Characterisation of recombinant hyaluronidase-1 and -3, and of hyaluronan turnover in mineralising osteoblasts

By

Julian Robert James Adams BSc (Hons)

Thesis submitted for the degree of

Doctor of Philosophy

in

Department of Paediatrics
School of Medicine
Faculty of Health Science
University of Adelaide

December, 2006
2.2.1 Standard cell culture technique
2.2.2 Cell number determination
2.2.3 Transient mammalian transfection
2.2.4 Fibronecta transfection
2.2.4.1 Stable fibronecta transfection
2.2.5 Immunohistochemical localisation of recombinant protein
2.2.6 Intra-cellular localisation of recombinant protein in live cells
2.2.6.1 Endoplasmic reticulum staining
2.2.6.2 Golgi staining
2.2.6.3 Mitochondrial staining
2.2.6.4 Lysosomal staining
2.2.7 Recombinant protein production

2.3 Protein biochemistry methods
2.3.1 TNE reaction
2.3.2 Talon chelation ion affinity protein purification
2.3.3 Bradford protein assay
2.3.4 SDS polyacrylamide electrophoresis
2.3.4.1 Burning gel
2.3.4.2 Trisglycer gel
2.3.4.3 Western blot anti-body detection of protein
2.3.5 Coomassie-stained SDS-PAGE
2.3.6 N-Glycosidase F digestion

2.4 Carbohydrate biochemistry methods
2.4.1 Hyaluronidase zymography
2.4.2 ELISA-based hyaluronidase assay
2.4.2.1 Preparation of biosynthesised hyaluronan
2.4.2.2 Immobilisation of biosynthesised hyaluronan onto ELISA plates
2.4.2.3 Assay for hyaluronidase activity
2.4.3 Substrate gel assay
2.4.3.1 Aporosa gel analysis of hyaluronidase digests
2.4.4 Gradient PAGE analysis of glycosaminoglycan ligands
2.4.5 Modified hyaluronidase assay
2.4.6 Q-Sepharose anion exchange chromatography
2.4.7 Hyaluronic acid estimation of uronic acid
2.4.8 Extraction of glycosaminoglycan from mouse tissues

2.5 Osteoblast methods
2.5.1 Mineralising osteoblast tissue culture
2.5.2 von Kossa staining
2.5.3 Radio-isotope incorporation into glycosaminoglycan
2.5.4 Characterisation of glycosaminoglycan type

2.6 RNA methods
2.6.1 RNA harvest from osteoblasts
2.6.2 RNA MOPS gel
Chapter 3 Bioinformatic analysis of the hyaluronidases

3.1 Introduction
3.2 Hyaluronidase gene and protein sequence comparisons
3.3 Analysis of protein sequences
3.3.1 Conserved motifs
3.3.2 Determining molecular mass of hyaluronidases
3.3.3 Prediction of signal peptide cleavage of hyaluronidases
3.3.4 Prediction of GPI anchor for hyaluronidases
3.3.5 Alignments of hyaluronidase

Chapter 4: Characterisation of recombinant hyaluronidase-1 and -3

4.1 Introduction
4.2 Construction of recombinant hyaluronidase expression vectors
4.2.1 Human hyaluronidase-3 non-tagged vector construction
4.2.2 Hyaluronidase-3-His expression vector
4.2.3 Hyaluronidase-1-His expression vector
4.3 Cell-free translation of hyaluronidase-3-His and hyaluronidase-1-His
4.4 Transient expression of hyaluronidase-3-His and hyaluronidase-1-His
4.5 Stable expression of recombinant hyaluronidase-3-His
4.5.1 Isolation of a stable hyaluronidase-3-His-expressing cell line
4.6 Intra-cellular localization of recombinant hyaluronidase-3-GFP
4.7 Stable expression of recombinant hyaluronidase-1-His
4.8 Production and purification of recombinant hyaluronidase-3-His and hyaluronidase-1-His proteins
4.9 Glycosylation of recombinant hyaluronidase-1-His and hyaluronidase-3-His
4.10 Glycohydrolase activity of recombinant hyaluronidase-1-His and hyaluronidase-3-His

4.10.1 Activity of recombinant hyaluronidase-3-His and hyaluronidase-1-His toward hyaluronan
4.10.2 Hyaluronidase activity assay with additives
4.10.3 Hyaluronidase activity toward other glycosaminoglycans

4.11 Analysis of non-tagged recombinant hyaluronidase-3
4.11.1 TNT protein production of non-tagged hyaluronidase-3
4.11.2 Transient expression of non-tagged hyaluronidase-3
4.11.3 Stable expression of recombinant hyaluronidase-3 non-tagged in COS-7 cells
4.12 Analysis of glycosaminoglycans in hyaluronidase-3 knock-out mouse tissues 106

4.13 Discussion 113
 4.13.1 Production of recombinant protein 108
 4.13.1.1 Cell-free expression of hyaluronidase-1 and hyaluronidase-3 110
 4.13.1.2 Transient expression of recombinant hyaluronidase-1 and hyaluronidase-3 110
 4.13.1.3 Stable expression of recombinant hyaluronidase-1 and hyaluronidase-3 111
 4.13.2 Activity of recombinant hyaluronidase-1 112
 4.13.3 Activity of recombinant hyaluronidase-3 113
 4.13.3.1 Protein expression 113
 4.13.3.2 Protein purification 115
 4.13.3.2.1 His tag interference 115
 4.13.3.2.2 Talon purification column 115
 4.13.3.3 Enzymatic assay conditions 116
 4.13.4 Glycosaminoglycan accumulation in the hyaluronidase-3 knock-out mouse 117
 4.13.5 Conclusions 117

Chapter 5: Hyaluronan metabolism in mineralising osteoblasts 119

5.1 Introduction 120
5.2 Histology of mineralising osteoblasts 121
5.3 RT-PCR in mineralising osteoblasts 121
5.4 Real time reverse transcription-PCR in mineralising osteoblasts 123
5.5 Total glycosaminoglycan synthesis in mineralising MG63 osteoblast cultures 128

5.7 Discussion 129
 5.7.1 HAS during mineralisation 131
 5.7.2 Hyaluronidase during mineralisation 131
 5.7.3 Changes in glycosaminoglycan macromolecules during mineralisation 133
 5.7.4 Changes in neo-glycosaminoglycan macromolecules during mineralisation 133
 5.7.5 Role of hyaluronan in the mineralising matrix 134
 5.7.6 Model for the changes in the mineralising osteoblast extra-cellular matrix 134

5.8 Conclusion 135

Chapter 6: Conclusions and future directions 137

6.1 Bioinformatic predictions of recombinant hyaluronidase 138
6.2 Possible functions for hyaluronidase-3 139
6.3 Function of hyaluronidase-1 138
6.4 Glycosaminoglycan turnover in the mineralising matrix of osteoblasts 141
6.5 Conclusions and future directions 145

Chapter 7: References 145

7.1 Publications resulting from this work 146
7.2 References 147

Appendix I: Materials 183
 Li Tissue Culture materials 184
 Li Molecular biology materials 184
 Liv Carbohydrate biochemistry materials 186

Appendix II: GeneBank sequences 188
Abstract

The mammalian hyaluronidases (HYALs) represent a family of enzymes that can degrade hyaluronic acid (HA). This thesis examines the properties of hyaluronidase-1 (HYAL-1) and hyaluronidase-3 (HYAL-3), as well as the production of hyaluronic acid and the expression of HYAL and hyaluronan synthases (PASs) in mineralising osteoblasts.

Recombinant hyaluronidase-1 (rHYAL-1) has a mass of 57 kDa, of which 10 kDa is due to glycosylation and 47 kDa is primary protein translation product. rHYAL-1 was shown to not only degrade HA, but also to function as an endo-glucosaminidase in the degradation of the sulphated sialic chondroitin sulphate and dermatan sulphate.

Recombinant hyaluronidase-3 (rHYAL-3) has a mass of 46 kDa, of which 9 kDa is due to glycosylation and 37 kDa is primary protein translation product. Immunofluorescence analysis localised His-tagged rHYAL-3 to the endoplasmic reticulum and lysosomes. In vitro activity assays demonstrated that HYAL-3 showed no glycohydrolase activity against any glycosaminoglycan (GAG) substrate tested. However, the HYAL-3 knock-out mouse (hyal-3−/−) accumulates GAG in testis, kidney and muscle, suggesting that HYAL-3 has a highly restrictive substrate specificity. A role for HYAL-3 in the testis is supported by previous data that has shown HYAL-3 is highly expressed in human testis.

HA, the primary substrate of HYAL, has previously been implicated to play an important role in the mineralisation of bone. In this study mRNA expression of the HYALs that synthesize HA (HAS-1, HAS-2 and HAS-3), and the HYALs which degrade HA (HYAL-1, HYAL-2, HYAL-3, HYAL-4) were examined in an osteoblast cell line.
that could be induced to mineralise in vitro and gene expression was compared to the amount of gag production. During mineralisation a 13-fold decrease in HAS-3 expression was observed, as well as a 62-fold increase in HYAL-2 expression, a 13-fold increase in HYAL-3 expression and a 3-fold increase in HYAL-4 expression. These changes in gene expression were coupled to a 5-fold decrease in the production of HA. Therefore, in mineralising osteoblasts, expression of the genes that control HA metabolism are co-ordinated such that a general decrease in the expression of HASs and an increase in HYAL expression corresponds to a decrease in HA. These data implicate a role for HA in the early stages of matrix synthesis and maturation, rather than the later process of mineralisation.