event structure, a futther extension of Poisson models

was developed which have become well known as Cluster models.

2.4.2 Cluster Models

Clustet models ate afl extension of the Poisson and therefore the Point Process

apptoach and are genetally a two-level process. At the prrorrary level, rainfall

genetating mechanisms or storm origins occuf according to a Poisson ptocess. Each

stoÏm origin then gives dse to a group, or cluster of raìn cells. Within a clustet, the

distribution of rain cells is completely defined by the number and the distribution of
theit position with teference to the storm odgin. The superposition of these rain

cells ptovides the temporal definition of each storm event.

Two of the bettet-known clustet Poisson models are the Neyman-Scott and the

Bartlett-Lewis models. Both models are able to take into account the apparent

clustering of rainfall cells with tespect to t-ime. Howevet, they diffet in their

tteatment of the position of :øLin celis within the cluster stflrcture. Neyman-Scott

models explicidy define the distances ftom each cell to the ptrmary stotm origin and

assign an âPpropriate disttibution to this independent vatiable. In conttast Bartlett-

Lewis models assume that the intewal between subsequent cells is independently
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distributed. This is the major difference between these two teptesentations of the

clustering nâtuïe of :ainfall.and can be seen in Fþre 2.4.

Storm Origins anive according to a Poisson Process

Time

NEYMAN-SCOTT

Each storm origin generates a random number of rain cells beginning at X which are distributed

exponentially fiom the storm oriqin

Time-------------)

BARTLETT-LEwIS

Each storm origin generates a random number ofrain cells beginning at X where the time between

rain cells a¡e distributed exponentially

Time

o

The duration and intensity ofeach storm is æsigned

Time

The total intensity at each point is then the sum of all intensities due to all active raincells

at that point

Time

Figure 2.4: Schematic of the Neyman-Scott and Bartlett Lewis Models

o
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The origins of the Neyman and Scott model ftace back to the clusteting structure

beingused to describe the spatial distribution of galaxies Q.Jeyman and Scott i95B).

Since then this strrrctute has been successfully applied to model such things as the

occurrence of earthquakes ffere-Jones (1970), Lawrance (1972)) and then ratnfair\.

I(awas and Delleur (1931) first noted that the occurrence of daily ninfallin Indiana

exhibited a clustering structute which could be modelled using the basic Neyman-

Scott ptocess' They used a geomeftic distribution for the number of :.zltnfall events

in a given clustet and an exponential distribution for the distances of events from

their cluster centres. Their wotk concluded that the cluster model has the ability to

preserve the dependence structure and marginal probabilities of the talnfail process,

but the model form was homogeneous and could only be applied to stationary

ru;tnfall occurrences.

Dudng their cornparison of three rainfall models, Rodtþez-Iturbe et al. (1984)

derived the second ordet properties of the accumulated l:Linfall, amounts over

different time scales for a Neyman-Scott \7hite Noise Model. They then applied

these tesults to fit a model to daiþ data tn Denver, Colorado and ,A.gua Fria,

Venezuela. Rodrþez-Itutbe et al. (1984) observed that the Neyman-Scott model

was superiot in descdbing the ratnfalT process than the Poisson models for both the

houtþ and daily rainfall data they exarnined.

Valdes er aÌ. (1,985) te-examined the time scale dependency for the three moclels

(l'deyman-Scott \ùØhite Noise, Poisson \X/hite Noise and Poisson Rectangular pulse).

This involved detetmining whethet the parameters are consistent when estimated

ftom data at different time scales. Ftom their analysis, the Neyman-Scott process

appeated the best option in tetms of parameter stability. Whle their Neyman-Scott

\X/hite Noise model ouþetformed other models ovet the various time scales that

wete analysed, their results indicated an inability of the model stflrcture to preserve

the extreme value distributions (stotms at the extreme high end of the ratnfall

distibution).

Foufoula-Georgiou and Guttotp (1986) also studied the Neyman-Scott \X/hite Noise

model in their analysis of event based data and concluded that the model cannot be

time-scale invadant and that the application of the model should be testricted to the
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time scale of the avztTable data. They examined alternate fitting toutines and noted

the insuffrciency of the second-ordet statistics in identifting the undetlying

continuous pfocess, patticularþ when using daily data. Foufoula-Geotgiou and

Guttorp (1986) were also able to show that the choice of distdbution to represent the

cluster size was a great influence on the genetated tainfall sequence and found a

better frt through the application of a negative binomial rather t}rar. t geomeftic ot

poisson d.istribution. !Øhile the Neyman-Scott SØhite Noise model provided good

agreement with obsewed rainfall, it was concluded that the model did not provide an

adequate description of the underlying rainfall. process and that model parameters

were difficult to define due to alack of physical meaning.

The inadequacies of previous models led Rodriguez et aÌ. (1'987a) to introduce the

Neyman-Scott Rectangular Pulse and the Bartlett-Lewis Rectangulat Pulse model. A

Poisson attd a geomeftic distribution fot the number of cells within a clustet wete

consideted for the Neyman-Scott model and t geometric distdbution chosen for the

Bartlett-Lewis. Both models assumed the distdbution of storm cell duration to be

exponential. Rodriguez-Itutbe et at. (7987a) dedved the second otder propetdes of

the aggregated ptocess for both the Neyman-Scott and Battlett-Lewis models and

the ptobability that an arbitrary intewal it dry for the Batlett-Lewis model.

Cowpertwaít (7991.a, 1991b) extended this and provided an exPfession for the

probability that an arbitary intewal it dry for the Neyman-Scott model.

In applying their new models and analysingdata from Denvet, Rodtþez-Itr;r'l¡e et al.

(19S7b) concluded that they wete capable of reptoducing the obserwed statistics at

various ievels of aggregation but had problems reptoducing the ptobabiltty of zero

tain and extfeme ntnfalT values. They found that one set of patametets could

effectively represent all levels of cumulative rainfall. ftom 1 to 24 hours and that the

parameters of the two models (1.{eyman-Scott and Battlett-Lewis) wete often

identical. These results were reinforced by Cowpettwait (1991b) who applied the

Neyman-Scott model to houtly datain England.

To improve the prediction of zeto tain pedods at each aggtegation level, Rodrþez-

Iturbe et al. (1938) proposed a modification to the Bartlett-Lewis model and

introduced randomness into the mean tain cell dutation p^Íarr,leter between events.
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Application to houtiy data tn Denvet and Boston showed an improvement in the

reptoduction of zeto tain periods, however the simulation of extreme ntnfall,values

temained a problem. Islam et a/. (1990) also applied the modified Bartlett-Lewis

model to houdy datatn Italy and showed similar results.

Butlando and Rosso (1991) provided a cotnpatison between the modified model

structute introduced by Rodrþez-Iturbe et al. (1988) and Islam et at. (1990) and the

odginal Bartlett-Lewis and Neyman Scott Rectangular Pulse models. Using the same

houtþ data from Italy, they were able to show that the modified model did not

overcome the inadequacies of the original models and that the increase in complexity

was not wartanted. Butlando and Rosso (1991) also pointed out that while the

Bartlett Lewis process allows fot an easier mathematical framewotk and a Larger

numbet of relationships for calibtation, it is regularþ outperformed by its Neyman-

Scott counterpaLnt.

Entekhabi et al. (1989) followed a similar path to Rodrþez-Itutbe et al. (1988) anð,

introduced modifications to the Neyman-Scott model in otder to improve the

reptoduction of dry probabiìities and extreme values. By applþg ^ gatnrrr

distribution to tandomly vary the mean tain cell duration, structural inter-storm

vatrabtJtty was introduced. Similar to the results found by Rodtþ ez-Iturbe et a/.

(1988) with the modified Battlett-Lewis model, there was a significant imptovement

in the teptoduction of dry ptobabilities; however the reproduction of extreme values

temained a problem.

Velghe et a/. (1994) motivated by the incteasing number of modified models in the

Iiteratute provided a compadson between the otiginal Bartlett-Lewis and Neyman-

Scott models and the modified models introduced by Rodrþez-Irurbe et al. (1988)

and Entekhal>i et a/. (1939). They confirmed an improvement on the otiginal models

in tetms of the teproduction of zero depth probability and to a lesser extent the

extreme values. Howevet Velghe et a/. concluded that the models had lost ac.cvracy

in teproducing the second ordet statistics duc to the higher conrplexity t-rf patarneter

estimation involved. They also found that the Bartlett-Lewis model was more

sensitive to the moment equations used during calibtation, and that the repotted
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improved results were the result of only one data set and wete not sufficient to

suggest that cluster models in genetal wete suitable fot modelling tainfall.

Cowpertwatt et ø1. (1996a,1996b) applied the Neyman-Scott Rectangulat Pulse model

in their work on sewer rehabilitation studies in the United ICngdom. The

intoduction of daiþ transition probabilities ptovided an improvement to the otiginal

poor reproduction of dry sequences and dry day ptoportions. Results indicated that

the model was still not able to adequately reptoduce extreme values particularþ with

â fetufn period gfeatet than 5 yeafs. This was satisfactory for the purposes of a

sewer rehabilitation study where events with tetutn pedods less than 5 years are of

primary concern; however for the pu{poses of most engineering desþ practices, this

is not adequate. An over-simplification in the patameterisation of the model in

particular the averaged intensity of the model's rain cells, was given as a teason fot

the difficulty in reptoducing extreme values.

Onof and V/heater (1993) provided a furthet extension to the Bartlett Lewis model

by initially incorporatin g 
^ 

gamma distdbution to descdbe tain cell duration' Results

indicated an overesdmation of the auto-correlation statistics and mean inter-event

times; however the model did improve the reptoduction of dry interval ptoportions.

The simulation of houdy datz indtcated additional problems with the overestimation

of extreme values for return pedods greatet than two yeats and the avetage event

duration. Further modification with the superposition of a Jittet process on each

rectangulat pulse was incorpotated by Onof and !Øheatet (1994). This was

introduced to provide a more realistic representation of the rainfall process and to

improve the auto-corelation results. NØhile improvements in the reptoduction of

extreme events and auto-corelad.ons wete evident, difficulties wete encountered

dudng p^rametel estimation due to the latge number of model pafâmeters.

Gyasi-Agyei and Willgoose (1997) followed Onof and \X/heatet (1994) and developed

a combination model. Based on the Battlett-Lewis model, they incorpotated an

auto-regressive jitter process to fìx the deficiencies in the modelled second-otdet

properties. Using 15 minute data fuorr' centtal Queensland, th.y wete able to show

improved results when compared to the original Battlett-Lewis model (R'odtþez-

Iturbe et at. (1987)) and the modified randomised Battlett-Lewis model (Rodtiguez-
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Itwbe et a/. (1988)). Gyasi-Agyei and Willgoose (1999) further generalised their

model by teplacing the Bartlett-Lewis model with a binary chain to reptesent the

rz;nfall process. The binary chain preserved the dry and wet sequences as well as the

tatnfall mean while the corelated jitter was again employed to improve deficiencies

in the second ordet properties. Two possible bnary chain models were considered

(a non-nndomised Bartlett-Lewis rnodel and a Markov chain modet) with the

Battlett-Lewis model being pteferted due to a lesser number of parameters. \Øhjle

the authors show improved results in compadson to eadier models, no aggregation

levels greatet than 24 houts,Intensity-Frequency-Duration (IFD) curves or extreme

values wete shown.

Calenda and Napolitano (7999) provided an investigation into the estimation of
parameters fot the Neyman-Scott models. Their calculations showed that the

estimation of model parameters by the method of moments is significantly affected

by the choice of the aggregation scale of the data and if equations at different

aggtegation scales ate used, the difference in these scales is also an issue. \Mhen the

aggregation scales chosen are too close, the resulting objective function is very flat

and ensures the optimal parameters are difficult to find.

Cameron et ø1. Q000) ptovided an evaluation of an exponential model adapted ftom

Eagleson (1972), a data-based model from cameron et al. (1999) and the random

parameter Bartlett-Lewis Gamma Model of Onof ancl Wheater (1994). ì7hi1e they

were able to again show the medts of using a clustet based model to tepresent

tatnfall and general statistics, the reproduction of extreme values was poor. To

overcome this, Cameron el a/. Q001) introduced a generalised Pareto distribution to

represent depths of high intensity tain cells and ìmprove the reproduction of extreme

values. They concluded that the reproduction of previous aggregated statistics was

reasonably consistent and that the modelling of the extremes was improved.

I{outsoyiannis and Onof Q001) inttoduced a disaggregation process for the

generation of houtþ data that 
^ggregate 

up to the given daüy dala totals. Their work

combined a cluster Bartlett Lewis process with a process to adjust the finer time scale

data so as to obtain the required coatset data. They used data from the United
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Içngdom and the United States to test the performance of their methodology and

were able to preserve most of the statistical ptoperties of the tajnfall' process.

Extending the single site disaggregation, I(outsoyayiannis, Onof and Wheater (2003)

developed a methodology for the spatial-temporal disaggtegation of rainfald'. Using a

hybdd model with temponl characteristics based on the Bartlett-Lewis Rectangulat

Pulse model, they combined univadate and multivartate lzLinfall models opetating at

different time scales. These models wete used to dedve spatially consistent hourþ

ni¡fall.sedes in areas where only daily data is available. White ptoviding encouraging

tesults, the authors noted deficiencies in the results with over predicting very low

values of dry pedods and simulating low intensity during events when the intensity is

acírally zero.

All of the work on Poisson models discussed above rely on neat perfect data sets fot

calibration. Their calibration process taditionally telies on aggtegation statistics

which can be corrupted by sections of eroneous or missing data. Cowpettwait

(1991,a) proposed that tf only a few daø points were missing tn a month of data,

these were to be taken 
^s 

zero and if a significant number of points wete missing that

month was to be deleted from the tecotd. If numetous months wete deleted, then

that yeat was discarded from the recotd. If a different month was missing ftom the

same record, then the coresponding month in the deleted section is insetted.

Cowpertwait had the advantage of dealing with rainfall tecotds that contained very

small amounts of corupted ot missing data (7o/o missing). Numetous data sets in

Australia have a missing or coffupted petcentage closet to 60/o - 10o/o (F{erreker et al.

(2001). Gyasi-Agyei (1999) in their application to Austtalian data discatds endre

months with any missing data, ensuring valuable infotmation is lost. This may have

an adverse impact on the ability of the model to teplicate the observed statistics

given the increase in missing data may affect the calibtation statistics, patticulady for

short tecotds.

While Poisson models and in par.licular cluster models are extremely populat in the

litetature, quesdons remain as to the ability of these models to represent zelo depth

probabilities and extreme values. The reptoduction of extteme values is often critical
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in a desþ situation and these models must be used with particular attention to this

detail paticularly at the small rime scale.

2.4.3 Markov Models

Än alternative approach which can be used to teproducc thc rainfall occurrence

mechanism ar-.d any associated dependence structure is the Markov Chain. Markov

chains wotk on the basis that the present state for a given time interval is dependent

upon the state(s) of the ptevious time interval(s). A first order Markov chain

calibrated to simulate datly data would simulate day x based upon the state of day x-1.

A second ordet model would take into account the states of day's x-1 and x-2 etc.

This same Markovian sftucture can be applied to models that arc required to work at

smaller ot larger time scales. The controlling factor in a Markov chain is the

ftansition ptobabilities, which govern the chance of observing a particular new state,

given the ptevious state(s) of the model. Markov models are completely defined by

the initial ptobability distibution and their transition probabiJities, which are usually

in the form of a probability matrix. \X/aymire and Gupta (1981a) provide a good

mathematical summary of the Markov process. Âssuming the vadable (y) to be

Markov dependent,let the transition matrix be denoted by

o _ [poo pww-l
' - [po* p*o ]

\Where 
Poo is the probability that the ith interval is rtry given the previous (i-l)th

interval is dry and is described as:

poo = prob(dry - dry)= P(Y = 0lVr-,, = O) i=1,2,...

and

Pwn =1-P,ro

whìle p,*o is the ptobability that the ith interwal is wet given the previous (i-1)th

interval is wet and is described as:

Pww =prob(wet-wet) = P(Y. : 0 I \-, = 1) i=i,2,

Pwo =1-P*t

and
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,\ graphical representation of a first otdet two state Markov chain can be seefl lrl

Fþte 2.5.

Pwo

Pww
Poo

TransitionProbabilities 

-

Pow

Figure 2.5: Two-State First Order Markov Model Structure

Markov chains have been a popular method fot teptesenting the daily occurence

process due to their explicit description of the dependence stïtlctüe evident at this

scale. Gabdel and Neumann (7957, 1962) were one of the fust to apply a fitst ordet

Markov chain to model the daiþ :llaLinfall, occurrence process with some success.

Theit Matkov chain consisted of constânt transition ptobabilities over tlire year (a

homogeneous parameter set), and found that their model was adequate to descdbe

data for Tel Aviv. Adapting this approach, Caskey (1'963) and lWeiss (1'964)

incorporated vadation in their transition probabilities over the ye^r (non-

homogeneous) and applied this to several cities in the United States with varying

success.

A first ordet Markov chain was applied by Hopkins and Robillatd (1964) to data

from Canada. Their model was unable to describe the daily ratnfalf process in

months that historically contained very little rain with only a few tain days. Green

(1964) showed that the fust order Markov chain proposed by Gabtiel and Neumann

(1957, 1962) was outperformed by an altetnating tenewal model when compadng

Wet

State

Dry

State
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cettain conditional ptobabiJities (See Section 2.4.4 fot a description of the alternating

tenewal ptocess). In futther findings, Green (1965) concluded that the geometric

memoly of the fitst-order Matkov chain is not adequate to descdbe long droughts or

wet spells. This tesult is patticulatþ important for models calibrated ro Australian

data where often long term dry spells ate evident. Feyerherm and Bark (1967) also

showed tl:'at a first otdet model was inadequate in describing the highet-order

dependence of daily :øLtnfall in Indiana and introduced a second order Markov chain

for this purpose.

Smith and Schreiber (1,973) suggested that the earliet work of Weiss (1964) zrrd

Gabdel and Neumann (1962) was based on what could be refered to as ftontal rain

storms, and extended this earliet work by analysing air mass thunderstorm data in

North Amedca. They compared a fitst ordet Markov chain to a simple independent

event-based Bernoulli model. The Matkov chain model was able to descdbe

numerous statistical ptoperties of the thunderstorm occurrence process. However,

the authon conceded that thete is no evidence that this occurrence process is a

simple Markov structure or that a higher order model would not improve results. In

order to increase their Matkov chain model's acclrnacy from year to ye r, ^î
additional annual vatiance was incorporated on top of the nonhomogeneous

transition ptobabilities.

Initially the application of Markov chains was predominately restricted to replicating

the occurrence process of daily lratnfall. and less attention was focused on

incorporating a model fot ninfalT amounts. Haan et al. (1976) combined the

simulation of both the tainfall occurtence process and depths via a first order

Markov chain with a seven-state (one dry, six wet) transition probability matrix.

Rainfall was divided into classes, where the class boundades for the states of the

Markov chain wete found using a geomeftic progtession. The distribution of rainfall.

amounts within a class were consideted uniform with the exception of the last class

in which a shifted exponential was used. !Ø.hile the seven-state model perfotmed

well, thete was an ovet-estimation of simulated rainfall amourì.ts in each class, which

in turn ptoduced a consistent error in annual lzLtnfaitl totals.
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Pattison (1965) modelled the hourþ :øljnfall. process by the combination of a fitst

order and a sixth otder Markov chain. Dudng the simulation ptocedute, if the state

of the previous hour was wet, the model used a fitst order dependence structure to

determine the curent state. If the previous hout was dry, the model used a sixth

order structute to determine the state of the cutrent hout. Pattison simulated rain

amourìts by incorporating 20 ratnfafi. states and using transition probabilities. These

transition probabilities were varied from month to month. While the model was

capable of replicatin g the chancteristics of the houtly rzijnfal|. process during stoffi

pedods, dry periods between storms were overestimated.

Srikanthan and McMahon (1985) developed multiple state models fot the genetation

of daily, houtly and six-minute data and applied them to locations atound Australia.

They used a sliding scale technique whete genetated rarinfalL values were

consecud,vely scaled using numerous transition ptobabilities from the origrnat daily

value to houdy and then to 6 minute interval rainfall, events. The daily model

consisted of seven wet states with associated ftansition ptobabilities calibrated

monthly. The simulated daily depths wete a tesult of the curtent state of the model.

For the largest wet state, a notmally distributed random variable was ttansfotmed via

the Box-Cox technique to give large simulated daily depths. The temaining wet

states in the model employed a similat ptocedute using a linear distdbution. Results

indicate a reasonable compadson to various aggtegated statistics, but the authots

acknowledged a less than satisfactory tesult in the teptoduction of sevetal maximum

darly ntnfalls, wet and dry day runs and mean rajnfalL depths fot t}ree types of wet

days.

Their generation of hourþ ninfalLwas developed as â two-stâge Process. Initially the

daily model was used to determine whethet a day was wet ot dry and given that a day

wâs wet, the type of wet day. Wet days were divided into two types based on the

da:iry nrnfall depth and a dividingntnfalJ.threshold. For each type of wet day a time

dependent second otder Markov chain was used to detetmine whethet each hour in

the wet day was v/et or dry. An hourly ttansition ptobability maftix was fìnally used

to generate the houdy :øLinfall, depths. The use of houtþ ttansition ptobability

maúices that vary from month to month produces a model with a large numbet of

parameters. While this was reduced by an adjustment to the model that grouped
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houts into blocks of four, the number of patameters is still latge. A number of
statistics were compated to the observed data with a concession from the authors

that the results are less successful than the daily model.

Stikanthan and McMahon's (1985) 6-minute model v/as a combination of three sub-

models, a datly, houtly and a 6-rninute model. The 6-minute model followed a

similat ptogtession to the hourþ model with the exception that hourþ rainfall was

now also divided into one of fout types. A 6-minute transition probability matrix

was incorporated to generate 6-minute rzrtnfall values over a wet hour. If the houdy

ratnfall depth exceeds 5mm, then continuous rain is assumed over the hour. \X/hile

showing satisfactory tesults, the increase in parameters to use this t¡pe of model at

the 6-minute level limits its application.

Raiagopalan et ø1. (1996) ptesented a nonhomogeneous Markov model for daily

precipitation. They assumed that the transition probabilities fiom state to state vary

smootlrly over the year and estimated the coresponding Fouder sedes using non-

parametric techniques. This enabled the model to be fitted for the entire year tather

than in homogeneous seasons or months, as is usually the case. While the model was

able to teptoduce numerous statistics, the application of the non-parametric frtting

apptoach limits the extrapolation of daily :atnfall values beyond the obsewed

maximum. This is also an undetþing ptoblem of Markov models in general as the

estimation of ttansition probabilities generally relies on the observation of transitions

in the historical tecotd. Fot short records, or records with large erroneous or

missing sections of data this could inttoduce a bias to the calibrated probabilities.

Jimoh and rùTebster (1999) showed a fitst order Markov model was capable of
describing the occurrence process of wet and dry days in Nigeria. Their focus was

on techniques incorporating varialjLon in the transition probabilities over the year.

The use of a Foutiet series, avetaging techniques or a combinations of these were

found to be equaþ as good at providing the required non-homogeneity of model

Pârâmeters.

Although Matkov chains appear to provide a simple mathematical model of rainfall,,

theit dependence structute cannot descdbe the long-term persistence (dtoughts and
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floods) evident in short time-increment tainfall recotds. The ftequency and

implication of these long dry pedods in ,\usttalia ensutes their accutate desctiption is

of paticular corì.cern. \X/hen considedng shott time increment rainfalil' tecotds (high

resolution; 5,6,10 minutes), small otdet Matkov chains are also unable to describe the

clustedng effect present at such a ftte d,me scale. Increasing the otder degree of a

Markov chain to successfully describe the complexities of the high tesolution ratnfall'

process would present a significant computational challenge and with alternate

effective models available, this approach is unnecessary. Of additional concern is tlre

reliance and restriction evident through estimating ftansition probabilities ftom shott

records, or records with large erïoneous ot missing sections of data which can

introduce a bias to the calibrated ptobabilities. Disaggregation techniques can be

employed to enable " 
d^iy Markov model to geneÍâte sub-daily time scales, howevet

the extta model and subsequ eît p^r^rrreterisation incteases the models complexity

and possible regionalisation effott.

While Markov chain models may be adequate fot some sites and some seasorls'

taking the above issues into account and additional coûcetns thtough regionalising

Markov chains due to their inherent site specific rlature and the lack of discernable

physical meaning in their parameters, a more appropdate tasnfall model structure was

sought.

2.4.4 Alternating Renewal Models

Altemating renewal models (or \X/et-Dry Spell models) ate event based models which

replicate the occurrence process of rainfall by simulating wet and dry storm everì,ts.

These events are continuous periods of mostly wet or continuously dty observations

that are assumed independent and separated ftom previous observations by a

minimum independence cdterion (typi."lly a mirrimum period of no rain). It follows

that the event occurrence process fot an altemating tenewal model is completely

defined by the probability distdbutions that describe the lengths of these wet (t) and

dty (tJ events (see Figure 2.6). The simulad.on ptoceeds by sampling alternatively

from the dry and wet spell probability distdbutions, until the required length of

tecotd is reached. An additional probability model is then used to descdbe the

intensity (i) ot depth of each wet storm event.
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Figure 2.6: Schematic of Alternating Renewal process

A majot advantage of the alternating renewal structure is the ability to calibrate to

data sets with sections of missing histotical data. As the model is event based,

rnissing sections of data will only influence the calibtation if these periods

consistently contain rare storms not found anywhere else throughout the record.

Given that missing sequences fuom data tecords are typically random, this is usually

not an issue. The ability to use data sets that contain missing data is a majot

advantage ovet models that calibtate to aggregation statistics (see for exampJe

Poisson models Section 2.4.1) ot rely on a continuous data set to determine

ttansitions between :atnfall. types (À4atkov models). Once the simulated time series

and gross rzLinlùl amounts has been simulated, each ìndividual storm event can then

be disaggtegated to the required time scale ptoviding a model that is capable of
providing synthetic high resolution rainfall data.

Gteen (1,964) compared an early altetnating renewal model to the eadier Markov

model of Gabdel and Neumann (1957, 1962). It was assumed that the sequence of
wet and dty days fotmed an alternating renewal process and Exponential

distributions were chosen fot the lengths of dry and wet spells. The renewal model

out petfotmed the Matkov structute for data at Tel Aviv, however neither model

wotked well for data fiom Chesire, England. The work of Green provided one of
the first definitions of rvhat constitutes a'storm' event.

In an Alternating Renewal Model (or \Øet-Dry model) the historical sedes must be

divided into independent wet and dry events. The independence critedon is usually a

t¿ t"
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set length "f dry period which is used to sepatate consecutive events. Fot the case of

darly data (as analysed by Green (1964)) a single dry day is often chosen as this

minimum dry or minimum inter-event dme. Thus a sequeflce of consecudve wet

days is considered to belong to the same wet storm event until a dty day is obsewed.

Any subsequent sequence of dry days is then patt of the current dry event until a wet

day is observed and so forth. It is understood that 'real' physical stotms mzy ltave

pedods of no rain or dry pedods âs pârt of theit temporal structure, howevet due to

the coarse nâture of daily data, this fact is ovetlooked. For the purposes of high

resoludon data, (5,6, 10 minutes) a minimum dry ti-" in minutes ot houts is usually

chosen and used to defìne independent storm events. Once a wet event begins, the

event continues until a dry period is observed greatet than this minimum dry time.

This allows the definition of storm events fot high resolution data to proceed in a

similar fashion to the simpler definition for daily recotds; howevet it does have the

capacity to incorpotate dry pedods less than the minimum inter-event time to be

included in wet events thus providing a more realistic representation of a storm

event.

Grace and Eagleson (1966,7967) extended the eatliet daily wotk of Green (196\ by

introducing an altetnadng renewal model calibtated to a ten-minute rainfall tecotd.

The minimum inter-event time used in theit study was obtained by setially corelating

the historical :ajnfall. depth sedes. Thtough testing the tank cortelation coeffrcient

the lag at which there was no significant dependerLce was determined. A' lag time of

140 minutes was found to provide this independence critedon fot daø in Vetmont.

The \Teibull distribution was calibrated to the distributions of inter-event times and

storm durations. A regression relationship between event depths and dutatiorls was

developed with a Beta distdbution fìtted to the tesiduals to incorpotate a conditional

depth - duration relationship in order to simulate ratnfall amounts. A similat

technique for defining the minimum intet-event time was aiso applied by Sariahmed

and I(isiel (1963) in their work on represendng surrìmer thundetstotm occurrence. A

minimum inter-event time of 3 hours was chosen and the Weibull distdbution used

for the distdbutions of inter-event times and stotm dutations. These models wete

able to show satisfactory tesults. Gnyman and Eagleson (1969) looked at houly

data ftom Boston and found the storm dutation, depth and time between storms

were exportentially distributed.
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Resttepo-Posada and Eagleson (1982) provided an alternative apptoach to the

definition of stotm independence. In conftast to the eadier wotk of Gtace and

Eagleson (1967) and Sariahmed and I(siel (1963), they argued that the choice of
analysing ratnfall depths fot the purposes of independence was flawed and that it was

more appropriate to investigate the independence of successive intet-event times

tlremselves fot this pulpose. By assuming a Poisson arrívaI process and therefore

infering that the distdbution of intet-event times was exponentially distributed, they

were able to calculate an independence critedon to sepaïate independent storms. An

itetative procedute was introduced to calculate an optimal mifrimum inter-event time

that ensured the resultant distribution of independent' inter-event times was

sufficiently exponential. This simple algorithm given the assumption of an

exponential distribution fot intet-event times was shown to work well at three arid-

climate sites.

I(outsoyiannis and Xanthopoulos (1990), I(outsoyiannis and Foufoula-Georgiou

(1993) and I(outsoyiannis and Pachakis (1996) also developed rainfall models based

on a Poisson process and followed the assumption of Sariahmed and I(isiel (1963)

that the distribution of inter-event times from independent events must follow an

exponential distdbution. To satisfy this assumption, a minimum inter event time was

calculated and latet used to distinguish independent events. I(outsoyiannis and

Xanthopoulos (1990) found this value tanged from five to seven hour.s for hourþ

data while l(outsoyiannis and Foufoula-Georgiou (1,993) and I(outsoyiannis and

Pachakis (1996) determined a time of seven hours, based on a l(olmogorov-Smirnov

test of the exponential distribution.

Relationships and compatisons can be made between the alternating renewal model

and models of the Matkov Chain type. An alternating renewal model is conceptually

similar to a Markov Chain where the ptobability of simulat^g u dry spell after a wet

spell is equal to unity without correlation. Roldan and Woolhiser (1982) compared

an altetnating tenerval model to a ftst order Markov Chain. The sequences of wct

and dry days wete simulated using a truncated geomeüic distribution of wet day

interwals and a ftuncated negative binomial distibution "f dry days. They found the

Markov Chain to be superior at the four US cities studied. Small and Morgan (1936)
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derived a relationship between a continuous alternating renewal model and a Matkov

chain for the occurrence of dztty ntnfall. The g mma distribution was used for the

d.istribution of dry intervals and the wet intetvals were assumed to be exponential.

They found that the Markov model worked well in some areâs of the United States,

however in other ateas the clustedng structule apparent tnratnfall' occurrerLce could

not be modelled using a Markov Chain and was more accurately tepresented by the

alternating g rnmz- model.

Foufoula-Georgiuo and Lettenmaier (1987) developed a Matkov tenewal model to

analyse ðai7y :r:lnfall. In simple terms a Markov renewal ptocess is different to the

generic Markov chain as the ptobability of observing a wet day does not depend

solely on the state of the previous day (wet or dry) but on the numbet of days since

the last wet event. The model presented by Foufoula-Georgiuo and Lettenmaiet

(1987) assumed that times between wet events or intet-atlival times belonged to

either one of two types. Geometric distributions were used to descdbe the inter-

arnval times for each t¡re, with an ovedying Matkov stfuctufe goveming the

transitions from one type to the other. Rainy periods followed each dry interval and

within tainy pedods, the model behaves exactly as a Matkov chain. (i.e. regular

üansition probabiJities are employed to detetmine whethet the next day is wet and

remains part of the curent wet event, or a new dry pedod begins and is therefote

sampled from the ptedetetmined type 1. or 2 dry distribution). In otdet to

d.istinguish the historical events from the recoÍd, wet events wete defined as any day

with measurable precipitation. Finally the distdbution of ratnfall' amounts wâs

descdbed by an exponendal distribution. The model was able to Preserve the daily

statistics for data in \Øashington, but no wotk was undettaken on data at finer time

scales. It is also unclear as to the motivad.on behind the two types of dry pedods'

While the authors claim that one type may Ãate to dry periods between ma)or storm

fronts and the second to subsequent dry pedods which occur in the aftermath of

stofm events, the authots note that the intet-arrival times from the observed recotd

cannot be classified directly as belonging to one type or the other. Only ptobabilistic

classification is available, ensudng these parametets have no physical meaning, are

not easily identifrable and difficult to extrapolate ot regionalise to other sites.
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Hutchinson (1990) combined ptevious wotk on Markov chains and renewal models

to develop a thtee-state continuous Markov model. The first state of the model

represents a dry spell (state 1) which is always succeeded by state 2, state 3 is
identified as a wet spell and is also always succeeded by state 2 and finally state 2 is

denoted as a transition dty spell state which can be succeeded by eithet state 1 or 3.

'{s the mean dutation of dry events ftom state 1 is greatet than that "f dry and wet

events in states 2 and 3, the tesulting simulation produces rainfall events which

consist of a clustet of showets (consecutive pedods of state 2 and 3), similar to the

those of clustet based models. However as durations are incorporated directly, the

model structute ensures that showers occur sequentially unlike cluster models which

allow showers to ovedap. This ptovided advantages over the previous cluster

models in tetms of physical interpretation of parameters, mathematic al tnctabitqr

and parameter esdmation. A mixed geomeúic distribution was used to descdbe the

durations "f dty pedods and the dwation of overall :ørtnfalT events. Intensity was

included vta an exponendal process, which was auto-conelated for the duration of
each ovetall event, but independent from one event to the next. In effect, this

ptovides a replesentation of the temporal pattern of :rlltnfall and was consideted an

imptovement from previously accepted ideas of assuming intensity to be

independent of the duration of the shower and independent of the intensities of
othet showers S.odrþez-Iturbe et al.. (7987a,b)). Incorporating a correlation

between intensities within an ovetall storm provides a similar structure to alternate

models that employ a temporal pattetn to disaggre g te 
^ 

uniform intensity pulse.

However the model of Hutchinson (1990) still þores any possible corelation

between event dutation and intensity as the intensity of an ovetall storm event is only

cotrelated to other event intensities within the storm and not the duration of the

storm. While the model had diffrculties replicating the observed wet run statistics, it
was shown to ouþetform the eatliet Batlett-Lewis model of Rodtþez-Itutbe el a/.

(1 9B7b) for non-calibtated statisrics.

Lall, et al. (1996) used non-paraLmetfic techniques to descdbe the distributions of dry

spells, wet spells and tainfalT amounts in their alternating renewal modcl of daily

ntnfall. Their model also incorporated extra information in terms of the joint and

conditional distributions of wet and dry spell durations. \X/hile their model was able
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to reproduce some of the daily statistics for data i¡ Utah, the sample sizes tequired

fot their model is significant and limits its application.

SØong (1996) used an altetnating renewal model structure with monthly patametets

to simulate a synthetic 6-minute :ajnfall. tecord. The fust ordet Matkov equation

with a ffansformed gamma disftibuted tandom vadable was used to genetate inter-

event times and storm durations. The generation of event intensity was based on the

intensity-ftequency-duration cuwes fot the site. Cuwes were estimated from the

historical tecord fot stotm durations of 0.5,1,3,6,9,12,78,24 and 72 hours. Othet

durations were lineady interpolated ftom these values. Ptesented tesults for

simulated intet-event times and storm dutations showed a reasonable comparison to

the observed values however the model genetated some unrealistic long storms

prompting the proposition of an upper limit on the simulation. A disctepancy in the

number of storms (7%) between simulated and observed was also noted.

Lambert and I(uczer a (1996) undettook an extension of the eadier wotk of Eagleson

(1978) and described the distributions of intet-event times using ^ g^rnma

distribution, stoffi durations using an exponential distribution and the cottesponding

intensity by a generalised Pareto distribution (R.osjberg et al. (1992)). They desctibed

an intra-storm disaggtegation scheme based on a constrained tandom walk thtough

dimensionless depth-time spâce. This disaggtegation scheme was developed to

circumvent one of the disadvantages of wet-dry modelling in that once a storm has

been identified, the internal characteristics of that stotm need to be teproduced

dudng the simulation. The disaggregation scheme ptoposed by Lambett and

IK:urczeta (1996) ensured the internal njnfall, patterns temained, however 
^rr

underestimation of IFD data was evident fot longet durations.

Lambeft and I(uczera (1993) condnued to wotk in this area and introduced a

generalized exponential probabiJity model. The structutal development of this model

enabled the authots to remove bias arising from the binned nature of observed

ninfall.. Typically ratnfalL records are recorded as disctete depths (mm) over a finite

time period (minutes, hours ot days). This binned nature of recotded ntnfallleads to

assumptions and uncettatnty when using the resultant data. Fot example, if a stotm

lasts fot 5 bins in a 6-minute fotmat, i.e. thete are 5 'wet' bins in a sequence, the
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duration of this storm sits somewhete between 30 minutes and 18 minutes in reality.

This can be seen in Figure 2.7 where it could have been raining for the exact length

of the 5 bins or it may have statted raining just before the second bin and finished

just aftet the fouth bin. Thus the exact stoffi duration is indeterminate and the

exact beginning ot end of the event can only be determined to the degtee of accatacy

of the bin widths. This was taken into account in the model and likelihood function

developed by Lambet and l(uczera (1998).

Max possible actual length

Min possible actual length

Depth

Actual storm ends
somewhere between
the beginning and end
of bin 5

I 2 J 4 5

Bins

Figure 2.7: Description of the binned nature of rainfall

Heneket et aÌ. Q007) extended the ptevious work of Lambert and I(ucz en (7996,

1998) and othet event based models to overcome some of their shortcomings.

Storm events were extracted from six-minute historical records and again the

generalised exponential distribution was used to descdbe the distributions of inter-

event times and storm durations. The intensity of each wet event was described by a

Pateto distdbution with the coresponding palz;meters conditional upon storm

duation. It was shown that this model was not only capable of reproducing the

distdbutions of dry spell and storm durations that were used in the calibration, but
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also statistics that were not introduced into the calibration ptocedute. Of significant

interest were the simulated and observed Intensity-Frequency-Dutation curves which

showed good compadson for various cities, and tesulting aggtegation statistics.

These values u/ere not used in the calibtation of the model and the teproduction of

these values suppotts the ctedibility of the model.

2.4.5 Discussion of
Selection of one
Reg io n a lisatio n

Point Rainfall Models and
for Further DeveloPment

the
and

Point rrrinfall. models have been developed to teproduce the structure of rainfall

using various techniques. Eadier models were often based on the theory of Markov

chains with their explicit dependence structure. More tecently event based

alternating renewal models and to ^ gïe ter extent Poisson clustet models have

received substantial coverâge in the literature. Investigation into published models

and previous results ptovides an insight into the selection of a suitable model for the

puq)oses of this study,

Poisson models and in patticulat clustet models continue to receive substantial

literature coverage. Their structute ensures that the conditional telationship between

intensity and duration cannot be modelled explicitly even though it is genetally

accepted that this dependency exists (Gtace and Eagleson, 1966, 1'967; Äcteman,

1990; Lambert and I{uczera,1996). Anothet serious concern for the application of

these models is when the historical record contains missing or ertoneous data

pedods.

The length of most rzjnfallrecords ensures the chance of observing high ARI events

is unlikely. Periods of missing data exacetbate this issue by incteasing the chance

that high ARI events have not been tecotded. \)íhile the amount of missing data can

significantly affect the application of a chosen model, very few teseatchers publish

how to adequately deal with this. This is patticulaÃy an issue fot models which tely

o\t 
^ggreg 

ted statistics for calibtation such as the clustet models. Cowpettwait

(1,991,a) described a replacement strategy to handle missing data ln his wotk on the
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Neyman -Scott model. Missing datly data within a partLcular month was replaced

with data fiom the same month within a different year but where the monthly totals

wete similar. If many months wete missing then the whole year was deleted or if
only a few data wete rnissing those values were replaced by zero. ,{lthough this

apptoach may be adequate fot some data sets, there is no con{idence that this

apptoach will be adequate to compensate fot significant missing or rejected data.

Numetous authots claim that Battlett-Lewis and Neyman-Scott based models are

able to teptoduce a variety of :rainfall statistics over different levels of aggregation.

Frequently published tesults indicate an inability of these models to replicate statistics

not used during the calibtation process. The application of these models to histotical

data sets with missing or etroneous data periods is also a concern. While techniques

have been suggested to circumvent this problem (Cowpertwatt (1991), Gyasi-Agyei

(1999) questions temain as to the influence and effectiveness of these techniques

given the quality of histotical tecords. In addition to this, many tesearchers have

indicated that parametets fot the cluster models are difficult to estimate. This is

partly because they are not intuitive ot easily observed ftom the historical data.

Foufoula-Georgiou and Guttorp (1986) suggested that since the N-S model does not

ptovide an adequate descrþtion of the underþing tatnfall generating process, no

physical meaning should be attached to the parameters. Even though some

parameters of the cluster models have been given a physical interpretation, such as

the dutation of a tain cell, they are not readily determined directly from a ntnfall.

recotd. Onof and Wheater (199\ showed for their random-parameter Bartlett Lewis

Model tlrat as the numbet of panmeters increased, identification of tJrese patameters

became more difficult and altetnative identification sftategies gave signifrcantly

diffetent values fot the same parameter. Given this parameter sensitivity, doubts

remain as to the robustness and stability of the model and its results. Yeþhe et a/.

(1994) futthet confumed that clustet models are vely sensitive to the selection of
calibtation equations used. Calibration with one set of equations provided a poor

teproduction of the percentage of dry intewals. In ordet to imptove this result one

of the equations rvas teplaced but this in tutn produced a poor reproductio n of zcto

depth probability.
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Not only are cluster models diffrcult to calibtate and contain parâmeters with little

physical interpretation, the underþing process dudng calibration is of concetn.

Cluster models are caltbrated using aggtegated tainfall data, whete the methodology

is based on a continuous process. As a tesult, the discteteness of the data is not

taken into account. Foufoula-Geotgiou and Lettenmaier (1986) suggested that the

problem is the result of the inappropriate assumpd.on that a continuous-time point

process, can be calibrated against 
^1'r ^ggreg 

ted tecord. Foufoula-Geotgiou and

Lettenmaier (1986) further showed this to be the case fot all continuous-time

stochastic models. They concluded that using aggtegated rainfall' data to calibrate

continuous-time point pfocess models inttoduced biases in patametet esdmation that

can result in misleading interpretations regarding observed ninfzll' clustering. Sevetal

researchers have also indicated that the infered desctþtion of the undetþing process

is dependent upon rhe scale at which the model is fitted (Ì.odtþez-Itttbe et a/.

(1984), Valdes et a/. (1985)). This provides limitations on the models abiJity to

exftapolate to other time scales and the ability to model the ptoperties of the

cofltfuìuous process. In conftast, par^rrreteï estimation is straightfotwatd fot event-

based models, which if continuous, allow the incorporation of estimation ptocedutes

to account for aggtegated data.

Markov models provide a simple description of the ratnfall' occurrence process.

Typically these models have been applied to reptesent daily l-a;infaü. howevet some

authors have extended this to finet time scales. Markov chains have been shown to

work at specific sites and for specific seasons but have not been shown to

consistently model the rainfall structure or process. \When applied to shott time

increment rainfall, a large number of patameters âre introduced while still being

unable to describe the clustedng effect (leighet chance of a wet inctement occuring

during â storm event than during a dry pedod) evident in histotical tecords. In

addition to this, some existing models use a numbet of wet states corresponding to

different types of rain dudng a wet inctement. These states require ptobability

distributions introducing mote pafametefs into the model. Large number of

pafâmetets with little of flo physical meaning provides ptoblems dudng the

calibration process creating a model which is difficult to apply. If a Matkov chain is

applied to a historical record with sþificant missing data periods, the determination

of state transitions and hence model parameters is hampered. This can also be a
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problem at numerous Australian sites whete there are a limited number of wet events

in a given season or rnonth.

,\ltemating tenewal models have been shown to petform well over numerous levels

of aggtegation and preserve statistics that were not used during the calibration

process. This is an impottant result paticularþ when considering a lølinfalf model

for regionalisation as it ptovides credence to the model structure and introduces a

level of confidence on the outcome of the regionalisation process. Alternating

tenewal models are unique as they âre not restricted or hampered in their application

due to erroneous ot missing data periods. Given that missing data sections are

tandom (i.e. missing event dutations and depths are not consistent), then no

significant bias is introduced thtough the removal of these pedods from the recotd.

Indeed a significant advzntage of models of this type is the ability to include good

data sections of a month whete missing data is present. This ensutes more

information is available for calibration to the same length of record in comparison to

clustet based models.

Like Matkov models, parameters ate easily defined and have a definite physical

meaning. This ensures model parâmeters are intuitive and can easily be estjmated

from the histotical tecord. Even if the renewal model is continuous, estimation

ptocedutes can be incorpotated to account fot the aggtegated and binned nature of
observed ratnfa,lT tecotds. Two drawbacks in the use of altemating renewal models

ate the tequirements of separating independent storm events and the need to

disaggregate wet events down to the time scale of interest. Previous research has

shown that these issues ate easily handled by the selection of an approptiate model

and or structute and numerous authors have presented model results that compate

favourably to observed records.

The above discussion led to the selection of an alternating renewal model for further

development in this study. The systematic and extensive model development

ptovicled by Lambett and I(uczen (1996,1998) and Fleneher ct al. (2001) couplcd

with good results for calibtated and non-calibrated statistics has ensured this

particulat altemating tenewal model was chosen. The original Heneker et a/. Q001)

model is presented in furthet detatl, at the beginning of Chaptet 3. Itis important to
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note rhat whjle the Heneket et al. Q001) model was chosen fot futther development

in this thesis, most of the techniques presented in this study can be applied to othet

alternating renewal models ot alternatively to clustet based models with little or no

adjustment.

2.5 Regionalisation Techniques

Regionalisation has for many yeats been a standard hydtological tool, used to

facilitate extrapolation from sites at which tecotds have been collected to others at

which data is required but unavailable S.iggs, 1,973). Typically regionalisation of

hydrologic models has been focused on linking the patametets of the model to

physically based measurable quantities and the development of tegional p^t^meter

sets through the use of homogerì.eous tegions. The purpose of these techniques

either explicitly or implicitly is to identify ateas that exhibit similat hydtological

ptoperdes, ensuring that a calibrated model tåat wotks for a specific site can be

applied to other sites in fhe area. Before considedng the tegionalisation of the

lairtfall. model presented by Heneker et al. (2001) it is appropdate to investigate

various techniques and evaluate their applicability to the problem of event based

rainfall. mo delling directly.

2.5.1 ldentification of Homogeneous Groups (or
Clusters)

Ttaditionally the frst step in many regionalisation processes has been the

identification of homogeneous regions. If a numbet of sites (rainfall ot stteam flow

etc) can be placed togethet into a group that exhibit similat hydtological processes or

statistics, then they can be defined as belonging to a homogefl.eous group ot tegion.

Aftet the definition of the group boundaties, model parameters can be developed

ftom the combination of data sites inside the homogeneous gfoup. These

parameters can then be applied or moved to sites of interest within these boundades

that contain little or no historical data. The develoPment of homogerLeous tegrons

and groups of sites has received substantial literatute coverâge with paticulat

reference fot use in tegional flood ftequency analysis.
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Tasker (1982) noted that many investigatots initially identified regions and sub-

tegions subjectively based on the residuals fror,r' a regression analysis. The residuals

were used as a guide for drawing homogeneous tegional boundaries on a map of the

atea (see \X/andle (1977), Guetzkow (1977)). A more objective method of defining

these homogeneous tegions of similar hydrologic or basin characteristics wâs

ptesented by DeCoursey (1973) and later by DeCoursey and DeaI (1974). They

applied a technique known as cluster analysis (Cooley and Lohnes (1971)). Cluster

analysis is the organisation of observed data tecotds to identi$r groups or clusters of
sites that are similar wilhin clasters and dissimilar beTween clustets. Typically when

employing cluster analysis, the criterion used to determine similadty between sites

and the classification of a new site into an existing cluster must be defined.

The eatly work of DeCoutsey (1973) and DeCoursey and Deal (1974) introduced the

use of the sirnple Euclidian distance as a measure of similarity between sites or

clustets of sites. The Euclidian distance is given by

o,-=[åt,-",-r]
I

2

Q.1)

where d,r. is the 'distance' between stations j and k, x,, is the i'L hydrological or basin

charactetistic at station j and p is the total number of chatacteristics being considered

for the cluster analysis.

In order to use clustet analysis, an initial grouping of the sites into groups must be

undertaken. DeCoutsey and DeaI (1974) arbrtnrdty divided theit Q$ sites into rwo

groups and performed a discriminant analysis to determine whether any sites do not

belong to their cuffent group. Sites that are shown to be in an incorrect group ate

switched and the iterative analysis continued. Additional clusters c tt be

incorpotated by dividing existìng clustets into two and so on. An alternative

technique refened to as the complete leakage algorithm (Soakl and Sneath 1963), the

fatthest neighbour (I-ance and !Øilliams 1967) or the maximum method (Johnson

7967) has also been applied as an altetnative for the first step in the cluster analysis

process. All these methods are based on initially nominating each site as a clustet of
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one site. Distances between this site and every other site can then be calculated using

the Euclidian distance formula. ,\t each step, the two closest sites ate combined to

fotm a single cluster. Once clustets contain mote than one site, (i.e. there is mote

than one value of (x,)as there are two or more sites in clustet i) then the largest

distance between all sites in the clustet and the object site k can be adopted as the

corresponding distance d¡¡ between the cluster j and the site (or cluster) k. This was

similar to Tasker (1982) who was able to show that the adaption of the eathet cluster

anaiysis of DeCoursey and Deal (1,974) has the ability to define sites into

homogeneous groups.

Clusrer analysis was also investigated by Mosley (1981) when attempting to identify

regions of catchments in New Zealand which have similar hydtological tegimes.

Mosley (19S1) was able to show that when thete ate a numbet of factots that have an

equal influence ofl the hydrological tegime of a catchment; homogeneous regions ate

diffrcult to define. It was also noted that cluster anaþsis should not be used

independent of subjective decisions fot the purposes of defining these tegions, but

that it is a useful tool for interpteting the available data sets. Once clustet analysis

has been perfotmed, then local knowledge of the climate, topogaphy etc should be

incorporated to describe why certain sites ate similar in theit catchment response.

Unlike some of the eadier work, sites in a given cluster wete tequited to be spatially

continuous. This enabled homogeneous zones to be located on a map of New

Zeala¡d. It is not a requirement of cluster anaþsis that sites be geographically

contiguous in a given grouping. Indeed fot studies that focus on catchment

responses such as stream-flow or floods, it is possible that sites considetable

distances apzrrt geogtaphically are more similat in tetms of theit hydrological

response than those nearby. However as noted by Bum et ø1. (1997), having tegions

that are latgely geogrâphically contiguous provide an advantage when ungauged

catchments must be assþed to a specific tegion.

Burn and Boorman (1993) continued to use the idea of clustet analysis when

grouping hydrologicaþ similar catchments in their study of 99 catchments in the

UI(. They used what is referred to as the l(-means clustering algorithm to minimise

their objective function, an extension of the simple Euclidian distance equation given

by
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Q.2)

whete (WJ it the weight applied to featwe (charactetistic) m in the Euclidian

distance measure, (xJ ir the value of feature m for site i, (ck; is the centroid

coordinate fot featme m of cluster k, (I{) is the total number of clusters, (I) is the set

of objects in cluster k and (lVÐ is the total number of features. In this fashion, sites

that have similat characteristics to their counterparts in the cluster will provide a low

scote and hence a better fit to the cuffent grouping set-up of the sites.

Hosking and \X/allis (1993) incorpotated a diffetent approach using L moments

(Hosking (1986, 1990) to ptovide an objective test as to whether cettain groupings

of sites actually belong to a homogeneous tegion. Theoretically in a homogeneous

region all sites should have the same L-moments, however owing to sampling

variability this will not necessattly b" the case. Making use of this fact L-moments

for alf sites in a ptoposed homogeneous region were calculated. A heterogeneity

measure is used to indicate whethet the observed variability in these statistics was

simply due to sampling variabiJity ot due to the incorrect classification of sites into

the proposed homogeneous region. Sites could then be re-classified and the process

tepeated to improve results.

Burn et al. (1997) ptovided an "agglomerattve hierarchicaf' clustering technique

combining ptevious techniques to detetmine homogeneous regions. First a region

forming process is adopted which deternines an initial set of clusters. This process

follows the previously inttoduced steps of cluster analysis. At each step the

dissimilarþ ot distance measrüe is calculated between each pair of objects (an object

is still eithet a single site ot a gtouping of sites) and the union of the two closest

objects fotms a new clustet. The distance measure is now recalculated from the new

clustet to all othet objects and again the two closest objects form a new clustet. This

proccss is tepeated until the requited nurnber of clustets has been formed. Burn el a/.

(1997) then use the heterogeneity rneasure of Hosking and $Øallis (1993) ro

deterrnine whether the sites now placed within a cluster are sufficiently hydrologically

homogeneous. For a tegion that fails this test, futther subdivision of the region is

'=É I Ëw,'(x1"-c[)'
k=l iel* m=1
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undertaken through the re-application of the original clustet analysis. When all

regions are either sufficiently homogeneous or contain too few sites to be furthet

subdivided, the process stops. As patt of the clustet analysis, a geographical distance

meâsure was incorporated ensuring that latgely geographically contiguous tegions

were identified. This provides an advantage fot classi$ring ungauged catchments as

the location of the site on 
^ 

m^p determines which clustet the site belongs to. The

technique was successfully applied fot a set of 217 catchments in \X/est-Central

Canada.

DeGaetano (1993) developed a clustering algorithm for specific application to

extreme rainfaiJ. data. The basis of this wotk was that the largest tainfall. events at all

stations within a subregion or clustet could be teptesented by the same theotetical

extreme value distribudon. Smirnov tests calculated fot each iteration were used as a

measure of whether the distributions of sites in a ptoposed clustet wete similat. Like

Blurn et al. (1997) a measure of the geogaphic proximity between sites was also

incorporated. The application of clustet analysis on the distdbution of the climate

variable, rathet than the vadable avetage is noticeably diffetent to previous

techniques and provides a significant advantage. Not only ate stadons grouped on

the location (mean) of a particular vartable, but also on the othet patametets that

define the distribution. This becomes impottant if the regional assumpdons are to

be used for extrapolation of values outside those contained within the original

histodcal tecords. The presented tesults of DeGaetano (1998) compared favouably

when tested with the heterogeneity measure of Hosking and V/allis (1993), howevet

the authot concedes that cluster analysis by its nature contains significant bias. These

are a tesult of the type of clustering selected, the inclusion of tedund^ft or itelevant

data and by the vadable nature of climate data.

In addition to the negative discussion of DeGaetano (1998), Acteman and l7iltshire

(1989) challenged the idea and use of homogeneous regions developed thtough

cluster analysis or similat techniques. They atgued that the estimated tegional

relationship (distdbution or curve) would only be valid for a site situated at the

centroid of the group of sites used in the analysis. It was also atgued that cefiain

sites could belong to a given region more thân othets and that some sites may

influence the regional relationships more, introducing additional bias. To cfucumvent
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this ptoblem, th.y suggest that instead of defining each site 
^s 

p^rt of a group, each

site should be allocated its own group consisting of sites that have similar hy&ological

propetties. These sites could then be used to estimate the requited chatactedstics at

the site of interest.

Burn (1990) furthet developed the ideas of ,{.creman and \X/iltshire (1989) and

teferred to it as the tegion of influence approach. The region of influence approach

has the advantage of eliminating the distinct boundaries developed by defrning

homogeneous tegions. In order to define a. taïget sites region of influence, a distance

measure was calculated from the tatget site to every other site. A surounding site

that tecorded a distance measure less than a nominated threshold value or cut off
point is then included in the region of influence for the target site. These sites are

then combined to form a tegional flood ftequency curve, only applicable at that

specifrc target site. ,\ modified Euclidian distance measure is used to determine the

distance ftom the target site to the othet sites and is defined as

Q.3)

\X/hete

D', is the weighted distance between site i and station j, \)Ø- is the weight applied to

the attribute m to teflect its relative importance, P denotes the number of atftibutes

andxj,,is the standatdisecl values of the measLrre of attribute m for site I. The

standardisation is applied to remove the problem of units and is calculated by

subttacting the sample mean from the value and dividing by the sample standatd

deviation.

Ribeiro-Conea et al. (1995) investigated using canonical correlation analysis to

identify tegions of influence fot dninage basins instead of a threshold style

procedure. They wete able to identift tegions for 55 catchments in Canada. The

tegion of influence apptoach has also been applied by El-Jabi et al. (1998) for the

regionalisation of 100 year floods in Canada with some success.

o, =12',,(*:, - *;,)'
I

I'
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Nathan and McMahon (1990) condnued to raise and discuss the apparent ptoblems

associated with the identification of regions using techniques based on cluster

analysis. Of major concerrl was the selection of imporant chatacteristics and theit

coresponding weighting which are used to detetmine similatþ between catchments

andf ot sites. This can often be a comptomise between available data, the judgement

of their impottance by the modeller and model computation time consttaints. The

measuïe used to âssess similarity is also highly dependent on the scale of data used.

A clustedng algodthm working with rainfall in miltimetres for instance wouid obtain

a different set of similadties to those working with tainfall in metres. As noted by

Nathan and McMahon this can be removed by scaling the vadables so that they all

have a mean of zeto and a unit vatíance; howevet infotmation on the variability of

individual measutes is lost.

An additional problem associated with these techniques is the abundance of different

algodthms and distance measures available. It is evident that these different

measures and techniques can produce diffetent gtoupings of sites based on the same

data. Even if the use of several techniques ptovides a set of similar clustets, there

will still remain sites that are not continually allocated to the same cluster set and thus

must be classified on ân arbitrary basis. This fact was noted by DeGaetano (1998)

who suggested that numerous cluster analyses with different techniques should be

undertaken and then the best groupings of sites can be chosen when compadng

solutions with physic al and climatological considetations.

The region of influence approach appeârs to circumvent numetous identified

problems with the use of traditional cluster analysis. Cluster analysis relies on

including variables in the analysis which have a significant impact on the tequired

output. This selection is dependent on tlre expectations of the modeller and

introduces a bias into the tegion identification process. The inconsistent tesults

produced when using different clustering algorithms or data tecotded at diffetent

time scales also introduces doubt on the validity of clustet analysis 
^s 

afl 
^ccrtra:te

method of determining homogeneous tegions, if they exist. The region of influence

approach ïemoves any boundades and associated ptoblems with sites that are located

on or near these boundades. F{owever the problem of selecting catchment attributes

and the associated bias is still evident. This approach also tequites the deternination
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of a threshold value, which alters the number of sites that have an impact on the

calculation of data at the target slte.

The application of homogeneous tegions through cluster analysis and the region of
influence approach has been widely adopted for regional flood techniques; however

their usefulness for rziinfall modelling is questionable. The selection of influential

variables for use jn a ntnfall cluster analysis is problemaic at best due to the

influence of unmeasurable quantities such as local a¡d global atmospheric

fluctuations. \Øhile it is conceivable to group sites for the purpose of regional flood

analysis by using influential vadables such as catchment conditions, observed ninfal),,

elevation, slope etc, it is diffrcult to measure and distinguish similar indicators for

øtnfall. The atmosphedc processes and fluctuations that influence njnfall. are

diffrcuit to detetmine ditectly. Flowever, it may be reasonable to assume that a

tegional shape distribution of :atnfalT exists, but the determination and use of this

distdbution is the primary concern. The idea that sites within a region may ltave a

consistent distdbution was the motivating idea behind developing tåe new methods

presented in this study. Given the idea of a consistent regional distribution fot

rainfa[, a technique to apply this idea and successfirlly regionalise the ninfallmodel is

tequited.

2.5.2 Regional Flood Analysis

A signi{icant amouflt of litetatute on the tegionalisation of hydrological models has

been focused on flood ftequency analysis and the prediction of stream flows.

Generally regional flood ftequency modelling can be classified into two groups. The

Index Flood method introduced by Daþmple (1960) and the Muttiple Regression

method attributed to Benson (1962). While these procedures are used to ptovide

regional ptedictions of extreme values rathet than regional continuous simulations as

is required for this study, ^tt investigation into their use provides further

understanding of the general ptocedures avaiTable and possible extensions to rainfall

modelling.

Boyd (1978) provided a good explanation of regional flood ftequency techniques

employed in Australia and in paticulat the use of multiple regression as a
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regionalisation tool when investigating 79 catchments in New South Wales. In

applylng multiple regtession on flood peak discharges to various catchment

chatacteristics, Boyd noted that the inclusion of z large number of physical and

hydrological vadables in the regtession procedute ensures the resulting regtession

equations 
^te ^ppllc^ble 

to a very wide range of catchments. This in tum eflsures

that a high degree of regional homogeneity is not tequited removing the need for

extensive work in defining homogeneous tegions using clustet anaþsis or a similar

procedure. Regional regression models have also been used to develop telationships

between catchment physical quantities and low-flow statistics flhomas and Benson

(1970), Thomas and cervione (1970), vogel and I(roli (1,992) and I(roll and

Stedinger (1998, 1999)] and for flood flows fMatalas and GiJroy (1968), Tasker et a/.

(1996)]. Given the numbet of options available, Valdés et al. (1'979) ptovided a

technique for choosing bet'ween vaïious alternative streamflow tegression models in

the literature. The use of regression models which link physical descrþtors to

hydrological models c¿n be an advantaqe over alternative tegionalisation techniques

as the model can be applied instantly to 
^ny 

site whete the physical desctiptor can be

determined or measured. However using this physical descrþtot to model link fot

ninfall. modelling is problematic. Rainfall is a complex process which is dependent

on local and global atmospheric physical properties. These properties are not easy to

measure directly and have resulted in the development of statistical based rz;tnfall'

models in comparison to physical pïocess models for tainfall. The ability to link a

ratnfalJ, model to physical atmospheric condition meâsurements and successfully

predict rainfa[volumes or events is questionable at best.

Boughton (1984) presented a¡ altenate apptoach to regionalisation with a simplifred

water balance model that could be applied to ungauged catchments' Instead of

applying a regression procedure, physical catchments were classified into one of thtee

types depending on simple field observations. The parametets of his watet balance

model were fixed dependent on the given classification and the estimation of

païameters for ungauged catchments was simply based on this site classification.

Given an observed daily record, the resulting v/ater yield could be estimated fot the

ungauged catchment. \iX/hile this simplified model provided good tesults for the

estimation of stream flow, it was not tþotously tested undet diffetent catchment and

climate tegimes and it is unlikely that a similar classifrcation strategy with Frxed
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regional parameters could be undettaken for ratnfalT modelling. Again the model

would rely on a physical input recotd at the site of interest to assist in modelling the

site specific behaviout. (In the case of his stream flow model, the physical record is

the observed daily rainfall) Given the complex nature of rainfall, it is unlikeiy fhat a

similar single physical descdptor could be found to adequately desctibe the changes

in obserued ratnfalT ftom one si.te to the next nor is it likely that sites could be

gtouped together and have identical model parameters.

Sefton and Howatth (1993) established telationships between physical catchment

descrþtors and the dynamic tesponse charactedsdcs obtained from the output of a

tainfall-runoff model. Given the driving variables of rainfall and temperature, and

the measutement of the desctþtots (topography, soil type, climate and land cover)

flow can be simulated for any catchment in the region. They appJied their multiple

tegtession model to two test cases in England and !Øales and were abie to

satisfactoriþ reproduce the daily flows. An advantage of the model was that no

attempt was made to group ot define homogeneous regions. However measuring

physical descrþtors that influence rainfall as opposed to stream flow is signifrcantly

mote difficult and ptovides a limit to the application of simplifred techniques such as

this and the previously discussed Boughton (1984) model.

Seibet (1'999) also analysed a region containin g 17 catchments by establishing

functional links to catchment chatacteristics. A two-parameter tegression function

was used (one of either ahnea4 exponential, power or log function). Unlike previous

woïks, Seibet concluded that whfe the tesults appeated acceptable, the use of this

technique itself is questionable. The uncertainty in the relationship between model

parameters was a major concern. The tegtession of parameters requires a certainLy

about the model values. If this knowledge is not certain, the value of regressing

these against the physical charactenstics may be in question. Seibert found that for a

certain catchment, a numbet of vadous parametet values might ptovide tfre same

goodness of fit. It is therefote diffrcult to relate this tange of patameters to physical

properties to ptovicle a regional estjmate. The inter-telationship betr,veen physical

quantilies was also discussed. If it could be shown that two physical based quantities

wete cortelated, then this also could induce problems into the regtession toutine.
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A final problem associated with models that link physical propetties to model

parameters adses when the tequired site of interest lies some distance away from the

calibrated sites. Seibert (1999) tecognised this fact and stated

"Obviously, using larger regions increases the number of gauged catchments.

However at the same time the vatiation of climate and physiogtaphy between the

catchments increases as the sampling atea incteases, i.e., more variables have to be

included into the tegression analysis".

From these results, it appears that regtession may be a useful tool for localised

regionalisation; however when the problem is over a larger scale fot instance the

process of :-zlinfall., an alternate method must be found.

Index flood ptocedures use the undetþing assumption that the sites in a given

homogeneous region share an identical fiequency distribution apatt from a site-

specific scaling factor. This scaling factor is called the index-flood. The tetm "index

flood" is a remnant of the eatþ work of Daþmple (1960) who applied this

procedure to flood data, however theoretically it can be applied to a:ny data set.

Given data at Qrtr) sites, with site (i) having sample size (n) and observed data at these

sites (Q,,, j=l,....,n). Let the quantile funcd.on of the ftequency distdbution be

(Q,F), 0<F<1). Given the assumption of the existence of an identical tegional

frequency distribution with localised scaling ftom an index flood then we can v/rite

Q'(Ð = t"tigF), i = 1, '..., n (2 4)

(p) ir usually taken as the mean at site frequency distribution but any location

parameter of the distdbution can be used instead. G(f)) it the regional gtowth

curve, a dimensionless quantile function cornmon to every site in the homogerleous

region.

A number of researchets have used the annual maximum series in conjunction with

the index flood procedute for modelling extreme hydtological events (see Hosking e/

at. (1.985), Lettenmaier et al. (1937), Hosking and Wallis (1988). Birikundavyi and

Reusselle (1,997) use the index flood technique with the Patial Dwation seties whjle

Madsen et al. (7997) suggests that using the Partial Dutation sedes with the index
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flood technique provides a moïe efficient technique (than using the annual maximum

seties) fot estimating regional floods. The index flood method has had significant

success for the puryoses of stteam flow regionalisation.

Jin and Stedinget (1989) developed a maximum likelihood technique which took into

account both the tegional infotmation and the local at-site historical information

with a tegional index flood distdbution. They concluded that regional flood analysis

can be imptoved by using both a good tegional model and good historical data

provided it is used carefully.

Regional frequency techniques have pteviously been interested in estimating extreme

values ot flow quantiles at ungauged catchments. It is conceivable that methods such

as the index flood could be applied to estimate extreme ntnfall values however it
would s :ll ne¡ be able to ditectly calibrate a lz¡infalf model in order to provide a

continuous :.zLtnfall tecotd. Physical regression of lainfall model parameters to

catchment charactetistics could ptovide a tegionalised rainfall model, however the

choice of approptiate physical desctþtots is difficult and problems associated with

leaving out influential desctþtots is evident. Given the physical vadables that

influence rainfall are not only local (and potentially) measurable quantities such as

elevation, distance to coast, sutrounding hills etc but also atmosphedc conditions

such as global citculation, cloud development, atmospheric wind patterns etc, the

availability of applicable data and as a consequence the usefulness of models which

require this information is a major issue. Rainfall patterns are influenced by

atmosphedc fluctuations and the complex interaction between various

meteorological patameters and at this time the data required to undertake a

successful regression analysis to these physical descrþtors is not available.

2.5.3 Rainfall Model Regionalisation

The application of tegionalisation procedures to lziinfalT models specifically has had

limited coverage in the literatute. TypicalTy models that tely on daily dar- fot
calibration do not require the use of regionalisation techniques as there is an

abundance of daily tainfalT records available for use. However, models that attempt

to reproduce extleme values or are calibrated to pluviograph data need to
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incotporate tegionalisation techniques in one fotm ot anothet to erì.sure wide spread

application.

Cao (1974) ptovided an early technique fot estimating shot duration-depth-

frequency curves at sites which only recotd ðarly datz. Sites which record short-time

increment rainfdl in the area were gtouped into homogeneous tegions attd a

coänorl regional depth-duration-frequency crrrve estimated. A tatget daily site is

then allocated to one of these gtoups by a comparison of the one-day depth

d.istribution between the site and the groups of sites. Once allocated to a grouP, the

t^rget site adopts the regional frequency curve, ptoviding an estimate of the tequfued

duration-depth-frequency curve. \)Øhïe only presenting tesults fot Satdinia, a good

estimation of these curves was achieved.

Cong et at. (1993) extended the eadier frequency curve similarity assumption of Uao

(1,97 4) by assuming that the distdbution fotm of rainfall at all stations in a study atea

are tlre same. By applying various mathemadcal and statistical tests, they wete able to

ascertain a) the form of the regional distribution and b) the ptobabiJity that this

determination was in fact true. This result could then be used to âssume a

d.istribution fot any site within the region. They applied their technique to annual

daily maxima in Pennsylvatia ardllest Vitginia. \X/hile this technique can be applied

to develop z regional distribution curve, the authors note that it cannot be applied to

determine the distdbution at any individual site.

IJay et a/. (1991) developed a tegionalisation method by introducing a 'weather state'

model in which measurements of synoptic atmosphedc information are used to

classify eeLch day into one of a small numbet of states. The weather state effectively

acts as an automatic classifier of atmospheric conditions. HistoÅcal data is then used

to ftt a model relating these weather states to the observed dai/ry ratnfail'. As the

model is fitted to atmosphedc information, it can be applied in any tegion so long as

the climatic ddving force of precþitation does not change and the conttolling

synoptic vadables are incotpotated into the fitting ptocedure.

Hughes and Guttorp (1994) also applied a similat weathet state technþe, by relating

site ptecipitation to synoptic atmospheric patterns and in patticulat to sea level
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pressures' A major assumption in models of this type is that the relationship

between the climatic state and the ptecipitation does not alter over time due to

climate change and other influences that have not been included directly in the

model. \7hi1e this type of model ptovides a solution to the regionalisation issue, it
tequites the selection of appropdate atmospheric variables which introduces

uncetainty and telies on the understanding and assumptions ftom the modeller.

Models of this tçrc arc also teliant on the availzbtht¡ of good quality climate data at

the time step of interest which may also be an issue. This method does have the

potential to develop into a useful tool for ptedicting effects due to climate change

(Hughes et al. (1993)) if it can be incorpotated into atmosphedc forecasting models

howevet its applicability to fine time scale rainfall modelling is questionable.

Typically in the literature these models were focused on reptoducing the occurrence

process of daily rainfall and as a tesult no simulation of ninfalT amounts was

presented.

Âtnbjerg-Nielsen ø al. (1996) agan dealt with extreme rainfall and studied the

tegional vadation of extreme values of peak intensity in Denmark. Interested in

identifying variables that could describe the regional fluctuations; they analysed the

corelation structute between vadous extreme values and possible covariates. They

found that the annual avere;ge ptecþitation and the 0.2yr return period for depth per

day at a nearby gauge with daily tesolution could be used to describe the regional

variations in the maximum lO-minute intensity of a rain-event and the total depth of
tain events at cefiain return periods. While this was seen as a success, these regional

variables could not explain the vadation in longer return periods. Their analysis was

also hindered by the availabitty of only 15 years of data.

Cowpettwait er a/. (1996) developed a methodology to enable the application of the

Neyman-Scott (ÀTS) model to ungauged catchments. Similar to rhe later tzrinfalf

runoff work by Sefton and Flowarth (1998) and Seibert (1999), the model was

calibrated to 112 sites scatteted throughout the United l(ingdom. A set of
explanatory variables rvas then developed rvhich r,vas used to descdbe and rclatc thc

changing physical Process of rainfall at each of these sites. By using linear regression

on the model p^tametet estimates against these explan^tory variables, a relationship

was developed that could be applied to 
^ny 

site fot which the explanatory variables
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could be calculated. The general tegression model for each of the NS model

parâmeters can be wdtten as

ln(W)=ao*arX,',+arX,r+orX,r+"'+ anxin+8i Q5)

\Where r1r, is the NS model pafametef fot ith station-mon¿t, Xiis the jth explanatory

variable for the ith station-month, a, is the least-squates tegtession p^rameter fot the

jth explanatory varnble, t, is the residual enor in the tegtession model for the ith

station month and n telates to the numbet of explanatory variables that were found

to conúibute signifrcantly to the ptediction of the NS parameter.

For the purposes of their work, the explanatory variables selected wete Altitud. (Ð,

North Ordinance Survey (OS), Gdd Refetence Q'J), West-East effect [V) and the

distance ftom the Coast (C). The \X/est-East effect was a tesult of the well-known

'rain-shadow' that the Pennine mountain range causes on tainfall in the UI(

Depending on the locadon of the site in relation to this range, the tainfall statistics

vary significantly. nøigl"y et a/. (1984) ptoposed tÏe use of an east-west dividing line

ro delineate areas that were affected by this range. Cowpertwait et al. (1996) adopted

this line as the cdteria for defining the east-west effect. As the values (A,OS,N,Ïø

and C) are al). measurable ^t aîy point in the UIÇ Cowpettwatt et al. (1996) had

ptovided a tegionalised Neyman-Scott tai.rtfall model.

While the regionalisation method of Cowpertwait et a/. (1996) was claimed to be a

success, the authors cautioned that ettots on selected individual sites ate due to the

microclimate effects that produced precipitatfon variation from site to site. To

remove this error, other expl^fiatory variables would need to be inttoduced to

develop a relationship that enables the microclimate effects to be included' This

illustrates the difficulty faced when telating stochastic løiinfù1. model pârameters to

physical quantities. The assumptions made by including some physical descriptots

and not others due to modeller input or a lack of available data induce errors in the

final model.

Jones and Thomton (1999) introduced an alternate method litkitg a thitd-ordet

Markov ninfallmodel to climate surfaces. Climate surfaces ate usually developed fot
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monthly rz;tnfall and minimum and maximum temperature. These climate surfaces

ate calculated by dividing the study region into pixels of a nominated size. Jones and

Thotnton (1999) used a simple interpolation algodthm based on the inverse square

of the distance between the station and the interpolated point to calculate the surface

values for each pixel. This is given by

55
xpixer =Z¿l "Zi=l i=l

x¡
Q6)d -2

Equation (2.6) ensures that the climate sutface passes exactly through each station

point an advantage ovet altetnate techniques of interpolation. As the weight distance

lrl
[*, J "Ontoaches 

ittf-ity as (d) approaches zero, the value of a pixel containing a

station observing climate data tends towards the value of that station. These climate

sutfaces wete then used to calibtate the rainfall model. Initially daily records ftom

across the world were grouped into similar climatic clusters. The rainfall model can

then be calibrated ^t àfly pixel point by considering how the pixel climate surface

adjusts the parametet values within each cluster relative to the cluster climate means.

Presented results indicated the model performed well over long pedods of time (crop

gtowing seasons) but discrepancies wete more corffnon over shorter periods. One

site showed consistent deviations ftom the observed and it was concluded the poor

tesults wete a factot of its complex climate, the size of the pixels not reptoducing

small vadations in climatic variables and the groupings during the cluster analysis.

This technique requites the calculation of climate surfaces for any tequired value at

the time pedod of interest. A model calibrated to monthly data therefore requires 12

monthly rzLinfall sutfaces. Fot a model that uses a ftnet time scale, the computalJLonal

butden increases.

Gyasi-Agyei (1999) extended the earlier jitter rzLinfa[ model presented by Gyasi-Agyei

and \Øillgoose (1997, 1999) and identified regional model parameters from daily

ratnfall statistics. Â total of 13 sites in cenLral Queenslancl were used for the study.

After simpli&i"g the patametets of the model by removing correlated parameters

and those that temained constant over the yeat, the model was calibrated to one

(Rockhampton) of the sites in the region. The data from all 13 sites was rhen
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combined and a regional parametet set identifred. Gyasi-Agyei (1999) concluded that

whjle there were differences between the parameter sets, a single set of regional

parameters could be used for all sites. These tegional parameters and the observed

datly data at the t^rget site of interest are then used to estimate model parametets at

the required simulation time scale used in the generation of short-time increment

rainfalL. This technique wâs shown to produce houtþ :ørinfall. but was not adequate

for generating a synthetic 6-minute record. Signifrcant variations in one of the

assumed constânt parameters at this time scale led to the development of an alternate

technique for 6-minute generation. The jittet model was employed to simulate at the

hourþ level and the resulting houtly tainfalls disaggtegated into 6-minute pedods.

Gyasi-Agyei (1999) assumed that the distdbution of ftactionalratnfall, proportions in

wet 6-minute bins was uniform. Therefore given 5 wet bins in an hour of 50mm of

ta:tn, a uniform distribution can be used to generâte frtcttonal weights. Each weight

is divided by the sum of the five values and these ate then multiplied by the hout rain

depth to obtain 6-minute løLirrfall. values. It was not shown how the number of wet

bins in an hour was calculated. Ptesented results showed good agteement between

the observed and simulated dry probabiJities, mean, variance znd lag-l,

attocovatiance at selected months for cettain levels of aggregaion. Exfteme tainfall

results u¡ere not presented and the author proposed further teseatch to imptove the

teptoduction of second otdet moments.

\lotling et a/. Q000) provided anothet physical link model to regionalise tlre extreme

precipitation distribution in Tahiti. Â limited set of vatiables that descdbed the

topographical envitonment were linked to the patameters of the ra;tnfzl, intensity

distribution thtough the use of a stepwise tegtession with 20 tainfall sites. These

regression estimates were then applied to 300 fixed points on a grid and the resulting

intensity estimates interpolated to ptovide an approximation of extreme tainfalls ovet

the entire island. Wotling et a/. Q000) concede that the linking of model ot

distribution parameters to topographical desctiptors, whjle working well in Tahiti is

restricted in its application to mountainous areas where the relationship between

rainfall. and the topographical descrþtots is very sttong.

Smithers and Shulze (2001) developed a tegional estimation of short duration design

storms using L-moments. Using 172 ratnfall. stations in South Afitca, L5 relatively
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homogeneous clustets wete developed. The index stoffi method was used and

defined as the mean of the annual maximum series. A relationship between this

index storm and the mean arìnualntnfalTwas dedved enabling short duration design

storms to be estimated at ungauged sites in South Africa. Except for two clusters,

tesults indicated the abiJity of this technique to estimate the 24 hour desþ storm.

Results ptesented fot smallet dutations showed a ptogressively worse compadson to

observed values,

2.5.4 Summary of Rainfall Model Regionalisation

The regionalisation of hydtological models is often a tequited element in the

application of these models for engineedng analysis. Histotical records are often

short and can only provide a small amount of direct information about the site in

question. This leads to models that are poody calibtated and in tutn provide

questionable results. This is particulady relevant when utilising short time inctement

(6 minute) rz;infall data as an input into hydrological studies.

$7hile signifrcant work has been ptesented on regionalisation methods, work in this

area has primariþ been focused on stream-flow and flood ftequency rather than

ntnfalL specifically. Flowevet the underlying theory used for regionalisation of

catchments can generally be applied to tegionalisation of ninfalf models and may

even be applied with more confidence as noted by Cong et a/. (1.993) who wrote

".. . the assumption that the distribution form (not the distdbution itself which

involves patameters) of the ntnfall is the same for all statj.ons in a homogeneous

tegion is more reasonable than a similat assumption fot floods, because the effect of

the ground surface condition on tatnfzll. is much less than floods."

Numetous techniques presently exist that enable the development of a relationship

between model parameters and measutable physical quantities and therefore provide

a tegionalised hydtologic model. \7hile these techniques are different, the same

inhetent weakness is ptesent particularþ when looking specifically at tegionalising

latnfall, models. These lypes of models require the measurement of physical

properties that affect observed njnfall values. As rainfall is linked to atmosphedc
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dynamics, annual and intet-annual global climate variations and smallet 
^re

fluctuations, the abiJity to include enough physically measutable quantities in the

development of these relationships must be questioned. The inclusion of certain

physical païameters over othets is also generically flawed and is an individual bias

inuoduced by the expectations of the modellet.

The application of homogeneous regions for the pu{poses of developing contiguous

^ïe 
s that exhibit identical hydtological ptoperties has merit and has been

successfully app)ied in numerous studies fot the Purposes of tegional flood

ftequency. If a sufficient network of long tetm historical rairrfall. records were

avalable to enable such an analysis, a p^r^meter contour map could be produced

across the country. This would enable the simulation of :øLirrfall. at any point of

interest at the required time scale. Howevet given the complex atrnospheric

intetaction in the development and production of rainfalJ., the lack of signi{icant dzta

records and the cost of acqufuing ava:iLable data sets, this method is not viable both

economically and computationally. Âltemative methods such as compiling climate

surfaces at the daily or finer time scale also require extensive resources ptohibiting

their use ditectly.

The shortcomings of existing regionalisation techniques and the lack of quality long

historical data sets for calibration have motivated the development of an altetnaúve

apptoach to simulating short time increment rainfall at ungauged sites. This new

apptoach adapts the underlying theodes of regional flood frequency and in particulat

the index flood method and applies it to the parameter distributions of a high

resolution point rainfall model. Initially â mastet set of calibrated parameters are

determined based on a nearby pluviogtaph record and once this mastet parameter set

has been calibrated, any site specific short pluviogtaph ot daily data records ate then

used to adjust the master parâmeter set and provide model parameters at the tatget

site of interest. This enables the existing model to improve its application to short

historical pluviograph records and use the abundance of datly data tecotds atound

Australia as the basis for a new regionalisation âpproach, providing a rarinfalT

simulation tool capable of simulating accurate high resolution la;jnfalT data across the

countly.
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In otdet to develop and apply a new regionalisation technique, existing models were

investigated with the view of selecting an appropriate model for futther

development. For the purpose of this study, the selected model was the event based

model presented by Heneker et al. Q001). The Fleneker ø a/. Q001) rzrtnfall.model is

an altetnadng renewal model and cahbrated to independent stoffi events. The

calibtation of the model to independent storm events ensures the model can be

calibtated to tecotds with missing periods of data. This was seen as an important

atftibute when considering models that arc calibtated to short time increment rainfalf

tecotds which often contain large pedods of missing ot erroneous data. In addition

to developing a new tegionalisation technique, this study also presents significant

imptovements to the model in terms of panmeter calibration, identification and the

inclusion of patameter uncettainty. These ideas were lacking in the original model

a¡d are a significant imptovement to the model when compadng results to observed

statistics. The key ideas behind the Heneker et al (2001) model and the

improvemerìts are presented in the following chapters.
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CHAPTER 3

IMPROVEMENTS TO THE HIGH
RESOLUTION POINT RAINFALL
MODEL

3.1 Introduction

The existing rainfall model presented by Heneker et al. (2001) and selected for furthet

development as part of this study belongs to the group of wet-dry alternating renewal

models. Models of this type are characterised by theit calibtation to independent

storm events. The initial development of the model, while adequate for its desired

purpose, contained a number of deficiencies in its original form which waranted

attention pdor to the development of a tegionalisation approach fot applying the

model at sites with little or no calibration data. It was important that the model

produced favourable simulation compadsons to obsewed statistics, 'was tobust

dudng calibtation and required minimal uset input. In ordet to veriSr its

performance, the otiginal model was comptehensively investigated and then

modified ensuring the improved final model is easy to use, accurate and robust'

3.2 Description of Original Rainfall Model

The otiginal point ratnfall,model developed by Heneker ø a/. (2001) is an event based

model whete the event sedes is completely defined by the ptobability distdbutions of

inter-event time, storm dutation and conditioned storm intensity. In its original form

given arr adequate recotd available fot calibtad.on, the model is capable of

teptoducing various ratnfall, statistics including certain values that were not used

during the calibtation process. This was an impottant considetation when selecting
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this model for futther development and the abiJity to replicate non-calibrated

statistics is an ìndication that the model is theoretically well structured. The stmcture

of the model and the tesults ptesented by Heneket et al. (2001) motivated

improvements and the new regionalisation approach proposed in this thesis.

3.2.1 Model Structure

The Heneker et al (2001) model is based on the alternating renewal process

introduced by Gteen (1,964). Âs discussed in section 2.4.4 the simulated tjme series

is completely defined by a sequence of wet events (storms) interspetsed with dry

events. Fot the Heneker et a/. Q001) model this structure was characterised by three

main vaÅables, the dry petiods or inter-event tjmes tn, the wet pedods or storm

durations t, and the avetage intensity i and is shown schematically in Figure 3.1.

Probability distributions were used to descdbe the observed populations of inter-

event times and stotm dutad.ons, while a third conditional probability distribution

was used to describe the relationship between stom intensity and stotm duration.

This ptovided a simulation which was able to generate a rectangular lrrinfallpulse for

each storm event dependent upon the dutation of the event. Finally a temporal

pattern model takes the simulated rectangular rainfall pulse and disaggregates the

storm event down to the time step requited (typically 6 minutes). In this fashion the

model was able to provide a synthetic pluviograph record which compares

favourably to vatious observed data statistics.

Rainfall
Intensity
(mm/hr)

Time

Figure 3.1: Schematic of the Heneker et al. (2001) model

s{-----}
tut¿
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3.2.2 Probability Model of lnter-Event Time & Storm
Duration

In order to ftt a probability distribution to the observed inter-event ttme to and stotm

duration /, populations, a procedute was employed to extract independent events

from the continuous histodcal recotd. After extensive analysis of correlation tesults,

Heneker et øt. Q0O1) adopted a miflimum inter-event time of 2 hours to distinguish

between independent stoffis. This value provides a balance between ensuring

consecutive events are sufficiently independent and the need to have as much

calibration storm data as possible with a fxed length historical record. Whjle this

minimum inter-event time differs between tesearchets, 2 hours was shown to be

sufficient ctrtena for the definition of independence âcross numefous Australian

sltes

Once the critena defrning stotm independence has been set, the historical recotd can

be examined. A historical wet storm event begins with any tecorded observation of

rain and continues undl a dry period is observed that exceeds the minimum intet-

event time. \When a dry period greatet tha¡ 2 houts is observed, the previous wet

event is complete and a new dry event begins until the next obsewed period of fain.

Using this definition of storm independence and the tesulting exttacdon ptocedure

ensures dry pedods of no rain can be ptesent dwing wet eveflts, a phenomenon that

is readily obsewed in real storms (see Fþte 3.2). Upon completion of this storm

processing step, probability distributions can be fitted to the tesulting populations

during the calibration process.
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Rainfall
lntensity
(mm/hr)

Ç' tu min to,

Time (hr)
t"

Figure 3.2: Schematic of Calibration Procedure

3.2.3 calibration of lnter-Event r¡me & storm Duration

In otder to model the distributions of inter-event time and stoffi duration a

combination ptobabiJity kemel was used. Lambert & Ktczeta (1993) introduced a

genetalised exponential distdbution which is the basis for the calibration of inter-

event time and stotm duation. The generalised exponential distribudon takes the

form

F(x10,)=p(x<x|0,)=r-"*pþg(",0,)l x>0 (3.1)

whete X is the independently disftibuted tandom vadable, / relates to the time at the

statt of tlre stotm ot inter-event time. (If patameters are calibrated monthly, this

telates to the month at the statt of the event. Parameters can also be calibrated using

harmonics âcross tåe yeat, in this case /is expressed as a fraction of the year that has

passed.), á, is a model parameter vector dependent on t, and g(*10) is a kernel

function. Re-expressing this equation as

tn[t-r(x ld,I= -s(x,o)
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01 <0,02 >0, (3.3)

g(x,0,)= grro' e3>0,04>0, (3 4)

The combination of equations 3.2, 3.3 and 3.4 gives the complete kemel used to

describe the distributions of intef-event times and stofm durations:

Chapter 3: Rainfall Model lmprovements

and using the appropriate kernel allows the distdbution to be plotted on exponential

ptobability paper. The kernel chosen by Heneket et al. Q001) to best fit the data was

a combination of the Generalised Pateto Distribution (GPD) (R.osjberg et ø1. 1992)

and the pov/er law kernel shown respectively below.

s(,,0,)=-f'"[t -t,t)

tn[t - r(x I B, )] = -s(x,e,)= ; 
.[,r - t.;)- lsxeo

0y <0,02,03,04 ) 0, (3.s)

The patametef vectof 0,ís calculated using maximum likelihood techniques.

3.2.4 Method of Maximum Likelihood

The method of maximum likelihood was chosen by Heneker et al. (2001) and is also

used duing this study for estimating the optimal model pafametef set.

Given a set of observations X (xr, x2,..., x), the method of maximum likelihood

finds the parameters 0, of z model fhat are most consistent with these observations.

Consistency is measured by the probabiJity of a model generating the obsewed value.

The method is intuitively appealing as it tries to find the values of the parameters thât

would have most likeþ produced the observed data. If the observed samples have a

density function -f(*;0), the likelihood of observing a patticulat value x, czn be

assumed to be ptoportional to the value of the probability density function evaluated

at x, Therefote the likelihood of observing a set of observations Xis given by
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L(0, I x,,x2,...,x¡) = f (xi0t)f gr;0,)...f (xn;0,)

(Independence assumed)

(3.6)

The value of á, which maximises the likelihood function can be obtained either by

differentiating the likelihood function with respect to 0,, or by nurncrically

maximising the likelihood. Typically the shuffled complex evolution meth<.¡cl

(sCE-uA) descdbed by Duan eî al. (1992) and rhe simplex search method

inttoduced by Neldet and Mead (1965) are used to find the maximum likelihood

parameters.

Since the nat'xal logarithm function ln is strictly increasing, the maximum value of
L(O,1x,År...,x),ir it exists, will occur at the same point as the maximum value of

/rþ(e,1x,,x2...,x,)J. This log likelihood funcrion was the form used duting this

study. The numbers ptoduced by the multiplicative nature of the likelihood function

become too small fot curtent computers to distinguish from zero and therefore the

log likelihood function becomes easier to work with.

The patameters can be fitted as constants over the entire ye^ï, to individual months

or allowed to v^ry smoothly ovet the year via harmonics in order to capture any

seasonality in the data. Validation of parameter values can be undertaken pdot to
and aftet the simulation. Probability plots compating observed and predicted storm

events indicate the success of the search routjne and the distribution assumptions.

At the completion of the reEritecl simulation, plots comparing observed and

simulated event distdbutions and aggregated statistics for vadous time pedods can be

produced to provide evidence of the quality of the simulation. Example calibration

plots for selected months in Melbourne can be seen in Figure 3.3 and Figure 3.4.

These plots cleatly indicate that the inter-event t-imes and storm durations are not

exponentially distributed (exponential distdbuted variables would plot as a straight

line) and that the combination ketnel employed by Heneke r et a/. Q001) provide an

excellent fit to the obsewed distributions.
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Figure 3.3: Heneke r et al. (2001) model fitted to monthly inter-event time data for

Melbourne in January
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Figure 3.4: Heneker et al. (2001) model fitted to monthly storm duration data for

Melbourne in May
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3.2.5 Probability Model of Average Rainfall Intensity

The desctiption of rainfall intensity is an integtal part of the alternating renewal

model. Scatter plots clearþ indicate that the rainfallintensity is dependent on srorm

duration. Figure 3.5 displays such a scatter plot for Adelaide. It is evident from this

plot that the calibtation and simulation of luLinfall intensity cortesponding to each

storm event is not a ttivial task. Short tainfall events tend to have a slightly higher

intensity pulse in comparison to longer duration events. This correlation between

the intensity of a rziin event and the coresponding storm duration requires the

incorporation of a conditional relationship. In addition to this, a probability

distribution must be chosen to descdbe the population of rainfall intensities.

0.01
0.1 10 100

Storm duration (hours)

Figure 3.5: Average storm event intensity v duration for Adelaide

Heneket et a/. Q001) used the GPD distdbution to represent average ratnfall

intensity. The GPD has a number of advantages which provide significant benefits

when it is used to descdbe 
^ver^ge 

rzltnfaifl intensity. Most notable of these

advantages is the existence of an uppet bound when the standard deviation has a

value highet than the mean. This ensures long duration events will not have

untealistically latge intensities associated with them producing latge abnormal storrn

depths, a ptoblem which was observed and identifred by Heneker (2002).
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Â.nother advantage of the GPD is that its two parameters can be directly telated to

the mean and standard deviation of the observed population. The tesulting model of

conditional intensity is given by the following equations

r^(r-rG))= ä^('-t, r) çl)

er <0,02 > o

where the patametets of the GPD 0, alrrd 0, ate dependent upon the mean and

standatd deviation and are given by

(3.8)

and the me^î p and standard deviation o 
^re 

conditional on the storm duration

denoted as

" 
= i,((5) - ì, " 

= +,((5).')

tt,a =f(n(rr))

where r, is the coresponding storm duration.

(3.e)

This relationship between the GPD parameters and the sample event stadstics

ensured the conditional relationship between stoffi dutation and intensity could be

modelled. To gatn an insight into the telationship between the mean and standard

deviation of intensity against duration, the historical intensity-duration pairs are

ordered ftom shortest to longest duration and then divided into groups of 50

consecutive events. The mean and standatd deviation in each group can be

calculated and these are then plotted against storm duration. A typical tesult for the

mean 
^ver^ge 

storm intensity versus dutation can be seen in Figure 3.6 fotAdelaide.
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Figure 3.6: Mean average storm event intensity against duration for Adelaide

The values of p, 0 corespond to the mean and standard deviation of the t,lerage

storm event intensity. In order to model these changes of ¡t, áwith storm duration a

piece-wise lineat telationship was developed. Â series of straight line segments link

the changes in slope of the conditional relationship. Breakpoints are manually

included at cefiain durations by the modeller to ensure sections between breakpoints

ate ptedominantly linear. For the above Adelaide data, bteakpoints were set at 0.1,

0.2,0'3,1.0, 3.0, 10, 1B houts. The resulting piece-wise linear model of mean zveï2¡ge

storm intensity can be seen in Fþte 3.7. Dudng simulation, the values of p, 0 can

be calculated ftom this continuous piccc-wise linear function and are then usecl t<-r

estimate the GPD model parameters in otder to genetate ^î aveïàge intensity. In
this fashion the complex conditional relationship between intensity and duration was

modeiled successfully. Seasonality can again be incorporated by the use of monthly

pâtameters or hatmonics and maximum likelihood techniques ate employed to find

the optimum parâmeter set.
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Figure 3.7: Fitted piece-wise linear modelof mean average storm event intensity v

duration for Adelaide

3.2.6 Disaggregat¡on of Rainfall Events

Rainfall models that generate rainfall. at time scales in the order of minutes require a

rnethod to ensure the intra-storm vadability of :*eLinfa[is teproduced' Each obsewed

:rrtnfall, event has â coffesponding temporal pattetn i.e. internal pedods of varying

ninfall,intensity over dme mixed with pedods of no rain. Once the rain event seties

and cortesponding intensity has been simulated, a disaggtegation ptocedute can be

included to teplicate these internal storm chatacteristics.

The main idea behind the disaggregation scheme introduced by Heneket et al. (2001)

is that the temporal storm patterû can be conceptualised as a conditional random

walk on a dimensionless mass curve. If the ratnfall. ttace of a storm event is

considered, when moving from one time step to the next the trace can either move

upwatd cottespondingto a:-zLinfall.period, ot temain hotizontalindicating an internal

dry period. This is shown dizgrammatically in Fþte 3.8.
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Figure 3.8: A non-dimensional description of the rainfall temporal pattern

The ptocess used to desctibe the ptogression in this dimensionless mass space is

assumed to be a self-similat, disctete stochastic process. The self-similadty concept

whete storms ate assumed to exhibit similar intemal propetties despite differences in

stoffi duration and depth provides the abitity to simulate high resolution temporal

patterns for long dutation storms. This has been used with success previously by

\Øoolhiser and Osborn (19S5) and I(outsoyiannis and Foufoula-Georgiou (1993).

The disaggregation procedure developed by Heneker et al. Q001) separates the

internal wet and dry petiods of a rainfa[ event and considers them separately.

During the simulatiorL ptocess, the tequired wet and dry pedods âre generated and

then using a non-teplacement-sampling scheme, the dry periods are intetspersed

within the wet pedods to produce the final temporal pattern. These procedures ate

now investigated in turn.
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3.2.7 lntra-Storm Rainfall

The treatment of the internal event rainfall periods begins by temoval of any intra-

storm dry pedods. The tzinfai0. pedods are then consolidated into a continuous

sequence of varyrngntnfall.intensity ot incteasing depth ptoviding arainfal,tnce'

For each observed :øtinfall. trace, storm dutation is non-dimensionalised (ftom

Fleneker er a/. 2007) by r = tf to wb,ete t is the time since the statt of the storm and t,

is the total stoffi duration. Depth is non-dimensionalised by á = d(t)/d(t) wlnerc d(t)

is the cumulative rajnfall. up to time / and d(t) coresponds to the total event depth'

All rainfall traces therefore lie between (0,0) and (1,1) and have a non-negative slope.

In order to describe the progression of the tainfall ttace, the non-dimensionalised

spâce r is initially divided into ten finite intewals. A jump distribution is used to

describe the progtession through the non-dimensionalised space ftom one intewal to

the next. By analysing the histogram of all observed jumps in each tenth of the

dimensionless event duration spâce, an assumption for this jump distribution can be

made. As shown in Heneker (2002) and reproduced in Fþte 3'9, Figure 3.10 and

Figure 3.11 (for Melboume, Adelaide and Sydney tespectively), the shape of the

histogram suggests lhat a log-normal distribution can be used.
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The fitst jump from the origin (0,0) to the fust duration interval of tr//0 can be

described by the matginal distribution of all initial jumps in the obsetved record.

Howevet subsequent jumps must be conditional on the current location in the non-

dimensionalised space. This ensutes that the rainfall úace always ends up at (1,1)

aftet disaggregation. A tluncated log-normal distdbution with a jump mean m and. a
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jump standard deviation .r u/as used to model the obsewed iumps of the tatnfzll, tzce

inside each interval. To ensure the mean and standatd deviation of these jumps tend

towards zero (fot constraint) as the rainfall. trace âpproached the end of the

dimensionless storm, the following patabolic curves wete used to describe the

pârameters m and r. These were then calibrated to the observed rz;infal' traces.

m=(l- 6¡.')(m, + mr6,-1)

5=(l - á,_1)(st + srá,-r )

(3.10)

(3.11)

where ð =
d(t)

d(t¿)

The distdbution of internal rainfalil. jumps used dudng the disaggtegation process ls

therefore predominantly a conditional telationship based on what has transgtessed

previously throughout the storm. For the purposes of simulatioryninfall events ate

non-dimensionalised and divided into 10 initial intewals each one tenth of the total

storm duration in length. Rainfall depths ate calculated and assþed through the

disaggtegation process into each of these intervals. The assumption of self similarity

then allows the disaggregation scheme to be applied to each of these 10 intervals

separately and so on. This process continues until the length of these intervals ate

less than or equal to the required time resolution'

3.2.8 lnternal Storm DrY Periods

Once the wet intervals of the storm event have been simulated and disaggtegated

down to the tequited time scale, the insertion of dry intervals ptoduces typical

histodcal temporal pâtterns. To do this, a dry spell fraction P is introduced, which

defines the number of dry increments in any given stotm. Heneket et al. Q001)

characterises storm events as belonging to one of thtee grouPs with tegatds to the P

value. Storms with a total duration of less than 0.5 houts ate assumed to have no dry

periods arrd ate assþed a P value of 0. During the simulatiorl process, any stotm

whete t,t < 0.5 did not tequire the insertion of internal dry periods'
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After the treatment of all short stoïms (r,t < 0.5 hours), Heneker et al. e001) divided

the temaining storms into two groups. Through an analysis of the distdbution of
intta-event dry fractions (see Figute 3.12), they found a significant number of storms

had a 1ow P P, 0<P<0.0, value berween 0 and 0.05. The shape of the distdbution

of all temaining storms with a higher P value (P,,, P > 0.0Ð, indicated that it could be

modelled using a Beta distribution with a lower limit of 0.05 and an uppet limit

Q'no,t) defined as the maximum P observed in the data. The storms allocated a low P

value (P) whete modelled using a uniform disttibution.
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Figure 3.12: Distribution of intra-event dry fractions for Melbourne

The cahbration ptocess tequfues the calculation of four parameters ftom the

observed data. These relate to the two parameters of the Beta distribution, the

probability of Pt and Pn,.o*. Dudng a model simularion, the sampled p value

detetmines the number of dry interwals that are interspersed into the :ølinfall, tnce.

To insert these dry periods, a random insertion without replacement scheme is

employed to intetsperse these dry intervals into the simulated rainfal), ttace,

producing the tempotal pattern of the :atnfall event. Two consftaints are introduced

to conttol this insettion process. Firstly, any dry period within the storm must not

exceed the minimum inter-event time of two hours, which was initially used to

determine storm independence. Secondly, the first and last intewal of the storm

must always be wet to ensure the storm duration remains corfect.
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3.2.9 Summary

The model results presented by Heneket et a/. (2001) show the model to be capable

of generating synthetic ntnfall. data down to time tesolud.ons in the otdet of minutes.

The reproduction of short duration IFD values at most sites gives an indication of

the effectiveness of the disaggregation ptocedute. Obsesed and simulated intet-

event times and storm duradons compâre well, as does the mean of annual tainfall.

Indicative plots comparing observed and simulated data ftoloi' Melboutne for IFD,

monthly and annual njnfall. ate shown in Figute 3.13, Figute 3.74 & Figute 3'15

respectively and display the ability of the model to captufe these statisdcs.
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Figure 3.14: Mean and standard deviation of monthly depth for Melbourne.
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Figure 3.15: Probability distribution of annual rainfall for Melbourne.

Even though the model was deemed a success, the model in its original form

contained ateas that could be significantly improved. Wbile investigating the

performance of the original model and calibrating to numerous ntnfalT sites across

Âustralia, it became aPparent that model parameters were not always well determined

by a global search routine. Further analysis has indicated the existence of significant
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p^rameter corelations within the adopted probabiJity structure used to descdbe inter

event times and storm durations. The existence of these P^r^metet cottelations can

be shown to induce 'flat' ar.eas in the objective function space (regions where the

likelihood is almost identical over a vâst range of panmetet combinations). This

makes it difficult for global search routines to detetmine the optimum parameter

values. For the purposes of regionalisation, it is importznt that model parameters are

well defined and not significantly cortelated so master calibtations can be adapted

and used at otLet sites with confidence.

To improve the estimation of model pârameters and provide an easiet model to

regionalise, an investigation into the telationships berween model parametets has

been undertaken. A well known technique known as the Metropolis algorithm pee

(1939), Gelman et a/. (1997)) (a Monte Catlo Markov Chain) has been incorporated

into the new model and has allowed an insight into these pârameter telationships.

The tesult of this work is the complete removal of one superfluous p^t^meteL

Replacing the odginal 4 panmeter distdbution with a modified 3 parameter version

has removed the significant parâmeter corelation, tesulting in optimum model

pârameters that are well identified and assists in undetstanding the telationship

between pârameters in the model.

Another issue wattanting attention was tÏe procedute introduced by t{e¡eker el a/'

(2001) to calibrate storm event intensity. The otiginal calibration process tequired

modeller input at various stages, tesulting in the ptocedute being time consuming

and potentially biased on the expectations and interptetations of the modeller. This

was not the case for the calibration of stotm inter-event time or storm dutations

which were operâtor independent. This manual intervention introduces 
^r7

inconsistent calibration process which has the possibility to vafy signifrcantly

between data sites and modellers. ,\nalysis of the intensity-duration relationship has

led to the development of an awtomatic calibtation ptocedute which temoves the

need for modellet input and simplifies the calibration process. This has improved

the reliability of the model and in turn its usefulness and functionality as a

hydrological tool.

These ideas and results behind these two major improvements to the model ate

presented below.
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3.3 ldentifying and
Parameters

Removing Gorrelated

The abiJity to successfully identifi optimum model parameters is a critical step in the

application of hydtological models. \lüith substantial improvements in computing

power and imptoved searching algorithms, the identification of model parametets

continues to become easier to accomplish. Flowever, the ability to determine the

ttue optimum parametets is patticulady important for a model being used for

regionalisation. This was surffnatised by I(uczeta (1983) when he said:

"If the full potential of the regionalisation approach is to be realized, it is desfuable

that optimized parametets be close to their trrre values; that is, they should be

ptecisely infened or well determined."

The impottance of accurate calibtation was also discussed by Gaume et al. (1998)

who noted that it (an accutate calibtation) can not be over estimated and that

cotelations between parameters ptovides amajor obstacle in the ability to accurately

identi$' model parameters. The abi]ity to analyse and remove corelated parameters

would imptove the calibration process and provide further eviclence of a well

developed model.

The existence of p^r^tr;'etet cotrelations can influence the calibration process by

yielding objective function sutfaces that are complex with numerous flat areas and

localised valleys. These sutface sttuctures can become problematic for search

routines (and modellers) interested in finding the optìmum païameter values.

Corelations in the parameter structure can also result in an uncertainty in the fitted

parameter values, which in turn may produce a poor simulation result. If patameter

corelations can be identified, the model can be reconstl'ucted/te-structuted to

remove the need for these parâmeters, thus imptoving the model.

Fot these Íeasons, improving the Heneker et a/. (2001) model by temoving parameter

correlations was seen as an important step towards providing a tobust rrrodel capable
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of further development into a tegionalised tainfall model. In ordet to analyse the

Heneker et a/. Q001) model pârameters an estimation of the distribution of these

parameters aftet calibration þ(0 ly)) ir tequired. Unfottunately, it is diffrcult in

complex models with numerous parameters to obtain samples ftom this posterior

pârameter distribution directly. To circumvent this problem, the Mettopolis

algodthm, a member of the Monte Catlo Matkov Chain simulation (X4CMC) family,

was incorporated into the original model. A brief description of the wotkings of the

Metropolis algodthm is provided below. Fot a more detailed description of

Mettopolis, mathematical background and alternative MCMC's the authot

recommends Lee (1989), Gelman et al. (1'997) and Gametman (7997)'

3.3.1 The Metropolis Algorithm

The Mettopolis algodthm was developed initially by Metropohs et al. (1953) to deal

with the calculation of chemical substance propeties that ate determined by the

equilibdum of potential energy and the vector position of the chemical molecules. In

its presented form, the algodthm is able to sample ftom the postedot distribution of

parameters in a complex model such as tlis, whete direct calculation of these

distributions is not possible.

The idea of all MCMC's, is to simulate a random stepped walk thtough the parameter

space whereby samples drawn at ezch step in the ptocess eventually conveïge to the

stationary posterior distribution of the calibtated model parameters. As samples are

drawn sequentially and the next sampling distdbution is dependent on the previous

value, the process forms a Markov Chain. The tequired posterior p^r^meter

d.istribution is denoted p(0 ly) and is often called the tatget distribution. This refets

to the fact that in teality the distribution is only inferred ftom the accepted

simulation samples and in essence is targeting the true parametet distribution.

Initially samples ate drawn from an apptoximation of the patameter distribution

refered to as the jump distribution. Âs the algotithm ptoceeds, conttolled

adjustment of this jump disftibution ensutes subsequent samples are more likely to

be sirnilar to those that would be drawn from the real tatget distdbution' Dudng the

process, drawn samples are accepted ot rejected as a sample of the tîre target
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distdbution based on a cettain test ctiteria. This technique allows the algodthm to

converge towards the ttue target distribution. Mathematical ptoofs arc avaiable (see

Gelman et al. (1997)) that show samples dtawn after convergence are equivalent to

dtawn samples ftom the tequired target distribution. The adjustment of the

apptoximate distribution at each step, which allows the simulation to converge to the

target distdbution, is the pdmary reason that this technique can be used with success

in highet dimensional ptoblems. This is not the case fot one/low-dimensional

apptoaches such as importance sampling where the distributions remain the same.

A key to Matkov Chain simulation is n:nning the simulation long enough to ensure

that the distribution of current draws from the simulation are close to the required

stationary distdbution. The question in ptactice becomes just how long should the

algodthm nrrL to ensure convetgence? If the algodthm is launched with several

sequences each an independent Matkov chain simulation, then the 'mixing' of these

independent paths (occuts when each independent path is sampling from the same

parameter region) provides evidence that the algodthm has converged. Various

othet parametdc and non-parametric techniques exist which are avatlable to test for

convergence (see Gelman et ø/. (1997)).

To gain an understanding of the workings of the algorithm, an example situation

with 4000 randomly generated data points ftom a normal distribution with a mean of
10 and a standard deviation of 10 is ptesented. An SCE_UA search was conducted

initially, assuming an undetþing normal distribution and using an objective function

based on Maximum Likelihood criteria. This search resulted in retutned optimum

parameters of 70.01,2 (mean) and 9.914 (Standard Deviation). Due to the large

number of data points (4000) and a two parameter distribution (normal) it is

reasonable to expect the calibrated patameters are well defined and concentrated

around the optimum modal parameters, The steps involved in then appþing the

Mettopolis algorithm are âs follows

1' Â starting point 0o is drarvn rvhich can be randomly selected or centred about

the modes/best fit of the disribution ptoviding rhar p(00lÐ > O (i.e. the

initial point is feasible).
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2. A candidate point 0. is sampled ftom the apptoximate or jump distribution

Jt(0: 0, ) at time t.
t, \

3. The ratio of the densities at these points is calculated, that is . = 9lt lll,
Pþ,-r lY)

4. A random number is genetated bet'ween 0 and 1. If this value is less than r,

then the candidate point is accepted as a sample of the postetiot distribution.

If this value is greater than r the candidate point is tejected. Once a point has

been accepted, the algodthm shifts to this point fot the next iteration. If the

candidate point is tejected, then the algorithm stays in its curtent position'

The acceptancef rejecfion process ensutes that the algodthm will always

accept candidate points which have a greater density than that of the previous

time step while also sometimes accepting points which have a lowet density.

This enables the algodthm to explore the entite patâmetef space and

eventually coûvetge on the cotrect posteriot distdbution.

5. Repeat the process iteratively until convergence.

After assigning random starting points inside the parametet space, Fþre 3'16 shows

the fust 30 itetates of the aþorithm. The solid squâres ate included to indicate the

stafüng points of the 4 independent path sequences. It can be seen that the tandom

walks have each úaced a path through the parameter space, howevet it is cleat at this

earþ stage that convetgence has not yet been teached.
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Figure 3.16: 30 lndependent Sequences of a Markov Chain Simulation of a Normal

Distribution. (Modal Parameters of ß.012 and 9.914)

Figure 3.17 ptesents a more mature simulation after the frst 1000 iterations. The

sequences ate much nearer to convergence indicated by each independent path

spending more time atound the same position in the parameter space. This mixing

of the 4 paths gives an indication that the model is converging and therefore drawing

samples that ate more likely to be ftom the underlying posterior distribution. It is
also evident that the independent sequences have been able to successfrrlly explore

the patameter space as evidenced by accepted samples near the extremities. The

sequences now almost have a common stationary distribution of p(0 ly).

I
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Figure 3.17: 1000 lndependent Sequences of a Markov Chain Simulation of a Normal

Distribution. (Modal Parameters of 10'012 and 9.914)

Given a mature converged simulation (Figute 3.17), the posterior parâmeter

distibutions can now be inferred from subsequent samples. Figute 3.18 displays the

iter.ate cloud of the final 2000 samples. These samples can be considered as dtaws

ftom the target distdbution and thus give the parameter distributions telating to the

calibrated mean and standard deviation of the assumed notmal model.
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The efficiency of the Meftopolis algorithm is related to the selection of the jump

distribution. Pdmarity a good jump distribution must be easy to sample from. It
must also eflsure that each jump goes a reasonable distance in the païameter space so

that the random walk does not explore the parameter space too slowly and that

candidate points are not tejected too frequently so that the algorithm doesn't waste

time standing still. GeIman et al. (1997) ptovide suggestions ro improve the

efficiency of algorithms which are progressing slowly. Typically for a multivadate

notmal distdbution, the optimal jumping rule should have an acceptance rate around

0.44 tfl one dimension or 0.23 n high dimensions. If the simulation is proceeding

with an acceptance rate significantly different to these values, then the following

adjustments can be ìncluded into the algodthm to improve efficiency.

1. After a certa:tn number of iterations, the covariance of the jumping

distribution can be adjusted to be ptoportional to the postedor covariance

maftix estimated from the accepted simulation samples.

2' The scale of the jumping distdbution can be increased or decreased if the

acceptance tatio is too high of too low respectively.

Monte Carlo Matkov Chain simulation ptovides a useful technique to determine the

Parameter distdbutions in complex models. The algorithm is relatively simple to

implement and relies on the ability to draw samples from the jumping distribution,

the abiJity to calculate r and the ability to generate tandom numbets.

3.3.2 lncorporating The Metropolis Algorithm into the
Rainfall Model

The Metropolis algotithm in the form ptesented above was incorporated into the

structure of the Heneket et a/. Q001) model to allow parameter uncertainty to be

examined. The likelihood functions in the model provided an ideal objective

function fot detetmining the tequired value of r. In ordet to implement the

Metropolis algorithm, the only remaining requirement was the selection of an

appropriate jumping disttibution. '\ccepting the requirernent that the jumping

disttibution must be symmetric for implementing the basic Metlopolis algorithm, the

selection is somewhat arbitary. For the puryoses of this study, a multivariate normal
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distribution was chosen. The multivariate notmal is symmetdc and has the

advantage that samples from this distdbution are easily obtained. Genetalisations of

the Metropolis algodthm (namely the Mettopolis-Hastings algorithm see Hastings

(1970) can handle the selection of jumping distributions which are not symmetric

but this has not been tequited during this investigation'

The following values were used for all Mettopolis simulations. Thtee patallel

independent paths were simulated each with 11500 samples. The fust 1500 samples

of each path wete discarded leaving a total of 10000 per path. Initially these

independent sequences wefe seeded by sampling ftom a multi variate notmal

distribution centred at the optimum ot modal parameters'

3.3.3 Dry Spell and Storm Durat¡on Parameter Analysis
using the MetroPolis Algorithm

As pteviously discussed the calibration of inter-event times and stofm dutations ate

undertaken with a genetalised exponential with a kernel function given by

Q.12)

01 <0,02,03,04 ) 0,

The four model parameters for both the inter-event and storm duration calibralon

can be tefered to as the shape 0,, location 0r, constant 0u and exponent 0o

pafametefs. A pair-wise comparison of the resulting Mettopolis postedor pâfâmetef

distributions shows the existence of signifrc^îtp^t^rÍaetet conelations in the otiginal

model stfucture.

A typical result where two parameters exhibit very little to no cotrelation is shown rn

Fþre 3.19 (in this case the shape and location of an intet-event calibtation fot

Sydney data). As can be seen from the bi-variate plot, movements away ftom the

mode of the parameter produce a significant dectease in the goodness of fit as

evidenced by a decrease in the density of accepted samples. The bi-vatiate normal

m(r-r(x))= åt['-r, r)- 
t"''
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shape that is evident in Figute 3.19 is a good indication that this pair of parameters is

well defined and has little conelation.

-8 -7 -6 -5

Shape Parameter

-4 -3 -2

Figure 3.19: Scatter Plot from Metropolis Output Comparing Shape 0r and Location 02

Parameters (Calibrated to Sydney lnter-Event Data January)

A similar plot of the constant 0, and exponent 0o parameters from the same

distribution and with the same data shows 
^ very different result. Figute 3.20 is an

example of two parameters that exhibit a classical 'cþar' shape and thus have

significant correlation. Changes in the fit of the model due to a change in one

patameter have been compensated by a coresponding adjustment in the second

p^r^meter which ensutes a similat goodness of fit. The density of accepted samples

along the 'cþt' shape is similat suggesting that any point on the curve is as good a fit
as any other. This can provide difficulties for the search routine in finding the

optimum parameter values, and ptovides parameteï estirnates that have a high degree

of uncertain$. At analogy of this problem is the simple sum of two vadables, where

there are an infinite number of combinations that can be chosen for values of x and y

such that x + y - 10. Generally the existence of highly corelated paÍameters may

not be a maior problem, howevet lbt the purposes of regionalisation it is desirable

that the master patameter values ate well defined. Figure 3.20 throughFigue 3.23

show similat plots for other data sets, other months and for the calibration of storm
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durarion indicating that this is a genedc ptoblem with the adopted hybrid probability

distribution
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Figure 3.20: Scatter Plot from Metropolis Output Comparing Constant 0g and Exponent 0a

Parameters (Calibrated to Sydney lnter-Event Data January)
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Figure 3.21: Scatter Plot from Metropolis Output Comparing Constant 0s and Exponent 0a

Parameters (Calibrated to Melbourne lnter-Event Data June)
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Parameters (Calibrated to Brisbane Storm Duration data April).
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3.3.4 lmprovements to the Calibration of Dry Spell and
Storm Durations through a 3-Parameter Model

A simplifrcation to the hybdd four parametet distribution was chosen to describe the

distribution of inter-event times and storm durations and remove the high parameter

coreladons displayed above. The natute of the cigat shaped posteriot distribution

suggests that an equally good fit could be obtained by frxing one patametet (eithet

the exponent or constant parametet) at a cettajn value and leaving the othet

pàra.rrleter vadable to compensate. This would remove the patametet corelations

while still ptoviding an adequate descrþtion of the observed distributions.

To implement this proposed change, the model was initially calibtated using the

odginal 4 panmeter model. The average value of the exPonent pzta;meter was then

calculated from this monthly calibration and the model re-fltted to the observed data

keeping the exponeflt parzrrrretef constant' A compadson between this new 3

parameter model and the original 4 parametet vetsion was undettaken by way of best

likelihood esdmates and plots of observed vefsus ptedicted values.

Figure 3.24 compares the maximum likelihood estimates for both the 3 patametet

anð, 4 p^r^rrreteï model. !7hile a slight dectease in the likelihood is noted (thus a

worse frt), this minimal difference does not dectease the performance of the model

(the maximøm change in likelihood estimate ftom one model to the othet was 6350.6

to 6354.7). Fþre 3.25 cornpares the distdbutions of observed and calibrated data

using both t}re 4-parameter and the 3-patametet model. As evidenced in these plots,

there is very little difference in calibtation accuracy between these two options.

Analysis of the païametef distributions (Figure 3.26 and Fþre 3.27) which arc

produced with the 3-patarneter model indicate that all model parameters are rLow

well defined and ate without sþificant corelation.
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3.3.5 Intensity Parameter Analysis using the Metropolis
Algorith m

The intensity model ptesented by Heneker et al. Q001) requites the calibration of the

two parameters (namely the mean and standatd deviation) of a regular Generalised

Pareto Distribution to the population of conditional intensity through a piece wise

lineat model structure. These pârâmeters ate ditectly telated to regular probability

distdbution parameters and as such it was believed that the possibility of

encountering significant parameter corelations was small. Flowever for

completeness, the Mettopolis algorithm was again incorporated into the calibration

of event intensity model and similar parameter distdbution outputs as that ptesented

fot dry spell and storm duration parameters were produced. Fþre 3.28 tndtcates the

typical correlation between the mean and standatd deviation parametet at a given

breakpoint, in this case fot Melboutne data. As expected the scatter plot indicates

that there is little to no parâmetet cortelation between the two parâmeters within the

intensity model at a g¡venbteakpoint.
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The second compadson to check within the calibtation of storm intensity is the

possibility of signifrcant correlation between patameters associated to different

breakpoints. \lhile the parametet values at subsequent bteakpoints are inttinsically

linked due to the structure of the piece wise linear model, does this relationship

cortespond to signifrcant parameter correlations that make it difficult fot the seatch

routine to determine the optimum parametets? Figure 3.29 dtsplzys the cotrelation

between the mean p^ï^meteï at subsequent breakpoints for data from Melboutne.

,\gain it can be seen that the shape of this scatter plot suggests there is little or no

pyg¿metú coreladon in the calibration of conditional stotm intensity parâmeters.
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Figure 3.29: Scatter Plot from Metropolis Output Comparing the Mean Parameters, 0'2

Hour and 0.4 Hour Storm Duration Breakpoints (Calibrated to Melbourne Storm data

December).

\Mbile these results from analysing the calibration of conditional intensity suggest thât

model parameters arc cleaÃy defìned and the optimal p^r^r,rreter values can be found

using an adequate seatching algodthm, the ptocess fot developing the required piece

wise linear relationship duting the calibration process remained cumbetsome and

inconsistent. If the model was to be used within a tegionalised framewotk, futther

improvements to this section of the calibtation plocess were tequired.
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3.4 lmprovements to the Calibration of Storm
lntensity

The original sttucture of the Heneker et a/. Q001) :lrrinfall model used a Generalised

Pateto Dist¡ibution to model the distribution of event storm intensities. As

discussed previously, the ptobability model was governed by the following equations

r"('-"G))= å
et <0,02 > 0

whete the parametets of the GPD 0, and 0, are dependent upon the mean and

standatd deviation and arc given by

', 
= ;,((5J- ),', 

= :,((S).,)

(3.13)

Q.14)

and the mean p and standatd deviation 6 are conditional on the storm duration

denoted as

tt,o = f(t"Qr))

whete to is the coresponding storm duration.

(3.1s)

The complex conditional reladonship between the mean ra:tnfa[ intensity (¡"r) and

storm duration (t) denoted in (3.15) was modelled using a piece-wise linear

telationship. ,{. series of staight line segments were used to map the changes in

slope of the conditional telationship, while breakpoints located at certain durations

defined the statt/end of each linear segment (see Fþre 3.30). -,{ similar relationship

was used to model the relationship between the standard deviation of rainfall

intensity and storm duration. Ât each breakpoint, the mean and standard deviation

parameters from Equation (3.15) arc caht¡rz;ted using maximum likelihood techniques

with the obsewed storm data. By calibrating the parameters of Equation (3.15) at

each of the bteakpoint positions, the piece wise linear telationship can then be used

to determine pârameter values for any storm duration.
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Figure 3.30: Schematic of Piece-Wise Linear Relationship

The original calibration procedure required significant modellet input dudng various

stages of the process. Initially data pairs of intensity and the coresponding stotm

duration were ranked in order of incteasing dutation and then collected into bins of

50 consecutive points. The mean and standard deviation of these 50 stotm

intensities and the resultant 
^ver^ge 

storm dutadon wete then calculated and plotted

on a log scale to ptoduce a calibration plot. The initial position of the bteakpoints

within the piece wise linear model wete then detetmined by analysing scâtter plots of

these average mean intensity against duration and avetage standatd deviation of

intensity against dutation. Examples of these plots are shown in Figute 3'37 for

mean intensity against duration and Fþte 3.32 for standard deviation of intensity

against dutation.
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Figure 3.31: calibration Plot for Mean Average lntensity (Data for Melbourne)
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Figure 3.32: Calibration Plot for Standard Deviation of Average lntensity (Data for
Melbourne)

The next step in the calibtation process was to exarnine these plots and identi$'

specific dutations where the scatter cloud underwent a sþificant change of
shape/slope. At these positions, a breakpoint was created in the piece-wise linear

model in an attempt to describe the complicated conditional telationship. These

breakpoints are indicated on the calibration plot (Fþte 3.33) by a vertical straight

line.
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Figure 3.33: First lteration Breakpoint Calibration

Calibtation then proceeded by an itetative process where a simulation of the model

would be run and extra breakpoints introduced to the relationship to improve the

comparison between simulated and observed values. In

Fþre 3.34 addtttonal breakpoints have been inttoduced 0.5 and 0.9 hours with 0.2,

0.7,2 and 10 hour breakpoints intoduced in Fþte 3.35. Analysis of the standard

deviation of average storm intensity and storm duration inttoduced bteakpoints in a

similar manner. When the resultant simulation provided aî 
^ccvta;te 

comparison to

the obsewed statistics, the calibtation ceased.
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Figure 3.34: Second lteration Breakpoint Calibration
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Figure 3.35: Final Breakpoint Calibration

The manual selection of breakpoints in its original form was ìnefficient and

uncertain. The iterative process was time consuming and inconsistent as the

breakpoint selection was dependent on each individual modeller's expectations

andf or interpretations of the calibration plots. A.s a result the calibration may be

poorly frtted by an inexperienced model uset who does not select an adequate
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number of breakpoints or over fitted by the inttoduction of additional bteakpoint

parameters which have little influence. Ideally, model results should be independent

of the model user and should be desþed to requite no manual intetaction teducing

the chance of erot and the time of calibtation'

3.4.1 lnvestigation into the Intensity-Duration shape

To develop an efficient automated calibtation ptocedute, a bettet understanding of 
".

the shape of the conditional calibration telationship was tequired' If the bhape could

be shown to be consistent ot predictable, then the bteakpoint locations could be

standardised across a number of sites reducing the need fot manual intewention.

There was also a possibility that z function could be used to describe the complex

conditional relationship and remove the need to use the breakpoint linear segment

apptoach altogethet.

To investigate the shape of the conditional intensity - dutation telationship,

numerous sites across Austalia were selected and their tecords adjusted to ensute

each site contained concurreflt data periods. Calibration plots were then produced

for all sites and compared with the expectation fJrrat a similar conditional intensity-

duration relationship would be observed across a numbet of sites. Such an

expectation was not unreasonable given sites located within ptoximity of one and

other should be influenced by similar :viinfall patterns and events ddven by latge

climatic factors. llhile there is likely to be small localised differences, a similat

pattern should be obsewed overall. The tesults of the investigation provided below

indicate that this is the case, and rematkably that the relationship is similat âcross

sites a great distance 
^Pàrt.

A comparison between 5 capital cities in Austalia illusúates the similarity in the

stfuctufe of the intensity - dutation telationship. Fþte 3.36 ptesents the mean

intensity - duration relationship for data from Perth, Adelaide, Btisbane, Sydney and

Melbourne. If the relative scaling of sites is ignoted (i.e. Bdsbane generally sits well

above other sites due to its higher løLinfall), it can be seen that the intensity-dutation

relationship is consistent across a numbet of tainfall sites. \X/hile these Australian

sites are a significant distance apart geographicalTy, they still exhibit a similar
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conditional intensity - duration relationship. Analysing a sirnilar plot confrms the

same tesult for the standard deviation of intensity in Fþre 3.37.
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Figure 3.36: Comparison of Mean lntensity v Duration at Numerous Rainfall Sites
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Figure 3.37: Comparison of Standard Deviation of lntensity v Duration at Numerous

Rainfall Sites

If the investigation is refined furthet and local tegional sites compared, the consistent

shape is even more pronounced as is evidenced by trþre 3.38 and Fþre 3.39 fot
sites in New South Wales where there is very little spread in the plotted data cloud.
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Figure 3.38: Comparison of Mean lntensity v Duration for New South Wales Rainfall Sites
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Figure 3.39: Comparison of Standard Deviation of lntensity v Duration at New South

Wales RainfallSites

This observed consistency in results was encouragþg and suggested that a similat

breakpoint structure across all sites could be used to describe the conditional

relationship. Signifrcantly, this would remove the need to determine individual

breakpoints fot a given site therefote temoving the need fot modellet input.
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Initial investigations into the use of such a blanket approach to the problem

(whereby the numbet and locations of bteakpoints were set and incorporated into

the model temoving the need for an iterative scheme), were not successful as the

complex nature of the relationship and the model structure made it difficult for

^ccur^te 
calibtation. Nine standard breakpoints were set up aftet analysis of

numerous calibtation plots and ftom uset experience with their locations fixed at 0.2,

0.3, 1.0, 1.8, 2.4, 3.0, 9.0, 72.0 and 24.0 hours. Defining breakpoints at these

locations provides sufficient structure to the piece wise linear relationship to capture

the tequired vatiability however, attempts at numerous sites with this approach

produced poot calibtations. While the calibration did estimate a set of model

parameters, they were not able to locate the optimal set. Resultant simulations

provided poor comparisons between observed and simulated statistics, significantly

pooter than the original iterative manual calibtation approach. This unfortunate

outcome was suspected to be a result of the large search space inttoduced by the

numbet of parameten (or the degrees of freedom) being calibrated concurently (this

is not an issue in the original model which employed an iterative process) and by the

tange of possible values each panmetet could undettake. This was in direct contrast

to the original iterative ptocedure which, though time consuming and requfuing

manual input, provided the chance to inctementally increase the number of
bteakpoint locations and by using an interpolation of the previous best fit also

provided a significantly smaller seatch space at each step fot the calibration process

to manage.

Even though the blanket apptoach had not been an immediate success, it was

obvious that the use of such an apptoach to the calibration of intensity had

significant merit. Not only would it remove the need for an iterative process, it

would also temove the need fot modeller input teducing a major source of error and

inconsistent results. However without additional modification to the calibration

procedure it was evident that a blanket style approach could not be employed. rü/ith

this in mind the possibility of developing some forrn of function to desctibe the

conditional relationship wartanted invesligation. The consistent nature of the

calibration plots (as discussed above) provided the ideal opportunity to introduce a

continuous function to desclibe the required shape at all sites. This function
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descrþtion could then be used to ptovide an initial estimate of the pârameters within

the standardised breakpoint piece-wise lineat model, incteasing the efficiency and

robustness of the calibration process. There was also the possibility that

development of such a continuous function may remove the need fot a piece wise

linear model, ptoviding an alternate soludon to the intensity calibtation process.

3.4.2 lnitial Durat¡on lntensity Relationship
Description using a Continuous Function

To provide ^î initial mathematical descrþtion of the intensity dutaíon

relationship, a continuous function was developed which contained enough

variability to describe the observed intensity variations while still having significant

constraint to eflsure model pârameters could be found quickly when using a global

searching algorithm. \X/hile the obsewed shape of the intensity - duration

relationship is complex, it was hoped that a function could be developed which

described the structure adequately to ptovide an initial fit to the piece wise linear

model in the worse case or in the best case ptovided tn alternate option for the

modelling of stotm event intensity.

Initially considedng data around Sydney, analysis of the 
^vet^ge 

mean calibtation plot

suggest that the overall shape could be approximated by the combination of a

constant ot linear trend across the range of stotm dutations, and a curved deviation

below this trend begrnning at approximately 0.7 houts, and tetutning at 30 hours

(Figure 3.40). This has been shown gaphically in Fþte 3.41. A similat descrþtion

is present in Figure 3.42 for 
^vet^ge 

standatd deviation calibration plot, whete

deviation away from the linear trend begins eadiet (0.3 hours) retums at around 3

hours and sits above the genetal linear trend.
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Figure 3.40: Comparison of Mean lntensity v Duration for New South Wales Rainfall Sites
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Figure 3.41: Schematic of Average Mean lntensity Calibration Plot Trend
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Figure 3.42: Schematic of Standard Deviation of lntensity Calibration Plot Trend

In order to provide an approximation of this shape, a hybrid function was developed

which combined a simple linear trend with an additional function incorpotated to

describe the shape of the deviation away ftom the genetal ttend. Descdbing this

deviation is diffrcult in a consistent manner across rurmerous sites due to local

variations. In some instances, as is the case for Sydney data, the deviation begins

around 0.7 hours (for average intensiry) and tetutns at 30 hours. Othet sites this

deviation can be more or less pronounced and occur at diffetent dmes ovet diffetent

pedods. In addition the adopted function must have the ability to adapt to the

different shapes evident between the mean and the standatd deviation calibtation

plots. Âfter investigating a number of functions, the shape of the Beta disttibution

was chosen. This distdbution is given by

þ
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where

1

--- ^ is a scaling value to ensure the integral of the density equals 1, x telates to
þ"r(o)

the stotm duration, and a and p ate the palametefs of the Beta distribution.
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As only the shape of the distribution is required, the scaling value of the Beta

function can be disregarded, leaving

p(x) = (r)"-t "

_X

v
Q.17)

In this fotm the Beta function has the ability to forrn almost any shape imaginable to

describe the deviation in the intensity - duration relationship. The interactions

between a and p conftol the location of the deviation peak, the length of the decay,

and to a lesset extent the size. A futther control on the size of this deviatiorl was

ptovided by including a scaling value to the size of the deviation.

Combining this scaled Beta distribution with a genedc linear equation, the final fotm

of the condnuous function used to describe the conditional intensity - duration

relationship is given by

r(to)=0,,+ort¿ -os
l-tr l

tdooleleu ) (3.18)

to denotes the storm dutation and f(Ç provides an estimate of the 
^vetage 

storm

intensity. 0, are the parâmeters of the hybrid function, with 0, and )rproviding the

linear ftend, and the deviation shape controlled by 0,, 0, and 0r.

The calibration of this function to Sydney data can be seen in Figure 3.43. The

continuous function is able to provide a reasonable approximation of the conditional

telationship, while being simple enough to enable a quick calibration. It is also

obvious ftom this plot that the continuous function, as could be expected, smooths

some of the local vadability that occurs in the data.
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Figure 3.43: Example Hybrid Continuous Function Calibration (Data from Sydney,

January)

A similat result is seen in Figure 3.44 lor data frorn Melboume whete the piece-wrse

linear fit calibrated using the condnuous functiolt as 
^ 

statting point is included for

comparison.
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The results ptesented in Figute 3.44 ndtcate that the piece wise linear fit captures the

localised variations in the dutation-intensity telationship more accuîately in contrast

to the continuous function on its own. Compatison between calculated likelihood

values for the piece wise lineat fit and the continuous function using optimal

paÍametet values confirms this tesult. Table 3.7 and Table 3.2 present the likelihood

values fot Melbourne and Sydney Data tespectively. In these tables the smaller the

value, the better the fit to the observed data.

Table 3.1 : Likelihood Function Comparisons for the lntensity Calibration Options

(Melbourne)

MONTH CONTINUOUS

FUNCTION

FIT

AUTOMATIC

PIECE WISE

FIT

January 1094.7 1068.1

February 1052.3 7015.7

March 1185.1 1161.8

April 7441.2 7413.8

May 1,485.9 1449.8

June 1304.0 1283.6

J'ly 1435.6 1381.7

August 1.726.2 1673.8

Septembet 1618.3 1577.7

Octobet 1603.2 1572.5

November 1444.8 1426.4

December 1298.3 1274.7
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Table 3.2: Likelihood Function Comparisons for the lntensity Calibration Options

(SydneY)

MONTH CONTINUOUS

FUNCTION

FIT

AUTOMATIC

PIECE WISE

FIT

January 1,692.7 1656.4

February 1801.4 1778.5

Match 2047.4 2019.6

April 1683.9 1653.7

May 1575.1 1556.6

June 1485.4 1459.6

J'ly 1017.8 970.8

August 1100.3 1072.3

September 7228.9 1198.8

Octobet 1479.8 1445.9

November 1644.3 1618.9

Decembet 1634.2 1615.4

As shown in these typical results, using the continuous function calibtation as a

starting point for the automatic piece-wise linear model ptoduces a bettet desctiption

of the conditional telationship than simply using the hybrid function on its own.

This can be seen graphically in Fþre 3.45, where the cumulative imptovement to

the model calibration (imptovement to likelihood) ovet the yeat is displayed.
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Figure 3.45: Cumulative Likelihood lmprovement

W.hile the continuous hybdd function is not able to describe the variations within the

calibration shape adequately on its own, it is an extremely useful pre-calibration step

within the calibtation process. The continuous function provides both an initial

stating point for each panmeter within tlre parameter search space (which is close to

the optimal value) and decteases the size of the search space by providing realisdc

limits on pâlameter values around these initial p^ï^metet estimates. The SCE search

routine takes these initial pâtameter values and is able to refine them quickly within

the limited search space to determine the optimal parameter set.

3.4.3 Verification by Simulation

Compatisons between observed and simulated data sets were undertaken at various

sites to ensure that the new calibration technique were able to teproduce the same

observed statistics and distdbutions as the previously used manual calibtatron

technique. While the new calibtation toutine solves the issue of manual modeler

input and improves the efficiency of the search routine, it should also perform to the

same standard as the previously used manual approach if it is to be adopted as an

altetnative.
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Results from the manual calibration model showed good teptoduction of both

aggregated :rrjnfall. totals and Intensity - Ftequency - Duration cufves. If the new

automated calibration was shown to also teptoduce these values, its validily 
^s ^

calibration tool could be verified. Extensive validation of the imptoved model is

presented in Chaptet 5 incorpotating all imptovements however Figute 3'46 and

Fþre 3.47 dtsplay typical reproductions of monthly rainfall distdbutions using the

automated calibtation procedure. These plots indicate good âgfeement between

observed and simulated values suggesting thete is no reduction in the ability of the

model to teproduce these non-calibmted statistics'
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Figure 3.46: Comparison of Observed and Simulated Rainfall lntensity Values for

Brisbane Data, July
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Figure 3.47: Comparison of Observed and Simulated Rainfall lntensity Values for Sydney

Data, August

An additional check using Intensity - Frequency - Dutation curves is provided in
Figute 3.48 and Fþre 3.49 below. Again, the automattc caltbntion model

reptoduces these statistics across various time scales with the advantage that there is

no manual intervention in the calibration process.

10

0.1

0.001

1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent
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Figure 3.49: lntensity Frequency Duration Comparison forVarious Durations, Brisbane

3.5 Summary

The existing rainfall model ptesented by Heneker eÍ al. (2001) and selected fot furthet

development as part of this study contained a number of deficiencies in its otiginal

form which waranted attention priot to the development of a regionalisation

approach for applying the model at sites with little or no calibtation data.

,\nalysis of calibrated inter-event time and stotm duration parameter distributions

from the otiginal model setup of Heneker et al. Q001) showed significant corelations

were present which provided identification ptoblems when searching for optimal

model pârâmeteÍs. The incorpotation of the Mettopolis algotithm led to an

investigation into the inter-parameter relationships and enabled one pârametef

vadable being replaced with a constant numerical value. Checks between the alteted

and original model have shown this simplified desctiption of the storm event

distdbutions with one less parameter per month aÍe as 
^ccw^te 

as the original model.

This has increased the confidence and stability in the maximum likelihood Para;rr,cter.

estimations, which provides a benefit fot future tegionalisation work. A similar

investigation into the calibration of conditional storm intensity has indicated that the
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existing model does not contain significant parameter corelations and in its present

fotm calibratedparameters are well defined.

Imptovements to the calibration process for storm intensity were investigated and

analysis across numerous sites indicate that a similar shape exists within the

conditional intensity - duration calibration relationship that is well described by using

a piece-wise lineat relationship which has a constant set of breakpoints acoss all

sites. This signifrcantly removes the need for the manual selection of breakpoints.

The automatic calibtation process has been completed by using a hybdd continuous

function to describe the conditional relationship and provide initial parzLmeter

estimates at the set breakpoint positions. The adoption of constant breakpoints and

the inclusion of initial par^metel estimates through the use of a hybrid function have

ensured optimum Para;rrreter values ate quickly and easily determined with no manual

intetvention.

Validation of the changes to the calibtation ptocedure was undertaken thtough a

comparison of simulated and observed statistics with selected plots presented here

and a more detailed analysis of the ovetall model with all updates provided in

Chapter 5. Favoutable comparisons between observed and simulated values

demonsttate the abiJity of the new intensity calibration to accurately descdbe the

observed relationships, improving the tobustness of this section of the :cLtnfall

model.

In otdet fot the model to be used within any tegionalisation framework it was

important that improvements wete made without decreasing the accuracy of the

model itself. This has been achieved and the incorporation of the automatic

calibtation of event intensity and the removal of highly correlated superfluous

parameters has provided a tainfall model that is efficient, well defined and easy to

use. The remaining deficiency in the model structure wartattjng attention is the

treatment of uncertainty. Understanding and defining uncertainty is important when

considering the perfotmance of the regionalised rainfall model and techniques which

have been developed and incorpotated into the model to describe uncertainty are

presented in the next chapter.
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CHAPTER 4

INCLUSION OF PARAMETER
UNCERTAINTY IN SIMULATED TIME
SERIES

4.1 lntroduction

The development of any advanced :uljnfal. model reliant on the estimation of model

parameters ftom limited observed data should incorporate some desctþtion and or

treatment of uncertainty. Uncertaitrty itt model parameter estimation can arise due to

the length of the observed :r.rinfall, data avalraÏ¡le fot calibration or. 
^s 

a result of

sampling variability associated with the descrþtive statistical distdbutions used within

the strrrcture of the model. It is unreasonable to expect a model calibrated to 5 years

of data to perform as well as a model calibrated to 100 years. In addition, sampling

uncertainty associated with the probability desctiptions that define the model can be

L very real source of concern, patticularly when comparing simulated and observed

results. As the model uses a random number generator dudng simulation, two

realisations of the model using identical model parameters cafl be significantly

different if the sequence of tandom numbers is not the same. Ptoviding a means to

take this sampling uncertainty into account imptoves the validity of the tepotted

simulation statistics for compadson, not only at sites which contain a long historical

record for compadson, but perhaps more impottantly when comparing model tesults

aftet regionalisation.

In addition to describing the potential soutces of model uncettainty, there is a need

to understanding any influence of this uncettainty within the probabilistic model to

ensure model results and limitations are also undetstood. In otdet to provide a more

complete hydrological model and an accutate comparison between obsewed and

historical data statistics, þarticulatly relevant when investigating model
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regionalisation perfotmance) an investigation into the influence of parameter

uncertainty when sirnulatjng ntnfall time sedes has been ìncorporated into the

Heneker et al. Q001) model.

Parametet uncettainty is an important consideration in models of any type but is

particularly important for stochastic models. Consider the calibration of a model to

two data sets, one set containing 5 calibration data points and the other 100,000. It is

teasonable to assume that 5 data points would be insufficient to desctibe the

variation in the input data to the same degree of accur^cy zs 100,000 points.

Extending this, a simulation model calibrated to 100,000 data points should result in

bettet defined model parameters and consequently a model more likely to replicate

the obsewed data statistics than one calibrated to 5 points. If patameter uncertainty

is not tteated explicitly, then cate must be taken in assuming the same confidence in

the two model ouþuts. To investigate this potential influence within the rainfall

model, estimated postedor parametet distdbutions have been determined and used

within the simulation toutine. As these posterior distributions are influenced by the

length and variability in the calibtation data, the resultant simulation results are also

affected. This provides an explicit measure of the confidence in the simulation

ouq)uts.

A multiple Monte Cado simulation structure has been included in the simulation

model to ptovide the abi]ity to genetate nurnerous realisations of the output data

which take into account parameter uncettainty and sampling vadability between

model runs. The end result is a set of final results which can be presented with

simulation limits, ptoviding a supedot comparison between observed and simulated

statistics. This ability is a valuable imptovement to the original model and enables

imptoved inferences to be made about the quality of the resultant simulations and

their abiJity to represent the obsetved data. When considered within the application

of a regionalisation ptocedure, simulation bounds will provide an immediate

indication of the cetainty in the resultant simulations which have been calibrated

within the regionalisation ftamework. This is a valuable tool for assessing the quality

of a tegional calibration.
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4.2 Review of Existing Models to Capture
U ncertaintY

The importance of treating uncertainty explicitly within a given model structure was

emphasised by l(atetgaris and Hadgraft (1994). Theit work was based on a simple

flood frequency analysis and was able to show that due to parametet uncettainty, th.

width of the confidence intervals after analysis incteases by 75-30o/o. This lack of

confidence in model ouÞut is important when model results ate used in any

hydrological or hydraulic system analysis. Their idea was further generalised by

Chaubey et a/. (7999) who suggest that the treatment of parametet uncettainty is a

necessity in any complex model. Dudng theit study into a water quality model, they

were able to show that model results were influenced by the variability in the

observed data. \X/ithout captudng this uncertainty explicitly, the 
^ccuitacy 

of the

resultant simulation models is questionable'

In its original form the Heneker et a/. (2001) :ainfall model includes a tteatment of

data uncertainty associated with the binned nature of historical tatnfall. obsewations.

Âs the historical data is recorded only every six minutes, the exact dutation of inter-

event times and storm dutations ate not known exactly. An adiustment to the

likelihood calculation (I-ambert and Kuczem (1998)) was included which took this

into account during the calibration procedute, providing an imptoved estimate of the

optimum p^farîetervalues. Flowever, the extent of parametet uncertainty remaining

afrct cahbration was not explicitly defined ot pteviously taken into account. In

add.ition to this, simulation results from the model have typically been presented as a

single realisation with the optimum parameter values (Heneket ø al. (2001), Heneker

e002)). What these works have failed to considet is the issue of sampling variability

when comparing obsewed statistics against model simulations.

A significant contribution in the area of parameter uncettainty was ptesented by

Kuczera. and Parent (1998). Their discussion centted on conceptual catchment

models and the use of Monte Carlo Markov Chains and in patticular the Mettopolis

algodthm to accurately estimate the patametet posterior distribution. Once this

posterior distdbution has been estimated, parameter uncettainty can be taken into

account through numerous simulation teplicates that use samples from the posteriot
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parameter distributions. These simulations can then be collected and ptovide

simulation confidence limits on model ouþuts / s tatistics.

The use of MCMC's fot estimating patameter uncertainty was also used by Gtame et

aÌ. (1998) within an utban stormwater quality model and in a different application by

Park et ø1. Q002) fot a model estimating th. location and amounts of chemical

pollution sources.

!ühile theit work was focussed on catchment models, the simulation algodthm

presented by I(uczera and Patent (1998) was adapted and applied to the Heneket et

al. Q001) :ratnfall' model. This allowed the generation of 90% simulation limits and

model ouþuts which take into account the uncettai"ty itr model parameters. The

adapted algotithm is descdbed below.

1'. Randomly sample t,infall model parâmeters 01.... 0, from their

coresponding p os terior dis ttibutionr p (0; I y).

2. Undetake a simulation using this set of parameters (0,. . .. 0)
3. If the number of simulations is less than the number of replicates N tequired,

then tehrrn to step 1 to te-sample a parameter set and re-simulate an

additional realisation of the model.

4. For each compatison statistic tequired (annual rainfall,inter-event times etc),

rank the N simulated sequences and extract the (100-a) and u percentiles to

obtain the (100-2a)% simulation limits.

\X/hile this algodthm is sufficiently generic to take into account any model stnrcture,

efficient sampling of the posteriot distdbutions is still required and in complex

models this is not ¡ trwial task. While sampling from the posterior distribution had

previously been undettaken by Van Sttaten and I(eesman (1991) (using Monte Cado

set-membership) and by Beven and Binley (1992) (using a GLUE approach),

I{uczeta and Patent (1998) note that these approaches belong to the family of
importance sampling algotithms and ate tesfticted in theit application due to the

massive computing resources tequired to characterise a highly dimensioned

parameter space. This was particulatly important for ninfall. models (including this

model) whete alarge number of patametets are used. As a result l{wczeraand Parent

(1998) presented the Metropolis algodthm as an alternative to provide efficient
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sampling ftom p(0,1y). As discussed in Chapter 3, the Metropolis algorithm was

incorporated into the rainfall model to investigate parametet cortelations and

required only slight adaptaiLon for use dudng this section of the teseatch.

4.3 lncorporating Parameter Uncertainty into the
Rainfall Model

To incorpor^te p^r^rîeter uncertainty within the tainfall model, an estimate of the

model's posterior p^r^meteï distributions was tequited. This followed a similat

process to that used in Chapter 3 whete a notmal model calibration is undettaken

and determines the optimal paf^metetvalues for a given set of observed tajnfzlL data.

These optimal p^ï^metervalues wete then used as the initial seed locations within the

parameter space for use with the Mettopolis algodthm. The Mettopolis algorithm

then proceeds through a 'warming up' process which ensures that the sampling

distribution within the algorithm approaches that of the "reaf' postedor paf^meter

d,istribution. Once this warming up process is completed, subsequent samples ftom

the sampling distribution cân be assumed to be equivalent to samples ftom the

posterior parameter distribution. ,\t this stage samples can be taken from the

posterior p^ï^meter distributions for each model parâmeter of intetest and used to

generate a simulated realisation of the model. Fot the Purposes of this teseatch the

number of replicates required (and as a result tlle number of parametet samples) has

been set to 100. F,adn parameter set then generates simulated model results with the

complete sample of results analysed and used to generate simulation bounds

(genetally 90%o simulation limits within which 90o/o of the simulation tesults lie).

Ä major advantzge of using the Mettopolis algodthm to ptovide efficient samples

ftom the postetior model distributions is the ability to detetmine the influence on the

resultant simulations from uncertarnty associated with the dry spell (inter-event),

storm duration and storm intensity parameters. By compadng simulations that

include uncertainty associated with one model vadable at a time (i.e. storm duration),

the influence on the resultant simulation as a tesult of this uncertainty specifically can

be investigated. If storm duration is taken as an examPle, it could be teasonably

expected that the inclusion of parameter uncertainty associated with the storm
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dutation parameters would influence the resultant storm duration statistics.

Intuitively it is less clear as to whether the uncertainty associated with the storm

duration parameters would have a noticeable difference on the 
^verage 

storm depth

ot perhaps even on inter-event times? Thete is also the chance that parameter

uncetainty has no ìnfluence on the tesultant simulation confidence suggesting that

the model could be calibrated to very small historical records without a noticeable

dectease in accuracy.

In order to investigate the telative influence of parameter uncertainty, a number of
100 year simulations were undertaken while including the various uncertainty

options. This ptovided the opportunity to compare the relative influence of each

storm event parameter set on the tesultant model ouþuts. In addition to

investigating this parameter uncertainty associated with the storm event parameters,

the influence of sampling vadability associated with changes to the random number

sequence used dudng the simulation were also included. This provided an

understanding of the sampling uncertainty within the model and was determined

thtough changes to the seed parametet within the random number generator. In

Section 4.3.7 and 4.3.2 the influence of uncertainty associated with the bulk storm

parameters is investigated fot models calibtated to long historical records. This

ptovides an insight into the relative influence of each bulk storm parameter on the

tesultant model simulations. Furthet work provided in Sections 4.4 and 4.5

investigates the influence of the length of available calibrating data on the resultant

model simulations.

4.3.1 Influence of Intensity Parameter uncerta¡nty on
Rainfall Model Simulations

The postedor parâmeter distdbutions estimated through the use of the Metropolis

algorithm were used to detetmine the influence of including uncertainty on the

tatnfall' intensity model parameters. These p^r^metü distdbutions describe the

distibutions of stotm intensity model parameters at eacb, breakpoint within the piece

wise lineat structute which has been used to describe the conditional intensity -
duration telationship. It was expected that the influence of uncertainty associated

with the calibration of the storm intensity parameters would be minimal on the
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aggregation statistics in the model results. This was due to the telative influence that

the distdbution of storm intensity has on the simulation statistics, pardculaÃy at a

large time scale.

To understand why the uncertainty associated with the simulation of stoffi intensity

should only have a minimal influence on the tesultant model simulations; one has to

compare the relative influences each section of the model has on the model ouq)uts.

For example it is understood that the simulation of intet-event times influences the

simulation process by determining the numbet of rain events and thefu distdbution

throughout the year. Similarly the simulation of storm dutation ditectly influences

the length of :øLtn events and provides a lesset influence on the number and

distribution of these events thtoughout the year. (A lesser influence due to its

reladve 
^ver^ge 

length in comparison to the average inter event times) In addition,

the simulation of storm durations influences the stotm intensity as a result of the

conditional intensity - duration telationship within the model. In contrast,

uncertainty associated with storm intensity only influences the rain intensity/depth

for a given stoffi. -,\s a tesult slight changes to the stotm intensity parametets will

have a small influence on aggtegation stadstics at shott time scales with the influence

ptopottionally decreasing as the aggtegation level is increased. (i... a I or - 5o/o

change to storm intensities thtoughout the yeat has a minimal impact on the

resultant annual rz¡irrfall in contrast to a I or - 5o/o change to the inter event times

which could result in a significant dectease in the number of stotm events within a

year)

To investigate the influence of uncettainty associated with the simulation of stotm

intensity, simulations were undertaken with ¡wo diffetent configutations within the

uncertainty model. The first configutation þotes the potential uncertainty

associated with storm intensity. This ptovides a base simuladon which is only

influenced by the sampling variability associated with the use of the random numbet

generator within the probabilistic model. A second configutadon was also used

which includes the uncertainty associated with storm intensity and is also still

influenced by the sampling vadability associated with the probabilistic model. If the

influence of uncertainty associated with storm intensity is minimal (as expected), the

difference between these two simulations should be minimal. Figure 4.1 presents the
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comparison between the two model configurations for Peth data. The tesultant

difference between these model outputs is approximately 5mm pet ye r, suggesting

the influence of additional uncertainty associated with intensity parameters on the

teptoduction of annual rainfall is small.
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Figure 4.1: Comparison between lntensity Uncertainty and Random Variation, Annual

Rainfall (Calibrated with Perth Rainfatt Data)

At aggregation levels over â much shorter timescale a similar result is obsewed.

Fþte 4.2 dtsplays the avetage monthly rainfall for data from Perth. This also

indicates minimal influence on the model results as a consequence of intensity

uncertainty.
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Figure 4.2: Comparison between lntensity Uncertainty and Random Variation, Monthly

Rainfall (Calibrated with Perth Rainfall Data)

While intensity uncertainty has little effect on simulated rainfall values, it was

expected that uncertainty associated with storm duration would have a fat gteater

influence. This is due to the telative influence of storm duration (2-5 houts) in

compadson to storm intensity (1-3 mm) which are used to generate stoffi depth.

This influence is investigated in the following section'

4.3.2 lnf luence of lnter-Event Time and Storm Duration
Uncertainty on Rainfall Model Simulations

To investigate the influence of uncertainty associated with the intet-event time and

storm duration model parâmeters, the Metropolis algorithm was again used to

estimate the posteriof pafametet distributions. These wete then used in vatious

combinations to assess the relative influence of each parameter set on the model

output. Again, for each option 100 simulation tealisations were run and the results

used to generate simulation bounds descdbing the influence of each model section

on the tesultant ouq)ut.

Figute 4.3 presents the 907o simulation bounds fot the mean inter-event time fot

each month given the inclusion of various uncertainty options. ,{s was the case
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when investigating the uncertainty associated with storm intensity, the sampling

vadability resulting ftom the use of a random number sequence within the

probabiJistic model is included and named "Random Number lJncertainty". This

relates to the simulation bounds generated as a result of the probabilistic structute of
the model and will be obsewed in all simulation results. The "Inter-event

uncertainty" relates to the simulation output when parameter uncertainty associated

with the inter-event times is consideted. Similady "Stom Duration Uncertainty"

presents the tesults when parameter uncetainty for storm duration parameters is

included, and finally the "All Uncetainty" option is presented to display how rhese

individual options combine to produce a complete simulation outcome.

It can be seen ftom Figute 4.3 that the uppet bound "All Uncertainú¡" result for

month 2 drops slightly below all othet uncertainty configurations fot the month of
February. While initially seen as peculiar, this outcome is a result of the sampling

uncertâinty within the model. As each configuration fl;n of the model results in a

new random numbet sequence (which is used to generate the mean inter event times,

stofm dutations and stotm intensities), each run has the opportunity to be influenced

slighdy diffetently by any associated sampling uncertainty. In this case this results in

a slightly lower mean inter event time for the ",\ll Uncertaingr" option in comparison

to the individual uncertainty configutation runs.
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Figure 4.3:9Oo/o Simulation limits for the mean lnter-Event time due to various Uncertainty

Options (Calibrated with Perth Rainfall Data)

To provide an improved visualisation of the results, the distance between the

simulation limits were calculated and exttacted into column fottrrrat for presentation

below @þte a. ).
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Figure 4.4: Comparison of 90% simulation limit ranges for mean lnter-Event time due to

various uncertainty options (calibrated with Perth Rainfall Data)
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It is cleat ftom Figure 4.4 that the inclusion of parameter uncertainty associated with

intet-event times has a strong influence on the resultant simulation of intet-event

dmes. '\s expected the uncertainty associated with inter-event times has influenced

the simulation of inter-event times and hence the model output, but this influence is

not consistent across the yeat. It is also not likely to be consistent between different

groups of years, particulady in Austtalia which undergoes periods of drought

associated with climatic events such as Et Nino.

Another expected outcome from the results in Fþre 4.4 is that the influence of
uncettainty associated with stotm duration on the simulation of inter-event times is

negligible. The simulation bounds generated when simulating with storm duration

uncertainty ate the same as that for the model run when only sampling vadability was

included' This was an expected outcome because the cetainty (ot lack of) in the

calibtation of one model parameter (storm duration) has no influence on the

calibration cetainty of another (inter-event times) for models of this type which are

calibrated to independent stoffi events.

It is also impoftant to note that the influence on tlle resultant simulation limits

genetated by the sampling vadability within the model provides a pseudo lowet

bound in tetms of uncertainty. If the distance between simulation limits is close to

that of the tandom sampling equivalent, then the influence on that statistic of
including parâmeter uncettainty for that parameter is minimal.

A similat tesult can be obsewed when the influence of palzlmeter uncertainty on the

simulation of stotm dutation is ptesented below in Figure 4.5. Again the greatest

influence on the 90%o simulation limits was provided by uncertainty associated with

the variable of intetest, in this case storm duration. The inclusion of uncertainty

associated with intet-event time has had no impact on the resultant simulation of
storm dutation.
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Figure 4.5: Comparison of 90% simulation limit ranges for mean Storm Durations due to

various uncertainty options (calibrated with Perth Rainfall Data)

The results presented above give futther evidence that without including pârâmeter

uncettainty explicitly, model results can be misleading. Even with the use of a long

historical record, there is an element of uncertainty associated with the stochastic

parameters in the model. The incorporation of the metropolis algorithm and the

abiJity to produce multiple realisations fot the purposes of generating90o/o simulation

limits ensutes this uncertainty is quantifiable in the model'

4.4 lnfluence of Record Length on Posterior
Parameter Distri butions

Having established that panmeter uncertainty does indeed have an influence on

model simulations, the question then becomes what influence does the length of the

historical record have on the accutacy of the model and the resultant 90%o simulation

limits? Section 4.2 described how an inctease in uncettainty should result as the

calibration length is decreased. It would be reasonable to expect simulations

incorporating uncertainty resulting ftom a calibtation to shotter historical recotds

would produce larger 90% simulation limits due to the incteased vadability in the

calibrated parâmeters. To investigate the issue of tecord length, the model was

N lnter-Event UncertaintY

Ø Storm Duration UncertaintY

m Combined Uncertainty

I Random VariabilitY
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calibtated to thtee diffetent lengths of histotical record namely the full length, half

length and a shott 5 yeat tecord. -A compadson could now be made between the

simulation results from each length of calibration record. With a large numbet of

sites across Australia containing 5 years of historical record, if it could be shown that

calibration to this short 5 year recotd did not increase the model uncertainty

signifrcandy, then thete was the possibility that a regionalisation technique would not

be tequited.

The incorpotation of the Mettopolis Algorithm into the rainfall model provides the

ability for efficient sampling ftom the posterior p^r^metü distribution. p(0; ly).
Once a latge number of samples have been generated, a histogram can be formed

indicating the shape of this posteriot distribution. If the algodthm has been

successfully integtated into the model and is working well, then as the length of the

histotical data avz:I'aÏtle fot calibtation is increased, the associated cettainty in the

model parameters should also inctease. \X/hen analysing the shape of the resultant

postetiot disttibution, an increase in certainty is evidenced by a postedor histogram

that has a smaller sptead and a much higher peak than a corresponding histogram

from the same model calibtated to a shortet historical record. In extreme cases,

increasing uncertainty will tesult in a significant decrease in the confidence of the

estimation of the optimum parameter value, and as a consequence tlle accuracy of

model output is questionable.

An investigation into the influence of tecord length on the resultant postedor

patameter distdbution has been undettaken with data from Perth. Fþre 4.6 shows

the tesultant Pa,rzmeter distribution given a calibration to the full available record

length (42 yearc) fot Peth while Fþte 4.7 presents the result from a 5 year subset of

the full length record.
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Figure 4.6: Posterior Distribution Dry Spell Constant Parameter 0r, Full Length Calibration

Data (Data from Perth, January)
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Figure 4.7: Posterior Distribution Dry Spell Constant Parameter 01, Short Length

Calibration Data (Data from Perth, January)

It is clear that the uncettainty associated with this particulat parametet (the 'constant'

p^ï^lrrretet in the description of intet event times with an optimum value of 0.00075)

increases as the calibration data length decreases. This is evidenced by the increase in

the breadth of the histogram and a smallet peak value, a typical tesult for all model
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parameters. The optimum parametet value of 0.00075 has successfully been located

with the full length recotd and there is a regulat histogram shape and a definite peak

at this optimum value. Fot the model calibtated with 5 years of data, tlle histogram

is flat, with little or no definition at the peak. The optimum value determined via the

seatch toutine was estimated at 0.0007 but it is evident from the histogram that a

tange of possible values between 0.0006 - 0.000775 provide almost the same level of
fit. The parametet disttibution is not well defined and as a result the model

calibrated to only 5 yeats of recotd will produce vastly different resulrs to that model

calibrated to the frrll length record. Not only is the histogram flat increasing the

uncertainty in the calibtation which in turn will increase the resultant simulation

bounds, but the optimal parameter value estimated via a maximum likelihood

approach is actually a different value when compadng the two models. In this case

the optimum parameter is known to be 0.00075 and as the model calibrated to the

short tecord has not been able to successfully determine this value, the simulated

distribution of inter-event times generated by the short calibration model will not

replicate the observed statistics of the full length historical record.

Approximately 20 years ot half of the available historical uLinfall, data is sufficient to

obtain the optimal inter-event parameters for Peth âs can be seen in Figure 4.8.

Even in this case howevet where the optimal parâmeter value has been identified,

thete is significant additional uncertainty associated with this calibration as evidenced

by the flatter histogtam in comparison to the parameters calibrated to the frrll length

recotd.
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Figure 4.8: Posterior Distribution Dry Spell Constant Parameter 0r, Half Length

Calibration Data (Data from Perth, January)

The implication of this result can be understood if we consider the application of the

model to Australian rajnfalT data. As discussed pteviously, thete ate a significant

number of sites with shot term historical tecotds. The parameter distributions

above show that rlitect calibration to these shott term data sets is problematic at best.

It would be reasonable to assume given these results that a direct model calibration

would require a data record of apptoximately 30 years. Given this is the case, in

order to apply the model to shottet historical records the development of a modified

calibration or robust regionalisation technique is required to allow the use of these

short data sets for model calibration. Whjle tegionalisation approaches ate discussed

in detail in Chapters 6 and 7, it is useful to undetstand these testtictions on applying

the model directly to shorter record lengths. The influence this has on the tesultant

model simulations is discussed in the next section.

4.5 lnfluence of Record Length on Resultant Model
Simulations

In order to understand the implications of calibtating with shott histotical records

and the resultant impact on the 
^ccrtïe.cy 

of the model, the tainfall model was

500

Posterior Samplesffi
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calibrated to both the full length record and the 5 yeat subset. Once calib rated,

simulation tesults were then genetated to gain an insight into the resultant influence

of tecotd length on the model ouþuts.

Fþte 4.9 compares the simulation limits for mean inter-event times between the

model calibtated to the fullJength record and that calibrated to the S-yeat subset. It
is obvious that thete is an increase in uncertainty associated with calibration to the

short 5 yeat tecord. This is particulatly th. case for the Summer-Autumn period

whete the numbet of stotms and hence data points from the dzta are at a minimum.

The signifrcant stze of the resultant simulation bounds suggests the accuracy of the

tesultant simulation must be under question.
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Figure 4.9: Comparison of simulation limit ranges for mean lnter-Event times due to

different Calibration Record Lengths (Calibrated with Perth Rainfall Data)

A similar result can be seen in Fþre 4.10 when applied to mean storm durations.

Again the lack of storm events available for calibration is evidenced by the large

differences through Summer-Autumn.
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Figure 4.10: Comparison of simulation limit ranges for mean Storm Durations due to

different Calibration Record Lengths (Calibrated with Perth Rainfall Data)

The decrease in calibrzton data was also expected to inctease rJr,'e 90o/o simulation

limits on aggregated statistics and tesult in a less accurâte simulation. Fþre 4.11

presents the aggregated annual rainfall simulation compadson between a model

calibrated to the frrll length data record and one calibtated to 5 years of data. As

expected the model calibtated to the shott recotd has not teproduced the observed

data with all observed data points residing outside of these 90% limits. In

compadson, the model calibrated to the full record length has successfully captured

the annual :.¿irrfall. distribution.
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Figure 4.1 1: Comparison of Annual Rainfall limits due to Full and Short Record Lengths

and lncorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)

The inability of the model to successfully reptoduce the obserwed statisdcs with a

short histotical tecord is a clear indication that the model in its original form required

significant data recotds to ensure accurate calibration and as a result limits its

application. It follows thata technique to enable calibration to small data sets would

be of great benefit and was a rnaior incentive to develop a regionalisation model.

In otdet to graphically represent the additional influence of record length on the

uncettainty 90% simulation limits, annual simulation results were adjusted so that the

tesults from the diffetent length calibration records (fuIl, half and short record

lengths) wete similar in respect to their simulation medians. In this way the

aggtegated ratnfall ftom each simulation could be plotted on the same graph and a

direct comparison of the spread of these 90% simulation limits undettaken.

Fþte 4.72 and Fþte 4.13 ptesent the influence of data length on the resultant

simulation of adjusted monthly and annual rainfall respectively. Again included with

the annual rz;tnfall. is the sampling vadability associated with the probabilistic nature

of the ntnfall. model. This tandom sampling variability was produced by setting the

model parâmetets constant at theit optimal values ensudng the only source of

variation was â tesult of this sampling variation. As was the case when investigating
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Full Record
Short Record

J)

o
-' a

---i'ù-

138



Chapter 4: Parameter UnceñaintY

the inter-event time and storm duration uncertainty, this sampling vadability tesult

can be thought of as the lower limit of uncettainty and is a tesult of the stochastic

structure of the model. As expected, decreasing the length of calibration recotd has

introduced mofe unceftainty and thetefote gfeatef simulation bounds.
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Figure 4.12: Comparison of January Rainfall limits due to different Calibration Record

Lengths and lncorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)
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Figure 4.13: Comparison of Annual Rainfall limits due to different Calibration Record

Lengths and lncorporating All Uncertainty Options (Calibrated with Perth Rainfall Data)
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Chapter 4: Parameter Uncertainty

To gain insight into the influence of specific parameter uncertainty on annual lzlrnfall

statistics with decreasing record length, further results were produced with

simulations considedng only inter-event uncertainty (Figure 4.74) or stoffi duration

uncertainty (Fþre 4.1 5).
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Figure 4.14: Comparison of Annual Rainfall limits due to different Calibration Record

Lengths and lncorporating lnter-Event Uncertainty (Calibrated with Perth Rainfall Data)
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Figure 4.15: Comparison of Annual Rainfall limits due to various Calibration Record

Lengths and lncorporating Storm Duration Uncertainty (Calibrated with Perth Rainfall

Data)
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A comparison of Figure 4.1.4 and Figute 4.15 shows a gteatet inctease in the 90%

simulation limits for inter-event times fhan fot storm durations with a dectease in

calibration record length. This tesult suggests uncettainty associated with the

simulation of inter-event times Ltas a gteatet influence on the annual ratnfalT than that

for storm duration. To understand why this is the case, the telative 
^.vera'ge 

length of

these events and the associated uncertainty must be consideted. The uncetainty

range associated with inter-event dmes is almost 100 times that of the corresponding

value for stotm duration. For example inJanuary, the uncettainty associated with the

inter-event times is in the order of 200 houts, wheteas this dtops to 7.6 houts for the

correspondingJanuary storm dutations. Cleatly thete is 
^ 

gre tet scope fot a small

change in the inter-event times to influence the rainfall totals fot a given pedod and

as a result this larger vadability has a greater impact on the monthly and subsequently

annual :øiinfall. vadability, increasing the annual rainfall limits. Impotantly this

suggests that in order to accurately model the aggtegated rainfall distributions, the

inter-event parameters must be well founded and clearþ defined. As a tesult any

regionalisation work must provide a model which captures the inter-event times to

an adequate level of 
^ccuracy 

to enable teptoduction of these aggregated statistics.

4.6 Summary

The treatment of parameter uncetainty is a key ingtedient to accurate stochastic

ratnfalL models. Vadability in the length and quality of existing ra;tnfalJ data ensures

simulation results from models which do not explicitly incorpotate uncertainty eithet

through calibration or simulation must be viewed with extteme caution. The

Metropolis algorithm has been incorporated into the existing rzLtnfall. model

presented by Heneker et al. Q001), enabling the identification of calibrated parameter

distributions. These calibrated distdbutions are influenced by the length and quality

of the historic data set providing a direct treatment of parameter uncertainty.

Including these parameter disftibutions and inttoducing a Monte Cado structure to

the simulation process has resulted in sigmfrcantly improved simulation ouþuts.

These ouq)uts allow imptoved comparison between the extended model and
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historical ratnfall, statistics, providing additional confidence in the ability of the model

to teptoduce calibrated and non-calibrated statistics.

Uncertainty associated with the calibtation of inter-event times and storm durations

ptovides the gteatest influence on the resultant simulations within the model. In

comparison only a minor influence is observed due to uncertainty associated with

storm intensity. '\s expected, the simulation bounds expand with a decrease in

calibration data, and the large uncettainty associated with very shott calibration

tecotds introduces some doubt onto the validity of simulations that do not attempt

to describe uncertainty.

The perfotmance of the model in its curent form when calibrated to short historical

records is under question. The level of confidence in model calibration and the poot

comparison to observed tainfall statistics suggest the model is incapable of rlitect

calibration with short tecotds. In order to use these numetous short pluviograph

tecotds avatlable âcross Australia and ptovide confidence in the resultant model

structure and simulations, a regionalisation approach is tequired. Befote developing

a tegionalisation approach, complete validation of the model after the incorporation

of the imptovements discussed in the previous chapters was undertaken and is

ptesented in the next chapter.
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CHAPTER 5

IMPROVED MODEL VALIDATION

5.1 lntroduction

This chapter presents a performance examination of the tainfall model originally

developed by Heneker et al. (2001) and then improved upon during this study for its

suitability for use in developin g a rcgSonalisation procedure to enable application with

short pluviograph or daily calibtation data. It is importarì,t to validate the

performance of the model at this time to not only instill confidence in its potential

use as a synthetic rainfall.generator but also to ensure additional wotks undettaken as

pzrt of this study have not decreased the capabiJities of the original model. ìlithout

a robust working model, there is little point in developing a rcg;onalisation process to

increase its application. Conversely, if the model is robust and able to reptoduce

observed rainfall, stad,stics, then this ptovides an ideal starting point fot incteasing its

application and usefulness through regionalisation.

Changes to the distdbutions descdbing intet-event times and stotm dutations rn

Chapter 3 anð the new intensity calibtation model ptesented in Chaptet 4 have been

incorporated into the stochastic tainfall model and requite validation thtough

simulation. Where possible the simulated results are presented with associated

simulation limits, enabling a more rigorous comparison to observed values than has

been possible previously.

An examination of the observed and simulated probability distributions for intet-

event time, storm duration and avetage event depth ate ptesented. \Wbile these

probability distributions are used dudng the calibtation and subsequent simulation

pïocess, this comparison provides a level of confumation that the calibratiorì was
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Chapter 5: lmproved Model Validation

successful and the observed disttibutions are being effectively teproduced by the

simulation.

Intensity-Ftequency-Duration (IFD) curves, aggregated statistics and the probabiJity

distribution of annual totals ate also examined. These statistics were not used dudng

the calibtation process and ptovide further evidence of the credibiJity and structure

of the model. In particulat the teproduction of aggregated statistics in compadson to

their datly counterparts (i.e. darly mean depth, da:Jy dry probabiJity) is investigated as

these statistics could then be used during regionalisation with daily data. The

influence of tecord length on the model calibration and resultant simulation was also

examined.

5.1.1 Observed Data Records

To thotoughly test the improved tainfall model, significant historical records across a

range of climates within Austtalia wete used. The sites chosen for specific

comparison and theit histotic data recotd length were Melboutne (95 years), Sydney

(78 yeats), Bdsbane (83 years), Peth (45 yeats) and .,\delaide (30 yeats). The

development of successful simulation models at these sites provide evidence that the

model works well across ^ tange of climates within Australia (gt.. adequate

calibration data), providing a basis for futute regionalisation work.

To provide adequate data fot comparison, each model was simulated at an equivalent

length to that of the histotical recotd and repeated for 100 simulation replicates.

This ptovided the ability to ptoduce simulation limits and ptovide ^î accvt^te

compadson to the observed data records.

5.2 Calibrated Event Probability Distributions

A necessity of any model calibrated to historical stotm event data is its ability to

teproduce the distributions and statistics used dudng the caübration process. If this

is not the case, the model can be assumed to be poody formulated and serious

questions must be asked of its validiq 
^s ^ 

hydtological tool. This section presents

144



Chapter 5: lmproved Model Validation

compadsons between observed and ptedicted event probability distributions for

inter-event times and storm dutation as well as compadsons between simulated and

observed monthly statistics for intet-event times, stoffi dutadons and event storm

depth. ,\s these distributions were used during the calibration process, it was

expected that they would compare favoutably. Monthly Parameters have been used

for all calibrations in this study with three (3) parâmeters calibrated for the

distdbutions of inter-event time and storm duration events each month while nine

(9) breakpoints at 0.2,0.3,1.0, 1.8, 2.4,3.0,9.0,72.0 arrd24.0 hours wete used fot the

piece wise ßnear intensity model.

Figure 5.1 @risbane in February), Fþte 5.2 (Sydney in May) and Figute 5.3

(Àrlelbourne in September) show that the inter-event time distribution is well

represented for data at various sites and months. (Ihese plots are presented as

exponential probability plots). Thete is good agteement between observed and

predicted event times indicaúng a good calibtation with histotical data. (Ihis is not a

simulation ouq)ut; it is a comparison between the observed event distribution and

the predicted distribution ftom the calibrated model).
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Figure 5.1: Observed and Predicted lnter-Event Distribution, Brisbane, February
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Figure 5.2: Observed and Predicted lnter-Event Distribution, Sydney, May
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Figure 5.3: Observed and Predicted lnter-Event Distribution, Melbourne, September

A similar result was observed for the representation of storm duration event

distdbutions. Figure 5.4 (Brisbane in July), Figute 5.5 (Sydney rn January) and

Fþre 5.6 (I4elboutne in Octobet) show good agreement between observed and

ptedicted values after calibration.
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Figure 5.4: Observed and Predicted Storm Duration Distribution, Brisbane, July
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Figure 5.5: Observed and Predicted Storm Duration Distribution, Sydney, January
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Figure 5.6: Observed and Predicted Storm Duration Distribution, Melbourne, October

Once the distributions of stotm event parameters are satisfactodþ replicated, a

comparison can be made between observed and simulated monthly averages for

these storm event vadables. Figute 5.7 (Brisbane) and Figure 5.8 (Sydney) present

the mean and standatd deviation of intet-event times fot each month. The results

display excellent agreement between the observed data and simulated results with all

observed points sitting well within tlne 90o/o simulation limits.
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Figure 5.7: Mean and Standard Deviation of Event Dry Spells for Each Month, Brisbane
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Figure 5.8: Mean and Standard Deviation of Event Dry Spells for Each Month, Sydney

,\gain, a similar result was observed for the teptoduction of storm durations' Fþte

5.9 @tisbane) and Figute 5.10 (Sydney) present these results. In almost all cases the

obsewed data lies within t}re 90o/o simulation limits. The mean storm dutation fot

June in Brisbane has been simulated at7.3 hours just outside the 7 .2 hour simulation

limit. Overall, this is a sadsfactofy tepfesentation of event stofm duration.
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Figure 5.g: Mean and Standard Deviation of Event Storm Durations for Each Month,

Brisbane
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Figure 5.10: Mean and Standard Deviation of Event Storm Durations for Each Month,

Sydney

The reptoduction of event storm depth is extremely important to the overall success

of the tainfal[ model for both the generation of synthetic pluviograph data and, to

capture aggtegated rzLinfal\ statistics such as monthly and annual totals. Figure 5.11

(Brisbane) and Figure 5.12 (Sydney) ptesent the mean and standard deviation of
event stoffi depths for each month. These results display cxcellent agreement

between the obsetved data and simulated results with all observed points sittìng

within the 90o/o simulation limits.
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Figure 5.1 1: Mean and Standard Deviation of Event Depths for Each Month, Brisbane
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Figure 5.12: Mean and Standard Deviation of Event Depths for Each Month, Sydney
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5.3 I ntensity-Freq uency-Duration

Â compadson of extreme ratnfall between observed and simulated data provides an

insight into how well the ntnfall model is able to reproduce the internal storm

chatacteristics ot the temporal pattem. In patticular, the successful generation of
shott dutation IFD curves (such as 1 and 3 hours) is dependent on the rainfall.model

accutately teptoducing bursts of rainfall that occur during storm events. It is

conceivable that the annual maximum l-hour rajnfallvalue used to produce the IFD

curve may tesult from an hout burst inside a longer duration stoffi. This point is

impottant as it provides an oppottunity to validate the temporal pattetn generâtor

incorpotated into the model. If the model is able to reproduce these IFD curves,

then the tempotal pattem genetator has been successful. Conceptually longer

dutations such as those tanging ftom 12to72 hours are more likely to be a tesult of
individual storm events, which in turn provide a validation of the odginal intensity-

duration relationship tather than the temporal pattern.

IFD curves were obtained by moving windows of a fìxed duration incrementally

thtough each yeat and determining the annual maximum rainfall depths for each of
these windows. A ftequency analysis was then undettaken on these annual maxima

fot the various dutations to ptoduce the IFD curves. This is a standard method to

determine the statistics of extreme lz¡infall over different durations for use in

engineering desþ.

Figute 5.13 compates the obsetved and simulated IFD curves for 7,12 and72 hours

for Brisbane. The simulated and observed IFD curves are similar with almost all of
the observe d data points sitting between the simulation limits suggestìng that the

model is able to teptoduce the tandom bursts associated with short duration tainfall

as well as the intensity-duration telationship. Figute 5.14 shows a similar result for

data from Sydney.
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Figure 5.13: Simulated and Observed IFD Curves for Brisbane
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Figure 5.14: Simulated and Observed IFD Curves for Sydney

In conjunction with the IFD results ptesented above, these plots confirm the ability

of the model to simulate the intemal storm charactetistics, which ate impottant when

simulating rairrfall. at a Ftne time scale.

90% Sim Limts
Sim Median. Obs I Hour

o Obs 12Hour
v Obs 72Hour

153



Chapter 5: lmproved Model Validation

5.4 Agg regated Depth Statistics

The teptoduction of aggregated ratnfdJ depth statistics at time scales such as hourþ

ot daily is an impottant attribute of any model under consideration for use in volume

based scenatios or water balance calculations. Reproduction of the 24-hour or daily

aggtegation values was also important if the model was to be adapted further for

calibration with daily data using these statistics as part of a new regionalisation

ptocess.

The use of both a pluviograph and a datly data record provide the obsewed statistics

for compadson. A corìcern when using pluviograph records in an application such

as this is the possibility of missing data. It is comrnon to see sections of missing

data, which spafls a few weeks or months within a pluviograph record. At smaller

time scales it is acceptable to ignote these secd.ons of missing data given the

remaining large sample set that provides an adequate estimate of the aggregated

statistics. When the time scale is increased however (i.e. monthly or annual ntnfalT

totals), the pluviograph data tends to underestimate the actual observed rain totals.

As a result, the observed daily data is aggtegated for all compadson statistics at time

scales gteatet than 24hoats. These daily tecords are generâlly longer, ftee of missing

dzta and hence ptovide an improved estimate of these statistics.

Comparisons between the t hout aggregation statistics for obsewed and simulated

lntnfall depth are Presented in Fþte 5.15 fot Btisbane and Figure 5.16 for Sydney.

In almost all cases, the observed data sits within the 90o/o simulation limits. Only a

süght deviation is obsetved for mean l-hout April rainfall in Bdsbane and September

and November mean l-hour ratnfall in Sydney. This is considered a satisfactory

tesult as these statistics were not pafi of the calibration process.
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Figure 5.15: Mean and standard deviation of the aggregated 1-hour rainfall depth for

Brisbane (mm).
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Figure 5.16: Mean and standard deviation of the aggregated 1-hour rainfall depth for

Sydney (mm).

The reproduction of daily aggregated statistics was a major factor when considedng a

model for further development and specifically fot regionalisation to locations where

only daily data is available fot calibration. Any model developed fot the purposes of

regionalisation should estimate a statistic for comparison to obsewed data (in some
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form) in otdet to assess its perfotmance dudng development (and potentially

ongoing). In this case, the ability of the model to replicate 24 ho,,u or daily statistics

successfully provides an oppottunity to compare the model to daily dzta after

regionalisation and mote importantly ptovides confidence in using the available daily

data as part of the model calibration process. \X/ithout this abiJity, there would be no

way to eithet develop a model calibrated to daily data not compare the calibration or

petformance of the model at sites with daily data even if a regionalisation/calibration

apptoach was developed.

Figute 5.17 @risbane) and Figute 5.18 (Sydney) ptesent the mean and standard

deviation of 24 hour aggtegated tain depth. Impottantly the improved model has

demonstrated its ability to teptoduce these statistics with good agreement between

the obsetved points and the model simulations.
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Figure 5.17: Mean and standard deviation of the aggregated 24-hour rainfalldepth for

Brisbane (mm).
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Figure 5.18: Mean and standard deviation of the aggregated 24-hour rainfalldepth for

Sydney (mm).

5.5 Annual Rainfall

Annual rainfall.is an important statistic in engineedng anaþsis particularþ fot longet-

tetm planning and option evaluation. Figure 5.19 presents the annual tainfall tesults

for the model calibrated to Bdsbane. This tesult suggests a successfirl teptoduction

of annual mean rainfall as indicated by the agteement between the observed and

simulated values at 50o/o. However, the angle or slope of the plot gives an indication

of the standard deviation and as the slope of the observed data is steepeÍ than that of

the simulated values, the standatd deviation ptoduced by model simulation is

presently underestimated. Fþte 5.20 presents a similat outcome for simulated and

observed data tn Sydney.
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Figure 5.19: Simulated and observed annual rainfall distributions for Brisbane
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Figure 5.20: simulated and observed annual rainfall distributions for sydney

This tesult is typical of event-based models that attempt to descdbe the undedying

tatnfalT process with independent wet and dry storm events. Historically the majot

consequence of this independence assumption has been an inability to take into

account any intet-annual petsistence such as Ei Nino or the Southern Oscillation.

The result of this phenomenon is inter-annual persistence in the form of consecutive
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very dry or wet pedods in the ninfall. record. The independent event-based model

structure does not generally incorpotate an intet-annual persistence characteristic,

which in twn leads to an underestimation of the varial:itty of annual rz'tnfall. totals.

ì7hile research has begun to develop an undetstanding of exactly how El Nino

affects ninfalL in Austalia (Chiew et al. (1998)), ptesently more wotk needs to be

done before such relationships could be explicitly incorporated into the model

structute.

,\s a potential solution to the problem, signifìcant wotk has begun @rcst et al.

(2000)) on introducing annual rzrinfall. states into the event-based model structure.

These states mimic the wet and dry years observed within the histotical data set with

each state requiring its own pafaLr:;,eter set, calibrated against the observed tainfall

data. Controlled switching between wet and dry model states dudng calibration

provides a persistence strucflúe capable of teplicating the inter-annual petsistence of

El Nino. More informadon on the defrning of these stâtes can be found in the Ph.D.

tlresis of Andtew Ftost (Ftost Q004)) ftom the Univetsity of Newcastle.

5.6 Record Length

One of the issues with stochastic models calibtated to historical recorded data sets rs

the available locations and data available for calibtation. As discussed in Chaptet 1,

this is particulady relevant for models such as this one which are caltbrtted to

pluviograph data, a resource that is constantly undet threat due to economic and

political pressures. Caretakers of pluviograph stations cân no longer continue to

record daø f.or little or no pu{pose. Âs a result more pluviogtaph stations are set up

for a short (5-10 years) lifespan to serve a speci{ic project or objective. All this puts

additional emphasis on the ability of stochastic models to use alternate data soutces

fot calibration.

The issue of apptopriate record length fot model calibration is one that is complex

and cannot be answered definitively. Rainfall trends and observations ate different at

every site and as a consequence the data tequirements at each site for a model such

as this are not identical. This can be illusttated using an extreme compatison

between the moderate climate in Adelaide and the ttopics of Cafuns. An Adelaide
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tecotd of 40 years should encompass nurnerous storms scattered throughout the year

and as â consequence over a 40 year tecotd provides a significant monthly data set

fot model calibtation. In comparison â tropical location such as Cafuns which

obsewes defined wet and dry seasons may not encompâss a significant number of

storm events throughout th" dry months within a 40 yeat record. ,{.s a consequence

the model calibtated to 40 yeats in Cairns mây not be as 
^ccvr^te 

as the one

calibtated to the same 40 years in Adelaide.

lùØhïe it is difficult to define an absolute record length tequirement, it is clear that the

model does tequire a significant historical pluviogtaph data for calibration in its
odginal fotm. Results ptesented in Chapter 4 suggest the model calibrated to Perth

data tequites apptoximately 30 yeats of recotd for accurate calibration and that a

short 10 yeats of data was not adequate to successfrrlly capture the mean annual

ratnfall ot the annual rz;infall distibution. Experience suggests that 30 years is

generally adequate to calibtate the original model. Figute 5.27 rctnforces this idea

and shows that the model calibtated to the frrll histotic record has successfully

reptoduced the annual rainfall distribution, while the model calibrated to the short

tecord has underestimated the annual ratnfalT totals.
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The inability to define with certainty th" requited length of calibration data does not

reduce the effectiveness of the model. As with all models, uneducated use of

tesultant simulations and outputs is not advised. Model calibtation and tesults

requite checks and possibly "engineering judgement" ptiot to successful application.

The setup and structure of this model enables these checks to be undertaken easily

and efficiently. If a model is not able to be calibtated directly with the avaîltble data,

tlren an alternative calibration technique is tequired a¡d can be ptovided using a

tegionalisation apptoach.

5.7 Summary

The generation of synthetic rainfd|. using the improved model adapted in this study

was a success. The ideas of parametet uncertainty and sampling vadability presented

in Chapter 4 were used to improve the simulation and enable the genetation of

simulation limits for all model results. This in turn has ptovided an imptoved

compadson between observed and simulated values. \flhile a minor number of

observed values fell immediately outside of the 90% simulation limits, ovetall model

simulations compafe favourably with observed statistics acloss all sites.

The distributions of inter-event time and stotm dwation were able to successfully

describe the observed distributions using the new three patametet model. This

model developed in Chapter 3 and adapted from the work of Fleneket et al. Q001)

has provided a robust and efficient description of these distdbutions. Both observed

and predicted event distributions and comparisons between obsewed and simulated

event statistics showed good agteement validating the new model setup. Observed

and simulated storm event depth also compared favoutably suggesting the selection

of set breakpoints and using an initial continuous calibtation function as descdbed in

Chaptet 3 wotked well.

The reproduction of aggtegated rainfall. depth statistics at the 24-hout ot daily

aggregation level was also impottant if the model was to be adapted futther for

calibration with daily data using these statistics as part of a new regionalisation

process. The daily meafl lzrinfall. was well teproduced suggesting this statistic could
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be used as part of any futute regionalisation work. In addition sub-daily t hour

aggregated ntnfall,was also well reproduced.

The tainfall model was able to teplicate the mean arrnual rainfall however was not

able to successfully reproduce the distribution of annualnin, slightly underestimating

the standard deviation. This result is typical of event-based models that attempt to

descdbe the undedying tatnfal[ process with independent wet and dry storm events.

As a result, th"y do not take into accoufrt inter-annual petsistence due to long-term

events such as El Nino. ìØork is currently underway to develop an expJicit model of
this underþing structure (see Thyer & I(uczera (1999) and Ftost Q004)). It is

impottant when developing a regionalisation structure fhat either this inter-annual

petsistence is taken into account ot similar periods within the historical time line are

compated when developing the regionalisation model (i.e. compadsons between sites

ovet similar wet years).

The imptoved stochastic model of tatnfall, developed in this study was now very

suitable fot further development for potential regionalisation/calibradon with shot

pluviogtaph or daily dat¿ records.
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CHAPTER 6

REGIONALISATION WITH A SHORT
PLUVIOGRAPH RECORD

6.1 lntroduction

Rainfall models in Australia (and indeed internadonally) zre often restticted in theit

application as a result of inadequate data available fot cahbnnon. Models calibtated

to storm events including the model at the centre of this research ate particulatly

difficult to calibrate and require significant histodcal pluviogtaph data tecotds.

Unfortunately, data of this resoludon is diffrcult and expensive to tecord and as a

result long accurate pluviogtaph recotds in Australia afe not abundant.

Of the more tfran 900 pluviograph sites in Ausftalia managed by the Buteau of

Meteotology, the combined avetage length is only apptoximately 15 years. Even if

this value is slightly biased by a numbet of sites that are telatively new (ot wete

recorded fot a specific putpose and contain only a few yeats of tecord), more

alarming is the fact that of all sites that are sill active, only a few (35-40) bave a

record length gre ter than 40 years. However, the ne¡work of over 900 pluviogtaph

sites which contain a short histotical record is extensive and would ptovide an

excellentsourceof calibratio¡dataif aptocedutetotake zdvantage of theavailability

of short pluviograph records was developed. If models such as the one used in this

research are to be setiously considered fot use as an engineering tool, a method to

calibrate these model's with less obserwed data for calibtatiorì was requited.

While the number of long term pluviograph records across Australia is small, it was

the distibution of these records actoss the country which led to the development of

a new regional calibration technique. \lith the sptead of long tetm tecotds scatteted
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Chapter 6: Regionalisation with a Shott Pluviograph Record

throughout the majot climatic regions of the country (i.e. Temperate climate of

Âdelaide/Melboume/Sydney, Sub-Ttopics of Brisbane etc) a process was developed

which used the infotmation at a long pluviograph site and then adjusted the model

based on comparisons to a smallet data set at the site of interest. The adopted

calibration ftamewotk uses a master to target (ot slave) relationship which enables

the successful updating of model patameters ftom one site to another. Model

parametets ate first calibrated to the long tecord at a master site and then translated

to the target site using the available shott pluviograph data set. The process uses the

expectation that parameter disftibutions within the model should exhibit a similar

shape when calibtated to data within a similar climatic region (i.e. sites surrounding

Melbourne).

An intetmediate step is also inttoduced which is able to manage issues that arise

when data sets of non-concurrent time periods are compared. By developing an

additional step in the ptocess, the model is able to consider the real pzï^rrreteï

changes in the model between the mastet and target sites and is not influenced by the

differences in data length or recording pedods.

The intoduction of the master - tatget relationship and the tegional calibration

process produces a model that is well calibrated at the tatget site and able to

synthetically extend the short historical pluviograph record.

6.2 Regionalisation Model Structure

Investigations outlined in the ptevious chapters into the various components of the

ratnfall' model and theit variabiJity and predictabiJity between sites led to the

development of the final tegionalisation model structure. The initial problem itself is

well founded; a model simulation is tequited at a patticular site which has a short

histotical pluviograph recotd and eithet cannot be calibrated directly due to the lack

of data ot the tesultant calibration ptoduces a model which does not adequately

teflect the tainfall pattern at the site of intetest. In the fitst instance, the extreme lack

of data ensures the model calibtation process itself cannot be completed (i.e.

p^tameter values cannotbe found) while the second situation relates to the factfhat

whjle it may be possible to complete the calibtation ptocess with limited available
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data, this does not necessad\ ensure that the model will perform adequately and

represent the tequi-red statistics and pattetns. The challenge then becomes one of

how to u'lise the available data setwhich is not sufficient on its own to ptoduce a

successful calibration to provide a model which does accutately reptoduce the

obsewed long term :izrinfall. statistics.

The improved rainfall model consists of fout major components which work

together during simulation to replicate the observed tecord. Initially a dry spell ot

inter-event time is generated. This is followed subsequently by a wet spell ot storm

duradon, with these two event parâmeters defining the :izrinfal\ time series.

Associated with this storm duration is the sampling of a stotm intensity which

provides the total storm depth and finally the ptocess is completed by disaggregating

the total storm depth via the temporal pâttern model to ptoduce 6 minute rz.tnf¡Lt'

data. To provide 
^fl ^ccrtta;te 

simulation, these components must all be successfully

calibrated at the site of intetest. The model structure dictates that each component is

independent, so for the pu{poses of calibration these comPonents can be

investigated independently and a process developed for each which enables these

components to be successfully applied to a patticular site with only a small âmount

of historical data.

If direct calibration at the site of intetest is not ava:ILable due to a lack of data, a

regionalised calibration could be achieved through using this shott historical tecotd

to update an existing calibtation at a neatby pluviogtaph site with a long historical

record. This structure should ensure that any milot raiinfall. processes and events

over time have been described within the calibtation at the nearby long pluviograph

data site, whìle minor differences between the sites are captuted via the updating

regionalisation procedure. Dudng simulation, the model simulates storm events at

the master site which are then ttanslated in a tevetse of the process to equivalent

storm events at the target site by using the same model setup. The master - tafget

ftamework is displayed schemadcally in Fþre 6.1 below.
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Regionalisation model to
transfer master information to
target site

Figure 6.1: Schematic of Regionalisation Structure

For this structure to work, sites must be situated close enough to have experienced

similat climatic patterns (i,e. the process does not work when shifting from the

temperate climate of Adelaide to the ftopics of Bdsbane). Unfortunately as of the

time of writing, there has been no definitive formula or basis found which can

determine whether ot not a parameter set can be shifted from one site to another.

Experience to date indicates that sites anywhere ftom 10 to 580 km away from the

cottesponding master site have been successfully calibtated and simulate accurately

the obsewed pluviogtaph statistics. It is anticþated in the future that as the number

of significant data sets inctease, and mote data becomes available that work can be

done to eithet formulate such a basis ot possibly in the long term develop parameter

contouts ot a similat genedc mapping of model parameters across the country. Until

this occuts, the simulation accìlacy of the model should be tested at each individual

site with the available pluviogtaph and/or daily daø as a compadson to ensure tlat
the tegionalisation process has been successful.

6.2.1 Prelimin ary lnvestigations

To undetstand the possible adjustments that would need to be made dudng the

tegionalisation process, changes in parameter distributions were investigated by

calibtating the model to numerous long historical data records across -Austtalia.

These calibtations were then compared across neþhboudng sites influenced by

similar climatic conditions. As a basis, paits of sites surrounding a master site were

selected to ensute they had a similat climate classification by the Australian Bureau of

Master
Long Pluviograph
Calibration of er

Target
Short

Pluviograph
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Meteorology. It was expected that the parameter distributions fot each model

component would display a similar shape fot sites within a similat climatic tegion (i.e.

inter-event times in a particular region would exhibit the same general shape). This

was because sites located in a sirnilat tegion should be influenced by the same ma)or

climatic ftonts and forces.

In addition to this over-arching consistent shape, it was anticipated that micro-

climatic influences which influence each individual tainfall site would alter these

distdbutions and could be descdbed in some form to enable a tegSonahsation

updating process to be incorporated into the model. These local site adiustments

may be a result of micro climatic factors (i.e. altitude, aspect, and distance ftom coast

etc) which do not alter the climatic ddving fotces influencing the major stotm

systems, but they do alter the ftequency and volume of rz;tnfalL tecotded between

sites within the same climatic region. This minot influence is postulated to change

the parametedsation of the distdbutions in the model, but not the overall distribution

shape. This would allow the parameter distributions to remain the same while still

enabling the use of a scaling shift between sites to capture this minot influence.

To gain an undetstanding of potential adjustments tequired between sites, a numbet

of ca]ibrations at long pluviograph sites wete compated. To ensule afl 
^ccrlf:ate

compadson, concurrent data periods wete selected and used in the calibration

process. As an example to undetstand the model developmerlt pfocess, wotk on the

inter-event times is presented below. Fþte 6.2 displays the distdbutions of intet-

event times for Melbourne and East Sale in Victoda. These sites ate 190 km apart

but both are influenced by the Southern Austtalia weathet pâtterns and experience

similat climatic conditions.
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Figure 6.2: comparison between Melbourne 86071 (Master) and East sale 85072

(Target) lnter-Event Distributions for the month of April.

This plot suggests that whjle the two sites have distinctly different patzlmeter

disttibutions, the undetlying shape (i.e. initial curvature and slope) is similar.

Additional pairs of plots actoss varyng climatic conditions provide a similar result as

evidenced by Fþte 6.3 below (Compadson between a cahl¡rztion at Sydney and

Richmond RA,\Ð
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From these and compadsons completed at flumerous other pairs of sites, it is evident

that the differences between par^rneter distributions within a tegion ate adequately

consistent for the development of a regionalisation model. There are no sudden

changes in the shape of the distribution from site to site and not only that, the

diffetence between distributions is telatively consistent (i.e. the differences inctease

as the length of inter-event time increases). This was an important tesult as it

suggested that differences between intet-event time distdbutions could be descdbed

through the inttoduction of ahnear scaling relationship.

To incorporate the lineat scaling telationship into the model, a new relationship was

applied between inter-event times at the longet master site and those at the shortet

target site. This scalar relationship was dependent on the length of the obsewed

storm event and ttanslates master site events into a cortesponding stotm event at the

t^rgetsite. If we consider the odginal calibration equation fot inter-event time at the

master site as presented in Chaptet 3, the telationship is as described by

F(x I e1)= P(X < x let)= 1- exp[- g(x,e,)] x>0 (6.1)

Introducing â flew linear scaling relationship and vadable À into this telationship to

ptovide the tequired shift between the master and tatget distdbutions yields a new

equation (6.2) fot calibtation of a regSonalised inter-event time

F"(v 10,,1)= r"(lv le,)= 1-exp[-g(,\v,e,)] (6.2)

F., denotes the distdbution function at the tar:get site while F* denotes the

distribution function at the master site. The new scaling value l, acts as a multþlier

on the t^l:get pluviograph data (y), to ptovide a best fit between the mastet

calibration and the target data. In this manner the minor diffetences between the

two distdbutions can be described dudng the calibration. This process is displayed

)n gtapbical fotm below
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Figure 6.4: Schematic of Master Target Event Scaling

\X/hile this model wotked when comparing data sets of identical length and

concuffent time pedods, the process in this form is not adequate for describing

distribution changes between sites which contain different record lengths oï 
^te

recotded over different periods of time. To understand why, we need to consider

the sampling variability at the annual scale, an issue which was discussed briefly in the

wotk on patameter uncettainty. In general terms, when comparing statistical

disttibutions of significant data sets the temoval of a small section of data from one

tecord should not significantJy altet the distribution or the compadson. However,

tatnfall' tecords can be shott (small in data tetms) and can also incorporate long term

persistence within sections of the recotd telating to a particulady unusu"l dry or wet

pedod which may continue over a multi-year period. If we consider a shortet subset

of a long histotical ratnfalT record, it is evident that the subset cannot be influenced

by all of the wet ot dry pedods (sampled in the longer record) which in turn can

produce a diffetent data distribution between the long record and its own subset.

Expanding this, a similar result is observed when comparing a long pluviograph

recotd and a neighbouring shot recotd in that the shot recotd has not been

influenced to the same degree by any long term influences and may have missed

significant periods of tainfall infotmation. As a result, calibration of the ltnear

regionalisation model between a long and short record (as descdbed in Figure 6.1
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above) would not only be influenced by small climatic differences at the sites, but

also by any diffetences between the tecotded time pedods of the recotds. This

introduces a milor source of errot and makes it impossible to desctibe the event

distdbution changes which arise only ftom the slight climatic diffetences between

sites. Before the regionalisation model stÍucture could be adopted and futther

developed to incoqporate storm dutation and storm depth parameters, this issue of

sampling variabiJity at multi-yeat scales and how to deal with non-concurent data

pedods tequired careful considetation.

6.2.2 Treatment of Sampling Variability at the Annual
Scale

To demonsúate the potential sampling vadability issue, a pseudo calibradon was

undertaken by shifting ftom a calibrated mâster parameter site (using intet-event

pârâmeters) to a smaller subset of the same master tecotd which was acdng as the

target site. ,\s the master and tatget data ate from the same site, the tegionalisation

model should return a scaling factor of one. (i.e. thete are no adiustments to be

made to the calibrated model parâmeters as the data is ftom the same site and

therefore the master parameters 
^re 

a tfl;ie teflecdon of the requited pârameter set)

Any sampling vadability as a result of the smallet data set not observing the same

ninfall.pedods as its longer counterpart would be evidenced by a deviation from this

expected value of one. In this case using data ftom Melbourne (FulI length 1900-

1995, subset 1985-1995), Fþre 6.5, it is clear that this is indeed the case and the

tesultant scaling factors did not equal one.

t7I



Chapter 6: Regionalisation with a Shorf Pluviograph Record

09

0)
o)
E
(I'
L
o
o-
o)c
(5
o
Ø

1.3

1.2

1.1

0.8

o.7
123456 7

Month

89101112

Figure 6.5: Calibration of Scaling Parameter without adjustment due to Different Record

Periods (Data from Melbourne; Full length 1900-199S, subset 19SS-1995)

If the time span of the shotter record coincided with a predominately wet or dry

pedod within the fi¡ll tecord, then the shott tecord will be influenced by these events.

As a tesult the distributions desctibing the storm events for the shorter record will

differ (to those of the full record) and the resultant scaling factors will not equal one.

Cleady this problem also translates when considering regionalisation between si.tes.

Direct compadson between the full length master calibtation and the shorter target

site data will lead to a potential bias in the resultant model parameters as a result of

regional wet or dry pedods coinciding (ot not) with the time span of the shorter

tecord. To accutately calibrate the scaling factot between sites, the model needs to

compare the differences between the distdbutions which relate to local climatic

conditions and should not be influenced by issues adsing from differences with the

time span and length of the two data sets under compadson.

Additional understanding of this potential bias can be seen with a simple graph

comparing the intet-event disttibutions of a full length recotd to a subset of that

record for data from Brisbane and Perth (Figure 6.6 and Figure 6.7).

+ Calibrated Parameter

- - Expected Value

172



Chapter 6: Regionalisation with a Short Pluviograph Record

0

1

-2

ð-3
+

o
J

-5

-6

-7
100 200 300 400

lnter-Event Time (hr)

Figure 6.6: lnter Event Distributions, Brisbane Different Record Length

-1

-4

0

100
lnter-Event Time (hr)

500 600

200

0

Xâv -Z-lr
I

o)oJ.>
-J

0 50 150

Figure 6.7: lnter-Event Distributions, Perth Different Record Lengths

It is clear from these plots that while the shape of the distribution has remained
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Chapter 6: Regionalisation with a Short Pluviograph Record

different set of patâmetets to the model calibrated to the subset of Perth data from

1982-1992.

To temove any sampling variability and ensure 
^fl 

accvtate calibration of the tequired

scaling factor for regionalisation, the target data should be compated to master

model parameters which are caltbnted to a master data set equivalent in length and

concurrent in yeats. The use of concuttent data would ensure the calculated scaling

factots 
^re 

a trve indication of the local distribution adjustments arrd are not a

residual tesult of the diffetent record lengths. However, in order to use a master -
target telationship with concurent data periods directly, the model would first need

to be calibrated to a shott sub-set of the master record equivalent in length to that of

the target site. It is the inability of the model to be successfully calibrated to such a

short pluviogtaph tecord that has lead to the development of a master-t^rget

telationship to cfucumvent the ptoblem. Indeed, if the model was capable of being

ditectly calibrated to a sub-set of the master tecord, then it would be reasonably safe

to assume the model could also be calibtated ditectly to the target data set and a

regionalisation process would not be tequfued. This is not the case, as calibration of

the odginal model to short pluviograph tecotds is ptoblematic, often resulting in

model parâmeters fhat are not well identified and do not describe the required

distdbutions due to the lack of available cahbratton dzta. A process which firstly

allows the model to be calibtated to the complete record at the master site, secondly

takes into account the differences in data lengths and time periods between the two

data sets, and finally is still able to accutately adjust these model parameters based on

the limited information from a short pluviograph record was required.

Given the tatget pluviograph data set will always be shotter and contain less

infotmation than the master record and that the master parameters should always be

calibrated to the full length of the master recotd to ensure 
^ccùra'cy, 

the resultant

problem is how to set up the regionalisation model to enable comparison between

data sets which are not concuffent andf or equivalent. To solve this ptoblem, arr

additional step in the regionalisation process has been introduced. This additional

intetmediate calibtation step results in the calculation of an intermediate pre-scale

parameter denoted l,o. This Ào parâmeter descdbes the diffetences between data

disttibutions telating to non-concurrent time periods and by using it in the
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Chapter 6: Regionalisation with a Shot-t Pluviograph Record

calibration process it ensures compadsons between distdbutions at master and target

sites are not influenced by non-concurtent dtta.

The amended master - t^rget process to calculate the scaling P^ratrrreter À and the

intermediate parameter Ào is shown graphically below in Figute 6.8. The first step

remains the same as the odginal mâster - tatget relationship wheteby the model

parameters are cal*srated to the full length record at the master site. This p^r^metr.ic

description of the master storm event distdbutions is denoted 0. The second step

involves an interrogation of the target data set which allows the model to extract a

subset of the mâster data which is concuttent and equivalent in length to the target

data. Once this data is extracted, the model uses the master - t^rget telationship to

compare the original master calibration (0) and the new subset of the mastet data

(now acting as the t^tget data) to calculate an intermediate scaling factor À,0.

100 200 300 400

lnter-Event Time or Storm Duration

Figure 6.8: Schematic of Pre-Scaling Calibration Step

Once the intermediate factor l,o has been detetmined, it is then applied as a pre-

multiplication factor to the target data. By pte-muttiplying by In,the target data is

adjusted to take into account any differences in the stotm event distdbutions that

may have occurred as a result of the differences tn data lengths and time periods.
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process is applied a second time between the master parameters and the 'new' target

data to determine the 'real' regionalisation scaling factor 1". The introduction of this

intetmediate step allows the regionalisation model to more easily deternine the

changes in storm event distributions and model parâmeters as a tesult of the

differences between sites alone and not to be influenced by the differences in data

lengths or time pedods.

More explicitly, if we again consider the distribution of intet-event times, then as

befote (in equation 6.2) we know the inuoduction of the regionalisation model is

desctibed by

Fy(y I ot, r)= r"(,ty I o,)= i - exp[- s(Ày, et)] x>0, y>0 (6.3)

If we extend this and denoting l"n as the intermediate pre-scaling factor to take into

account the diffetences between data lengths and periods, the calculation of ì,0 at the

mâster site is descdbed by

(6.4)

whete F" is the distribution at the master site and x,o.* is the subset of the mastet data

equivalent in yeats to the target data. This ptovides the calculation of the pte-scaling

factor l"o. Apply-g this as a multiplication to the target data and te-applying the

mâster - talrget scaling telationship (6.3) gives the overall calibration of the scaling

factor ì"

Fy (y I 0t, À, Ào)= r*(,r(,rov)l e,)= 1- e*pþ g(,\(rov) e,) y>0 (6.s)

As explained pteviously the tatget data y has been initiatly multiplied by l,o to remove

any bias due to the different time pedods covered by the full length masteï

pluviograph and the shorter target site. This allows a rlìrsç¡ comparison between the

calibrated mâster parameters and target distdbution to calculate the real À.

Fx(x r 0,, 
^,,= 

*[[+ *,.*) r 

',) 
= ,- *r[-,[^[+ -,,.)',J]
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To test the introduction of the intetmediate step, the technique was again used to

calculate l, between the full length arrd a subset of the Melboume data set but this

time including the intermediate calibtation step. Again, the expectation was the

calculation of a scaling factor of one (in this case fot inter-event times). Figure 6.9

shows that the inclusion of this intetmediate step has corected any bias due to tlre

diffetent record lengths and as expected retutned a scaling parameter value of 1.0.

1.3

1.2

1.1

1

0.9

0.8

0.7

o)
c)
E
E
(It
o-
o)c
oo
U)

23456789101112
Month

Figure 6.9: Calibration of Scaling Parameter with and without adjustment due to Different

Record Periods (Data from Melbourne)

The development of a master - t^rget ftamework and the inttoduction of an

intermediate calibration step to remove the sampling vadabiJity issues associated with

the non-concurrent data periods enable the master - tmget relationship to be

adopted for each model p^r^meter set of the event based rainfal| model. The

application and development of these relationships for each section of the model and

the subsequent testing and simulation tesults ate descdbed below.

6.3 Regional Model Application to lnter-Event T¡mes
and Storm Duration Parameters

The ability to successfully reptoduce the observed distdbutions of intet-event time

and storm durations at sites with a shott historical tecord ensures the simulation of

+ Different Record Lengths

- - Expected Value
-----+F- lnclusion of Pre-Scale Step
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afi 
^ccuu 

te storm time series and ptovides a significant step towards successful

calibtation at sites with minimal historical data. The development and performance

of a master - target telationship to calibrate these sections of the model is now

described in detail.

6.3.1 Model Development for lnter-Event Times and
Storm Durations

As pteviously shown the distibutions of storm events and dry periods are similar

a¡d are both descdbed by a generalised exponential distribution given by

F(xle,)=P(X<xl0t)=1-expfs(Ày,ot)] x>o y >0 À >0 (6.6)

Inttoducing a mastet - target telationship and the aforementioned scaling parameteÍ

(À) and intetmediate scaling parâmeter (Ào) into this event distribution calibration

process results in

F(x I o,) =1-exp[-s(À(,rov) e,)1 y>0 (6.7)

As the distributions of inter-event times and storm duration are caltbnted and

simulated independently, sepatate scaling parameters (À) and intermediate scaling

parameters (Ào) ate tequired to be calculated for each event distribution. The

development of a lineat scaling factor was important as it increases the likelihood

that it can be identihed successfully given the limited data avalal¡le with only a shott

pluviogtaph record. Âs model parameters are calculated on a monthly basis, t1re

master - t^rget relationship is also developed for each month between the

cottesponding event distdbutions. Using only a lineat scaling factor ensures only a

single Para;meter is tequired to be calculated for each month in compadson to the 3

parameters which ate used to describe the event parameters at the master calibration

site. Maximum likelihood techniques similar to those employed to fit the parameters

at the master site ate used to determine the pre-scale parametet )uo and the optimum

scaling parameter 1".
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Dudng simulation, a master storm event is simulated using the master calibtation

parameter set and is then multiplied by the apptoptiate scaling factor (i.e. stotm

dwation or inter event time) to ttansfotm the simulated master event into an

equivalent length of stotm event at the tatget site'

Befote the model could be applied and tested at sites atound Austtalia, careful

consideration of the regionalisation model setup is required in otdet to adopt

appropriate methods and statistics to check model petformance. In the case of a

typical model calibration, a long histodcal data set is used during calibration. As an

example, the Melbourne record contains 95 yeats of pluviograph storm data. To

assess model performance, the model can be simulated fot 95 year rcpltcates and a

direct compadson between observed and simulated data undertaken. This provides

^î 
a.cc:ur^te comparison between observed and simulated data because the calibration

data length is long and provides a reâsonable descrþtion of the rainfall processes at

the master site. Additional testing using daiþ data or similar can be used to compare

annual statistics and long tetm ttends.

In contrast to a typical calibration, the tegionalisation model uses a shott pluviograph

record at the target site to update the mastet calibration ftom a site with a long

historical data record. Let us consider Melbourne as the master ar,d a surounding

site y as the target with only a shott 10 year tecotd. If the tegionalisation model has

been successfully applied, the tesultant model should be capable of simulating the

l:linfall. events and long term n:nfall statistics at site y. Extending this furthet, the

resultant model would be equivalent to â model calibtated to 95 years of historic data

(equal to that of the Melbourne master) at site y if this data was available. As a result,

simulated statistics reflect a 95 year period of tainfall recotds at site y instead of the

observed 10 yeats. Direct comparison between this 10 yeat observed recotd and the

model 'calibrated' to 95 years of recotd is ptoblematic due to the aforementioned

issues relating to sampling variability at the annual scale in shott histotical data sets'

The regionalised model calibrated to effectiveþ 95 yeats of data and the obserwed 10

yeat tecord now encompass different pedods of time.

179



Chapter 6: Regionalisation with a Shorf Pluviograph Record

Fot these reasons when applying the regionalisation technique in practice,

comparisons should be made between the regionalised model and an altenate data

source, usually a long daily rainfall tecord. This will enable checks to occur between

the aggtegated statistics of the simulated model and the daily record over the same

time period as was used fot the calibration of the master model parameters. This

provides the best compatison between observed and simulated values as equivalent

periods of time are compared.

Fot the purposes of this study and model verification, all target sites have been

chosen with signifrcant periods of data tecotds available. This was important to

ensure that adequate high resolution tatnfall data was avarfable for compatison to

valtdate model simulations and statistics. To ensure the model tests were as 'leal' as

possible, the length of data at the master and target sites were adjusted to ensure the

master calibration was undertaken to a subset of master data equivalent in length and

concuttent with the full length tatget data set. Regionalisation was then tested by

utilising a small sub-set of the target data for calibration while model simulations and

results were compated to the full length target record. This results in some sections

of the available master data being þored dudng the testing process but should

ptoduce a tegionalised model that is equivalent to a model calibrated to the full

length tâtget recotd. This also ensutes that the final calibrated target model should

reptoduce the observed target data distributions without bias.

,\s an example, considet Melboutne as the master site with its record length from

1890 to 1995, and East Sale as the required t^rget with data ftom 1953 - 1992. Fot

testing purposes the Melbourne tecotd was clipped to coincide with the East Sale

data period of between 1.953 and 7992. Thrs was then treated as a full length master

recotd for the purposes of calibtating â master parameter set. In addition, the target

site at East Sale was then clipped to only a 1,0 year subset of the 40 year recotd to

formulate a realistic shott pluviogtaph tecotd 
^s ^ 

tatget data set. These two records

were then used as the mastet & tatget sites dudng the calibtation of the scaling factot

(À) Successful implementation of the master - target relationship should then

produce tatget scaling factots which, during simulation, generate results that compare

favonbly to the original fulI length (1953 - 1992) data set at East Sale.

180



Chapter 6: Regionalisation with a Sfiorf Pluviograph Record

In order to show that the distdbution of intet-event tjme could be successfully

tanslated from master to target sites, a numbet of mastet sites wete selected ftom

various locadons across Austtalia. These wete then used as a basis fot shifting to

other shorter target sites in the area. The sites selected fot mastet calibtations and

the associated target sites ate shown in Table 6.1. ìØhile the table shows the

available data at the target site, for the purposes of this study only the final 10 years

of target data was aclually used dudng the calibtation process. The remainder of the

recotd was only used fot comparison to model simulation tesults.
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Table 6.1 : Master and Target Rainfall Record Details (Pluviograph Model)

Name BOM # Start Year Finish Year
Distance

(k-)
Master Melbourne 8607 I 1900 1995 0

Targets East Sale 85072 1953 7992 190

Ellinbank 85240 1,967 1.992 95

Lavetton 87031 1965 1992 20

Name BOM # Statt Year Finish Year
Distance

(k-)
Mastet Sydney 66062 1913 1, 99 1 0

Targets Richmond 67033 1953 1993 45

Chichestet 61151 1960 1980 185

Name BOM # Start Year Finish Year
Distance

(k-)
Master ,\delaide 23034 1967 1,997 0

Tatgets Williamstown 23763 1.971 7997 40

Sttuling 23785 1964 1981, 15

Name BOM # Statt Year Finish Year
Distance

(k-)
Mastef Perth 9034 1.946 1.992 0

Tatgets Espetance 9631 1,963 1. 99 1 580

Name BOM # Start Year Finish Year

Mastet Brisbane RO 40214 1908 1, 99 1 0

Targets Brisbane,\MO 40223 1949 1992 10

I(rkleagh 40318 1959 1.990 70
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All master calibration results are pïesented in Äppendix B, wble the complete set of

target results are shown in Appendix C. Fot vedfication purposes, selected tatget

tesults fot Melboutne (master) - East Sale (target), Sydney (mastet) - Richmond

(target) and Adelaide (master) - \X/illiamstown (tatget) are shown and discussed

thtoughout this Chaptet.

6.3.2 Simulated lnter-Event Time Results at Selected
Target Sites

The successful scaling of intet-event tjme to the t^rget site has two benefits. It

provides the necessary 
^cc:urarte 

description of dty periods of the target site, but less

obviously, the distribution of intet-event times also has a maior influence on tÏe

number of storms and therefore the resultant urinfall, for a given month. In otdet to

ved$r that these distributions were successfully ftansfered ftom master to tatget site,

two compârisons were made. The distributions of intet-event dme fot each month

for the master, scaled and target data sets were compated to ensure the distributions

were replicated. These scaling factots wete then used in a simulation and the mean

and standard deviation of dry events for each month wete compated. Undertaking

these two checks ensures that the calibtation of the scaling p^rarraeter was successful

and that this was implemented correctly dudng simulation. Results ate shown in

Fþre 6.L0 for the reproduction of inter-event distribution for a cahbration shifted

ftom Melbourne to East Sale.
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Figure 6.10: Comparison between Master, Target and Shifted Master lnter-Event

Distributions (Data from Melbourne (Master) East Sale (Target), April)

As can be seen, the inter-event distdbutions for this month have been well

reptesented with the introduction of the linear scaling parameter. To further test this

application, simulation results fot the monthly mean and standard deviation of inter-

event times have been calculated arrdare ptesented in Figue 6.1,1 and 6.12. In these

plots the obsewed data has been calculated ftom the full length tatget site

pluviogaph tecord. The mastet statistics have been identified with a dashed line

litkitg discrete statistics to improve the visual representation of the regional scaling.

The master statistics wete also calculated from the full length master record.

o Master
tr Target
o Scaled Master

o,þ
'þ%

ø

E

g^
b

o oo
tr h ûd

Ë

184



Chapter 6: Regionatisation with a Shorf Pluviograph Record

U'

=o
E,

o
E
tr
c
o)

uJ
¿
(¡)

É
c
o
o

90

80

70

60

50

40

30

20

Month

Figure 6.11: Comparison between Observed and Target Simulated Mean lnter-Event

Times (Master - Melbourne; Target - East Sale)
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Figure 6.12: Comparison between Observed and Target Simulated Standard Deviation of

lnter-Event Times (Master - Melbourne; Target - East Sale)

All observed statistics sit within the 90o/o simulation limits ptoviding evidence that

the mean and standard deviation of intet-event times have been well reproduced.
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From these plots it can be concluded that the calibration and application of the

regional scaling parâmeter have resulted in a successful inter-event shift from

Melboutne to the target site of East Sale.

Furthet evidence is supplied by application of the model to Sydney ninfall, data. In

this example, data from Sydney is used as the master calibration site with Richmond

RAÂF base introduced as the target site. Again a simple plot of the resultant

regionalised p^r^metü distribution (trþre 6.13) suggesrs the model has been

successfuþ shifted from Sydney to Richmond.

100

0

-2
x
IL

I

=-3o)o
J

-4

-5

-6

500 600

Figure 6.13: comparison between Master, Target and shifted Master lnter-Event

Distributions (Data from Sydney (Master) Richmond (Target), June)

Resultant sirnulation statistics (Figure 6.14 atd Figure 6.15) provide additional

evidence that the model has been able to descdbe the required changes between the

master and target site using the linear scaling parameter.
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Figure 6.14: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Sydney; Target - Richmond)
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Figure 6.15: Comparison between Observed and Target Simulated Standard Deviation of

lnter-Event Times (Master - Sydney; Target - Richmond)

The data compadsons between Melboutne-East Sale and Sydney-Richmond show a

significant change between observed statistics at the master and target sites which has
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been well captüed by the regionalisation model. -As an example the mean inter-

event time for Sydney for the month of June is approximately 42 hours, with a

conesponding value of 69 houts at Richmond. The model has been able to capture

this sþifrcant change in intet-event time statistics while still adequately describing

the distribution itself. A furthet test of the model adses at sites which do not have

such a cleat diffetential between master and target sites. Fot the tegional model to

work successfully it must 5*ill calibrate accurately when the vadance between

observed statistics at the master and target sites is minimal.

A good example of this situation is the compadson between Âdelaide (master) and

'ùØilliamstown (target). With the exception of February and November, the

diffetence between the monthly mean inter-event times is minimal. Fþre 6.16

presents the simulation tesults after a successful regionalisation shift. Not only has

the model still been able to describe the required changes for February and

Novembet which tequired a latge change, all othet months have also been

successfully reptoduced where only a small adjustment was required.
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Figure 6.16: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Adelaide; Target - Williamstown)
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Figure 6.17: Comparison between Observed and Target Simulated Standard Deviation of

lnter-Event Times (Master - Adelaide; Target - Williamstown)

6.3.3 Simulated Storm Duration Results at Selected
Target Sites

The successful scaling of storm dutations provides the necessary 
^ccurate 

descrþtron

of the length of storm everì.ts but again in similat fashion to inter-event times, also

has an influence on the numbet of generated storm events. The distdbution of

storm duation is also linked via the conditional intensity - dutation relationship to

storm depth and therefore it is impottant that this distribution is accutately

reptoduced by the regional model.

As the probability distributions and desctþtion of storm durations are identical to

that of inter-event times, the tegionalisation structute used for intet-event times

could be adopted. A pre-sca\e factor was again introduced to temove sampling

variability issues with a resultant lineat scaling shift employed to descdbe the changes

in the storm dutation distributions between sites.

For consistency, results ate ptesented fot the same pairs of sites as tlat fot inter-

event times with futher results available in Appendlx C. Again if the observed data
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statistics fell within the simulation limits this was considered a successful

regionalisation of the model for stotm durations.

Fþre 6.18 & Figute 6.19 present simulation results from a successful shift between

Melbourne and East Sale. There is significantly less adjustment required for storm

duration parameters in comparison to inter-event times as can be seen with most of

the mastet meafl avera;Ee stoffi dutation statistics sitting within the simulation limits.

As a result only minimal scaling was tequired ftom Melbourne to East Sale.

Howevet the model was able to adequately describe the required adjustments and

successfully shift the model between these sites.
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Figure 6.18: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Melbourne; Target - East Sale)
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Figure 6.19: Comparison between Observed and Target Simulated Standard Deviations

of Event Storm Durations (Master - Melbourne; Target - East Sale)

Similar results are evident ftom regional stotm duration calibrations between Sydney

and Richmond. The minimal adjustments have been successfully descdbed by the

incorpotation of the linear scaling model.
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Figure 6.20: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Sydney; Target - Richmond)
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Figure 6.21: Comparison between Observed and Target Simulated Standard Deviations

of Event Storm Durations (Master - Sydney; Target - Richmond)

In conftast to the intet-event times, the differences between storm duration stadstics

fot Adelaide and rüTilliamstown ate significant. For the month of June, the mean

stoffi duration from the full length Adelaide record is approximately 2.5 hours. In

comparison the mean fot the full record at lüØilliamstown is close to 4.5 hours.
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Figure 6.22: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Adelaide; Target - Williamstown)
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Figure 6.23: Comparison between Observed and Target Simulated Standard Deviations

of Event Storm Durations (Master - Adelaide; Target - Williamstown)

It is important to remembet that the two tecord lengths âre not identical and

therefore it is likely that the Adelaide record has obserwed significantly more shott
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storms which have effectively decteased the mean stoffi duration over time. The

success of the tegional model between these si.tes again indicates the importance of

the pre-scaling step and futthet emphasises the ability of the regional model to

capture the tnre adjustments tequired between parameter distibutions at the master

and tatget sites.

Results ptesented to date indicate the model has been successful in teproducing the

requited distribution changes between master and target sites for inter-event times

and storm durations. However results ptesented thus far have been comparisons to

calibrated statistics (i.e. the distibution of intet event times was used in the regional

calibration and thetefore should be well reproduced in the model simulations). To

test the model futthet, it is impotant to compare the reptoduction of non-calibrated

statistics potentially ftom an altetnate data soutce. This would also test the

petformance of the model when inter-event time and storm dutation shifts were

combined.

As the inter-event times and storm dutation parameters define the number and

distdbution of stotm events over dme, it is approptiate to use the ptobability of

observing or not observing a storm event over a given time frame as a relevant test

of the models petformance.

6.3.4 Comparison between Simulated and Observed
Daily Dry Probabilities at the Target Site

The inter-event times and stotm dutation simulation within an event based model

ptoduce the stotm event time seties and therefore the probability of obserwing wet

and dry events over â given aggtegation petiod. To investigate the success of the

tegional model when considering inter-event times and storm durations it is

therefore appropriate to compare the observed and simulated dry probabthty for a

certain aggtegation level. In addition, a major issue when using a regionalisation

technique to simulate øtnfall data is the abiìity to verify the success of the

regionalised model with very little data available at the time scale of the model

simulation. In genetal the regional model will be used at sites which do not have a

long histotical record for comparison. Without this comparattve long 6 minute
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pluviograph record at the tmget site, an alternadve data soutce at a diffetent time

scale must be used to provide verification of the model ouq)ut and an indication of

the success of the regionalised calibtation. Fot intet-event time and stotm dutation

the reptoducrion of the daily dry probability (the probabiJity of obsewing no rain in a

given day) can be used and compated to the observed st¿tistics from a long daily

record at the target site to provide futthet model verification.

Extending this idea furthet, if it can be shown that the regionalised model is capable

of reproducing this daiþ statistic after successfril calibration, then thete is potential

for this statistic to be used as a check fot a tegionalised model at a site whete

minimal pluviograph data is avatlable fot verification. It is teasonable to assume that

an event model which can successfully simulate the probability of obserwing ^ dry

day is also adequately simulating the number and length of storm events and inter-

event times. Therefore the reproduction of the darly dry ptobabilities is an impottant

indication of the performance of the model and as it is a non-calibrated statistic

provides furthet evidence of the models structure.

Fþre 6.24 presents the probability of obsewing a dry day for both the observed

data at the target site (East Sale), the simulated limits form the regionalised model

and a dashed line representing the mâstet site statistics (I\rlelbourne)' The mastet

statistics are 'ttt fact the same as that of the target site data in that they are disctete

points of one value per month, however they have been tepresented as a dashed line

for display puq)oses as it was diffrcult to distinguish between the mastet and target

data points.
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Figure 6.24: Comparison between Observed and Target Simulated Probability of a Dry

Day (Master - Melbourne; Target - East Sale)

Figure 6.24 tndtcates that the model has been able to improve the reproduction of
the daily dry ptobability fot all months. The majority of points sits within or just

outside the simulation limits suggesting that the model has been able to adequately

reptoduce the dady dry probability at the tatget site of East Sale. Figure 6.25 and

Fþre 6.26 present similat tesults from Sydney and Adelaide respectively. The

model tegionalised from Sydney to Richmond shows a substantial shift between the

mâstet and the tesultant simulation at the target site and the target values have been

well reproduced.
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Figure 6.25: Comparison between Observed and Target Simulated Probability of a Dry

Day (Master - Sydney; Target - Richmond)
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Figure 6.26: Comparison between Observed and Target Simulated Probability of a Dry

Day (Master - Adelaide; Target - Williamstown)
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The data from Adelaide tequited a less signihcant change, however again the model

was able to capture the requited changes when shifting from master to target.

Combining these tesults with those presented in Appendix C, the regionalisation of

inter-event times and storm durations using a disttibution scaling factor and a master

- target relationship has been successfully introduced into the ratnfall model and can

be applied with confrdeflce to sites with short pluviograph records.

This was also an impottant result for the futthet development of the regionalisation

model as can be seen in the latet chapters, as it enabled the development of a

technique using only dally nrnfall data futther genetahzing the technique and

imptoving the application of the model across ,\ustralia.

6.4 Regional Model Application for Storm Event
Depths and Temporal Pattern Parameters

The successfrrl simulation of bulk rainfall. amounts and their subsequent

disaggregation into the required time step is the final step in the rainfall model

process. \X/ith a successful process developed and tested to calibrate the distdbution

of storm dutations and inter event times at the t^rget site, a similar process was

required to ensure the reproduction of rainfall distributions and aggtegated totals was

accurate. As was the case with the distribution of Intet-Event times and Storm

Durations, the calibration of storm event depths and temporal pattern disaggregation

parameters are undettaken independently within the model and as a result the

potential links and telationships between these parameterisations at the master and

target sites were also investigated separately and are descdbed below.

6.4.1 Model Development for Storm Event Depths

An important outcome ftom the eatlier wotk ptesented in Chapter 3 was the

investigation into the conditional intensity - duration relationship. Chapter 3

demonstrated the similar shape of the conditional intensity - duration relationships

between adjacent tainfall sites. For example sites atound Sydney all display the same

basic intensity - duration shape and panmetet characteristics. This result was

important fot the work in Chaptet 3 as it ptovided the basis for a new calibration
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ptocedure for the storm event depth model pârameters. For the purposes of this

Chapter it is also important as it ptovides the base fot the development of a

tegionalisation process fot these rainfa[ amounts.

While the results of Chapter 3 indicated that the intensity - duration patameter

chatacteristics are similar and consistent between sites, the telationship is not so

identical as to require little or no adjustment. Some sites receive consistently more

intense rain events than others and as a result a tegionalisation adjustment fot

differences in the intensity of rain events between sites is requited. It was initially

hoped tjrrat a simple scaling of the margþal (as opposed to the dutation conditional)

intensity distribution between the mastet and tatget sites could successfully descdbe

any required adjustments. Not only would this have provided a simple approach, it

would also tie in nicely with the adopted process for intet event times and storm

dutations. Unfoffunately this was not the case.

An investigation into the potential of a scaling lactor applied directly to the matginal

intensity distdbution provides an insight into why such a simple apptoach did not

work. In the original model the use of the conditional intensity-dutation telationship

enables the parameters which govern the distribution of storm intensity to be

influenced by the storm dutation. ,\s a result a shott duradon storm will have a

different mean intensity in comparison to a longet dutation storm. This is to be

expected and was a requirement of the odginal model to be able to teplicate

observed statistics at various time scales. If the matginal distdbution of intensity is

investigated directly for the puq)oses of calibrating a scaling factor, this conditional

Iink to storm dwation is ignored and the accura;cy of the regionalisation model

suffers as a tesult.

The application of a scaling relationship dfuectly between both conditional intensity -
duration distributions at the master and tatget sites was also ptoblematic. The

relationship would be tequired to take into account changes to both storm durations

and storm intensities between sites explicitly in the calibtation of event dePths in

order to keep the conditional relationship intact. This tesulted in scaling parameters

at eacl:_ of the bteakpoints in the model, introducing a large numbet of patameters
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requiring calibration each month at the tatget site, which was not appropriate given

the lack of calibration data available.

The adopted tegionalisation model considers the conditional intensity - duration

telationship implicitty by compating the distdbution of storm depths tather than

storm intensities in otder to calibtate the regionalisation requirements between a

master and a target site. By developing the model to compare stoÍm depths instead

of stotm intensity, the conditional intensity - duration relationship is taken into

consideration implicitly as the data pairs of intensity and duration are corì.sidered

togethet. Almost as importantly, because the process uses the distdbution of event

depths tather than stotm intensity, the process could be (and subsequently was)

developed futther to be used with darly rainfal data with the view of further

generalising the model. This additional work to regionalise the model with only daily

data at the target site is presented in Chapter 7.

The regionalisation model fot event depths works in a similar manner to that for

storm durations and intet-event times. Using the master site calibration the model

initially simulates a disttibution of storm event depths at the master site. (Ihese are

simply a product of simulated stotm duration and coresponding simulated storm

intensities) The model then calculates a scaling relationship (Io"oJ between the

master (D) and target depth p) distdbutions, i.e.

P(DJ = Io"o,nPQ) (6 B)

In ordet to calculate the requited regionalisation for the storm intensity distribution

specifically, the model c n use the previously described storm duration

regionalisation telationship (),) (which can be calculated first independently) to pre-

ttanslate the storm dutations from master to target sites. If we let i = intensity and d

= dutation then

P(DJ = l.D"p,hP(D); now PQ) = P(ild)*P(d) so

P(i," I dJP(d,J = tro"p,r.P(i, I dJP(d)

If storm duration regionalisation is pre-calculated, then
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P(d) = )"d P(dJ so substituting into (6.9) gtves

P(i- ldJP(dJ = Lo"o,nP(tld) )',r P(dJ (6.10)

And simpli$'ing

P(i- | dJ = l"o l.o.o,nP(i.. I d) (6.11)

Any resultant regionalisation relationship determined when comparing the event

depth distdbutions becomes soiely a factor of the stotm intensity'

Unlike the scaling factors for inter-event times and stotm dutation, a simple constant

linear factor was not adequate to describe the requited distdbution changes between

master and target sites. Investigation into the stotm depth distdbutions indicated

that a more complex telationship was requfued. Figure 6.27 drsplays the comparison

between storm event depth distdbutions þlotted on a log scale) at Melboume

(l\daster) and East Sale (Iarget). It is clear that thete is a more ptonounced

difference between sites for storm depths atound the 0.9mm mark as opposed to

storm events of gteater and lesset depths.
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Figure 6.27: Comparison between Storm Event Depth Distributions Data for July, (Master

Melbourne; Target - East Sale)
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Fþre 6.28 displays a similar result for data from ,{delaide (À4aster) and

'ùØilliamstown (Target). In this case there is a decreasing difference between sites as

the stotm depth increases which could not be captuted with a simple linear scaling

factot.
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Figure 6.28: Comparison between Storm Event Depth Distributions Data for March,

(Master - Adelaide; Target - Williamstown)

The compadsons between master and target storm depth distributions led to the

development of a relationship fot the scaling factor l"o"o,n which is dependent on

storm event depth. This relationship between Lo"n,n and storm event depth requires

the calibtation of 3 parametets. The first is a constant linear scaling factot similar to

that used in the calculation of l, fot inter-event times and storm duration and is

denoted lo"ptr, r. In addition to this constant factot, two additional parameters

determine the location (f,o"o,n J and size (Io"n* r) of the triangle peak which provides

the regionalisation model for event depths a further degree of freedom. This

additional freedom ensures the model is able to obtain a better fit between the

master and target sites. A schematic of the model structure is displayed in Figure

6.29 below.
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Figure 6.29: Schematic of Scaling Parameter Relationship to Storm Depth

The actual scaling factor during calibtation and simulation fot a given storm depth is

determined by the combination of the three scaling factots as shown in Figure 6.29.

In this way the scaling factor has enough freedom to capture the requited diffetences

between depth distributions at the master and target sites while still restticting the

number of patameters to 3, 15 less than is tequited fot a ditect event intensity

calibtation to pluviograpb data.

This approach provides a robust methodology to regionalise the stotm event

intensity within the model. Howevet, in contrast to the eatlier work when

tegionalising storm durations and inter-event times, thete is not 
^11 

explicit

desctþtion of the storm event distributions within the model. In otder to utilise a

maximum likelihood approach to calculating the requited scaling parameter between

depth distdbutions, a descrþtion or estimate of the storm depth distributions v/âs

also requited.
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6.4.2 lncorporat¡ng Non-Parametric Kernel Smoothing
Density Estimation

To eliminate the need to incorpotate ^n assumption about the probability

distdbution of event depths into the model, the probability density was

apptoximated using the method of kemel density estimation or kernel smoothing.

This, coupled with a maximum likelihood approach formed the basis of the

calibration of event depths at the target site and removed the need to introduce

fufther assumptions into the model structure.

I(emel smoothing is a well-known and accepted method for the non-patametric

estimation of probability densities. Rosenblatt (1956) introduced the idea of kernel

estimators by ptoposing to smooth kernel weights on each of the obsewations.

Since then, kernel estimating has been used in numerous applications including

hydrologically in the estimation of flood quantiles (Adamowski,

1985,1989,1996,2000; Guo, 1991; Moon et a/., 1.993 amone others). A. good

introduction to kernel density estimation can be found in Silverman (1986), while

Wand and Jones (1995) provide an account of mote recent developments. I(ernel

density estimation is an extension of the histogram, providing a smooth continuous

density estimate. The density estimation equation takes the form

î"1*¡=å#^[ x-y¡
h

(6.12)

whete I(Q is a ketnel function centted at each data point y,, x is the data value at

which the probability density estimate is tequired and h is known as the bandwidth.

The bandwidth sets the degtee of smoothing or influence that each individual kernel

has on the overall density estimate. The kemel I(Q must be a ptobabiJity density

function which by dehnition must have an area under the kernel function equal to

one. Often, as was the case in this study, the Gaussian kernel is used

K(x)= #*r(+)
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Introducing the required scaling factot À into the kemel smoothing equation (6.12)

yields

(6.14)

In this case ft denotes the number of data points at the t^rget site while (þ,,i=l,..,n

is the target depth data. These values of (Ày). are a product of stotm dutation to, the

corresponding duration scaling l,o, the coresponding target event intensity and the

tequited depth scaling 1".

Fþre 6.30 presents a graphical description of the kernel smoothing apptoach. At

the location of each scaled target depth data point a Gaussian kernel is placed. The

summation of the n kernels of bandwidth h centeted at each talget observation (l,y),

in (6.14) forms the kernel probability density estimate of a specific mâster depth x.

At locations with ^ gre tet concenttation of target data points, thete will be mote

contributions from a number of Gaussian ketnels centted at these points giving a

gre ter density estimate to the master data point x and providing the ability to

compare the two data distdbutions.

Probability Density
Estimate fot each Mastet
Obsewation x

I{ernels at each
data point

Target Depth
Data Points
(Àv)
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Figure 6.30: Schematic of Kernel Smoothing Calculation

î*(x)=å#^t-p)

È-
:=

<(
-oU*t

x

205



Chapter 6: Regionalisation with a Shoti Pluviograph Record

Maximum likelihood techniques are zga:n used to find the optimum value of 1,.

Given that Ào is constant (it has been pre-calculated dudng the storm duration

regionalisation wotk), l" is the only parameter tequtring adjustment to produce the

maximum likclihood. Ân iterative process was used whereby the kernel density

estimation was tecalculated for each iterative change in scaling parameter 1". As is the

case in all maximum likelihood apptoaches, the best fit occurs when the product of

î*(x) (or the sum of logîr1x¡ as is the case in this tesearch) for all master

obsewations is at a maximum. This ensures that the scaled target depth distribution

and the observed mâster depth distribution ate easily compared with the differences

described by the scaling patametet I. Once the optimal scaling parameter is found,

the final target simulation is produced using the master parameter set and this

tesultant scaling factot to provide the requited storm event depths at the target site.

(The calibtation approach has calculated the scaling parameter at the t^rget site to

best fit the tatget depth distribution to the master depth disttibution; hence dudng

simulation the simulated mastet depths must be scaled by the inverse of this

parameter to produce the required depth values at the target site.)

6.4.3 Storm Event Depths Results - lntroduction

To verify the successful scaling of simulated stotm depths two comparisons were

used. First, the disttibutions of event depths ftom the observed master, target and

simulated target can be compared to provide a check that the regionalisation

calibration fot event depths was successful. Secondly, compadsons to the annual

and monthly ratnfal[ distdbutions provide evidence that the model has captured the

bulk rainfall ptocesses successfully over various scales. The obserwed statistics for

this compalison wete calculated ftom the observed daily record at the tatget site to

provide the most accurate monthly and annual statistics. As the distrìbution of event

depths was the basis of the calibtation process, the compadson to the non-calibtated

monthly and annual tatnfal.J distdbutions are of gteat benefit in validating the model

structure and petformance. An additional comparison betrveen simulated and

observed IFD cuwes ptovides further validation of the storm depth model output;
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however, the IFD curves ^re also influenced by the intetnal stotm event

charactedstics and the temporal pattern pârâmeters which ate discussed in Section

6.4.6. As a result, IFD compatisons are provided later in Section 6.4.7.

6.4.4 Simulated Storm Event Depth Distribution
Results at Selected Target Sites

As the calibtation of the scaling p^r^meter for event depths takes into account the

event depth distributions the following plots give an indication of how well the

model is able to capture the differences between the master and tatget sites, the

expectation being that the observed data will predominantly test within the

simulation bounds. ,{s can be seen below and in Appendix C, this is mostly the case

suggesting that the regionalisation model is capable of descdbing the differences

between distributions at pairs of sites. In the selected cases whete the obsewed

values did not rest within the bounds, the points are either on the botdetline or just

outside. Considedng the calibtation data avaiable and the accuracy of all other

reproduced parâmeters, this is an acceptable tesult.
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Figure 6.31: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Melbourne; Target - East Sale)
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Figure 6.32: Comparison between Observed and Target Simulated Standard Deviation of

Event Depths (Master - Melbourne; Target - East Sale)
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Figure 6.33: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Sydney; Target - Richmond)
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Figure 6.34: Comparison between Observed and Target Simulated Standard Deviation of

Event Depths (Master - Sydney; Target - Richmond)
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Figure 6.35: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Adelaide Airport; Target - Williamstown)
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Figure 6.36: Comparison between Observed and Target Simulated Standard Deviation of

Event Depths (Master - Adelaide Airport; Target - Williamstown)

6.4.5 Monthly and Annual Rainfall Results

To further test the performance of the tegionalisation process, the ability of the

model to replicate statistics not used during the calibtation process was investigated.

Reproducing monthly and annual ratnfaln totals is ìmportant for hydrological dsk

assessment models and ate two statistics not used during the calibration process.

Their use as a vedfication tool is futthet enhanced by the fact that monthly and

annual rz;tnfall totals were soutced from daily data records, a completely diffetent

data set to the pluviograph recotds used dudng the calibration process.

Three pairs of sites were selected for ptesentation in this section, based on the

diffetences between the master and target njnfall totals. In the frst case the master

is '\delaide Aþort while the target site is V7illiamstown. Adelaide Aþort has an

annual ratnfall451mm in compadson to thzt at Williamstown of 71.7mm. As can be

seen ftom Figure 6.37 tt'e model has been able to successfully reproduce the mean

annual rzrtnfall when scaling from master to the target site. However, consistent with

the oliginal Heneket et al. (2001) ratnfallmodel the simulation has undetestimated the

long tetm petsistence súucftue at the annual time scale. This is not a drawback of
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the regionalisation process but tathet of event based models genetally which lack an

intet-annual persistence sttucture to capture long term climatic effects. Concuttent

PhD work by Andrew Frost at the Universrty of Newcastle to identify and inttoduce

a persistence structure into rainfall models of this type should in the futute provide a

way to improve the reproduction of the standatd deviation of annual raLtnfalJ in event

based models. Nevertheless, the presented tesult indicates the ability of the

regionalisation model to translate between master and tatget sites.
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Figure 6.37 Comparison between Observed and Target Simulated Annual Rainfall

(Master - Adelaide Airport; Target - Williamstown)

Figure 6.38 displays simulated and observed monthly tainfall, fot January again

demonstrating the models ability to simulate and teproduce non calibrated statistics.
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Figure 6.38: Comparison between Observed and Target Simulated January Rainfall

(Master - Adelaide Airport; Target - Williamstown)

Fþte 6.39 and Figute 6.40 present data from the target site at ICrkleagh in

compadson to the master daø ftom Brisbane. These sites have anrual mean rainfall.

which is closer than that between Adelaide Aþort and \X/illiamstown but the model

can s :ll be seen to successfully reproduce the desired distributions.
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Figure 6.39: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Brisbane Regional Office Airport; Target - Kirkleagh)
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Figure 6.40: Comparison between Observed and Target Simulated July Rainfall (Master

- Brisbane Regional Office Airport; Target - Kirkleagh)

Finally Fþre 6.41 & Fþre 6.42 demonsúate the ability of the model to simulate

successfrrlly when there is little change between the master and target sites. Both

Sydney and Chichester have similar annual ratnfall. totals (1,21,7mm and 7295mm

respectively), but the model has still captured and teptoduced the mean annual

ratnfall. (Again the standard deviation of annual rainfall. has been undetestimated)
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Figure 6.41: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Sydney; Target - Chichester)
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Figure 6.42: Comparison between Observed and Target Simulated November Rainfall

(Master - Sydney; Target - Chichester)
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6.4.6 Model Development for Storm Temporal Pattern

Once the gross storm charactetistics have been successfully simulated at the t^rget

site, the temporal pattern model is still tequired to disaggtegate these events to six

minute tatnfall totals. Âs discussed previously, the :-ainfal.d model uses 
^

disaggregation process exptessed as a constrained random walk within non-

dimensionalised dutation-depth space. Progtession of a tainfal. ftace through this

space is charactedsed by a sequence of jumps described by a truncated log-normal

distribution. The parameters that defìne this log-normal distribution, namely the

meân and the standard deviation ate conditional on the cument position in the non-

dimensionalised space ar,.d are given by

m=(l- õ,_)(ry + mr6,-t)

s=(l - á,_1)(s, + srd,_1)

(6.15)

(6.16)

ôherew
d(tl
d(td)

The distribution of internal rainfall jumps used during the disaggtegation process ls

therefore predominantly a conditional telationship based on what has occurted

previously throughout the storm. \When comparing the temporalpattert parameters

between two rainfall sites, it is the changes in these distdbution patametets that

require consideration fot regionalisation. In otder to undetstand the potential

differences ftom site to site, a scatter plot of the parameter values against non-

dimensionalised duation can be produced for a numbet of sites. Figute 6.43

displays a. typtczl single site mastet calibration ftom Melbourne data.
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Figure 6.43: Temporal Pattern Parameters (Calibrated to Melbourne Data)

The temporal pattetn pârameters can be considered as a simple sulnmary of the

typical changes in tainfall intensity over time at a given site. If we compare two sites

which could be consideted similat in terms of the type of ninfall that generally

occurs, then it would be logical that the conesponding temporzlpattern parameters

should remain relatively consistent between these sites. As an example it would not

be out of the ordinary to expect that sites within the tropics would exhibit different

ratnfall pattems to those in temperate clirnates. To investigate the possibility that

ntnfalT sites within a similat climatic tegion have similar temporal pattern parameters,

a number of sites wete calibrated and the temporal pattern parameters at these sites

compated.

Once the tempotal pattern parameters were calculated for adjacent sites, they were

co-plotted to give an insight into poten:ual parameter differences. Fþre 6.44

compares the temponl pattern parameters calibrated with data from Sydney,

Adelaide, Melboume and Bdsbane. The data used fot co-plotting across all sites was

adjusted to be the same length and period to ensure that all sites had the chance to

experience similat ot related weather patterns. While Figure 6.44 drsplays a similar

shape between the patameters at these sites, thete are obvious differences in the

tempotal structure at these sites. For instance Brisbane expetiences sþificantly

highet mean intensity butsts and is much more variable than the rainfall experienced
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in Melbourne, Sydney or Adelaide. Given Brisbane expedences a tropical climate rn

compadson to Melbourne, Sydney and Adelaide, this result is feasible.
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Figure 6.44: Australian City Temporal Pattern Parameters

More significant for the pu4)oses of regionalisation is the comparison between

temporal pâttern parameters for sites in a specific state ot tegion. Figute 6.45 to

Figure 6.48 shows the extent to which these tempotal pattetn pârameters temain

consistent when comparing regional/state wide sites.
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Figure 6.45: Southern Victorian Temporal Pattern Parameters
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Figure 6.46: Queensland Temporal Pattern Parameters, East of the Divide
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Figure 6.47: New south wales Temporal Pattern Parameters, East of the Divide

0

08 1

50

c):
o

o
(¡)

E
(5
L
(5
fL

005

0
02

o Brisbane
o Brisbane Regional

" Rockhampton
* Cairns

o Sydneyo Richmond RAAFx Sassafras+ Chichester

218



Chapter 6: Regionalisation with a Short Pluviograph Record

0.2

0.1

0
0 0.2 o.4 0.6 0.8

d/do

Figure 6.48: Adelaide Temporal Pattern Parameters

Signifrcantly these plots show a high level of consistent tesults. Not only is there a

self-similar process that was initially exploited to describe the progtession of rain

traces within a stoffi, these results indicate that the overall plocess is also similar fot

groups of sites within similar climatic regions across Austtalia. Given an

understanding of the lziinfalT variation âcross these sites and the ability of the model

to describe the temporal rainfall patterns, this expected tesult suggested that

disaggregation parameters for the tatget sites could be adopted without adjustment

from the master calibration site. This result was furthet verified during simulation as

presented below and removed a significant hurdle in the tegionalisation process.

Provided the bulk storm characteristics cân be successfully generated at the t^rget

site, the internal storm intensity characteristics can be accutately teptesented.

6.4.7 lntensity Frequency Duration Curve Results

The comparison between observed and simulated IFD curves at the Tatget site

provides a further check on the performance of the tegionalisation model. If the

compadson is favourable then the decision to keep the temporal pattetn parameters

constant between master and target sites can be futther justified. ,\s ptesented below
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in Fþre 6.49 to Fþre 6.51, the intemal storm charactedstics have been successfully

reptoduced at the target site
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Figure 6.49: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Melbourne; Target - East Sale)
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Figure 6.50: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Adelaide; Target - Williamstown)
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Figure 6.51: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Sydney; Target - Richmond)

6.5 Summary

The introduction of the master - tzrget lineat scaling telationship into the Heneket ¿/

al. Q001) rainfal. model has produced a model capable of simulating long-term

synthetic pluviograph records at numerous sites atound ,\usûalia with short-tetm

histotical data.

The regionalisadon model for inter-event times and stotm dutations employed a

master - target relationship coupled with a linear updating factor between sites. -An

intermediate calibration was developed to remove any sampling variability issues

between the rainfall records at the master and target sites due to their diffedng

lengths anðf or periods of record. The use of this intermediate step and the new

regionalisation scaling factor enabled a successful translation ftom simulated intet-

event time and storm durations at a mastet calibration site to 
^ 

tatget site with only a

shotr pluviograph record avalable for updating. Vedfìcation against calibrated and

non-calibtated statistics has vedfied the adopted apptoach.
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A similat master-target relationship was used as the basis in the regionalisatìon model

development fot storm event intensity. As a result of the requirement to consider

the conditional intensity-dutation relationship during regionalisation, the event depth

distributions were used for compadson between sites rather than the storm

intensities directly. The introduction of a non-patamettic kemel smoothing

technique to estimate the ptobability distributions for the event depths removed tÏe

need to assume a set distribution for this pteviously un-modeled stotm pareimetet.

An investigation into the temporal pattern parameters used in the model indicated

they temained consistent within climate regions allowing the master parameters to be

used without adjustment at the target site. The model assumptions and performance

was vedfied with compatison between observed and simulated calibration statistics

and independent statistics from a datly record at the tatget sites.

Compadsons between the observed and simulated data at various pairs of sites

indicate the model's ability to significantly shift the mean and standard deviation of

the bulk storm charactedstics in otdet to teproduce vârious calibrated and non-

calibtated statistics at sites with minimal Pluviograph data sets. These results give

validity to the undetlying stnrctute of the model. Coupled with the ability to

successfully simulate ratnfalf amounts at various time scales and apply the existing

disaggregation process to generate synthetic pluviograph data, this model is now a

useful tool capable of being applied to a large numbet of additional sites across

Austtalia. To enhance the application of the model futthet, a process was developed

to enable model calibtation at sites with only darly data available. This wotk is

ptesented in the following chaptet.
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CHAPTER 7

REGIONALISATION WITH A DAILY
RAINFALL RECORD

7,1 Introduction

High resolution point rz;tnfall. models that can be accutately calibtated to daily tainfall

data would ptovide a useful tool for investigating engineering systems. Such models

would need to be capable of teplicating both daily and sub-daily statisdcs as well as

longer aggregated values to be confident of the structure and tobustness of the

model. In addition the calibtation process should be sttaightforwatd and capable of

being employed by all model usets.

Previously, Chapter 6 demonsttated the ability of the ratnfall, model to be calibrated

at sites with a short pluviograph recotd. This chaptet futthet develops the model to

enable calibration at sites with only dady nrnfall data. This work meets the final

objective of this study which was "To extend the application of the model to sites

with only histotical daþ data and no pluviograph data avatlable for calibradon".

As discussed in Chapter 1, thete are more than 1400 sites actoss Âustralia that now

have active datly ntnfall recotds which contain at least 40 years of histotical data (see

Figure 7.1).
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Figure 7.1: Australian Bureau of Meteorology: Daily Recording Stations

This data is readily available and ptovides a useful resoutce fot teseatchers and

practising engineets alike. To use this information a Mastet -Tatget telationship was

developed similat in structute to that inttoduced in Chapter 6. 'A.gain an initial

calibration of model parameters is undettaken at a long pluviograph master site. In

this case, the parameters are then updated through co arison to daily data at the

Target site. This new simulated likelihood approach developed in Section 7.2.1.,1rr

conjunction with non-patamettic density estimation allowed model parametets to be

updated directly based on the compadson between simulated daily Master tainfalls

and observed daily Target data.

Model validation occured at numetous paits of sites which wete selected to ensure

the target site also contained a significant pluviograph recotd. Selecting sites with a

significant pluviogaph recotd ptovided adequate infotmation to test the accutacy of

reproducing various statistics at the sub daily time scale as well âs âggregated statistics

and monthly f annual rzinfall. distributions. The final model is capable of calibration

to sites with daily tatnfall, data (avatlable either thtough direct data measurement or

via the SILO Buteau of Meteotology process for interpolation of data between

measutement sites), gteatly enhancing the application of the model across Austalia
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and providing an excellent continuous simulation tool fot engineets and desþets m

areas where no historical short time inctement rainfall data is available.

7.2 Development of the Daily Regionalisation Model
Stru ctu re

In order to develop a storm event model that could be calibrated with daily data, the

model parâmeters and their relationship to the available data tequired considetation.

At locations where only daily data is available at the target site, it is clear that thete is

a limit to the quantity and quality of detailed information which could be used to

cahbratef adjust model parameters. The Mastet - Tatget structure ptesented in

Chapter 6 relied on the fact that thete was pluviograph calibration data avatlzble

(albeit limited) which could be used to adjust the master parameters providing a

ditect update for application at the Target site. While a similat master - tar:get

approach wâs seen to be advantageous in tetms of structute and understanding, it

required furthet development fot application with daily data.

The statistics that are ava:lat¡le within z darly data tecord include the probability of

observing rain on any given day, the distribution of ratn given the day is a rain day

and the probability a day teceives zero ra:tn. These values (Probability of observing

dry days, the probability of observing rain days and the distribution of rain totals

given a rain day) are al7 statistics that can be easily extracted ftom a daily tecotd and

while they contain no direct information regatding storm event parameters, their

values are influenced by the distributions of intet-event time, storm dutation and

storm depth. It is this relationship between the storm event pârameters and the daily

data statistics which led to the adoption of a similat master - tatget calibration

structure as that developed in Chaptet 6.

If we consider the distribution of intet-event times, this disttibution provides a majot

influence on the frequency of stotm events obsewed duting a given period of time.

(i.e. the longer the average inter-event time, the fewer numbet of storm events in a

dayf montb/year etc). So even though there is no direct information tegatding intet-
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event times in a darly record, daily statistics such as the daily dry probability (or the

ptobability of no raÐ ot potentially the distribution of consecutive dry days can be

used in the calibtation process in some fotm to infer the tequired parametet changes

between master and target sites.

In a similar manner, the model parameters which descdbe the values of storm depth

cannot easily be adjusted ditectly based on daily data as there is limited detailed

information within a darly tecord regarding the depth of individual storm events.

Consider the situation when two storms events occur on a single recording day. As

the daily data tecotds the obserwed depth once a day, thete is no additional

infotmation avatlat¡le in the daily record to estimate the rain conftibutions each

individual storm event has ptovided to the overall daily total. Similarþ, it is

impossible to define and allocate darly ratnfall contdbutions from two storms where

one has continued across the atbittary recotding day boundary and another storm

starts subsequently on that same day. Only in the rare occurrence when an individual

storm event is completely contained within a tecording day and it is the only storm

fot that day can the tecorded daily depth be attributed to an individual storm depth.

Howevet, the ability of the tainfall model to successfully simulate the mean daily

ratnfall' (when calibrated to pluviograph data) suggests such a statistic could be used

to enable comparison between daily informatfon atmaster and target sites.

To use the avatfable daily data, a method was required to provide 
^11 

àccrrr^te

compadson between simulated and observed daily statistics. This would allow the

model parâmeters to be adjusted and updated based on compadsons of these daily

data statistics between master and tatget sites. So, while the tegional model

developed in Chapter 6 could not be adopted direcdy, the Master - Tatget structure

was again inttoduced fot use with daily data. This structure had the benefrts of

having akeady been demonstrated as a success with pluviograph data and also

ptovided a technique to use an initial âccurate model calibration at the master site as

the basis fot patameter values at the target site.

The inttoduction of a Mastet - Target telationship into the model for consideration

with daily data is presented schematically n Figute 7.2. Similar in stnrcture to the

model in Chapter 6, the master site provides an initial accurate calibration to a long
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pluviograph record. In this case however, t^rget daþ data is then used to adjust the

model parameters producing a simulation model at the Tatget site. (Daily data is also

required at the master site to ptovide an initial fit which removes issues associated

with different record periods. This is discussed in furthet detail in secion7.2.2)

Scaling Law

Figure 7.2: Schematic of Regionalisation Structure

One of the requirements of this model structure is the ability to successfully simulate

rainfall. at timescales other than those used dudng the calibtation process (in

particular at the daily scale). With each itetative change in model parameters, â new

simulation is requited to generate a simulated master daily recotd which can then be

compared to the observed target datly daø. This compadson is used to ddve

changes in the scaling model parameters and imptove the fit of the model at the

target site. It is important that the model is capable of teplicating the daily rainfall

datain the first instance so that any identifred parameter changes ate a result of site

requitements and are not reflective of simulation errots. In this case, not only should

the model be capable of replicating the daily statistics at the master site aftet a ditect

calibration, but it also should be replicating the daily statistics at the target site after a

success ful tegionalisation.

As previously shown in Chapter 6, Fþre 7.3 ptesents a comPatison between

observed and simulated daily dry ptobability results when tegionalising ftom a mâster

at Sydney to the târget at Richmond using pluviogtaph data. The fact that the
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regionalised model has been able to successfully capture this statistic when calibrated

with pluviograph data suggests that this statistic can also be used as patt of the

calibtation when developing the daily regionalisation process.
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Figute 7 .3: Comparison between Observed and Target Simulated Probability of a

Dry Day (À4aster - Sydney; Target - Richmond)

In a similar result, Figure 7.4 displays the ability of the :lr^linfall model to capture the

non-calibtated mean daily depths. (It also indicates the ability of the model to

reptoduce this statistic when shifting ftom master to target with pluviograph data).

'\gain the model has reptoduced this daily statistic and coupled with the previously

displayed ability of the model to teplicate aggregated monthly and annual ratnfall,

statistics, ptovides confidence that aggregated statistics can be used to calibrate the

storm event parametets in a datly regionalisation model.
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Figure 7.4: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Adelaide Airport; Target - Williamstown)

In order to calibrate the storm event model parameters to daily statistics a new

likelihood approach was developed which ptovides a clirect compadson between

simulated model ouq)ut and the observed da:lry daø at the target site. This new

likelihood process exploits the ability of the model to successfully simulate these

lartnfall. statistics at the daily timescale and provides a tobust compadson between

master parametets and observed daily data statistics.

7.2.1 Daily Calibration Model Development and
Simulated Likelihood Approach

To develop a master - târget likelihood approach to tegionalise the rz;tnfalL model

using daily data, it is apptopriate to review the successful regionalisation model that

was developed fot use with a shott pluviograph tecotd. It is this master - tatget

pluviograph regionalisation model that fotmed the basis for the daily wotk.

In Chaptet 6, a scaling factor À was inttoduced to the maximum likelihood equations

to provide new likelihood equations for the regionalised stotm event calibrations
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when dealing with a shott pluviogtaph record. Equations (7.1) and (7.2) display the

maximum likelihood equations fot inter-event times/storm duration and the non-

p^r^meúic kernel smoothing apptoach that was used as the basis for storm depths

respectively.

F"(yle,,r)=r*(Jtyle,)=1-expþs(,\y,e,)] x>0 y>o À>o (7.1)

F" denotes the distdbution function at the target site while F* denotes the

distribution function at the master site. The scaling factor À acts as a multiplier on

the target pluviograph datay, to ptovide a best fit between the mastet calibration and

the target data.

î"(*)=å*^t-p) (7.2)

I{Q is a ketnel function centted at ezch. data point, n denotes the number of data

points at the t^rget site while (l,y),,i=1,..,n is the târget deptl data. These values of

(Iy), are a ptoduct of stotm duration to, the coresponding duration scaling Io, the

cortesponding târget event intensity and the required depth scaling 1".

'V7hen using pluviogtaph data, the scaling value À acted as a direct multiplier on the

obserwed target pluviograph data (y) ensuring a good fit between the tatget

pluviograph data set (y) and the calibtated parameters at the master site. Maximum

likelihood techniques were used to calculate the required scaling parameters.

The development and results of the pluviograph tegionalisation wotk in Chaptet 6

ptovided the impetus fot incorpotating a similat master - t^rget ftamework fot use

with Daily Data. One of the outcomes of the work in Chaptet 6 was that of the

temporal pâttern patameters and the fact that they were shown to be consistent

enough between sites within a similat climatic tegion and location to be kept the

same without sþificant detedoration to the accuracy of the model results. This

result also allows these tempotal pattetn parameters to be kept unchanged when

shifting from master to target site with Darly Data. \X/ithout such a result, an

altetnative method of estimating the change in temporal pattetn parameteïs would be
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required and would be a majot issue as there is no storm infotmation within a datly

data record which could adjust the temporal pattern parameters in the model.

Flowever, given the consistent temporal pattern parameters and the ability of the

model to capture non-calibrated aggtegated statistics at the daily level, introducing a

master - target approach ptovides a wotkable solution fot calibtating the model at

sites with only daiþ data.

The daily regionalisation model also inttoduces a set of scaling parameters (scaling

parâmeters are required fot each of inter-event dmes, stoffi dutations and stotm

depths and arc again denoted I) as a means of shifting from the master to the târget

site. However, unlike the pluviogtaph regionalisation model (and the original model)

which used ttaditional maximum likelihood methods to ensure the best fit between

estimated model parameters and observed data, the likelihood desctþtion fot daiþ

data is not as staþhtforward. The likelihood model cânnot be formulated ditectly as

there is flo stoÍm event data avatlable at the tatget site for comparison. In order to

use available information ftom a datly data tecord, an altetnate likelihood apptoach

was required. This approach has been termed the simulated likelihood apptoach and

ptovides a flexible model structure capable of dealing with data at signifìcantly

different time scales to that usually used for parameter calibtation.

Simulated likelihood telies on the ability of the model to produce a simulation fot

each and every adjusünent in regionalisation model parameters dudng the calibration

process. For each iterative step the tegionalisation parameters ate adjusted within the

SCE search routine and then these "trial" parameters are used to generate a new

realisation of the model ptoviding the simulated pluviogtaph data at the target site.

This simulated data is then aggregated into a daily time step and compared to the

avatlable observed darly data at the target site. If a bettet fit is required, the

parameters are adjusted and the model re-simulated and so forth. In this way the

model is capable of being compated and adjusted ditectly based on its fit to the daily

data tecord.

The likelihood model for daily regionalisation is set up at the datly time step and is

signifrcantly more complex than that tequited for pluviogtaph data caltbntion. The

fust requirement of the model is the capabiJity to compare the distributions of daily
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ratnfall. totals. Fot each iteration in the calibration process the scaling parameters (1")

ate changed and a new simulation is tequited to ptovide simulated target data which

can be aggtegated into a new tecotd of simulated tatget daily depth data (denoted y).

The simulated target data is then compared to the observed tatget datly data and the

maximum likelihood apptoach ddves changes to the scaling parameters until the best

fit is found. In order to incoqpotate the maximum likelihood approach, a desctþtron

of the probability density for these daily rainfall depth distributions was required. As

was the case in Chaptet 6 fot the distribution of event depths, the adoption of the

kemel smoothing approach ptovides this density estimate and takes the fotm

(7.3)

where I{Q is again a kernel function centred at each scaled simulated tatget daily data

point l"y, x is the obsewed daily target data value at which the ptobability density

estimate is tequited for use in the maximum likelihood calculations and h is the

bandwidth. As before, a Gaussian kernel was used fot I{Q.

î*(x)=å#^t-P)

K(x)= #*r(+) (7.4)

Using the I(ernel Smoothing approach in this way enables a compadson between the

master and target distributions of daily rarnfall, depth totals given the day receives

nin. If all that was tequited was the best frt between the master and target

distdbutions of daily depths, then the maximum likelihood estimators for À would be

obtained when the product of Î^(x) (or the sum of logÎ*1x¡) for all master

obserwations was at a maximum with no othet considetations. Flowever, the model

must also take into âccount any changes to the probability of observing a dry day.

To do this, the dry days 
^re 

separ^ted ftom the aggregated daily tecord and the

ptobability of observing 
^ 

dry day P(Y=Q 11",0) calculated. Considedng thir in the

likelihood formulation gives the following:

f¡(x) = P(drY) : P(Y = ol l,ot) fot x = 0
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and

r . (*) = ä,t.(t#)o - r (arv)) = ä,t.(t#)u @ Q) for x>0 (7.6)

The scaling p^ï^rrleter set 1" is adjusted for each iteration during calibtation until

i"1x¡ fot all master observations is at a maximum. This ensures the best fit between

both the simulated and observed dry ptobability and the distdbution of daily depth

totals. The format and structure of the scaling pârâmeters in the daily model are

identical to their pluviograph counterparts (i.e. for inter-event dmes and storm

durations a single linear scaling parâmeter is used while a 3 panmeter model

conditional on storm depth is used as the basis of storm depth scaling (tefet to

section 6.4.1)).

The end result was â set of model parameters at the târget site which were a

combination of the odginal mastef p^r^meter set, and any scaling due to the

variations between the two sites. However, as wâs the case for the wotk with

pluviogtaph tegionalisation, variations between the sites were not only a tesult of

climatic differences but also due to differences in data length and non concurrency.

This issue required further attention pdot to developing the final daily tegionalisation

model.

7.2.2 Treatment of Sampling Variability between
Rainfall Record Time Periods

Sampting variability between rzLtnfall, time pedods was first identified as an issue

during the work on the regionalisation model for use with shot pluviogtaph tecords.

Instances where rainfall records were not concurrent tesulted in inaccurate

comparisons between the two :ruLtnfall sites because one site genetally obsewed a

significantly different lzltnfal| pedod than the other. (As discussed previously, this
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may relate to extended wet ot dry/drought periods present in one record and not in

the other). ,{.s a tesult any statistical comparison was problematic and influenced by

not only the diffetences between the sites (which is what the model was trying to

descdbe), but also the different data periods across each record. To circumvent the

issue, the pluviogaph regionalisation model used an intermediate "pre-scaling" step

to ensure the model was able to compare concufferlt data sets between two sites.

The issue of sampling variability and non-concurrent data periods remains a problem

when regionalising with datly data. In this case, the pluviogtaph record at the master

site (used for the initial calibration) is usually different in length to that of the t^rget

daily recotd. Introducing an intetmediate calibration into the daily regionalisation

process again ensutes the model compares diffetences between sites because of local

vatiations only and not the residuals from non-concurrent data pedods.

The intermediate calibtation step introduced into the daily model is similar in

structure to that developed in the previous chapter. The pluviograph model

calibrated an intermediate parameter In, which, when used as a pre-multiplication

factor on the target pluviograph data, ensured the final regionalisation model was

able to detetmine the 'true'relationship between the master and target sites. Using

the intermediate parameter l,oas the basis fot dztly data and introducing this into the

Iikelihood equations gives

î, (") = P@¡y) = P(Y = 01 .70, ),0¡) fotx=0 (7.7)

and

i, @) = 
ä :r.(t+")Ç r (a, y)) = 

ä :r.(t-*),r(wet))

(7.8)

whete l"o is the set (inter-event time, storm duration and storm depth) of intermediate

scaling factors.

for x)
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This new daily intermediate step compares ¿ subset of the observed daily tecord at

the master site (equivalent in length to the target daily recotd) to the simulated

master daily record. By extractirg " 
subset of observed datly data at the master site

equivalent in length to the obsewed ttget daily record and calculating the

intermediate scaling factor, subsequent simulations from the model ate pte-adjusted

allowing direct compadson between model simulations and the tatget daily tecotd.

The intermediate p^r^meter has described any disctepancies that tesult ftom the

different time-periods observed between the otiginal pluviogtaph calibtation data

and the da/ry data at the target site.

Once the intermediate factor has been detetmined, it is applied as a pfe-

multiplication to the tatget daily data set. The tegionalisation procedute is then

applied a second time to compare the master simulated daily record and the 'new'

adjusted târget data set to determine the 'teal' regionalisation scaling factor 1". As the

intermediate step takes into âccount the diffetences in data pedods and therefore any

potential changes in the darly rarnfall disttibutions, the influence on the tesultant

'real' scaling factor is purely any diffetences between the master and target sites.

Once again the scaling parameters are calcriated on a monthly basis thetefote

requfuing the determination of an inter-eveflt, stofrn duration and storm depth

scaling factot for each month.

7.3 Model Calibration Using Daily Data Results

7.3.1 Introduction

Validation of the daily tegionalisation model required cateful selection of tatget sites.

Not only did it need to be shown that the model could be calibrated to daily data, the

model must also be able to reptoduce the tequired sub-daily statistics at the target

site. As a result, identical test sites to those used previously to validate the

pluviogaph regionalisation wotk in Chaptet 6 ltave been chosen to validate these

models (with the exception of Williamstown, South Australia which did not have an
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associated long daiþ tecotd and has been replaced by Rosedale in South Austalia).

These sites contain both a long daiþ and a signiftcant pluviograph record providing

the tequfued observed statistics and mastet-trtget scaling parâmeters c rt be

compared directly between the pluviograph and daiþ models. The table of test sites

is ptovided below.
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Table 7.1: Master and Target Rainfall Record Details (Daily Model)

Name BOM # Start Year Finish Year
Distance

(k-)
Mastet Melboutne 86077 1900 7995 0

Targets East Sale 85072 1953 1992 190

Ellinbank 85240 1,961 1,992 95

Lavetton 87031 1965 1992 20

Name BOM # Stat Year Finish Year
Distance

(k-)

Master Sydney 66062 t91i 1991 0

Targets Richmond 67033 1953 L993 45

Chichester 6tt5l 1960 1980 185

Name BOM # Start Year FinishYeat
Distance

(k-)

Master Adelaide 23034 t967 L997 0

Tatgets \Williamstown 23763 1971 1997 40

Stirling 2378s L964 1981 15

Name BOM # Start Year FinishYear
Distance

(k-)
Master Perth 9034 L946 1992 0

Targets Esperance 963"t 1963 199't 580

Name BOM #
Stat

Yeat
Finish Yeat

Distance

(km)

Mastet Bdsbane RO 40274 1908 L99"t 0

Tatgets Brisbane AMO 40223 1949 1992 10

Kirkleagh 40318 1959 1990 70
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A numbet of statistical indicatots and distributions were chosen to verify the

petfotmance of the model. Calibrated statistics such as the daily dry probability and

mean daily rzLtnfall, ate checked to test whethet the regionalisation calibration was

completed successfully. Comparisons between obsewed and simulated bulk storm

event distributions (intet-event times, stoffi duration and storm depths) ptovide an

indication that the model was able to successfully simulate storm events and

teproduce sub-daily non-calibrated statistics. Futther verification that the model has

captured the bulk ntnfalT processes is achieved by comparing annual and monthly

tn;tnfall' distributions, whìle IFD curves are compâred between the simulated values

and the target site, testing the assumed similadty between disaggtegation parameters

at the two sites of interest. The calculation of obserwed statistics for annual and

monthly raLtnfall compadsons used the daily ratnfall records at the target site as they

ptovide the most accurate monthly and annual statistics. (Ihis is because most

pluviogtaph records have sections of missing data, conupting the monthly and

annual rzrtnfalJ totals). -,\ll other statistics were calculated ftom the observed target

pluviogtaph. The results from 3 paits of test sites (Sydney - Richmond, Bdsbane -
Kkklergh and Adelaide - \X/illiamstown) have been presented within this Chapter to

demonstrate the performance of the model with all other site results presented in

Appendix D.

Successful reptoduction of statistics and distdbutions across the diffetent time scales

ptovided evidence that the model was able to be calibrated with datly data and that

the assumptions and structure of the tegionalisation process was sufficient to capture

the required localvariattons between sites ensuring an accurâte synthetic pluviograph

recotd.

7.3.2 Calibrated Daily Statistics

The original rz;tnfall model and the pluviograph-regionalised model were both

capable of successfully replicating the ptobability of obserwing a dry day and the
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mean datly tatnfall distdbution even when these models did not use this infotmalon

during the calibtation process. Successful calibtation of the rainfal'J model with tatget

daily data should again ensure the teproduction of these daily statistics at all sites'

Previously (for the odginal and pluviogtaph-tegionalised model) this successful

reproduction provided confidence in the structure and assumptions within the

model, in this case it is a good indication of the success or otherwise of the model

calibration.

Figure 7.5 compares simulated and observed d^tly d"y probabilities for data ftom

Richmond (with Sydney as the mâster and shown fot refetence). It is evident from

this result that the completed calibration was successful and that the model is capable

of reproducing this daily statistic even with a significant shift when comparing the

master and target statistics. Fþre 7.6 reinfotces this tesult with similat tesults fot

Kfukleigh (Brisbane mastet).
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Figure 7.5: Comparison between Observed and Target Simulated Daily Dry Probabilities.

(Master - Sydney; Target - Richmond (Daily))
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Figure 7.6: Comparison between Observed and Target Simulated Daily Dry Probabilities.

(Master - Brisbane; Target - Kirkleagh (Daily))

Figute 7.7 presents data fromWilliamstown (Adelaide Master).

In contrast to the Richmond and l(irkleigh sites, there was very little difference

between the daily dry probabilities at Adelaide (mastet) and \ü/illiamstown (target).

As can be seen in Figure 7.7, ¡he observed data still lies within or vely close to the

simulation limits. These tesults when coupled with the compadson between daily

and pluviograph scaling parameters for inter event times, indicate that the model has

been successfr¡l in calibrating to daily data and captudng the required variations

between mâster and tatget sites.
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Figure 7.7: Comparison between Observed and Target Simulated Daily Dry Probabilities

(Master - Adelaide; Target - Williamstown (Daily))

The second statistic used during the calibration process was the mean da/ry ntnfaü'.

Both the storm duration and storm depth parâmeters hzve a significant influence on

this darly statistic. Figure 7.8 ptesents this tesult fot \X/illiamstown (with Adelaide

master as reference). '\gain, the model has been able to capture the diffetences

between the two sites and reproduce this calibtated statistic. Most months tequired

significant adjustment and only April sits slightly outside the simulation bounds.
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Figure 7.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Adelaide; Target - Williamstown (Daily))
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Figute 7.9 &. Fþte 7.10 present additional tesults for Richmond and ICrkleigh with

all results falling within the simulation bounds. These results reinforce the model's

ability to calibtate to the mean daily depth disttibution and successfully reproduce

this statistic during simulation.
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Figure 7.9: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Sydney; Target - Richmond (Daily))
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Figure 7.10: Comparison between Observed and Target Simulated Daily Mean Depth.

(Master - Brisbane; Target - Kirkleagh (Daily))
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Appendix D ptovides additional plots actoss numerous sites with similat tesults.

These results confum the ability of the model to successfully use daily data fot

regional calibration (and reptoduce these calibtated statistics during simulation).

However, the ability of the model to replicate non-calibrated statistics at time scales

greater than or less than the daily scale still tequires validation. Prior to ptesenting

these results however, it is also important to investigate the 
^cclrr^cy 

of the model in

replicating the storm event distributions of intet-event time, storm dutation and

storm depth as these are the building blocks of the odginal model. Successful

reproduction of these bulk storm distdbutions would provide evidence that not only

was the calibration process â success, but that the model structure itself is sufficient

to use datly data and descdbe the differences between two sites.

7.3.3 Comparison of Observed and Simulated Annual
and Monthly Rainfall Distributions

It is important that any storm event rainfall model is capable of teproducing non-

calibrated statistics such as the monthly and annual ra1nfall, not only as it is a

representation of the chatacteristics of the :lr.;infall. site in question, but also

specifically in this case as it ptovides further indication that fitting to the distribution

of daily depths has wotked successfi.rlly.

Comparison to annual rainfall is an effective test of the model structure. Calibration

of the model with darly data has introduced a scale shift dudng calibration in the

model from data at a 24 hout time scale down to effectively 6 minute data. If the

aggregation back up to annual ntnfall, (and monthly rainfall) is accurate, then this is

futther evidence that the model structure and assumptions have merit. In any case,

for the model to be accepted as a tool for engineedng applications, aggregated

statistics must be well reptoduced at numerous time scales.

Annual :ølinfall. plots are presented below for Richmond (l\4astet - Sydney) Fþre

7.11, I(rkleigh @risbane) Figure 7.72 and lù(/illiamstown (Adelaide) Figute 7.13. As

mentioned previously plots fot all othet sites can be found in the Appendix D.
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These plots demonstrate the ability of the model to successfully reproduce the annual

ratnfall, and ptovide confidence that the model has been successfully applied to the

target site with only daily data for calibration. There is a signifrcant shift from the

distributions at the master and tatget sites for both the Richmond and \X/illiamstown

tesults with Richmond in patticulat vely successful at replicating the obsewed annual

latnfall, values. \ü/illiamstown annual ratnfall. has been slightly overestimated by the

simulation howevet the majority of observed data points sit within or just outside the

simulation limits. Thete is a smallet difference between annual rainfall, at Bdsbane

and ICtkleigh, however the model has once again been successful in shifting to the

t^rget site as evidenced by the observed points sitting within or on the edge of the

simulation bounds.
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Figure 7.11: Comparison between Observed and Target Simulated Annual Raínfall.

(Master - Sydney; Target - Richmond (Daily))
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Figure 7.12 Comparison between Observed and Target Simulated Annual Rainfall

(Master - Brisbane; Target - Kirkleagh (Daily))
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Figure 7.13: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Adelaide; Target - Williamstown (Daily))

The reproduction of monthly tatnfall, in April is ptesented in Figute 7.14 for data

from Richmond (Sydney). Âll observed rainfall totals fall within the simulation limits

suggesting the model has teproduced the monthly rz;infalL pattern.
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Figure 7.14: Comparison between Observed and Target Simulated April Rainfall. (Master

- Sydney; Daily Target - Richmond (Daily))

Additional tesults for l7illiamstown (Adelaide) and I{rklergh @dsbane) are

ptesented below. With the exception of a select numbet of points, all observed

monthly rz;tnfall. totals fall within the simulation limits. Additional monthly :rainfall,

tesults can be found in Appendix D.
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Figure 7.15: Comparison between Observed and Target Simulated Novemner Rainfall.

(Master - Adelaide; Daily Target - Williamstown (Daily))
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Figure 7.16: Comparison between Observed and Target Simulated August Rainfall.

(Master - Brisbane Regional Office; Daily Target - Kirkleigh (Daily))

The ability of the model to capture the aggregated monthly and annual rz;infall

distdbutions along with the afotementioned ability to reptoduce the bulk storm

characteristics suggest the rainfall amounts and dry periods ate well tepresented in

the regionalisation model. The final test is to compare the observed and simulated

Intensity Frequency Duration results to ensute the model has been able to câptuÍe

the temporal pattetn within storm events.

7.3.4 Compar¡son of Observed and Simulated Bulk
Storm Event Distributions - lnter-Event Times

The ability of the model to reproduce the bulk stotm distributions when calibtated to

a site with only daily data is a significant step forwatd for the application of this

model and event based models in genetal as tfre theory behind this wotk can be

adapted fot use with other event models. Successful teptoduction of these

distributions would allow model application at sites that have only a datly tatnfall

record available for calibration. \X/hjle it is untealistic to expect the reptoduction of

bulk storm results to be as 
^ccuLr^te 

as similar results obtained when the model is
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calibrated direcdy with pluviograph data, tesults ptesented below indicate that

calibtation using the regionalisation process with daily rainfall data does ptovide a

workable solution to model calibration in instances when pluviograph calibration

data is not available. As with all stochastic models, it is teasonable to expect the user

to know and understand the expected difficulties and deficiencies of the model when

calibrated to daily data.

The selection of specific sites containing both a historical pluviograpb and a

histotical daily record ptovides the best comparison between observed and simulated

bulk storm distributions. The model was calibtated at the target site using the daily

tegionalisation model with tesultant simulated outputs compared to the obsewed

pluviograph data at the tatget site.

The comparison between simulated and obsewed intet-event times is ptesented in

Figute 7.77 for data at Richmond shifted from a Sydney master calibration. As can

be seen from this plot, the intet-event times ate well reptoduced by the daily

regionalisation calibtation model with the majonty of storm events within the

simulation limits. There is a slight deviation away frorn these simulation limits as the

intet-event time decteases. This is a result of the lack of inter-event times available at

a time scale less than 24 hours when using darly ratnfall infotmation.
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Figure 7.17: Comparison between Observed and Target Simulated March lnter Event

Distribution for Richmond. (Master - Sydney; Daily Target - Richmond (Daily))
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Fþre 7.18 & Figute 7.19 provide further results ftom I(irkleigh (from Bdsbane) and

Williamstown (from Adelaide) respectively. Again the latge inter-event times are well

reproduced with a slight deviation observed fot intet-event times less ¡har' 24 hours.

104

100

10

.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 7.18: Comparison between Observed and Target Simulated September lnter

Event Distribution. (Master - Brisbane; Daily Target - Kirkleigh (Daily))
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Figure 7.19: Comparison between Observed and Target Simulated December lnter Event

Distribution. (Master - Adelaide; Target - Williamstown (Daily))
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'\dditional plots fot all sites are displayed in Appendix D. The ability of the model

to replicate the storm inter-event is an impottant tesult in the coritext of the overall

model petformance for two majot teasons. First, this result indicates that adjusting

the inter-event time tegional scaling parameter based on changes to the probability of

observing a dry day is justifiable. nøith the exception of a slight decrease 1n accuracy

fot intet-event times less than 24 houts, the distributions are well reproduced.

Secondly, (and probably mote impottant fot the overall success of the model) this

tesult ensutes the model can successfirlly replicate the storm event time series and as

a result the number of storms simulated in a given time period. This is critical for

the model if it is aiming to reptoduce observed storm depth statistics and aggregated

monthly and annual rz;tnfall..

7.3.5 Compar¡son of Observed and Simulated Bulk
Storm Event Distributions - Storm Duration

Fot the model to capture aggregated rainfall. totals such as monthly and annual

tainfalJ,, it must be capable of teptoducing the monthly storm duration distributions

at ân event level. \)7ith less information in the daily record available for calibration in

comparison to intet-event times, it was expected that there would be a less àccura;te

agreement between observed and simulated stotm dwation distributions. Again, the

pluviograph data at the tatget daily site has ptovided the informadon for comparison.

Fþte 7.20 presents simulated and observed comparisons for data from Richmond

(Sydney).
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Figure 7.20: Comparison between Observed and Target Simulated March Storm Duration

Distribution. (Master - Sydney; Daily Target - Richmond (Daily))

This result suggests an adequate reptoduction of the storm event distdbution,

however there is a slight deviation outside the simulation limits fot stotms between 4

and 15 hours. Similar results for \Williamstown (Adelaide) and l{irkleigh (Brisbane)

are seen below in Fþte 7.21, &Fig:re7.22.
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Figure 7.21: Comparison between Observed and Target Simulated June Storm Duration

Distribution. (Master - Adelaide; Target - Williamstown (Daily))
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Figure 7.22: Comparison between Observed and Target Simulated December Storm

Duration Distribution. (Master - Brisbane; Daily Target - Kirkleagh (Daily))

Results indicate that the teptoduction of storm durations is less accurate than the

reproduction of inter-event times. This is a result of there being very little

information available tegarding the length of individual storm events within a datly

data tecord. N7hile the average intet-event time was greatet thar 24 houts which

ensures there is limited information regarding its distribution from a da:Jy record, the

^ver^ge 
storm dutation is less than 24 hours and subsequently only minimal

information can be obtained ftom the dai\ record. This results in a less âccurâte re-

ptoduction of the stolm dutation chatactedsdcs. However, the majority of observed

stotm events ate still contained within or within close proximity to the simulation

limits which suggest the regionalisation model is still capable of using daily data for

calibration.

One tesult evident ftom the figures ptesented above is the loss in 
^ccutacy 

as the

storm dutation times approaclt zero. This is consistent across all sites and is also

evident when the model is calibrated at the master site with an extensive pluviograph

record as displayed in Fþre 7.23 for data fromAdelaide.
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Figure 7.23: Comparison between Full Length Master Observed and Master Simulated

March Storm Duration Distribution for Adelaide

As evidenced in this plot the agÍeement between observed and simulated storm

durations decreases as the storm duation apptoaches zero. This is a result of the

rainfall model being free to simulate any storm duation value and consequently

produce any stotm depth value (in mm). In conttast, tounding occurs in the

observed pluviograph data into 0.1mm depth inctements. (Ihi. is a function of the

device). This introduces a slight effor between all observed and simulated stoffi

values, which is most evident when compadng small storm depths ot very shott

storm durations. (The majotity of small depth rainfall storms are also shott duration

events). In the case of very small simulated storm depths, the cortesponding

observed :øiinfall. is eithet too small to registet on the scale (and is thetefote excluded

from the historical record) or the value is simply recorded with a stotm depth of

0.1mm. Consequently, with the majority of small depth lz;infall. storms also being

short duration events, this bias is evident in the compadson of short storm dutations

with fewer observed short dutations in comparison to the model output. This is not

a rnajor issue and can be solved by including an appropriate rounding toutine on the

output data file. Howevel, for the puq)oses of model validation it is best to compâre

the raw simulation data.

The other factor influencing the accutacy of these compadsons telates to the scale

issues between daily and pluviogtaph data. As an observed storm event shifts furthet
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and futthet away ftom a length equivalent to the daiþ time step of 24 hours, an

individual storm exetts less and less influence on the make up of the daily tecord.

This ensutes shorter duration storms have only a minimal influence on the darly daø

record, making these events verry difficult to distinguish and adjust from site to site

based on daily data alone. -As a result, the teptoduction of these smaller stotm

durations decteases as the storm dutation decreases. Nevertheless, and

undetstanding these minot shottcomings, the model has been shown to successfully

teptoduce the majority of intet-event times and storm durations ftom only datly data

information.

7.3.6 Compar¡son of Observed and Simulated Bulk
Storm Event Distributions - Storm Depth

In a similar manner to the distribution of stotm dutations, comparisons of the storm

depth distributions were expected to be less accurate than those results presented for

intet-event times. Figute 7.24 prcsents results fot I{fukleigh (Bdsbane) confuming

this prediction. Countedng the successful reptoduction of the majorþ of the

distdbution is the small ertots evident as the storm depth approaches Omm. As

described eadier this is a result of the available infotmation within a darTy record for

calibration and the accrracy of the measuring apparatus.
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Figure 7.24: Comparison between Observed and Target Simulated September Storm

Depth Distribution. (Master - Brisbane; Daily Target - Kirkleigh (Daily))

Similar tesults are presented below for Richmond (Sydney) and Williamstown

(Adelaide) respectively.
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Figure 7.25: Comparison between Observed and Target Simulated December Storm

Depth Distribution. (Master - Sydney; Target - Richmond (Daily))
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Figure 7.26: Comparison between Observed and Target Simulated March Storm Depth

Distribution. (Master - Adelaide; Daily Target - Williamstown (Daily))

The daily regionalisation model is not capable of replicating the bulk storm

distdbutions to the same level of accuracy as the model when calibtated direcdy to

pluviograph data. This was an expected result due to the level of storm information

available from a datly :lrrtnfall tecotd. Analysis of the depth distribution results

indicate that the decrease in accuracy only occuts for depths less than 1mm. For a

model calibrated to daily data, this is an exceptional result.

The results presented fot the bulk storm chatactetistics provide evidence that the

regional model assumptions were valid and that the model has been well calibrated.

A major test of the daily regional model is its ability to teproduce non calibtated

monthly and annual rz;infall.with these results ptesented in the next section.

7.3.7 Comparison of Observed and Simulated lntensity
Frequency Duration Curves

The final compatison between observed and simulated data is the Intensity -
Frequency Dutation results for each simulated site. Given the results ptesented for
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the pluviograph regionalisation model and the use of the same model assumPlon

(i.e. that the temporal pattern parameters ate consistent between master and tztget

sites), it was expected that the IFD results at sites compared in Chaptet 5 would

again be well teptoduced. In almost all cases the IFD tesults 
^re ^s 

good as the

pluviograph regionalisation simulations. Figure 7.27 presents the observed and

simulated IFD cuwes fot t hour, 24hour and72 hout for data from Williamstown

(,\delaide). Similar results are presented fot I{rklergh (Brisbane) and Richmond

(Sydney).
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Figure 7.27: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship. (Master - Adelaide; Target - Williamstown (Daily))
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Figure 7.28: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship. (Master - Brisbane; Target - Kirkleigh (Daily))
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Figure 7.29: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship. (Master- Sydney; Target- Richmond (Daily))

These tesults suggest that the internal stotm charactedsd.cs have been well

reptoduced when simulating using the model calibrated to daily data. Given the

parameters at each site wete the same as dudng the pluviograph regionalisation

model wotk and coupled to the success of the daily model in replicating the bulk

storm chatactetistics, this was an expected result.

ÕE
E
E

=.t
0)
c
(E

c'õ
É.

c
-c
E
E

=al,c
(¡)

É.

o
c
(õ
É. 1

90% Sim Limits
Simulated Median

" I hour
o 24hourx 72hour

258
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7.4 Summary

.,\dapting the master - t^rgetlinear scaling relationship introduced into the Heneker ¿l

at. Q001) rainfall, model in Chapter 6 for use with Daily data has produced a model

capable of simulating long-term synthetic pluviograph tecords at flumerous daily sites

atound Australia.

The daily regionalisation model uses â master - target telationship coupled with a

linear updating factor between sites. The development of a simulated likelihood

approach using a non-parametric kernel smoothing technique to estimate the

probabiJity distributions provided the basis for calibtating the updating factor when

shifting between the master and tatget sites. As was the case in Chapter 6 fot

regionalisation with a short pluviogtaph record, the introduction of an intetmediate

calibration removes the issues associated with sampling variability bet'ween the

ninfall. records at the master and target sites due to their differing lengths andf ot

pedods of record. The use of this intetmediate step and the new tegionalisation-

scaling factor enabled a successful úanslation ftom simulated daily rainfall tecotds at

a mâster calibration site to a t^rget site with only daily data ava:J.able.

The regionalisadon model used two main statistics easily calculated from a daily

record to drive the calibration process. The selection of the probability of observing

a &y dry and the mean daily depth was based on the proven abiJity of the model to

reproduce these non-calibrated statistics dudng simulation and the ease at which they

can be calculated from observed data. Successful reptoduction of these calibrated

statistics verifies the selection of these values fot use in calibration.

Compadsons between the observed and simulated data. at various pairs of sites

indicate the model's ability to successfully capture the shift in mean and standatd

deviations of the bulk storm characteristics in otdet to teptoduce vatious calibtated

and non-calibrated statistics within acceptable degrees of accuracy. These results

give validity to the undedying structute of the model and the calibration process.
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Coupled with the ability to successfrrlly simulate :.zrtnfafi, amounts at various time

scales and applying the existing disaggtegation process to generate synthetic

pluviograph data, this model is now a useful tool capable of being applied to rlarge

numbet of sites. Coupled with the application to sites with short historical

pluviogaph tecotds, the new tegionalised l:ltnfaJl model has the potential to be a

powetfrrl tool for application in hy&ological dsk analysis across Ausftali¿.
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CHAPTER 8

CONCLUSION AND
RECOMMENDATIONS

8. I Ove rv iew

The estimation of flood dsk relies on joint ptobability theory whete the combination

of stochastic inputs such as :irrinfall, and a descrþtion of the hydtological/hydraulic

runoff process determine the ptobability distdbution of flooding events. To date

continuous simulation through a Monte Cado apptoach has ptovided a workable

method for deriving flood probability distribudons. The Monte Cado apptoach uses

the idea that a long model simulation will eventually sample almost all possible ioint

probability interactions (i.e. all combinations of rairrfall input and runoff model

conditions etc). If this is the case, the derived flood distribution can be viewed as an

^ccrrr^te 
inference of the true flood distributron'

Despite the theoretical superiority of continuous simulation, in ptactice designers use

a far simpler approâch within Austtalia. The Austtalian procedure for dsk-based

hydraulic design is typically described in Austtalian Rainfall and Runoff (refered to

as ARR) (Institution of Engineers '\usttalia, 1987) and is known as the desþ stoÍm

approach. The method for evaluating flood dsk probabilities is based on this desþ

storm for which "the intend.on is to derive a flood of selected ptobabiJity of

exceedance from a design rainfall of the same ptobability" [ARR, p6]. This apptoach

relies on the assumption that median values of all othet variables other than tatnfafi'

(such as losses, base flow, temporal patterns and hydtograph model parameters) can

be used and still provides an 
^ccrtrate 

runoff teptesentation. \When using this

method there is no indication that the desþ storm approach ptoduces floods with

the same exceedance probability as the tatnfall. Indeed,\RR admits that "thete is a

need for research to test this approach". Meanwhile desþers across Australia
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continue to adopt the desþ rainfall method as t1re desþ technique of choice.

Without an appropriate wotking continuous simulation alternative, desþets will

continue with this approach.

Continuous simulation also telies on the availability and length of historical rainfall

tecords. This is particulatþ important if we considet the tails of the flood probability

disttibution whete it is unlikely that a lí-year historical record can provide âccurate

estimates of a 100 yeat flood event. W.hile the advent of numerous rainfall models

provides a method of extending historical rzLtnfalT records, without significant

historical lzitnfall data avalable fot calibration, their accurecy is often questionable.

This study was initiated by the desite to provide a tainfall simulation model which

could successfully simulate accurate synthetic pluviograph records at sites across

Australia with minimal ot no historical pluviogtaph data. This would provide a

wotkable rz;infall model solution fot application within a continuous simulation flood

esdmation ftamewotk or fot use in situations where water volumes are important i.e.

Watet Sensitive Urban Desþ apptoaches to stoffiwater treatment and disposal,

stormwatet detention etc. To achieve this objective five aims were developed:

(1) To develop or select a rzLinfill model capable of simulating synthetic

pluviograph data;

Q) T" tefine and improve tJr..e :øiinfall model by including uncertainLy and a

Monte Cado simulation structure ensuring the calibration process is robust

and compadson to observed data is accurate.

(3) To ved$t the accutacy of the :lrrtnfall model by analysing its performance and

structure at sites with signifrcant pluviograph records for calibration and

compaflson;

(a) To extend the application of thc modcl to sitcs with minimal historical

pluviograph data avatfable fot calibration and final7y;
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(5) To extend the application of the model to sites with only historical daiJy data

and no pluviograph data avaiable fot calibration.

8.2 Stochastic Rainfall Simulation Model

8.2.1 Summary

The review of potential models for continuous simulation of short time increment

lainfall, focussed on previously reported tesults, data tequirements, structure,

p^r^meter. estimadon and calibtation techniques. The obiective was to determine

which model (if any) was capable of accurately simulating shot dme increment

nitfall, and whethet such a model could be futther developed for application at sites

with little ot no historical tecotds available for calibtation.

The model ptesented by Heneker et al. (2001) had been previously shown to be

capable of generating synthetic rainfall. data down to time resolutions in the otder of

minutes. The reproduction of short dutation IFD values at most sites validated the

effectiveness of the disaggregation procedure, while the overall model structute was

validated through comparisons between observed and simulated inter-event times,

storm durations and mean annual rainfa].l.. As a result this model was selected for

futther investigation/development in this study.

A numbet of shortcomings in the odginal model ptesented by Heneker et al. (2001)

were investigated and improved as part of this study. The tesultant model is based

on this otiginal work with the following enhancements:

the incorporation of the Metropolis Algorithm which enables the

identification of calibrated parametet distributions and potential parameter

corelations. This lead to the discovery of significant cotrelations within the

distdbution desctþtions fot intet-event times and stotm durations.

the inter-event time and stotm duration distdbutions still modelled using a

generalised exponential distibution (with the kernel defined using a

combination of the generalised Pareto and powet law distdbutions), but with

a
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the exponenttalpanmeter value now set to a constant. This has removed the

issues associated with the afotementioned parameter corelations and also

teduced the numbet of monthly patameter values requiring calibration for

each dismibution from four (4) to three (3).

the avetage inter-event intensity conditional model now being descdbed by a

piece wise linear model with a constânt set of break points âcross all sites.

This removes the need for the manual selection of breakpoints and the

automatic calibration process has been completed by using a hybdd

contjnuous function to describe the conditional relationship and provide

initial parameter values at set breakpoint positions.

the incorporad.on of Monte CaÃo simulation and patameter sampling

uncettainty. .,{. Monte Cado framework has been included into the

simulation model which enables multiple realisations of the model to be

genetated with minimal effort. Coupled with the addition of parametet

sampling uncettainty which describes the accutacy of calibration given the

zva:I.able data set, the simulation model is now able to provide simulation

limits ptoviding an improved ability to compale observed and simulated

results.

a

a

8.2.2 Conclusions and Recommendations

The synthetic rainfall generated by the odginal model had pteviously been shown to

ptovide a good reptesentation of observed rainfall over a range of climatic regions.

Improvements to the model have further refined its structure and calibration

processes to ptovide a tobust and efficient rainfall simulation model. Model

validation presented in Chaptet 5 showed that with the exception of select

aggregation statistics at long time ftames (annual valabtltty for example) the

synthetic tzLtnfalT data ptoduced fot all sites was considered satisfactory. In particular:

a the calibtated distdbutions of inter-event times and storm duration were

teptoduced satisfactorily with the three (3) pârameter distribution model.

Monthly parameters were used to account for seasonal variability.

the conditional average event intensity and storm duration was successfully

modelled using the piece wise linear model with set breakpoints. The

o
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simulated rzLtnfall, adequately teplicated the observed matginal distribution

and agetegated statistics across a numbet of sites.

the model continued to successfully reproduce non-calibrated statistics such

as the Intensity-Ftequency-Duration (IFD) curves and aggregated tainfall

statistics 
^t 

a r^îge of time scales. In particulat the ability to reptoduce the

mean daily ntnfalL and daily dry probability was insüumental in the later

development of a calibration toudne with daily daø.

it was again observed that similarity in the model Parameters within the

temporal pâttern generator offeted ^î ability to use this model for

regionalisation to sites with little or no histoncal dzta available fot calibtation.

a

a

o

8.3 Regionalisation w¡th a Short Pluviograph
Record

8.3.1 Summary

Chapter 6 presented a significant leap fotwatd in the application of tainfall models

calibrated to pluviograph data. A new tegional calibration process was introduced

which enabled the model storm event parameters to be calibrated at sites with only a

shott histotical pluviogtaph data set. The tesultant model uses:

a mâster - target relationship coupled with a linear updating factor between

sites for the tegionalisation of intet-event times and stotm duradons. The

mâster calibration tequires a regrlJLar calibtation with a long (estimated at >30

year) pluviogaph tecord.

a similar master - target telationship coupled with a linear 'Úiangle' model fot

updatìng the factor between sites for the regionalisation of stotm event

depths. Event depths were chosen instead of using event intensities directly

due to the need to consider the conditional intensity-duration relationship

when tegionalising. By developing the storm duration telationship between

sites first and then considering the event depth telationship, the conditional

telationship requirements ate taken into account.

an intetmediate calibration step which enabled the developed model to

capture any data vatiations that exist between two pluviogtaph records as a
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result of their different tecord lengths. This in turn enabled any sampling

variability issues between the tainfall tecords at the master and target sites

due to their diffedng lengths andf or pedods of record to be removed during

the final calibration of the linear updating factors.

consistent temporal pattem parameters between sites within a climatic region.

This expected outcome enabled the regionalisation process to continue

vrithout adjustment to the temporal pattern parâmeters between master and

target sltes.

8.3.2 Conclusions and Recommendations

The regionalisation model for intet-event times and storm dutations employed a

master - target telationship coupled with a lineat updating factor between sites. The

use of this intermediate step and the new regionalisation scaling factor enabled a

successful ttanslation from simulated inter-event time and storm durad.ons at a

master calibtation site to a t^tget site with only a short pluviograph record available

for updating. Test sites wete chosen with long historical records to enable thorough

examination of simulated statistics while a shott sub-set (10 years) was used for

calibtation pu{poses. Compadson of calibrated and non-calibrated statistics

(observed and simulated) has vedfied the adopted approach. In particular the model:

a

a

a

o

captured IFD statistics at the target site using only the short sub-set of the

overall target recotd durìng testing. This velifies the adoption of consistent

tempotal pattern parameters between sites.

teptoduced obserwed intet-event time and storm duration distributions at the

target site. \Øhile these were used during the calibration process, the model

was only calibtated to 10 years of record and then compared to the statistics

obtained from the entire t^tgetpluviograph.

successfully captured the mean annual :øiinfall totals, while slightly

underestimating the annual rainfall variance, This is typical of event based

models which use independence criteria to define storm events. Further

wotk in this atea is suggested and may be based on recently finished work by

Frost (2002).
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8.4 Regionalisation with a Daily Record

8.4.1 Summary

Adapting the master - tafgetlineat scaling telationship inttoduced into the Heneket et

a/. Q001) ninfall. model in Chapter 7 for use with Daily data has ptoduced a model

capable of simulating long-term synthetic pluviogtaph records at numerous daily sites

atound Australia. In particular the daily model uses:

Chapter 8: Conclusion and Recommendations

satisfactodþ reproduced both the obsewed datTy rz.tnfall disttibution and the

probability of observing zero tain on a given day. These statistics wefe vefy

important to the further development of the model fot calibtation at sites

with daily data only as presented in Chaptet 7.

a mastef - target telationship coupled with a linear updating factot between

sites to adjust all storm event variables (inter-event times, storm dutation and

stotm depth). This is based on the same model structure as that fot

calibrating with short pluviogtaph tecotds.

a simulated likelihood approach which uses a non-parametric kemel

smoothing technique to estimate the probability distributions of impottant

simulated daily statistics. Fot calibtation pulPoses the mean daiþ depth and

probability of observing ze:ro rain were chosen due to the models ability to

accuntely teptoduce these values when successfully calibrated with a long

term pluviograph. Observed daily values afe comPâfed against the estimated

density for each iterative simulation ptoviding a method to calibtate the bulk

event linear updating factots.

an intermediate calibtation step which enabled the developed model to

capture any daø vatiations that exist between the mastet pluviogtaph and

target daily record as a result of their diffetent record lengths. This in turn

enabled any sampling variability issues between the tainfall records at the

mastef and target sites due to their differing lengths andf ot pedods of record

to be temoved during the fìnal calibration of the linear updating factors.

the structure of the pluviogtaph tegionalisation model keeping consistent

tempotal pattern parametets between sites within a climatic region.

a

a

a

a
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8.4.2 Conclusions and Recommendations

The regionalisation model compated two main statistics easily calculated ftom a datly

recotd to ddve the calibtation process. The selection of the probability of obsewing

a dry day and the mean daily depth were based on the proven ability of the model to

teptoduce these non-calibtated stadstics during simulation and the ease at which they

can be calculated from observed data. Successful reproduction of these calibrated

statistics verifies the selection of these values for use in calibration.

Comparisons between the obsewed and simulated data at various pairs of sites

indicate the model's ability to significantly shift the mean and standard deviation of

the bulk storm charactetistics in ordet to teproduce various calibrated and non-

calibtated statistics within acceptable degtees of accuracy. These results give validity

to the undedying structure of the model and the calibration process. Coupled with

the ability to successñrlly simulate tainfall amounts at vatious time scales and apply

the existing disaggtegation ptocess to generate synthetic pluviogaph data, this model

is now a useful tool capable of being applied to a large number of sites. In paticular

the model

a

a

o satisfactorily reptoduced both the obsewed da:dy rzitnfall distribution and the

probability of obsewing zero rain on a given day. These statistics were used

dudng the calibtation and their subsequent reproduction dudng simulation

verifies the structure and success of the calibration process.

adequately captuted IFD statistics at the target site. This again vedfies the

adoption of consistent temporal pattern parameters between sites.

successfully reptoduced observed inter-event times and adequately

reptoduced storm dutation distdbutions at the target site. These statistics

were not used during the calibration process and validated the use of the

simulated likelihood approach and adoption of the daily mean ratnfall and dry

ptobability as indicators of a good calibration.

successfully captured the mean annual tatnfail. totals, while again stightly

undetestimating the annual ratnfall v ariance.

o
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Chapter 8: Conclusion and Recommendations

Coupled with the application to sites with short historical pluviograph recotds, the

new regionalised ninfalLmodel has the potential to be a powerfrrl tool fot application

in hydrological dsk analysis across Ausüalia. It is tecommended that future wotk

with this model focus on:

1) Applying the model to the majority of pluviogtaph and daily rainfall

sites across Australia with a view to possibly developing z P^t^metet

contouf map of similat which would enable application of the model

via intelpolation between data recotding stations.

2) Incorpotating aninter-annual petsistence model to captufe the effects

of El Nino and othet long term climatic influences within the

Australian climate.
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Appendix A: Rainfall Data site Details and Recording station lnformation

A.l South Australia

Station name: Adelaide Aero (23034)

State: South Australia

Elevation: 6 metres

Latitude: 34.96" South

Longitude: 1 38.53o East

Annual Rainfall: 453.4mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY_RAI N FALL(mm)

Jan Feb Mar Apr May

0.60 0.65 0.69 1.2't I .79

DAr LY_DRY_PROBABILtTtES(%)

Jan Feb Mar Apr

0.84 0.87 0.82 0.70

May

o.57

Jun

'1.82

Jun

0.54

Jun

13.96

Jun

54.70

Jul

2.03

Jul

0.47

Jul

16.36

Aug

1.63

Aug

0.48

Aug

16.07

sep

1.55

0.55

sep

13.38

Oct

1.27

Oct

0.64

Oct

11.02

Nov

0.83

Nov

o.74

Nov

7.7',\

Nov

24.46

Dec

0.79

Dec

0.78

Dec

6.82

Dec

23.83

sep

MEAN WET DAYS

Jan Feb Mar

4.73 3.71 5.69

Apr

9.02

May

13.47

MEAN_MONTHLY_RAI N(mm)

Jan Feb Mar Apr May

18.11 17.88 2't.53 36.14 55.61

Jul Aug

63.03 50.48

Sep Oct

46.53 39.28

4.2



Appendix A: Rainfatt Data Site Details and Recording Station lnformation

Station name: Rosedale (23343)

State: South Australia

Elevation: I l5 metres

Latitude: 34.56" South

Longitude: 1 3 8.83' East

Annual Rainfall: 468.0mm

Monthly Rainfall Statistics

AVERAGE-DAILY-RAl NFALL(mm)

Jan Feb Mar APr

0.59 0.56 0.69 1.19

DAI LY_DRY-PROBABILITIES(%)

Jan Feb Mar APr

0.87 0.89 0.84 0.75

MEAN-WET-DAYS

Jan Feb Mar

3.26 2.35 3.67

May

0.61

May

1.71

Jun

1.86

Jun

0.55

Jun

9.11

Jul

2.05

Jul

0.48

Jul

10.80

Jul

42.55

Aug

1.90

Aug

10.91

Aug

39.51

sep

1.90

sep

8.73

sep

38.08

Oct

1.51

Oct

0.66

Oct

7.06

Oct

31.36

Nov

0.99

Nov

0.77

Nov

4.73

Nov

19.84

Dec

0.74

Dec

0.81

Dec

4.1',!

Dec

16.16

SepAug

0.48 0.57

MayApr

5.31 8.46

MEAN_MONTHLY-RAIN(mm)

Jan Feb Mar APr

14.16 11.69 15.99 25.22

May Jun

36.64 37.33

4.3



Appendix A: Rainfall Data site Details and Recording station lnformation

Station name: Stirling (23785)

State: South Australia

Elevation: 496 metres

Latitude: 35.00o South

Longitude : 138.72" East

Annual Rainfall: I I 18.2mm

Monthly Rainfall Statistics

AVE RAG E_DAl LY_RAI N FALL(mm)

Jan Feb Mar Apr

1.19 1.33 '1.75 3.24

Jul

5.66

May

DAt LY_DRY_PROBABtLtTtES(%)

Jan Feb Mar Apr

0.76 0.81 0.69 0.58

Apr

11.91

o.47

May

't5.27

May

12't.66

Jul

0.36

Jul

18.91

Jul

167.10

sepMay

4.26

Jun

3.96

Jun

0.47

Jun

'14.41

Jun

107.29

Aug

4.78

Aug

0.37

Aug

18.64

Aug

140.47

sep

4.00

sep

15.59

sep

114.23

Oct

2.98

Oct

1 3.18

Oct

87.71

Nov

2.06

Nov

0.65

Nov

9.96

Nov

58.86

Dec

1.52

Dec

0.71

Dec

8.64

Dec

44.87

Oct

0.45 0.55

MEAN-WET-DAYS

Jan Feb Mar

7.',14 5.23 9.27

MEAN_MONTH LY_RAIN(mm)

Jan Feb Mar Apr

35.16 35.82 51.81 92.32
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Appendix A: RainfattData Site Details and Recording Station lnformation

Station name: V/illiamstovn (237 63)

State: South Australia

Elevation: 395 metres

Latitude: 34.71'South

Longitude: I 38.94o East

Annual Rainfall: 7 55.7 mm

Monthly Rainfall Statistics

AVERAG E-DAI LY-RAI N FALL(mm)

Jan Feb Mar APr MaY

0.87 0.81 0.94 1.72 2.70

DAr LY_D RY_P RO BAB I L I T I E S (%)

Jan Feb Mar APr MaY

0.81 0.84 0.78 0.67 0.54 0.38 0.49 0.60

Jun

3.31

Jun

0.45

Jun

15.67

Jul

4.09

Jul

0.38

Jul

17.79

Jul

117.78

Aug

3.37

sep
2.93

Oct

2.21

Oct

11.52

Nov

1.31

Nov

o.71

Nov

8.33

Dec

1.23

Dec

o.74

Dec

7.94

Dec

36.95

sepAug Oct

MEAN-WET-DAYS

Jan Feb Mar

5.97 4.67 6.88

Apr

9.79

May

13.67

Aug

18.06

sep
14.39

MEAN_MONTHLY_RAl N(mm)

Jan Feb Mar APr

26.96 22.83 29.06 50.52

May

80.16

Jun

94.00

Aug Sep

97.32 82.59

Oct Nov

63.53 37.67

4.5



Appendix A: Rainfall Data site Details and Recording station Information

4.2 Queensland

Station name: Brisbane RO (40214)

State: Queensland

Elevation: 38.0 metres

Latitude: 27.48" South

Longitude: I 53.03o East

Annual Rainfall: ll46.4mm

Monthly Rainfall Statistics

AVERAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar Apr May

5.11 5.79 4.79 3.18 2.42

Jun Jul

2.26 "t.82

DAr LY_DRY_PROBAB I LtTt ES(%)

Jan Feb Mar Apr May

0.58 0.52 0.52 0.62 0.68

Jun

0.74

Jun

7.60

Jul

0.76

Aug

0.78

sep
o.75

sep
7.16

Oct

0.70

Oct

9.12

Aug

1.42

sep
1.47

Oct

2.49

Nov

3.26

Nov

0.66

Nov

9.78

Dec

4.'t7

Dec

o.62

Dec

11.17

Dec

123.56

MEAN WET DAYS

Jan Feb Mar

12.60 13.13 14.24

Apr May

10.97 9.43

Jul

6.99 6.52

Jul Aug

53.92 42.45

Aug

M EAN_MONTH LY_RAI N(mm)

Jan Feb Mar Apr
152.57 157 .41 141.94 91 .73

May Jun

72.18 65.24

sep
42.40

Oct

74.21

Nov

94.27

4.6



Appendix A: Rainfatt Data Site Details and Recording Station lnformation

Station name: Brisbane AMO (40223)

State: Queensland

Elevation: 4.0 metres

Latitude: 27.42" South

Longitude: 153.1 1" East

Annual Rainfall: I 1 85.4mm

Monthly Rainfall Statistics

AVERAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar APr MaY

5.16 6.18 4.47 3.01 3.19

DArLY_DRY_PROBABILITIES(%)

Jan Feb Mar APr

0.58 0.49 0.54 0.63

Apr

10.88

0.66

May

't0.49

Jun

2.37

Jun

0.74

Jun

7.67

Jul

2.02

Jul

0.76

Jul

7.35

Jul

62.56

Aug

't.38

Aug

0.78

Aug

6.77

Sep

1.16

sep

0.77

Sep

6.98

3.05

Oct

0.68

Oct

10.06

Nov

3.24

0.67

Nov

9.90

Nov

95.70

Dec

4.04

Dec

0.63

Dec

1't.18

Dec

122.71

Oct

NovMay

MEAN WET DAYS

Jan Feb Mar

12.77 14.'.t2 13.88

MEAN_MONTHLY-RAIN(mm)

Jan Feb Mar APr

I 56.80 171.19 1 3s.75 88.62

May Jun

96.82 7'l.19

Aug Sep Oct

42.68 34.92 94.46

4.7



Appendix A: Rainfall Data site Details and Recording station lnformation

Station name: Kirkleigh (40318)

State: Queensland

Elevation: 103.6 metres

Latitude: 27.03" South

Longitude: 1 52.56o East

Annual Rainfall: 9l2.6mm

Monthly Rainfall Statistics

AVERAGE_DAl LY_RAl NFALL(mm)

Jan Feb Mar Apr

4.70 4.02 2.83 2.61

May

2.18

Jun

1.60

Jun

0.79

Jun

36.93

Jul

1.79

Jul

0.79

Jul

41.88

Aug

1.20

Aug

27.56

sep

1.22

sep

25.87

Nov

2.93

Nov

o.71

Nov

6.40

Nov

64.20

Dec

4.33

0.69

Dec

6.77

Dec

93.52

2.54

Oct

0.74

Oct

5.91

Oct

57.65

Oct

DAr LY_DRY_PROBABtLtTt ES(%)

Jan Feb Mar Apr

0.67 0.56 0.66 0.73

MEAN WET DAYS

Jan Feb Mar

7.46 8.94 7.74 6.20

MEAN_MONTHLY_RAl N(mm)

Jan Feb Mar Apr

106.18 81.78 64.34 59.75

4.89 5.00 4.40

May

0.71

May

6.31

May

47.64

SepAug

Aug

Dec

JuJunApr

0.81 0.83

sep

3.54

4.8



Appendix A: Rainfall Data Site Details and Recording Station Information

4.3 V¡ctoria

Station name: Melbourne (86071)

State: Victoria

Elevation: 31.2 metres

Latitude: 37.80" South

Longitude z I 44.97 " East

Annual Rainfall: 653.2mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar Apr May

1.57 1.69 1.65 1.93 1.85

DAI LY-DRY-PROBABI LITIES(%)

Jan Feb Mar Apr May

0.73 0.74 0.70 0.60 0.52

Apr

11.90

May

14.95

Jun

1.67

Jun

0.48

Jun

15.72

Jul

1.56

Jul

0.47

Jul

16.39

Aug

1.63

Aug

16.26

sep

1.97

sep

15.04

Oct

2.17

Oct

14.26

Nov

2.OO

Nov

0.61

Nov

1't.77

Dec

1.91

0.66

Dec

10.46

sepAug DecOct

0.48 0.50 0.54

MEAN WET DAYS

Jan Feb Mar

8.26 7.38 9.36

MEAN_MONTHLY_RAl N(mm)

Jan Feb Mar Apr

48.39 47.26 50.86 57.89

May Jun

57.25 50.08

Jul Aug

48.22 50.47

Sep Oct

59.04 67.37

Nov Dec

59.74 58.92
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Appendix A: Rainfall Data Site Details and Recording Station lnformation

Station name: East Sale (85072)

State: Victoria

Elevation: 4.6 metres

Latitude: 38.11' South

Longitude z 147 .13" East

Annual Rainfall: 61 1. lmm

Monthly Rainfall Statistics

AVERAGE_DAILY_RAI NFALL(mm)

Jan Feb Mar Apr May

1.56 1.45 1.71 1.59 1.80

DAr LY_DRY_PROBABt LtTtES(%)

Jan Feb Mar Apr

0.72 0.71 0.67 0.57

OctJuMay

Jun

1.61

Jun

0.44

Jun

16.75

Jun

48.41

Jul

1.35

Aug

't.54

Aug

16.32

sep

1.83

sep

15.35

Oct

't.97

Oct

't4.54

Nov

2.12

Nov

0.58

Nov

't2.42

Nov

62.35

Dec

1.82

Dec

0.66

Dec

10.51

Dec

55.40

sepAug

Apr

12.63

0.51

May

15.25

Jul

15.95

0.49 0.47 0.48 0.52

MEAN WET DAYS

Jan Feb Mar

8.65 7.93 10.02

MEAN_MONTHLY_RAI N(mm)

Jan Feb Mar Apr

47.54 40.17 52.01 47:t1

Jul Aug Sep Oct

41.76 46.96 53.85 60.07

May

55.72

A,IO



Appendix A: Rainfall Data Site Details and Recording Station lnformation

Station name: Ellinbank (85240)

State: Victoria

Elevation: 167 .0 metres

Latitude: 38.25'South

Longitude: 145.93' East

Annual Rainfall: 1092.9mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar Apr MaY

2.06 1.64 2.21 2.88 3.48

DAI LY-DRY_PROBABILITIES(%)

Jan Feb Mar APr

0.69 0.74 0.63 0.56

Oct

OctsepAugMay

Jun

3.51

Jun

0.40

Jun

17.33

Jun

10't.2'l

Jul

3.71

Aug

3.69

Aug

18.68

Aug

110.82

Nov

3.09

Nov

0.53

Nov

13.65

Nov

90.02

Dec

2.75

Dec

Dec

1'l.75

Dec

82.44

sep

3.91 3.47

0.38 0.40 0.480.44

Jul

0.36

Jul

19.30

Jul

112.29

061

MEAN WET DAYS

Jan Feb Mar

9.58 7.23 11.33

Apr

13.10

May

17.03

May

106.37

sep

17.38

Sep

1't3.76

Oct

15.63

Oct

104.46

MEAN_MONTHLY-RAI N(mm)

Jan Feb Mar APr

63.04 45.53 68.23 85.96

A.I1



Appendix A: Rainfall Data Site Details and Recording Station Information

Station name: Laverton (87031)

State: Victoria

Elevation: 16.0 metres

Latitude: 37.86" South

Longitude: 144.76 East

Annual Rainfall: 557.3mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar Apr

'l .36 1 .67 1 .14 1.57

DAr LY_DRY_PROBABt LtTtES(%)

Jan Feb Mar Apr

0.76 0.75 0.72 0.62

May

1.62

Jun

1.31

0.48

Jun

15.48

Jun

39.17

Jul

1.30

Jul

0.47

Jul

16.'12

Aug

'1.49

0.49

Aug

15.71

sep

1.75

sep

0.50

sep

14.68

Oct

1.91

Oct

0.54

Oct

13.93

58.27

Nov

1.73

Nov

0.60

Nov

11.86

Nov

50.94

Dec

1.51

Dec

0.68

Dec

46.12

AugJun

MEAN-WET-DAYS

Jan Feb Mar

7.25 6.92 8.70

Apr

11.09

May

0.53

May

't4.34

Dec

9.81

MEAN_MONTHLY_RAI N(mm)

Jan Feb Mar Apr

41.33 46.42 34.68 46.36

Jul Aug Sep

39.83 45.38 51.48

May

49.30

Oct

4.12



Appendix A: Rainfall Data Site Details and Recording Station lnformation

A.4 Western Australia

Station name: Perth (9034)

State: Westem Australia

Elevation: 19.0 metres

Latitude: 31.95'South

Longitude: I 1 5.87o East

Annual Rainfall: 869.4mm

Monthly Rainfall Statistics

AVERAGE_DAILY-RAI NFALL(mm)

Jan Feb Mar Apr MaY

0.27 0.48 0.62 '1.52 3.91

AugJu

DAr LY_D RY_PRO BABr LrTr ES (%)

Jan Feb Mar APr

0.91 0.90 0.86 0.74

May

0.55

Jun

6.1 3

Jun

0.42

Jun

16.81

Jun

'177.45

sep

2.68

sep

13.61

sep

77.63

Oct

1.76

Oct

10.76

Nov

0.72

Nov

0.78

Nov

6.26

Dec

0.45

Dec

0.86

Dec

4.08

Dec

'13 43

5.60 4.36

Jul

o.41

Jul

17.74

Aug Sep Oct

o.44 0.53 0.64

MEAN-WET-DAYS

Jan Feb Mar

2.85 2.68 4.34

Apr

7.49

May

13.51

May

1 16.96

Jul

167.65

Aug

16.73

Aug

130.35

MEAN_MONTH LY-RAI N(mm)

Jan Feb Mar Apr

8.04 13.21 ',18.73 44.51

Oct Nov

52.78 20.87

4.13



Appendix A: Rainfall Data Site Details and Recording Station Information

Station nâme: Esperance (9631)

State:'Western Australia

Elevation: I 58.0 metres

Latitude: 33.61o South

Longitude: 121.78o East

Annual Rainfall: 497 .5mm

Monthly Rainfall Statistics

AVERAGE_DAl LY_RAl NFALL(mm)

Jan Feb Mar Apr May

0.73 0.89 0.78 1.24 1.80

DAr LY_DRY_PROBABtLtTtES(%)

Jan Feb Mar Apr May

0.85 0.80 0.80 0.68 0.61 0.55 0.52 0.53

OctJuJun Aug

MEAN-WET-DAYS

Jan Feb Mar

4.45 5.51 6.20

Apr

9.33

May

11.80

Jul

14.14

Aug

13.90

sep

12,49

Jun

2.04

Jun

13.18

Jun

59.46

Jul

2.13

Aug

1.98

sep

1.76

sep

0.57

Oct

1.36

0.67

Oct

't0.14

Oct

41.'t2

Nov

1.03

Nov

0.75

Nov

7.22

Nov

30.1 5

Dec

0.60

Dec

0.83

Dec

5.29

Dec

18.29

MEAN_MONTHLY_RAIN(mm)

Jan Feb Mar Apr May

2',t.98 24.46 23.70 36.08 54.57

Jul Aug

62.60 58.90

sep

50.61

A.t4



Appendix A: Rainfatl Data Site Details and Recording Station lnformation

4.5 New South Wales

Station name: Sydney (66062)

State: New South'Wales

Elevation: 39.0 metres

Latitude: 33.86'South

Longitude: l5l.20o East

Annual Rainfall: l2l7 .0mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY-RAI N FALL(m m)

Jan Feb Mar Apr

3.36 4.14 4.24 4.27 3.20 2.67 2.34

DArLY_DRY_PROBABI LITIES(%)

Jan Feb Mar APr

0.61 0.56 0.56 0.57

sep

sep

AugJu

May

May

3.92

Jun

4.37

Jun

0.57

Jun

't2.77

Jun

't30.27

Oct

2.50

Oct

0.62

Oct

11.69

Nov

2.76

Nov

o.62

Nov

'11.46

Nov

82.30

Dec

2.54

Dec

0.63

Dec

't1.51

Dec

78.2',1

MEAN_WET-DAYS

Jan Feb Mar

't2.'t2 12.34 13.48

Apr

12.89

0.56

May

13.49

May

120.63

Jul

0.64

Jul

11.31

Aug

0.66

Aug

't0.66

0.64

sep

10.81

MEAN_MONTHLY-MIN(mm)

Jan Feb Mar APr

103.34 116.02 1 30.46 127 .08

Jul Aug

99.24 82.68

Sep Oct

70.09 77.51

A.I5



Appendix A: Rainfall Data Site Details and Recording Station lnformation

Station name: Richmond (67033)

State: New South Wales

Elevation: 19.0 metres

Latitude: 33.6" South

Longitude: I 50.78o East

Annual Rainfall: 8 I 0.3mm

Monthly Rainfall Statistics

AVE RAGE_DAl LY_RAl N FALL(mm)

Jan Feb Mar Apr May

3.01 3.74 2.97 2.38 1.90

DArLY_DRY_PROBABtLtTtES(%)

Jan Feb Mar Apr May

0.65 0.61 0.64 0.68 0.68

Oct

NovOct

OctJunApr

Jun

1.88

Jun

0.68

8.43

Jun

48.79

Jul

1.16

Jul

0.75

Jul

6.72

Jul

31.61

Aug

1.48

Aug

0.74

Aug

7.05

40.30

sep

1.33

sep

o.74

Dec

2.22

Dec

0.68

Dec

8.61

Dec

59.66

sep

6.76 8.60

Sep Oct

34.77 56.45

2.07

Nov

2.54

0.69 0.65

Nov

9.16

Nov

67.06

MEAN WET DAYS

Jan Feb Mar

9.69 9.78 9.79 8.60

MEAN_MONTHLY_RAI N(mm)

Jan Feb Mar Apr

82.17 92.96 79.76 62.98

May

8.85

May

52.62

Aug

4.16



Appendix A: Rainfatl Data Site Details and Recording Station lnformation

Station name: Chichester (61151)

State: New South Wales

Elevation: 194.0 metres

Latitude: 32.24" South

Longitude: 1 5 1.68o East

Annual Rainfall: 13 l3.5mm

Monthly Rainfall Statistics

AVERAGE-DAI LY-RAI N FALL(mm)

Jan Feb Mar APr MaY

5.84 6.38 5.40 3.26 3.09

DAILY-DRY-PROBABILITIES(%)

Jan Feb Mar APr

0.60 0.54 0.58 0.67

9.62

0.66

May

10.48

3.54

Jun

0.63

Jun

10.59

Jul

1.66

Jul

o.71

Jul

8.90

Jul

50.49

2.01

Aug

0.73

8.26

Aug

61.18

sep

2.13

sep

0.71

sep

62.75

Oct

3.01

0.67

Oct

10.09

Oct

91.56

Nov

3.19

Nov

0.65

Nov

10.26

Nov

93.66

Dec

4.06

Dec

0.65

Dec

10.81

Dec

123.52

AugJun

OctMay

MEAN-WET-DAYS

Jan Feb Mar

12.17 12.81 12.81

sep

8.47

AugApr

MEAN_MONTHLY-RAI N(mm)

Jan Feb Mar Apr

177.98 '177.02 164.62 96.18

May Jun

94.07 102.35

A.l7
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)

B.l Adelaide, South Australia (BOM# 230341

B.1.1 S¡mulated and Observed Storm Event
Gharacteristics

123456789101112
Month

Figure B.1.1:Comparison between Observed and Simulated Mean lnter-EventTimes

(Adelaide)
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Figure 8.1.2: Comparison between Observed and Simulated Standard Deviation of lnter-

Event Times (Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)
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Figure B.1.3: Comparison between Observed and Simulated Mean of Event Storm

Durations (Adelaide)

12

6

5

4

3

2

|J'

f
o

!

ç
.o
(ú

=o
E
L
o
U)

(¡)o
E
Ø

123456 7

Month

89101112

Figure B.1.4: Comparison between Observed and Simulated Standard Deviation of Event

Storm Durations (Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master SrÏes)
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Figure 8.1.5: Comparison between Observed and Simulated Average of Event Depths

(Adelaide)
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Figure 8.1.6: Comparison between Observed and Simulated Standard Deviation of Event

Depths (Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master SrÏes)

8.1.2 Simulated and Observed Daily Statistics
100
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Month

Figure 8.1.7: Comparison between Observed and Simulated Daily Dry Probabilities

(Adelaide)
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Figure 8.1.8: Comparison between Observed and Simulated Daily Mean Depth

(Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)

8.1.3 S¡mulated and Observed Annual and Monthly
Ra i nfa ll
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Figure 8.1.9: Comparison between Observed and Simulated Annual Rainfall (Adelaide)
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Figure B.1.10: Comparison between Observed and Simulated January Rainfall(Adelaide)
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Appendix B: lmproved Rainfall Model Validation (Master Stfes)
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Figure 8.1.11:Comparison between Observed and Simulated February Rainfall

(Adelaide)
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Figure 8.1.12 Comparison between Observed and Simulated March Rainfall(Adelaide)
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Appendix B: Improved Rainfall ModelValidation (Master S/es,)
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Figure 8.1.13: Comparison between Observed and Simulated April Rainfall (Adelaide)
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Figure 8.1.14: Comparison between Observed and Simulated May Rainfall (Adelaide)
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Appendix B: lmproved Rainfall Model Validation (Master SrÏes)
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Figure 8.1.15: Comparison between Observed and Simulated June Rainfall (Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master Sifes)
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Figure 8.1.17: Comparison between Observed and Simulated August Rainfall (Adelaide)
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Figure 8.1.18: Comparison between Observed and Simulated September Rainfall
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure 8.1.19: Comparison between Observed and Simulated October Rainfall (Adelaide)
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Figure 8.1.20 Comparison between Observed and Simulated November Rainfall
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Appendix B: lmproved Rainfall ModelValidation (Master Sdes)
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Figure 8.1.21: Comparison between Observed and Simulated December Rainfall

(Adelaide)
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Appendix B: lmproved Rainfall ModelValidation (Master Sftes)

B.2 Brisbane, Queensland (BOl{,# 402141

8.2.1 S¡mulated and Observed Storm Event
Gharacter¡stics
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Figure 8.2.1:Comparison between Observed and Simulated Mean lnter-EventTimes

(Brisbane)
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Appendix B: lmproved Rainfall ModelValidation (Master Sdes)
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Figure 8.2.3: Comparison between Observed and Simulated Mean of Event Storm
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)
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Figure B.2.5: Comparison between Observed and Simulated Average of Event Depths

(Brisbane)
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Figure 8.2.6: Comparison between Observed and Simulated Standard Deviation of Event
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)

8.2.2 S¡mulated and Observed Daily Statistics
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Figure 8.2.7: Comparison between Observed and Simulated Daily Dry Probabilities

(Brisbane)
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)

8.2.3 S¡mulated and Observed Annual and Monthly
Rainfall
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Figure 8.2.g: Comparison between Observed and Simulated Annual Rainfall (Brisbane)
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Appendix B: lmproved Rainfall ModelValidation (Master Sdes)
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Figure 8.2.11: Comparison between Observed and Simulated February Rainfall
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Appendix B: lmproved Rainfall ModelValidation (Master StÏes)
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Figure 8.2.13: Comparison between Observed and Simulated April Rainfall (Brisbane)
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Figure 8.2.14: Comparison between Observed and Simulated May Rainfall(Brisbane)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes,)
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Figure 8.2.15: Comparison between Observed and Simulated June Rainfall (Brisbane)
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Figure 8.2.16: Comparison between Observed and Simulated July Rainfall (Brisbane)
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Figure 8.2.17: Comparison between Observed and Simulated August Rainfall (Brisbane)
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Figure 8.2.18: Comparison between Observed and Simulated September Rainfall
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Appendix B: lmproved Rainfall ModelValidation (Master Stfes)
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Figure 8.2.'19 Comparison between Observed and Simulated October Rainfall (Brisbane)
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Figure 8.2.21: Comparison between Observed and Simulated December Rainfall

(Brisbane)
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Appendix B: lmproved Rainfall ModelValidation (Master Sites)

8.3 Melbourne, Victoria (BOM# 8607f )

8.3.1 S¡mulated and Observed Storm Event
Gharacteristics
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Figure 8.3.1: Comparison between Observed and Simulated Mean lnter-Event Times

(Melbourne)
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure 8.3.3: Comparison between Observed and Simulated Mean of Event Storm
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Figure 8.3.4: Comparison between Observed and Simulated Standard Deviation of Event
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure 8.3.5: Comparison between Observed and Simulated Average of Event Depths

(Melbourne)
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Appendix B: lmproved Rainfall ModelValidation (Master Srïes)

8.3.2 S¡mulated and Observed Daily Statistics

1234567891011
Month

Figure B.3.7: Comparison between Observed and Simulated Daily Dry Probabilities
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Figure 8.3.8: Comparison between Observed and Simulated Daily Mean Depth

(Melbourne)
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8.3.3 S¡mulated and Observed Annual and Monthly
Ra infa I I
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Figure 8.3.9: Comparison between Observed and Simulated Annual Rainfall (Melbourne)
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Figure 8.3.10: Comparison between Observed and Simulated January Rainfall
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Figure 8.3.13: Comparison between Observed and Simulated April Rainfall (Melbourne)
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Figure 8.3.14: Comparison between Observed and Simulated May Rainfall (Melbourne)
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Figure B.3.15: Comparison between Observed and Simulated June Rainfall (Melbourne)
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Figure B.3.16: Comparison between Observed and Simulated July Rainfall (Melbourne)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)

E
E

o
c'õ
É.

L
o

160

140

120

100

80

60

40

20

0
.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 8.3.17: Comparison between Observed and Simulated August Rainfall

(Melbourne)
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Appendix B: lmproved Rainfall Model Validation (Master S/es)
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Figure 8.3.19: Comparison between Observed and Simulated October Rainfall

(Melbourne)
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Figure 8.3.20: Comparison between Observed and Simulated November Rainfall

(Melbourne)

0

90% Sim Limits
Simulated Median

o Obs

90% Sim Limits
Simulated Mediano Obs

8.32
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Figure 8.3.21: Comparison between Observed and Simulated December Rainfall

(Melbourne)
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Appendix B: lmproved Rainfall ModelValidation (Master Stfes)

8.4 Perth, Western Australia (BOM# 9034)

8.4.1 S¡mulated and Observed Storm Event
Gharacteristics
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Figure 8.4.1: Comparison between Observed and Simulated Mean of lnter-Event Times

(Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)
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Figure 8.4.3: Comparison between Observed and Simulated Mean of Event Storm
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Appendix B: lmproved Rainfall ModelValidation (Master S/es)

I

7

6

5

4

3

E
E
E
o-
c)o
E
o

U)
co
(¡)

2
123456789101112

Month

Figure 8.4.5: Comparison between Observed and Simulated Average of Event Depths
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Appendix B: lmproved Rainfall ModelValidation (Master Sdes)

8.4.2 S¡mulated and Observed Daily Statistics
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Figure B.4.7: Comparison between Observed and Simulated Daily Dry Probabilities

(Perth)
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Figure 8.4.8: Comparison between Observed and Simulated Daily Mean Depth (Perth)
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Appendix B: lmproved Rainfall Model Validation (Master Sdes)

8.4.3 S¡mulated and Observed Annual and Monthly
Rainf all
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Figure 8.4.9: Comparison between Observed and Simulated Annual Rainfall(Perth)
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Figure 8.4.10: Comparison between Observed and Simulated January Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master Sdes)
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Figure 8.4.11: Comparison between Observed and Simulated February Rainfall(Perth)

200

150

100

50

1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 8.4.12: Comparison between Observed and Simulated March Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)

50

E
E

õ
c'õ
É.

c
o

200

150

100

0
.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 8.4.13 Comparison between Observed and Simulated April Rainfall (Perth)
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Figure 8.4.14 Comparison between Observed and Simulated May Rainfall(Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master Srfes)

800

600

400

200

E
E

tE

.co
É.
àE
c
o

0

800

600

400

200

E
E

(U

c'õ
É.
.>E
c
o

.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 8.4.15: Comparison between Observed and Simulated June Rainfall (Perth)
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Figure 8.4.16: Comparison between Observed and Simulated July Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure 8.4.17: Comparison between Observed and Simulated August Rainfall (Perth)
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Figure 8.4.18: Comparison between Observed and Simulated September Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master Sifes)

200

100

.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure 8.4.19: Comparison between Observed and Simulated October Rainfall (Perth)
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Figure 8.4.20 Comparison between Observed and Simulated November Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master SrÏes)
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Figure B.4.21Comparison between Observed and Simulated December Rainfall (Perth)
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Appendix B: lmproved Rainfall ModelValidation (Master SrTes)

8.5 Sydîêy, New South Wales (BOM# 66062)

8.5.1 S¡mulated and Observed Storm Event
Gharacter¡stics
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Figure B.5.1: Comparison between Observed and Simulated Mean of lnter-Event Times

(Sydney)
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Figure 8.5.2: Comparison between Observed and Simulated Standard Deviation of lnter-

Event Times (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure 8.5.3: Comparison between Observed and Simulated Mean of Event Storm

Durations (Sydney)
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Figure B.5.4: Comparison between Observed and Simulated Standard Deviation of Event
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Appendix B: lmproved Rainfall ModelValidation (Master Sffes)
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Figure B.5.5: Comparison between Observed and Simulated Average of Event Depths
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Figure 8.5.6: Comparison between Observed and Simulated Standard Deviation of Event

Depths (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master Sftes)

8.5.2 S¡mulated and Observed Daily Statistics
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Figure 8.5.7: Comparison between Observed and Simulated Daily Dry Probabilities

(SYdneY)
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Figure 8.5.8: Comparison between Observed and Simulated Daily Mean Depth (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master SÍes)

8.5.3 S¡mulated and Observed Annual and Monthly
Rainfall
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Figure 8.5.9: Comparison between Observed and Simulated Annual Rainfall (Sydney)
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Figure 8.5.10: Comparison between Observed and Simulated January Rainfall (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master Stfes)
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Figure 8.5.11: Comparison between Observed and Simulated February Rainfall (Sydney)
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Figure 8.5.12: Comparison between Observed and Simulated March Rainfall (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master SrIes,)
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Figure 8.5.13: Comparison between Observed and Simulated April Rainfall (Sydney)
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Figure 8.5.14 Comparison between Observed and Simulated May Rainfall (Sydney)

0
01

90% Sim Limits
Simulated Median

o Obs

90% Sim Limits
Simulated Median

o Obs

B.5I



Appendix B: lmproved Rainfall ModelValidation (Master Slfes)
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Figure 8.5.15: Comparison between Observed and Simulated June Rainfall (Sydney)
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Figure 8.5.16: Comparison between Observed and Simulated July Rainfall (Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master S/es)
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Figure B.5.17: Comparison between Observed and Simulated August Rainfall (Sydney)
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Figure B.5.18: Comparison between Observed and Simulated September Rainfall

(Sydney)
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Appendix B: Improved Rainfall ModelValidation (Master Sffes)
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Figure 8.5.19: Comparison between Observed and Simulated October Rainfall (Sydney)
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Figure 8.5.20: Comparison between Observed and Simulated November Rainfall

(Sydney)
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Appendix B: lmproved Rainfall ModelValidation (Master Stfes,)
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Figure 8.5.21: Comparison between Observed and Simulated December Rainfall

(Sydney)
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Figure 8.5.22: Comparison between Observed and Simulated Annual lntensity

Frequency Duration Relationship (Sydney)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs

C.l Master - Adelaide, South Australia (BOM#
230341

C.1.1 Target - Williamstown, South Australia (BOM#
237631

C.1.1.1 Simulated and Obserued Storm Event Characteristics
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Figure C.1.1: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.2: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event rimes (Master - Adelaide Airport; Target - williamstown)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.1.3: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.4: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.5: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Adelaide Airport; Target - Williamstown)
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Figure C.1 .6: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs

C.1.1.2 Simulated and Observed Daily Statistics
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Figure C.1.7: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs

C.1.1.3 Simulated and Observed Annual and Monthly Rainfatl
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Figure C.1.9: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1 .10: Comparison between Observed and Target Simulated January Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.'11: Comparison between Observed and Target Simulated February Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.12: Comparison between Observed and Target Simulated March Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Short Pluviograph Record - Resu/fs
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Figure C.1.13: Comparison between Observed and Target Simulated April Rainfall

(Master - Adelaide Airport; Target - Williamstown)

250

200

150

100

50

0
.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure C.1.14 Comparison between Observed and Target Simulated May Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.1.15: Comparison between Observed and Target Simulated June Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1 .16: Comparison between Observed and Target Simulated July Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.17: Comparison between Observed and Target Simulated August Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.18: Comparison between Observed and Target Simulated September Rainfall

(Master - Adelaide Airport; Target - Williamstown)

90% Sim Limits
Simulated Median

" Obs

90% Sim Limits
Simulated Median

" Obs

c.9



Appendix C: Regionalisation with a Sho¡Í Pluviograph Record - Resu/fs
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Figure C.1.19: Comparison between Observed and Target Simulated October Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.20: Comparison between Observed and Target Simulated November Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs
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Figure C.1.21: Comparison between Observed and Target Simulated December Rainfall

(Master - Adelaide Airport; Target - Williamstown)
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Figure C.1.22: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Adelaide Airport; Target - Williamstown)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs

C.1.2 Target - Stirling, South Australia (BOM#
237 851

C.1.2.1 Simulated and Observed Storm Event Characteristics
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Figure C.1.23 Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Adelaide Airport; Target - Stirling)
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Figure C.1.24: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times (Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs
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Figure C.1.25: Comparison between Observed and Target Simulated Mean of Event

Storm Durations (Master - Adelaide Airport; Target - Stirling)
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Figure C.1.26: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.27: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Adelaide Airport; Target - Stirling)
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Figure C.1.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs

C.1.2.2 Simulated and Observed Daily Statistics
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Figure C.1.29 Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Adelaide Airport; Target - Stirling)
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Figure C.1.30: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs

C.l.2.3 Simulated and Obseryed Annual and Monthly Rainfall
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Figure C.1.31: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Adelaide Airport; Target - Stirling)

200

100

.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure C.1.32: Comparison between Observed and Target Simulated January Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Sho¡t Pluviograph Record - Resu/fs
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Figure C.1.33: Comparison between Observed and Target Simulated February Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Figure C.1.34: Comparison between Observed and Target Simulated March Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionatisation with a Shod Pluviograph Record - Resu/fs
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Figure C.1.35: Comparison between Observed and Target Simulated April Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Figure C.1.36: Comparison between Observed and Target Simulated May Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.1.37: Comparison between Observed and Target Simulated June Rainfall

(Master - Adelaide Airport; Target - Stirting)
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Figure C.1.38: Comparison between Observed and Target Simulated July Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Short Pluviograph Record - Resu/fs
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Figure C.1.39: Comparison between Observed and Target Simulated August Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Figure C.1.40: Comparison between Observed and Target Simulated September Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.41: Comparison between Observed and Target Simulated October Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Figure C.1.42: Comparison between Observed and Target Simulated November Rainfall

(Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.1.43 Comparison between Observed and Target Simulated December Rainfall

(Master - Adelaide Airport; Target - Stirling)

C.1.2.4 Simulated and Observed Annual lntensity - Frequency -
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Figure C.1.44: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Adelaide Airport; Target - Stirling)
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Appendix C: Regionalisation with a Sfiorf Pluviograph Record - Resu/fs

G.2 Master - Brisbane (RO), Queensland (BOM#
402141

C.2.1 Target - Brisbane (AMO), Queensland (BOM#
402231

C.2.1.1 Simulated and Observed Storm Event Gharacteristics

12345678910 11 't2

Month

Figure C.2.1: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.2: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times (Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionatisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.3: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Brisbane Regional office; Target - Brisbane AMo)
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Figure C.2.4: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.5: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.6: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Brisbane Regional office; Target - Brisbane AMo)
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Appendix C: Regionatisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.7: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.9: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.10: Comparison between Observed and Target Simulated January Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs

E
E

(ú

c
(ú
É.
.>
.E
c
o

800

700

600

500

400

300

200

100

0
01 1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

E
E

(E

c'õ
É.
.>E
o

Percent

Figure C.2.11: Comparison between Observed and Target Simulated February Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.12 Comparison between Observed and Target Simulated March Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Sho¡t Pluviograph Record - Resu/fs
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Figure C.2.13: Comparison between Observed and Target Simulated April Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.14 Comparison between Observed and Target Simulated May Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.15: Comparison between Observed and Target Simulated June Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.16 Comparison between Observed and Target Simulated July Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shoft Pluviograph Record - Resu/fs
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Figure C.2.17: Comparison between Observed and Target Simulated August Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.18: Comparison between Observed and Target Simulated September Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.19: Comparison between Observed and Target Simulated October Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.20 Comparison between Observed and Target Simulated November Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.21: Comparison between Observed and Target Simulated December Rainfall

(Master - Brisbane Regional Office; Target - Brisbane AMO)
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Figure C.2.22: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Brisbane Regional Otfice; Target - Brisbane

AMO)
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Appendix C: Regionatisation with a Shott Pluviograph Record - Resu/fs

C.2.2Target - Kirkleigh, Queensland (BOM# 403f 8)

C.2.2.1 Simulated and Observed Storm Event Gharacteristics
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Figure C.2.23: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.24: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.25 Comparison between Observed and Target Simulated Mean of Event

Storm Durations Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.26: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations Master - Brisbane Regional Office; Target - Kirkleagh)

tt

=oE
c
.9
(U

fo
E
L
o

U)

oo
Þ
(t)

I

I

7

6

5

4

3

90% Sim Limits
Simulated Median

" Obs
Master Sigma Duration

c.3s



Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.27: Comparison between Observed and Target Simulated Average of Event

Depths Master - Brisbane Regional Office; Target - Kirkleagh)

0

60

50

E
Ê'r2 40E
CL
c)o
E30
o
U)

î, zoo
E
C)

10

123456789101112

123456789101112
Month

Figure C.2.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs

90% Sim Limits
Simulated Median

o Obs
Master

C.2.2.2 Simulated and Observed Daily Statistics

1234567891011
Month

Figure C.2.29 Comparison between Observed and Target Simulated Daily Dry

Probabilities Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.30: Comparison between Observed and Target Simulated Daily Mean Depth

Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Sfiod Pluviograph Record - Resu/fs

C.2.2.3 Simulated and Obserued Annual and Monthly Rainfall
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Figure C.2.31: Comparison between Observed and Target Simulated Annual Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.32: Comparison between Observed and Target Simulated January Ralnfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.33: Comparison between Observed and Target Simulated February Rainfall
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Figure C.2.34: Comparison between Observed and Target Simulated March Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.35: Comparison between Observed and Target Simulated April Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.36: Comparison between Observed and Target Simulated May Rainfall Master

- Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.37: Comparison between Observed and Target Simulated June Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.38 Comparison between Observed and Target Simulated July Rainfall Master

. Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs
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Figure C.2.39: Comparison between Observed and Target Simulated August Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.40 Comparison between Observed and Target Simulated September Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.2.41: Comparison between Observed and Target Simulated October Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.42: Comparison between Observed and Target Simulated November Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionatisation with a Shod Pluviograph Record - Resu/fs
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Figure C.2.43: Comparison between Observed and Target Simulated December Rainfall

Master - Brisbane Regional Office; Target - Kirkleagh)
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Figure C.2.44 Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship Master - Brisbane Regional Office; Target - Kirkleagh)
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Appendix C: Regionalisation with a Shod Ptuviograph Record - Resu/fs

C.3 Master - Melbourne, Victoria (BOM# SG0Zí )

C.3.1 Target - East Sale, Victoria (BOM# 850721

C.3.l.l Simulated and Obserued Storm Event Characteristics
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Figure C.3.1: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Melbourne; Target - East Sale)
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Figure C.3.2: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times (Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.3: Comparison between Observed and Target Simulated Mean of Event Storm

Durations (Master - Melbourne; Target - East Sale)
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Figure C.3.4: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/ús
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Figure C.3.5: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Melbourne; Target - East Sale)
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Figure C.3.6: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs

C.3.1.2 Simulated and Observed Daily Statistics
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Figure C.3.7: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Melbourne; Target - East Sale)
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Figure C.3.8: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs

C.3.1.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.9: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.10: Comparison between Observed and Target Simulated January Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.11: Comparison between Observed and Target Simulated February Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.12 Comparison between Observed and Target Simulated March Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Sho¡t Pluviograph Record - Resu/fs
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Figure C.3.13: Comparison between Observed and Target Simulated April Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.14 Comparison between Observed and Target Simulated May Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionatisation with a Shott Pluviograph Record - Resu/fs
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Figure C.3.15: Comparison between Observed and Target Simulated June Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.16: Comparison between Observed and Target Simulated July Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/ts
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Figure C.3.17: Comparison between Observed and Target Simulated August Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.18: Comparison between Observed and Target Simulated September Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.19: Comparison between Observed and Target Simulated October Rainfall

(Master - Melbourne; Target - East Sale)
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Figure C.3.20: Comparison between Observed and Target Simulated November Rainfall

(Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.21: Comparison between Observed and Target Simulated December Rainfall

(Master - Melbourne; Target - East Sale)

C.3.1.4 Simulated and Obserued Annual lntensity - Frequency -
Duration

1000

100

10

0.1
.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure C.3.22: Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Melbourne; Target - East Sale)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.23 Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Melbourne; Target - Ellinbank)
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Figure C.3.24: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times (Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.25: Comparison between Observed and Target Simulated Mean of Event

Storm Durations (Master - Melbourne; Target - Ellinbank)
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Figure C.3.26: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.3.27: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Melbourne; Target - Ellinbank)
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Figure C.3.28: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs

C.3.2.2 Simulated and Observed Daily Statistics
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Figure C.3.29: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Melbourne; Target - Ellinbank)
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Figure C.3.30: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Melbourne; Target - Ellinbank)

90% Sim Limits
Simulated Median

o Obs
Master

90% Sim Limits
Simulated Median

o Obs
Master

c.59



Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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C.3.2.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.31: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.32: Comparison between Observed and Target Simulated January Rainfall

(Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.33: Comparison between Observed and Target Simulated February Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.34: Comparison between Observed and Target Simulated March Rainfall

(Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.35: Comparison between Observed and Target Simulated April Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.36: Comparison between Observed and Target Simulated May Rainfall

. (Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs
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Figure C.3.37: Comparison between Observed and Target Simulated June Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.38: Comparison between Observed and Target Simulated July Rainfall

(Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs

E
E

(ú

c
(ú
É.

!

c
o

300

250

200

150

100

50

0
.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Percent

Figure C.3.39: Comparison between Observed and Target Simulated August Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.40: Comparison between Observed and Target Simulated September Rainfall

(Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.3.41: Comparison between Observed and Target Simulated October Rainfall

(Master - Melbourne; Target - Ellinbank)
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Figure C.3.42: Comparison between Observed and Target Simulated November Rainfall

(Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs
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Figure C.3.43: Comparison between Observed and Target Simulated December Rainfall

(Master - Melbourne; Target - Ellinbank)

C.3.2.4 Simulated and Observed Annual lntensity - Frequency -
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Figure C.3.44 Comparison between Observed and Target Simulated Annual lntensity

Frequency Duration Relationship (Master - Melbourne; Target - Ellinbank)
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Appendix C: Regionalisation with a Shott Pluviograph Record - Resu/fs

C.3.3 Target - Laverton, Victoria (BOM# 8703f )
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Figure C.3.45: Comparison between Observed and Target Simulated Mean of lnter-Event

Times (Master - Melbourne; Target - Laverton RAAF)

180

160

140

120

100

80

60

40

20
123456789101112

Month

Figure C.3.46: Comparison between Observed and Target Simulated Standard Deviation

of lnter-Event Times (Master - Melbourne; Target - Laverton RAAF)
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Appendix C: Regionalisation with a Shorf Pluviograph Record - Resu/fs
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Figure C.3.47: Comparison between Observed and Target Simulated Mean of Event

Storm Durations (Master - Melbourne; Target - Laverton RAAF)
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Figure C.3.48: Comparison between Observed and Target Simulated Standard Deviation

of Event Storm Durations (Master - Melbourne; Target - Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Resu/fs
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Figure C.3.49: Comparison between Observed and Target Simulated Average of Event

Depths (Master - Melbourne; Target - Laverton RAAF)
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Figure C.3.50: Comparison between Observed and Target Simulated Standard Deviation

of Event Depths (Master - Melbourne; Target - Laverton RAAF)

16

14

12

10

8

6

4

2

90% Sim Limits
Simulated Mediano Obs
Master Mean Depth

I

90% Sim Limits
Simulated Median

o Obs
Master Sigma Depth

c.69



Appendix C: Regionalisation with a Shod Pluviograph Record - Resu/fs

C.3.3.2 Simulated and Obserued Daily Statistics
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Figure C.3.51: Comparison between Observed and Target Simulated Daily Dry

Probabilities (Master - Melbourne; Target - Laverton RAAF)
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Figure C.3.52: Comparison between Observed and Target Simulated Daily Mean Depth

(Master - Melbourne; Target - Laverton RAAF)
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Appendix C: Regionalisation with a Short Pluviograph Record - Resu/fs
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C.3.3.3 Simulated and Observed Annual and Monthly Rainfall
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Figure C.3.53: Comparison between Observed and Target Simulated Annual Rainfall

(Master - Melbourne; Target - Laverton RAAF)
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Figure C.3.54: Comparison between Observed and Target Simulated January Rainfall

(Master - Melbourne; Target - Laverton RAAF)
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