COAL FACIES AND PALAEOENVIRONMENTS OF THE MIDDLE EOCENE TO EARLY OLIGOCENE BOWMANS AND LOCHIEL DEPOSITS, NORTHERN ST. VINCENT BASIN, SOUTH AUSTRALIA

GAVIN SPRINGBETT

This thesis is submitted in fulfillment of requirements for the degree of Doctor of Philosophy

Department of Geology and Geophysics
The University of Adelaide
South Australia

August 2006
TABLE OF CONTENTS

CONTENTS

i

LIST OF PLATES

viii

LIST OF TABLES

ix

LIST OF FIGURES

xii

LIST OF APPENDICES

xv

LIST OF ABBREVIATIONS

xvi

ACKNOWLEDGEMENT

xvii

ABSTRACT

xix

1 INTRODUCTION

1.1 Background

1.2 Objectives

1.2.1 Project aims

1.2.2 Specific research objectives

1.3 Research program

1.4 Thesis organisation

2 COAL FORMATION, DEPOSITIONAL MODELS AND THE CHARACTERISTICS OF TERTIARY BROWN COALS

2.1 Processes and environments of coal formation

2.1.1 Accumulation of organic matter

2.1.2 Requirements for peat formation

2.1.3 Peat forming sedimentary environments

2.1.4 Coalification

2.1.5 Factors determining coal type

2.1.6 Petrographic trends and cyclicity
3 METHODOLOGY AND ANALYTICAL PROCEDURES

3.1 Data availability and gathering
3.2 Lithotype evaluation
 3.2.1 Field lithotype evaluation
 3.2.2 Laboratory lithotype evaluation
3.3 Sampling
 3.3.1 Sample selection
 3.3.2 Pre-treatment
3.4 Maceral analysis
 3.4.1 Sample preparation
 3.4.2 Point counting
 3.4.3 Maceral indices
3.5 Biomarker evaluation
 3.5.1 Solvent extraction and liquid chromatography
 3.5.2 Gas chromatography – mass spectrometry (GC-MS)
 3.5.3 Compound identification
 3.5.4 Semi quantitative biomarker abundance estimation
3.6 Chemical and physical analysis
 3.6.1 Testing
 3.6.2 Quartz and kaolinite estimation
3.7 Coalfield exploration data
 3.7.1 Borehole records
 3.7.2 Seam correlation and assessment
 3.7.3 Computer modelling
4 REGIONAL GEOLOGICAL SETTING OF THE BOWMANS AND LOCHIEL COAL DEPOSITS IN THE NORTHERN ST. VINCENT BASIN 63

4.1 St. Vincent Basin 63
4.2 Coal and geology of the northern St. Vincent Basin 65
 4.2.1 Location and relationships 65
 4.2.2 History of coalfield investigations 69
 4.2.3 Stratigraphy 69
 4.2.4 Structure 74
 4.2.5 Coal rank and classification 75
4.3 The Bowmans Coal Deposit 76
 4.3.1 Seam occurrence and characteristics 76
 4.3.2 Seam geometry, splitting and termination 81
 4.3.3 Seam boundaries 82
4.4 The Lochiel Coal Deposit 85
 4.4.1 Seam occurrence and characteristics 85
 4.4.2 Seam geometry and termination 90
 4.4.3 Seam boundaries 91
4.5 Coal forming conditions in the northern St. Vincent Basin 95
 4.5.1 Bowmans Deposit 95
 4.5.2 Lochiel Deposit 99
 4.5.3 Regional coal forming conditions 101
4.6 Summary 102

5 PETROGRAPHIC EVALUATION AND DEFINITION OF COAL FACIES 105

5.1 Background and strategy 105
5.2 Macropetrographic characteristics 106
 5.2.1 Texture 106
 5.2.2 Wood content 107
 5.2.3 Colour 109
 5.2.4 Gelification 110
 5.2.5 Hardness 110
 5.2.6 Crystalline mineral content 110
 5.2.7 Fracturing 111
5.3 Micropetrographic characteristics 111
 5.3.1 Introduction 111
5.3.2 Maceral group abundance 112
5.3.3 Tissue preservation 116
5.3.4 Gelification 120
5.3.5 Liptinite assemblage 121
5.3.6 Other parameters 125

5.4 Definition of coal facies 125
5.4.1 Coal lithotypes 126
5.4.2 Microscopically-defined coal types 128
5.4.3 Integration of lithotype and micropetrographic evaluations 130
5.4.4 Coal facies of the Bowmans and Lochiel Deposits 133

5.5 Comparison with other brown coal deposits 135

5.6 Summary 137

6 CLASSIFICATION AND LIKELY DEPOSITIONAL SETTINGS OF THE COAL FACIES 165

6.1 Facies classification 165
6.1.1 System and nomenclature 165
6.1.2 Petrographic overview 166

6.2 Facies I 168
6.2.1 General characteristics and definition of sub-facies 168
6.2.2 Sub-facies 1a 171
6.2.3 Sub-facies 1b 173
6.2.4 Sub-facies 1c 174

6.3 Facies II 176
6.3.1 General characteristics and definition of sub-facies 176
6.3.2 Sub-facies IIa 178
6.3.3 Sub-facies IIb 181

6.4 Facies III 183

6.5 Facies IV 185
6.5.1 Sub-facies IVa 185
6.5.2 Sub-facies IVb 187

6.6 Likely depositional settings of the coal facies 188
6.6.1 Facies I 188
6.6.2 Facies II 193
6.6.3 Facies III 195
6.6.4 Facies IV 196

6.7 Summary 198
7.1 Ply definition and evaluation 219
7.2 Ply stratigraphy of the Lochiel Deposit 220
 7.2.1 H Seam 221
 7.2.2 G Seam 222
 7.2.3 F Seam 225
 7.2.4 Ply boundaries 228
 7.2.5 Ply correlation 230
7.3 Ply stratigraphy of the Bowmans Deposit 231
 7.3.1 C Seam 233
 7.3.2 B3 Seam 235
 7.3.3 B1 Seam 236
 7.3.4 Ply boundaries 237
 7.3.5 Ply correlation 239
7.4 Facies occurrence and distribution 239
 7.4.1 Facies I 241
 7.4.2 Facies II 244
 7.4.3 Facies III 245
 7.4.4 Facies IV 245
 7.4.5 Local palaeoenvironmental inferences 246
7.5 Evolutionary patterns in local coal-forming environments and depositional models 248
 7.5.1 Lochiel Deposit 248
 7.5.2 Bowmans Deposit 251
 7.5.3 Discussion 253
7.6 Summary 258

8 HYDROCARBON BIOMARKERS AND THEIR DISTRIBUTION WITHIN FACIES 261
8.1 Compound suite, occurrence and characteristics 261
 8.1.1 Normal alkanes 262
 8.1.2 Sesquiterpenoids 263
 8.1.3 Triterpenoids 266
 8.1.4 Intact terressigenous triterpenoids 271
 8.1.5 A-Ring contracted triterpenoids 272
 8.1.6 Des-A-triterpenoids 274
 8.1.7 Hopancoids 276
8.2 Distribution within facies and deposit
 8.2.1 Normal alkanes
 8.2.2 Sesquiterpenoids
 8.2.3 Diterpenoids
 8.2.4 Regular terrigenous triterpenoids
 8.2.5 A-Ring contracted triterpenoids
 8.2.6 Des-A triterpenoids
 8.2.7 Hopenoids
 8.2.8 Steroids
 8.2.9 Biomarker distribution summary

8.3 Palaeoenvironmental implications
 8.3.1 Comparative evaluation
 8.3.2 Facies and local palaeoenvironments
 8.3.3 Regional setting

8.4 Significance for brown coal biomarker studies
 8.4.1 Preservation of A-ring-contracted and des-A triterpenoids
 8.4.2 Unusual distribution of 22R-17α(H),21β(H)-homohopane
 8.4.3 Other issues

8.5 Summary

9 QUARTZ, KAOLINITE AND SULPHUR DISTRIBUTION

9.1 Crystalline mineral species and occurrence

9.2 Quartz and kaolinite distribution
 9.2.1 Gross seam abundances
 9.2.2 Lateral variations within Lochiel seams
 9.2.3 Lateral variations within Bowmans seams
 9.2.4 Vertical distribution within seams
 9.2.5 Facies associations

9.3 Implications of quartz and kaolinite distribution for palaeoenvironmental evaluation
 9.3.1 Regional setting
 9.3.2 Deport-specific conditions
 9.3.3 Local depositional environment
 9.3.4 Other inferences

9.4 Sulphur
 9.4.1 Abundance and distribution
 9.4.2 Palaeoenvironmental implications

9.5 Summary
10 SUMMARY AND IMPLICATIONS FOR PALAEOENVIRONMENTAL ASSESSMENT OF OTHER TERTIARY COALS

10.1 Coal definition and facies classification 331
10.2 Peat-forming palaeoenvironments and the origin of facies 333
10.3 Evolutionary patterns in local palaeoenvironments 336
10.4 Comparison of mare environments in the Lochiel and Bowmans sub-basins 340
10.5 Implications for future studies of brown coals 342

BIBLIOGRAPHY 345
ABSTRACT

The Middle Eocene to Early Oligocene Bowmans and Lochiel Coal Deposits of the northern St. Vincent Basin, South Australia, have been studied to elucidate their depositional environments. These coals occur within predominantly fluvio-lacustrine transgressive system tract sequences that formed during the initial phase of basin infill.

Eight genetically distinct, mostly vitrinite-dominated coal types were recognised and four facies were defined in line with varying levels of biomechanical degradation and changes in precursor organic matter. Facies I coals form thick, commonly wood-rich piles and are characterised by high terrestrial lipinitic contents, low gelification, elevated concentrations of gymnosperm and angiosperm biomarkers, and a quartziferous mineralogy. Primarily autochthonous accumulation in mixed angiosperm-gymnosperm forest swamps is inferred. Facies II coals tend to be laterally extensive and are distinguished by low wood contents with abundant groundmass telovitrinite, high tissue preservation, a mixed terrestrial-aquatic lipinitic assemblage, low levels of plant-derived terpenoids and a kaolinitic mineralogy. Autochthonous accumulation under elevated groundwater conditions from water-tolerant species in subaquatic marshlands is postulated. Facies III coals are highly gelified, have relatively low terrestrial terpenoid contents, exhibit some saprolitic characteristics and contain abundant mineral matter. Typically thin with limited lateral consistency, these coals are products of the accumulation of fine allochthonous and aquatic organic matter in an open water environment. Facies IV coals have an erratic distribution and comprise physically altered, friable and macrinite-dominated lithotypes. They are interpreted to be products of weathering and peat combustion, respectively.

The aforementioned facies are unevenly distributed and their stratigraphic succession highlights evolutionary changes in local palaeoenvironments. Within individual seams the transition from subaquatic to topogenous forest swamps and ultimately ombrogenous conditions is most common. However, over the coal sequence as a whole, conditions evolved from exclusively terrestrial through mixed terrestrial and subaquatic to open water. Also detected were multiple rapid reversals of the water table, especially higher in the sequence, and cyclic patterns reflecting a brief basal subaquatic phase prior to the onset of sustained terrestrial conditions. These patterns suggest a fluctuating, although progressively rising, water table and, and a balance between accommodation and accumulation.

Peat in the Lochiel Deposit accumulated within a restricted fault-bound sub-basin strongly influenced by local tectonics and a fluctuating hydrological regime, resulting in diverse, well-banded coals, a relatively fixed depocentre, and a well-defined facies succession. In contrast, xix
extensive peat accumulation within inter-channel floodplain settings is interpreted for the Bownans Deposit. Here more stable groundwater conditions and astro-sedimentological mechanisms controlled the peat characteristics, giving rise to low facies diversity, a weakly developed facies succession, and variable seam thickness and extent. Assorted marine indicators suggest a slightly more distal setting for the Lochiel Deposit.